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Abstract: The need for constant monitoring of environmental conditions has produced an
increase in the development of wireless sensor networks (WSN). The drive towards smart
cities has produced the need for smart sensors to be able to monitor what is happening in
our cities. This, combined with the decrease in hardware component prices and the increase
in the popularity of open hardware, has favored the deployment of sensor networks based
on open hardware. The new trends in Internet Protocol (IP) communication between sensor
nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things
and Web of Things). Currently, WSNs provide data in different formats. There is a lack
of communication protocol standardization, which turns into interoperability issues when
connecting different sensor networks or even when connecting different sensor nodes within
the same network. This work presents a sensorized platform proposal that adheres to the
principles of the Internet of Things and the Web of Things. Wireless sensor nodes were built
using open hardware solutions, and communications rely on the HTTP/IP Internet protocols.
The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used
as a neutral format to avoid interoperability issues. An environmental WSN developed
following the proposed architecture was built as a proof of concept. Details on how to build
each node and a study regarding energy concerns are presented.
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1. Introduction

Nowadays, one of the challenges of our society is to know what is happening around us at every
moment and how this affects our daily lives. The growing concerns about climate change, natural
disasters, global warming or disease outbreaks make environmental monitoring an important aspect in
developed and developing countries [1]. For all of these reasons, there is an increasing demand for the
deployment of wireless sensor networks (WSNs) that provide updated information about the state of
the environment. Furthermore, the new approach towards the Internet of Things (IoT) [2] offers the
possibility to create smart objects and to form WSNs with them.

The trend in hardware manufacturing is to increase the processing capabilities of microprocessors,
following Moore’s law, while reducing their size. A second important factor is the reduction in price of
these devices. This has allowed the use of this technology in many fields where it could not be applied
before. The low cost of the technology that forms the sensors has facilitated the proliferation of WSNs
in many scenarios, such as environmental monitoring, agriculture, health or smart cities.

A third key aspect that has contributed to the increase in the use of these types of sensors is the open
hardware movement. In recent years, there have been several projects that have released the schematics
of their devices, which has increased their use. One remarkable example is the Arduino project [3],
a low-cost and easy to use microcontroller platform, with a huge community of developers that share
information, experiences and knowledge.

A fourth trend is to use Internet Protocol (IP) to achieve connectivity between WSNs and the
Internet [4]. The sensors are interconnected to make a WSN, mainly based on open standards, in which
each device has its own IP address. In this way, the sensors may be considered as smart objects, which
are interconnected in order to make an IoT [2]. IoT describes a concept in which the world of real,
physical things is integrated into the virtual world of bits and bytes. This term was first used in a paper
by David Brock in 2001 [5]. The term WoT describes the evolution of the IoT [6] and the integration of
web standards [7] into this concept.

Within this context, we present our work, which consists of a sensorized platform that can be used
to study different kinds of phenomena for multiple uses, like environmental, smart cities, health, and
so forth. This platform has been named Sense Our Environment(SEnviroare the italics necessary?
please check throughout ), which is a low-cost and autonomous solution. Each node of the SEnviro
platform, called SEnviro Thing, belongs to a WSN according to the paradigm of IoT. In order to validate
our proposal, a WSN is created using the SEnviro approach to monitor the environment. This WSN
is deployed and evaluated in the context of Jaume I University’s (http://www.uji.es/) campus, which,
with a 176,000-m2 centralized campus, is a real-life testing scenario for smart city and environmental
monitoring developments.

In summary, the main contributions of this work are: (1) a sensorized platform proposal able to make
observations in several scenarios, such as environmental, smart cities, health, agricultural, and so on;
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(2) a low-cost, energetically autonomous and open solution using open hardware and open software;
(3) to follow the IoT paradigms and to offer IP connection with agile access; and (4) to provide
interoperable access to sensor data by means of the SensorThings API [8], which is an Open Geospatial
Consortium (OGC) proposal to work with objects in the IoT paradigm.

The remainder of the paper is organized as follows. Section 2 presents the background of the new
trends in WSNs, open hardware and OGC standards. Section 3 presents the architecture proposal of the
SEnviro platform. Section 4 details the proof of concept of our architecture proposal. Section 5 reviews
the related work. The paper concludes in Section 6 with conclusions and future work.

2. Background

In this section, we first present the new concepts that the traditional WSNs have added in the last
few years and which have evolved into the current state of WSNs. Then, we discuss the current
alternatives for WSN development using open hardware. Finally, we detail the standards used for
handling sensor data.

2.1. Wireless Sensor Networks

A WSN is composed of sensors called nodes. They perform observations and transfer them to another
node; this may be a final or an intermediate node. According to [9], there are four different kinds of
applications for WSN: data collection, monitoring, surveillance and medical telemetry.

As in traditional networks, WSN have different topologies, such as star, mesh or cluster tree [10]. In
order to build these topologies, different components should be defined within the same network. Besides
the nodes, there are different parts, which are the router and coordinator [11]. The router exchanges the
observations between devices, and the coordinator has control over the network.

WSNs are characterized by their high heterogeneity, as they use lots of proprietary and
non-proprietary solutions. Traditionally, WSNs are based on proprietary protocols and No-Internet
Protocol (No-IP), such as ZigBee [12], Z-wabe [13], Insteon [14], and so on. One of the most
important challenges in this area is to provide interoperability between different WSNs with different
protocols [15]. The new WSNs have assimilated other technologies [16], such as Bluetooth, radio
frequency identification (RFID), wireless fidelity (Wi-Fi), mobile data services, etc. This implies a direct
connection to the sensor, in order to obtain immediate measurements. Furthermore, the sensors have the
ability to interact with other sensors in the same network. This allows several strategies of work.

In this way, existing web protocols are used as a common language for communication between
different nodes. The Hypertext Transfer Protocol (HTTP) is used as the application layer instead of the
transport layer commonly used in web services. Each sensor can be accessed by its Uniform Resource
Identifier (URI), and its functionality can be accessed through HTTP known operations (GET, PUT,
POST and DELETE). The major benefits of HTTP in WSNs is that it enables the use of standard web
services based on the REST architectural style. In addition, applications supporting RESTful services
perform better on WSN with limited computational resources [17].

In [18], a proposal to use the REST paradigm with smart objects is presented. According to [6],
each sensor can be considered an intelligent object that is able to sense, communicate and act, so each
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sensor has memory and intelligence. Each sensor is identified by means of a unique URI; in this way,
it can be accessed by following the principles of the IoT and WoT [7]. There are two methods for
accessing WSN when using a RESTful interface; direct and indirect [7]. In the case of direct access,
each sensor is connected directly to the Internet. Indirect access uses a private network that performs a
gateway function.

2.2. Open Hardware

As already mentioned, the cost reduction and the increase of open hardware popularity have opened
up different options for microcontroller-based platforms [19]. Currently, there are several different
alternatives regarding the microcontroller-based platform, and the most remarkable platforms are:
Arduino [3], Raspberry Pi [20], BeagleBone [21] or MSP430 Launchpad [22]. These options are
completely or partially open hardware. Below, we provide a short description of each of them. Table 1
shows a more detailed comparison.

Table 1. Comparison between different microcontroller-based platforms.

Arduino Raspberry Pi BeagleBone MSP430 Launchpad

Model R3 B A5 1.5
Microprocessor ATmega328 ARM11 ARMCortex-A8 TI M430G2553

Architecture 8 Bit 32 Bit 32 Bit 16 Bit
Clock speed 16 MHz 700 MHz 700 MHz 16 MHz

RAM 2 KB 256 MB 256 MB 512 B
Flash 32 KB SD 4 GB 16 KB

Min. power 42 mA 700 mA 700 mA 0.5 uA
Digital input 14 8 66 8
Analog input 6 N/A 7 8

Ethernet No Yes Yes No
Programming language Wiring-based Python, C and Basic Python, C and more C/C++

IDE Arduino tool IDLE, Scratch, Squeak/Linux Python,Scratch, Cloud9/Linux IAREmbedded Workbench Kickstart
Cost $29.95 $35.00 $199.95 $4.30

Open-hardware Completely Partially Completely Completely

• Arduino: This is a completely open hardware platform designed for reading data from its inputs,
processing small volumes of data and producing an output. There are a variety of sensors and
actuators that are compatible with Arduino. The main advantage over other platforms is the large
amount of resources available, both in terms of software and hardware. Another advantage is its
low energy consumption due to its limited processing capabilities. Arduino is the most popular
platform and is used in many applications. There are different versions of the Arduino platform
with different features.

• Raspberry Pi: This is a partially open hardware platform, which is designed to provide more
processing power than Arduino, as it is focused on multimedia due to the HDMI connector.
However, you can also add sensors or actuators via its general-purpose input/output (GPIO)
pins. Raspberry Pi runs Linux as the operating system, which encourages the development
of applications. This platform is more expensive compared to Arduino UNO and has higher
energy consumption.
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• BeagleBone: This is a completely open hardware platform and is less popular than the former
platforms. This platform is very similar to Raspberry Pi. They share many characteristics, both in
terms of processing and I/O. Both BeagleBone and Raspberry Pi have been built to have a higher
level of abstraction.

• MSP430 Launchpad: This is a hardware platform that is more similar to Arduino, as its features
are more limited than Raspberry Pi or BeagleBone. MSP430, as well as Arduino are designed for
low-power applications. Unlike Arduino, MSP430 does not have a large community behind it.

For the presented proof of concept (Section 4), we have chosen the Arduino UNO microcontroller.
When compared with other platforms, such as the Raspberry Pi and BeagleBone platforms, Arduino
UNO is more appropriate for working autonomously, because of its lower energy consumption.
Moreover, the monitoring of the environment functionality that we want for our project does not need
high processing power. Another reason for the use of Arduino, unlike MSP430, is that it has a lot
of expansion cards (shields), which facilitates its use and development. An example of this is the
Grove shield . The Grove shield facilitates the connection between sensors and Arduino through a
plug-and-play connection. Arduino has a very active developer community, as well.

2.3. OGC Standards

A standard-compliant system can be easily reused, because it provides an interoperable
communication method. One of the main organizations working in the standardization of WSN is the
Open Geospatial Consortium (OGC). The OGC has established Sensor Web Enablement (SWE) as a set
of specifications related to sensors, sensor data models and sensor web services that will enable sensors
to be accessible and controllable via the web [23]. In order to standardize sensor information, the SWE
group offers mechanisms that improve the discovery and access to this data type. The core suite of
language and service interface specifications includes the following: observations and measurements
(O&M), SensorML, sensor observation service (SOS), Transducer Model Language (TransducerML),
sensor planning service (SPS), sensor alert service (SAS), web notification services (WNSs).

The SWE standards enable all sensors to be discovered, accessed and reused via the web. However,
SWE standards are as complex as needed, supporting tasks, like controlling Earth imaging satellites.
Thus, they are too “heavy” for running applications on devices with limited resources [24].

On the contrary, the OGC SensorThings API [8] can be considered a lightweight SWE profile,
particularly well suited for developing WoT applications. The SensorThings API is a standard candidate
that provides open access built on web protocols, based on the current SWE and following the
architectural REST style. Its aim is to provide a standardized way to expose the real world to the world
of the IoT, where things have limited resources.

OGC SensorThings API consists of two layers of standards for connecting various types of WoT
sensing devices. The one layer is the IoT resources model layer that enables the understanding and
use of heterogeneous IoT devices. This layer consists of the standard-based data model describing the
entities and their relationships. The second one is the IoT service interface layer, which defines the URI
patterns for WoT resource addressing, the CRUD (create, read, update and delete) operations that WoT
resources are able to perform and the query parameters for filtering IoT resources.
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In order to provide a common pattern to access the data and capabilities of IoT devices, OGC
SensorThings API defines a data model where the core Entityis a Thing. Every Thing can have zero
or more locations in space or time. Furthermore, each Thing can have zero or more data streams (which
belong to the core of the sensing datastream profile). The data model contains two profiles. A profile is
a part of the data model that defines an environment. These profiles are:

• Sensing profile: allows IoT devices and applications to define CRUD data operations in the OGC
SensorThings API service.

• Tasking profile: allows applications to control IoT devices through an OGC SensorThings
API service.

The OGC SensorThings API data model is shown in Figure 1. Each Thing has a Location in space
and time. It can have multiple Datastreams, which are collections of Observation entities grouped by
the same Observed Property. An Observation is an event executed by a Sensor, which produces a result
whose value is an estimate of the Observed Property in the Feature of Interest. A Thing can have multiple
Tasking Capabilities, such as an executable function that is executed by an Actuator. User can create
any number of entity Tasks to be run in the service.

Figure 1. OGC SensorThings API data motel.

Figure 2 shows the three components defined by a REST URI: the root URI, resource path and query
options. The URI is the location of the OGC SensorThings API service. By attaching the resource path
after the root URI service, users can select any resources available in an OGC SensorThings API service.
When users perform a read action on a resource, some query options could be provided, such as sorting
or filtering with different criteria. We will use OGC SensorThings API as the interface to describe the
observations provided by the SEnviro network.

Figure 2. OGC SensorThings API URI pattern.
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3. SEnviro Architecture Proposal

In this section, we first present a general overview of the sensorized platform. Secondly, we present
the conceptual hardware design of the SEnviro Thing. Thirdly, the behavior of each SEnviro Thing
is described. Finally, the details of the interface used to fulfil the WoT paradigm and interoperability
objectives are presented.

3.1. General Overview

The SEnviro platform aims to provide a sensorized platform following the IoT and WoT paradigms by
means of a low-cost, open, energetically autonomous and interoperable solution. In this way, the SEnviro
platform introduces a new design proposal to easily attach different kinds of sensors. The SEnviro
platform uses an IP protocol to establish the connection. With these features, it can be considered that
each SEnviro Thing is a smart object. A SEnviro network is formed by joining several SEnviro Things.

The proposed platform is inexpensive, because we have chosen affordable components and sensors.
The SEnviro platform can be considered open, because we use both open hardware and open software.
Another important feature of this platform is that it is energetically autonomous by means of a battery
cell, which is charged with the energy provided by a solar panel attached to it. The SEnviro platform also
offers an interoperable service using standards.

An example realization of our proposal will be fully described in Section 4. As an example, a
SEnviro Thing can be considered as a hardware and software platform able to integrate any type of
sensor and communicate the sensor measures for later storage, processing and analysis; as energy
autonomous, highly reconfigurable and fully interoperable. For this first proof of concept, we have
added environmental sensors, such as temperature, humidity and CO2, among others.

3.2. SEnviro Things Design

The SEnviro Thing has been designed to be a node acting as a smart object, which provides
environmental measurements. Each SEnviro Thing is formed by different components, which
are organized into four groups depending on their function: Core, Sensors, Power Supply and
Communication (Figure 3).

The Core of the system collects, stores, sends and manages the sensor data. The Core structure
of the system also provides the hardware interfaces and suitable communication protocols needed to
connect it with the sensors. To fulfil these objectives, the Core is formed by four parts: Microcontroller,
Connectors, Clock and Memory.

• The Microcontroller is the most important component in the Core. It processes the sensor data and
triggers any interaction with either system components or clients.

• The Connector module helps to easily and quickly connect the Core and Sensors parts of the
SEnviro Thing. This module provides different kinds of interfaces to guarantee the interoperability
between the Sensors and the Core modules.
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• Furthermore, each SEnviro Thing includes data storage that is used for several purposes. The main
purpose is that the SEnviro Thing needs to know the current state, which is stored in the Memory.
Moreover, the Memory can be used to save different kinds of data, like historical sensor data.

• Each SEnviro Thing needs to add a time-stamp to each measurement for a later analysis of the data.
For this purpose, a Clock has been included in the system.

Figure 3. SEnviro Thing design.

The Core provides the appropriate basis to build a system where Sensors can be attached or detached
depending on the particular phenomena that is measured in each particular case. As already stated,
the Core offers interoperable connectors, which facilitate plugging and unplugging the sensors of the
platform, regardless of the nature of the measured phenomenon.

In order to connect with other Things, a Communication module has been included. Each SEnviro
Thing must use a communication channel and, thus, suitable communication hardware that provides the
Core interface to send and receive data. This module offers different types of communication to easily
exchange data between SEnviro Things.

To offer an autonomous SEnviro Thing, a battery and solar panel have been included to provide
power supply.

3.3. SEnviro Thing Behavior

SEnviro Thing has been designed to be modular. It provides a core functionality, where users can
easily add or remove hardware modules. In this way, it can be ensured that SEnviro Thing will continue
working whenever a new sensor is added or an existing one is removed. Therefore, SEnviro Things is very
versatile, as they can be easily adapted to different scenarios and different study proposals. SEnviro Thing
is able to change its behavior, updating the information about what sensor is active and the frequency of
the measurement. Figure 4 shows the defined workflow of a SEnviro Thing.
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Figure 4. SEnviro Thing behavior diagram.

The SEnviro Thing behavior has two stages, initial and repetitive. In the initial stage, a set
of procedures are executed when it is initiated, for instance one procedure to initialize the clock
(Figure 4, Step 1) using the current time. The repetitive stage defines the procedures that should
be repeated during the SEnviro Thing’s life cycle. This can be divided into five different steps as
follows: (1) the SEnviro Thing wakes up from a sleeping period to start collecting data (Figure 4,
Step 2); (2) it checks whether to modify their behavior (Figure 4, Step 3); if affirmative, its
behavior is changed (Figure 4, Step 4); (3) it checks if there are pending observations in the
memory that have not previously been sent (Figure 4, Step 5); if there exist such observations,
it sends them (Figure 4, Step 6); (4) it collects new observations from each sensor (Figure 4,
Step 7) and tries to send them (Figure 4, Step 8); and (5) after trying to send (Figure 4, Step 9)
the data, it goes to sleep (Figure 4, Step 10). If there is any problem sending the data, it saves
the data to the internal memory (Figure 4, Step 11) before going to sleep. These data will be
sent in the next cycle. Therefore, the SEnviro Thing’s life cycle starts again with the wake up
(Figure 4, Step 2).

3.4. Interface for IoT: OGC SensorThings API

One of the objectives of the SEnviro platform is to offer a standard service, in order to provide
connectivity in an interoperable way. To meet this challenge, an OGC SensorThings API has been
used to offer an interoperable service to access the SEnviro platform. As previously commented, one of
the keys of this standard is that it breaks with all “standard topics” [25] and offers access to restrictive
devices, such as smartphones.

Figure 5 shows an example of using OGC SensorThings API for one of the SEnviro Thing from the
smart campus proof of concept (Section 4). As already discussed, in this standard, the core is the Things.
Every Thing is a SEnviro Thing in our SEnviro network, which has access with an IP connection; in
our case, by Wi-Fi. For this example, we have chosen a sensor located in one of the buildings of our
university, called Espaitec II.



Sensors 2015, 15 5564

Figure 5. Example of OGC SensorThings API based on a SEnviro platform.

Each Thing can be associated with one or more locations; in this case, the Location is the geographical
reference to the place where the sensor is installed. The encoding is performed by GeoJSON [26]. A
Thing can have many Datastreams. A Datastream contains the information of a phenomenon. For our
use case, we have a Datastream for each sensor’s phenomenon. Each Datastream contains a Sensor and
an ObservedProperty. The first refers to each of the instruments that can observe a phenomenon; in our
example, these would be the temperature, humidity, barometer, and so forth. An ObservedProperty
specifies the phenomenon and also contains the unit of measure. A Datastream can have several
Observations, and they indicate the value for these phenomena. It is encoded by an O&M. In our
example, this can be the values taken from a sensor measurement.

Finally, the FeatureOfInterest identifies the characteristics of the Thing. For our example, this can
be the location. Table 2 shows all entities that have been used together with their sensing profile,
where each property indicates the type of format that has been encoded. In addition, an example of
how it is used is also shown. Currently, OGC SensorThings API is not stable, and it does not have an
official implementation. An external server has been used to test this API, which is offered by the OGC
SensorThings API staff.
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Table 2. Sensing profile properties of OGC SensorThings API used in the SEnviro
Thing example.

Entity Property Type Example

Thing Description Character String Espaitec II
Location Time ISO8601 2014-11-16T10:53:11-0700
Location Geometry GeoJSON geometry {“Geometry”:{“type”: “POINT”, “coordinates”: [0, 40]} }

Datastream Description Character String Temperature
ObservedProperty URI URI urn:ogc:def:property:SEnviro:Temperature
ObservedProperty UnitOfMeasurement Character String Celsius

Observation Time ISO8601 2014-11-16T10:53:11-0700
Observation ResultType O&M Result Type Measure
Observation ResultValue Any (depends on the ResultType) 26.95856250788312

Sensor Metadata Character String Espaitec II
FeatureOfInterest Description Character String FOI_1
FeatureOfInterest Geometry GeoJSON geometry {“Geometry”:{“type”: “POINT”, “coordinates”: [0, 40]}}

4. SEnviro Proof of Concept at Jaume I University Campus

This section presents a proof of concept to test and validate the platform presented in the previous
sections. First, the context where the SEnviro platform has been deployed is described. In the second
subsection, a SEnviro network example is developed. The third subsection visualizes the energy
consumption of each SEnviro Thing. Finally, the web client application developed to access these data is
presented and evaluated.

4.1. Jaume I University’s Context

The proof of concept has been deployed within the campus at the Jaume I University
(http://smart.uji.es/). Moreover, the university campus functions as a small city. As a first step, an
environmental monitoring SEnviro network has been developed with five different SEnviro Things.
Figure 6 shows the location of each SEnviro Thing.

Each SEnviro Thing has been developed with different sensors providing data about some basic
phenomena. They are: particles, noise, gases and light. Some of them also include sensors to
measure temperature, humidity, atmospheric pressure, rainfall, wind direction and speed. The reason
that not all SEnviro Things have the same phenomena is that phenomena, such as temperature, humidity,
atmospheric pressure, rain, wind speed and direction, do not significantly change within the campus area.
To reduce the cost, we have decided to use only two SEnviro Things in this network, including all of
these sensors.

The created SEnviro network for this proof of concept follows the ubiquitous network paradigm [27],
where the smart object network is a part of the Internet. Through a gateway, users will have access to
the information provided by the smart objects, either directly or through intermediate servers. Usually, a
server acts as the sink in the smart object’s network, to collect data from each object.

Jaume I University has Wi-Fi connection throughout the campus. Each SEnviro Thing is connected
to the nearest WAP via the included Wi-Fi module and sends the observations to a central server. That
server is open to the Internet and is responsible for serving the observations to clients. The configuration
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chosen for the SEnviro network is the direct connection of each SEnviro Thing to the WAPs. Therefore,
the network is star-shaped (Figure 7), with the particularity that there may be more than one access point.

Figure 6. Locations of each SEnviro Thing inside the campus of Jaume I University.

Figure 7. SEnviro network for the Jaume I University campus.

4.2. SEnviro Platform for Environmental Monitoring

An example of the development (hardware and software) of the SEnviro platform (presented in
Section 3) is shown in this subsection.
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4.2.1. Building a SEnviro Thing

Table 3 shows a general description of the components of a full sensor SEnviro Thing regardless
of the categories detailed in Section 3.2. The total cost, at the time of writing, per SEnviro Thing is
286.28e. Figure 8 shows a SEnviro Thing assembled with all components. As commented earlier, each
SEnviro Thing is composed of five parts (Core, Sensors, Power Supply, Communication and Enclosure;
see Section 3.2). They are described in detail as follows.

Table 3. Components list included in the SEnviro Thing (prices at the time of writing).

Category Component Description Cost

Core

Microcontroller board Arduino UNO 20.00e
Shield Grove Base Shield V2 8.60e
Clock Real-time clock for Grove 5.60e
MicroSD card module MicroSD card module for

Arduino UNO
8.30e

MicroSD card MicroSD card 2 Gb 6.00e
Screw connectors Screw terminal for Grove 2.75e
Box for arduino RETEX series 102 10.65e
Box for sensors 3D printed box 10.00e

Communication
Wi-Fi module RN-XV WiFly module 40.80e
Socket Bee Bee socket for Grove 6.72e

Sensors

Temperature and humidity sensor Grove temperature and humidity
sensor

12.60e

Loudness sensor Grove noise sensor 4.95e
Light sensor Grove light sensor 2.90e
Dust sensor Grove particulate matter sensor 14.45e
Barometer sensor Grove barometer sensor 16.35e
Gas sensor Grove MQ-9 sensor 7.95e
Rainfall, wind speed and direction
sensors

Weather meters 72.00e

Power supply

Power module LiPo Rider 9.50e
Battery Polymer lithium ion battery

2200 mA 3.7 V
9.66e

Solar panel 3 Wsolar panel 138 × 160 15.00e
Coin cell battery CR1225 3 V 12 mm 47 mA coin

cell battery
1.50e
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Figure 8. SEnviro Thing assembly.

• Core: The Core of the SEnviro Thing has four different elements: Microcontroller, Connectors,
Clock and Memory. An Arduino UNO [3] has been selected as the Microcontroller. As commented
in Section 2.2, Arduino UNO offers a low energy consumption and a great number of possibilities
of expansion by using shields. These two aspects are critical for this project, because we are
looking for an energetically-autonomous platform, and we also want to offer a range of different
connections. The Grove shield has been used as the Connectors. It has 16 connectors into which
Grove elements can be easily plugged. The Clock part uses a real-time clock (RTC) Grove module
to know the current time. In this way, a timestamp can be attached to each observation when it is
sent. The SEnviro Thing uses two types of Memory. On the one hand, the memory is provided by
the Arduino UNO to save the current state of the SEnviro Thing. On the other hand, there is external
storage through an SD card module to store the observations that have not been successfully sent.

• Sensors: Table 4 shows all of the information about the Sensors that we have integrated for this
study and the characteristics of the measurements that we can obtain from them. All of the Sensors
that have been chosen are low cost, since one of the goals was to obtain an affordable system.
Despite their low price, most of them are suggested by the community to be used for monitoring
in industrial environments, so they offer quite reliable measurements. Furthermore, all of the
presented sensors have a Grove connector.
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Table 4. Details of the included Sensors.

Sensor Phenomena Manufacturer Model Data Interface Units Range Accuracy

DHT22 Temperature Seedstudio SEN51035P Analog Centigrade [−40, 80] ±0.5 Degrees (C)
Humidity Rate [5%, 99%] ±2 RH

Bosch BMP085 Pressure Seedstudio SEN05291P I2C Hectopascal [300, 1100] ±0.03 hPa
Temperature Centigrade [−40, 85] ±2 gradosC

LDR GL5528 Light intensity Seedstudio SEN11302P Analog Lux [0, 1024] Not specified

LM2904 Amplifier Loudness Seedstudio SEN02281P Analog Decibel [0, 1024] Not specified

PPD42NS Dust/particles Seedstudio SEN12291P Digital pcs/liter [0,28,000] >1 um

MQ-9 CO Seedstudio SEN04092P Analog ppm [10, 1000] Not specified
Combustible gas ppm [100, 10,000] Not specified

Weather meters Wind speed Sparkfun SEN08942 Analog (RJ11) km/h Not specified Not specified
Wind direction Direction (degrees) [0,360] Not specified
Rain meter mm Not specified Not specified
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• Communication: A WiFly RN-XV Wi-Fi module has been used to develop the Communication
part. It offers this interface in our system allowing the Core to send and receive IP packets through
a Wi-Fi network. It features Bee socket and connects with the Arduino Universal Asynchronous
Receiver-Transmitter (UART) interface via a Bee socket, through its Grove connector. The Grove
Bee socket allows the system to replace its communication channel by switching the Bee modules
to other compatible Bee communication modules. In this way, we can expand our platform with
other kinds of communication, such as mobile data services or Bluetooth.

• Power Supply: A lithium battery of 2200 mA has been used to offer an energetically-autonomous
platform. It supplies an output voltage of 3.7 V and is charged with the power generated with a 3 W
solar panel that supplies an output voltage of 5.2 V. These two elements and the Microcontroller
are attached to a board (LiPo Rider V1.1 ) that handles the power flow between the various
components. This board also has a micro-USB port where the lithium battery can be charged
in case solar power is not sufficient. In addition, it does not have to be programmed, as it already
comes with an algorithm to manage power sources and drains; nevertheless, it can be replaced with
a custom algorithm if needed. Furthermore, a coin cell battery (CR1225) has been used to save the
RTC time.

• Enclosure: Two enclosure designs have been considered to protect all parts of the SEnviro Thing.
To protect the Core, Communication and Power Supply parts, a waterproof enclosure is used; also,
a pagoda box (Figure 9) has been designed to deploy the whole assembled system and to protect
the Sensors part from weather conditions while still allowing sensors to be in contact with the
environment and to provide reliable measurements. The pagoda box has been printed with a 3D
printer and is composed of polylactide (PLA), a bio-plastic that is made from corn. While PLA is
classified as “industrially compostable”, it is highly UV resistant, much more so than acrylonitrile
butadiene styrene (ABS), so it provides a great outdoor housing structure. This box serves as a
structure to join all of the parts.

Figure 9. Pagoda box.
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4.2.2. Details of the SEnviro Thing Behavior

An Arduino program has been developed to offer the behavior described in Section 3.3. The Arduino
code is written in a file called sketch, which is the main program uploaded to the board. Two methods
have to be implemented in each sketch: setup and loop. These two methods correspond to the two
stages described in Section 3.3. The setup method (initial stage) is executed as an initializer when
Arduino boots up. When setup finishes, the loop method (repetitive stage) will be executed in an
infinite loop.

Arduino does not provide a way to keep track of time and date by default, so we used an external
clock. The Arduino requests a reference timestamp from the server at the setup, so that timestamps are
always up to date when Arduino boots up the first time.

In our system, the Arduino reads the configuration parameters from the server daily. The parameters
are the list of active sensors and the frequency of reading of the measurement. This feature allows the
behavior of a SEnviro Thing to be modified by simply changing the configuration file that is hosted in
the centralized server. The changes will be effective in less than 24 h, without the need to deploy a new
sketch of the Arduino. The response from the server (the configuration parameters) contains some simple
instructions, with the tasks that the Arduino should carry out each time it wakes up and their frequency.
The response format must be simple, as the processing capabilities of the Arduino are limited. The
response is sent in comma separated values (CSV) format.

As said above, the loop method executes all of the instructions in an infinite loop. If the behavior of
the system indicates a waiting time between runs, the delay function can be used just before ending a
loop iteration to insert a pause of a desired length. However, this is very expensive in terms of energy
consumption, and the batteries would run out of charge very quickly. That is the reason for putting the
Arduino to sleep in SLEEP_MODE_PWR_DOWN mode, which allows the greatest power savings. To
wake up the Microcontroller, we use the watch dog timer (WDT) with the largest scale register to trigger
an interruption every eight seconds, which is the maximum interval that can be achieved by WDT timer
counters. If the system needs longer waiting times, sleep cycles can be counted to check whether the
Arduino has to go to sleep immediately after being wakened up or, conversely, has to perform some
tasks. The WiFly RN-XV module can also go to sleep by sending a sleep command, and it wakes up
whenever it receives data on the RX serial buffer. Thus, the Arduino puts the Wi-Fi module to sleep
before going to sleep itself; then, when the interruption is triggered and the Arduino wakes up, it sends
a random single character to the Wi-Fi module to wake it up. This wake-up character does not alter the
subsequent communication, since it is discarded by the Wi-Fi module.

When the waiting period has finished, our system updates the values of the observations taken from
the set of sensors and sends them to the server. However, there could be connectivity problems, so the
observation could be lost. To avoid such losses, we have implemented the behavior in the Arduino pro-
gram to store pending observations in an SD card when sending was not successful. When connectivity
is restored, all of those pending observations are sent alongside their corresponding timestamp, and the
SD card is cleared. The timestamp is also saved in the SD card for each pending observation to achieve
this behavior.
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In our approach, many open source libraries have been used to appropriately drive the hardware
components. These libraries have been developed by the community and shared on the Internet to
facilitate inclusion in other projects with similar requirements, such as ours. Furthermore, we developed
our own library for the WiFlyRN-XV module, since we could not find on the web one that suited our
needs. Our library is publicly available at Github [28].

4.3. Autonomous Power Supply

This subsection introduces the different energy consumptions for each SEnviro Thing category and
the energy consumption tests with the WDT.

4.3.1. Energy Consumption

Regarding the energy consumption of the Arduino UNO, Table 5 shows a comparison of its power
supply requirements in different scenarios. Consumption can vary considerably depending on the
peripherals connected to the board.

Table 5. Arduino UNOenergy consumption.

Mode Energy Consumption (mA)

Sleep 5–9
Normal 25–50
High Power 300

The energy consumption of the other Core components is detailed in Table 6. Both the clock
consumptions and the SD card have lower energy consumption than the sensors detailed in the former
section. The total energy consumption for these components is 21.5 mA.

Table 6. Energy consumption of the Core components.

Component Energy Consumption (mA)

Clock 1.5
MicroSD card module 20

Table 7 shows the energy consumption of the Communication module depending on its state and
activity level. It reveals that it is quite expensive, in terms of energy consumption, to send information;
it requires 185 mA. It only consumes 35 mA when it is not transmitting any data, but is ready to receive
data. In contrast, it is highly efficient, and it only consumes 4 µA when it is in sleep mode.

The energy consumption of the different Sensors is shown in Table 8. This table shows that the energy
consumptions of the dust, barometer and gas sensors are significantly higher than the other sensors. The
added consumption is 384 mA under normal operating conditions.
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Table 7. WiFly RN-XV energy consumption.

Mode Energy Consumption (mA)

Sleep 4× 10−3

RX active 35
TX active 185

Table 8. Sensors energy consumption.

Component Energy Consumption (mA)

Temperature and humidity sensor 1.5
Loudness sensor 0.5
Light sensor 3
Dust sensor 90
Barometer sensor 89
Gas sensor 150
Rainfall, wind speed and direction sensors 50

4.3.2. Battery Life Tests

As has been commented, the SEnviro Thing has been designed to be autonomous, so solar panels and
batteries have been used to provide energy. Besides those Power Supply elements, it has been necessary
to study the energy consumption of the elements of each SEnviro Thing. There is no specification from
the designers of the Arduino platform about its energy consumption, as it may vary depending on the
connected peripherals. In addition to the theoretical aggregated consumption of each SEnviro Thing, we
have carried out some tests to verify the autonomy and the behavior of the solar panels and batteries.

The theoretical calculations suggest that a battery of 2200 mA should be able to supply energy to the
system for four hours and 30 min under a total consumption of 490.5 mA. However, our first autonomy
test revealed that each battery could only supply energy to a SEnviro Thing for three hours without
using any efficiency mechanism. As a conclusion from this first test, it is apparent that energy loses and
discharge rates considerably reduce the duration of the batteries. This test was performed without solar
panels, to check the battery’s capacity.

Furthermore, we considered that it was highly inefficient to keep such consumption rates during the
execution time. Therefore, we decided to use WDT interruptions and the sleep mode (see Section 4.2.2)
in the Arduino and the Wi-Fi module to: (1) consume as little energy as possible; (2) keep a continuous
and steady power supply; and (3) still be able to fulfil the tasks expected to be carried out at each
SEnviro Thing. The autonomy tests were performed with this improved configuration, and the battery
could supply energy to a SEnviro Thing for 24 h and 30 min. With this new approach, the batteries lasted
eight-times more than under the normal operational mode. The energy consumption obtained is around
90 mA per hour (with energy loses and discharge rates).

These new results are satisfactory, since the critical time for the batteries comes at night when they
cannot rely on the energy supplied by solar panels. This represents only half the time of the maximum
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possible in a day; therefore, the solar panels are capable of recharging the batteries during daylight hours.
We are considering the number of solar hours in Spain (min. 9.5 solar hours and max. 14.9 solar hours).
For that, we conducted a final test with the batter fully-charged and a 3 W solar panel. The results of
this third test were again satisfactory. The energy consumption at night was compensated by the energy
supplied from the solar panel during the day.

4.4. A Web Client Able to Connect to the SensorThings API

As a first prototype, a client based on HTML5 [29], JavaScript and Cascading Style Sheets (CSS) has
been developed (see Figure 10). This client is able to connect to the OGC SensorThings API service to
obtain data from the SEnviro Things inside the university. Showing the Sensors data in real-time is the
main objective of the developed client.

Figure 10. Client developed to show the SEnviro network observations.

Firstly, the SEnviro Things are displayed on a map using markers. When a user clicks on one of them,
new markers appear in a pop-up menu. Each new marker symbolizes a sensor corresponding to a data
stream of OGC SensorThings API. The selected marker is displayed in red.

When a sensor is clicked on, the client displays a pop-up showing a plot with the latest data for
the sensor observations. The plot interactively displays the corresponding observations. It is possible
to display different plots simultaneously and even from different sensors provided by multiple SEnviro
Things. This helps to compare the values of the same phenomenon inside the same network.

To implement the former visualization requirements, we searched for a solution that would offer
flexibility, compatibility, as well as standards compliance. There are several frameworks that facilitate
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creating interactive map clients with HTML5. In particular, we used a combination of already
existing frameworks:

• Leaflet (an open-source JavaScript Library for mobile-friendly interactive maps, with ESRI
cartography , to put the makers on the map. It proved to be fast and efficient. In addition,
it can be executed in restrictive environments, such as smartphones. It is an open-source web
mapping library.

• Another library that we used is Bootstrap . It offers the capacity of building a responsive dashboard,
and can adapt to the device’s features. Furthermore, we use jQuery to handle pop-ups.

• Finally, another framework that was used is Highcharts JS . It is a graphics library written in
HTML5 and JavaScript. The library provides an easy and interactive way to generate graphs in a
web environment. Highchart JS is free for non-commercial uses.

5. Related Work

In the literature, there are some approaches that are similar to our proposal. The following items
describe the works that have been analyzed. All of them use open hardware platforms as their basic
building blocks.

• The SenseBox project [6] investigates certain real-world use cases for web-enabled sensor objects.
The authors present a use case where a motherboard with an Intel atom device connected to an
Arduino is used. The Arduino’s function consists of connecting the sensors and the motherboard.
The objective of the work is to count the traffic load on a road.

• The paper [30] presents a WSN developed using Arduino platforms. A Bluetooth connector is
installed in each Arduino. It offers observations for different components, such as CO, CO2,
temperature and humidity. A worker equipped with a mobile phone connects with the sensor to
collect the observations and send them to a server.

• The authors in [31] propose a WSN using Arduino platforms with a ZigBee connection. Each
sensor incorporates temperature and humidity sensors. A Raspberry Pi collects the observations
and publishes them on the Internet. A web client for visualizing the observations is also presented.

• The authors in [32] present a low-cost solution based on the Arduino platform. Each Arduino is
equipped with various sensors, such as CO, CO2, hydrogen, methane and sound. In addition, a
Global Positioning System (GPS) is also attached to the Arduino. The authors do not specify the
wireless connection type.

• The authors in [33] present a sensor prototype using an Arduino Mega board. It takes observations
of temperature and humidity on a 5-min interval basis. Although, the device is equipped with a
secure digital (SD) card where observations are stored, it can work in real time using an Ethernet
connection. It has batteries that last up to 8 h.

• A sensor network built using Arduino platforms is presented in [34]. It is tested using two different
network topology configurations: the first configuration uses ZigBee and another one Wi-Fi. In
the case of the Wi-Fi configuration, a star topology centralized by a wireless access point (WAP)
is used.
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• A solution where the users are responsible for collecting data from sensors (crowdsourcing) is
presented in [35]. Each sensor provides temperature and humidity data. The system uses the
Arduino platform, which can be accessed via Bluetooth. Users can obtain the observations by
using the Bluetooth connection in their mobile phones. When a user receives an observation, it
is sent to a server, and then all observations are accessible by OGC standards, like SOS. Each
observation associates the coordinates of the mobile phone in the instant of the measure.

• The work presented in [36] shows a WSN for monitoring temperature, humidity and soil moisture.
Different sensors are connected to a coordinator through ZigBee, which, in turn, is connected to a
computer with an Internet connection.

• The authors in [37] present the development of an autonomous sensor using a MSP430 LaunchPad.
It is equipped with an accelerometer, light sensor, passive infrared sensor (PIR), temperature sensor
and microphone. This system is characterized by having a solar panel that always keeps the
battery charged.

• In the last work analyzed [38], a sensor prototype for monitoring agricultural environments is
presented. The authors use an Arduino Mega equipped with GPS. Furthermore, it adds a Wi-Fi
bridge by means of an Ethernet shield. Different sensors, such as temperature, soil moisture and a
light sensor, are attached to the system. This work is especially relevant in the context of our work,
because it uses SWE standards, and the WoT and REST paradigms are applied.

In order to compare the formerly reviewed works, Table 9 has a comparison between the detailed
works. The following features to characterize each one have been proposed:

• Platform: the microcontroller model that the system uses.
• Real-time: indicates if the system works in real-time. Scale: yes/no.
• Connection: refers to the wireless connections available for the system. Scale: Wi-Fi, Bluetooth,

ZigBee, others.
• Phenomena: refers to the phenomena that the system can measure. Scale: temperature, humidity,

dust, barometer, noise, others.
• Cost: the cost in terms of money to deploy the system. Scale: Euros.
• IoT-WoT: indicates if the system follows the IoT and WoT paradigms. Scale: yes/no.
• RESTful: shows if the system offers a RESTful interface. Scale: yes/no.
• Client: indicates if the system provides a client to visualize the sensors and observations Scale:

yes (what kind)/no.
• OGC standards: shows if the system offers OGC standards. Scale: yes (what kind)/no.
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Table 9. Comparison between different sensorized platforms.

Reference Platform Real-Time Connection Phenomena Cost IoT-WoT RESTful Client OGC Standards

[6] Arduino
and Intel
Atom

Yes UMTS-3G USB N/A (N/A: Not specified) 375e
(without
sensors)

Yes No No SWE

[30] Arduino No Bluetooth CO, CO2, Temperature and Humidity N/A No No Google Web Toolkit No

[31] Arduino
and
Raspberry

Yes ZigBee/Ethernet Temperature and Humidity N/A No No HTML No

[32] Arduino Yes N/A CO, CO2, Hydrogen, Methane and
Noise

N/A No No HTML No

[33] Arduino
Mega

No Ethernet Temperature and Humidity N/A No No Drupal No

[34] Arduino
UNO

Yes Wi-Fi Temperature, Humidity, Barometer
and Gases

820e No No No No

[35] Arduino
UNO

Yes Bluetooth Temperature and Humidity N/A No No Android SOS

[36] Arduino
UNO

Yes ZigBee Temperature, Humidity and Soil Hu-
midity

N/A No No No No

[37] Texas
Inst.
MSP430

N/A Not specified Temperature, Humidity, PIR, Noise
and Accel.

N/A No No No No

[38] Arduino
Mega

Yes Ethernet Temperature, Soil Humidity and
Light

185e Yes No No O&M

Current work Arduino
UNO

Yes Wi-Fi Temperature, Humidity, Dust,
Barometer, Noise, Gases, Light, Rain
Gauge and Anemometer

286.28e Yes Yes HTML5 OGC SensorThings API
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In the following, we compare the analyzed works and our own work using the characteristics listed at
the beginning of this section, and the results are shown in Table 9. As can be seen, most of the analyzed
works use the Arduino platform, as stated before; this can be explained by its ease of use, the number
of different sensors that can be attached to this platform, the large community that supports the Arduino
project and its low energy consumption.

Like some other works analyzed, our work offers sensor data in real time. This is possible because
all Arduinos are provided with Wi-Fi connection to the Internet. SEnviro, in the presented proof of
concept, offers different measured phenomena, such as temperature, humidity, dust, barometer, noise,
some gases, light, rain gauge and anemometer, being the work offering the largest number of phenomena,
among those analyzed.

Regarding cost, our system is less expensive than the other projects; our platform only costs 286.28e.
The platform introduced in [38] is less expensive, but it does not include the sensors. Another
characteristic that we want to analyze and include in the comparison is the energy consumption of the
system, but only one of the analyzed works [34] offers this information, consuming 268 mA without
sensors. SEnviro has a better energy consumption than [34] with 90 mA including all components.

Only two analyzed projects [6,38] follow the IoT and WoT paradigms. SEnviro follows these
paradigms and offers a RESTful interface. Finally, our project aims to be interoperable, and for this
purpose, an OGC standard has been chosen, such as the OGC SensorThings API. Although it is a
standard candidate, it has a high probability of being the first OGC standard for the IoT and WoT
paradigms.

6. Conclusions

This work presents a sensorized platform proposal called SEnviro. This concept has been conceived
of by following two main objectives: (1) to be developed using open hardware; and (2) to offer
interoperability by means of standards. In addition, it is able to work with any kind of sensor.

A platform developed using open-hardware provides many benefits. It offers the possibility to provide
access to a large community of developers and facilitates the hardware usage. Furthermore, it enables
expansion options, because there are many compatible components, so the schematics are fully available.
Another benefit of using open hardware is the low cost of these components, because there are many
manufactures that provide the same component.

The other objective is to offer interoperable services to facilitate access to the data. For this aim, the
OGC SensorThings API has been used. This API offers an easy and agile access to the sensor data using
the IoT and WoT paradigms. The advantage of offering a standard interface is the possibility of reusing
the clients.

Our platform offers an easy connection in software and hardware terms. At the hardware level, it
offers a plug and play connection using the Grove shield. At the software level, SEnviro has developed a
Core, in which the Sensors included in this study can be included with little effort.

The SEnviro platform has been designed according the IoT and WoT paradigms. It not only offers a
WoT interface, the hardware has been designed taking both paradigms into consideration. Each SEnviro
Thing can be considered as a smart object permanently connected using the IP protocol.



Sensors 2015, 15 5579

A challenge for this work was to offer an autonomous Power Supply, to avoid any restrictions when
deploying the SEnviro platform. Another point to note is the sensor and network ability to change
its behavior while they are working. This avoids the replacement of the Sensors when they are installed
and the changing of their settings one by one.

In order to validate the proposed architecture, an environmental sensor network has been created
using multiple SEnviro Things. A university campus has been chosen as the context for this validation.
A network with five SEnviro Things has been successfully deployed. Moreover, a web client able to
consume data following the OGC SensorThings API provided by the platform has been developed.

As future work, our first objective is to offer a web client that would be able to adjust the SEnviro
Thing behavior settings. Currently, the settings are provided by means of a simple text file on the
server-side. Another line of project development is to add alternative IP-based connectivity, like mobile
data services or Bluetooth. Finally, another line of future work is to apply different data analysis to
the data provided by the platform, in order to obtain different indicators in the area where the SEnviro
network has been deployed. These analyses will include the methodologies for real-time event detection
applied in previous work [39] in order to detect anomalies in data series from environmental monitoring.
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