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ABSTRACT 

This work describes a rapid analytical method based on direct sample injection of water 

samples for the simultaneous identification/quantification of 40 emerging compounds, 

including pharmaceuticals and drugs of abuse. The water samples were analyzed by ultra-

high-performance liquid chromatography coupled to hybrid triple quadrupole mass 

spectrometer (UHPLC-MS/MS QqQ). Taking profit of the increasing sensitivity of 

nowadays’s tandem mass spectrometers, direct sample injection of large volumes has been an 

attractive alternative to pre-concentration steps. In this work, the developed methodology has 

been validated at three concentration levels (10, 100 and 1000 ng/L) in 10 different water 

samples of different types (5 effluent wastewaters and 5 surface waters). The majority of 

compounds could be satisfactory validated at these concentrations, showing good recoveries 

and precision. With only few exceptions, the limits of quantification (LOQs), estimated from 

the sample chromatogram at lowest spiked level tested, were below 3 ng/L. The method was 

applied to the analysis of 10 effluent wastewaters and 10 surface water samples. Venlafaxine 

was the compound most frequently detected (80%) in surface water, followed by 

acetaminophen (70%). Regarding effluent wastewater, valsartan and 4-acetyl aminoantipyrine 

were detected in 9 out of 10 samples analyzed. These two compounds together with 4-formyl 

aminoantipyrine and naproxen showed the highest concentrations (>2000 ng/L). In these 

cases, a dilution step was required for a correct quantification. As an additional evaluation of 

the method performance, the same water samples were analyzed in other laboratory by a 

second analytical methodology, based on on-line solid-phase-extraction coupled to LC-

MS/MS (QqQ). 
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1. INTRODUCTION 

The presence of human and veterinarian pharmaceuticals, as well as illegal drugs of abuse, in 

environmental samples has been recognized as a potential environmental threat [1,2]. These 

groups of contaminants are of present concern, due to their very high biological activity, 

psychoactive properties and still not well known effects to the aquatic environment [1,3]. 

After their consumption, these compounds can be excreted as the parent compound, as 

metabolites or as a mix of unchanged compound plus metabolites, reaching first the 

wastewater treatment plants (WWTPs) and finally the aquatic environment if they are not 

completely removed by WWTPs. The concentrations of these compounds in the environment 

depend on many factors, including their consumption pattern and use, the percentage of 

wastewater collected and the characteristics of the processes used for wastewater treatment 

[4]. Recently, several works have reported the presence of drugs and metabolites in the 

environmental, showing concern for its unknown impact [5–7]. 

Current analytical methods developed for quantifying low concentration of pharmaceuticals 

[2,8–10] and illicit drugs [11,12] in aquatic samples, usually include pre-concentration steps, 

the most common being those based on solid-phase extraction (SPE). Extraction from water 

samples has usually been performed by off-line SPE [5,6,8,9,11], although on-line SPE-LC 

has also been reported as a time and cost-saving alternative thanks to its fully automation 

[7,13]. Large-volume injection (LVI) is an attractive approach for aqueous samples that has 

been applied in several works as a rapid and efficient alternative to conventional SPE [14–

18]. Typically, LVI involves the direct injection of sample volumes that range from 100 to 

5000 µL versus the more conventionally injected volumes of 10-20 µL [14]. The 

improvement in sensitivity comes from the injection of sample volumes larger than usual. 

LVI provides good reproducibility and low sample contamination as a consequence of the 

minimal sample handling. Moreover, it allows to increase sample throughput at minimal cost 



compared to both off- and on-line SPE, because no SPE cartridges and solvents are needed 

[14]. Despite the injection of larger volumes, modern and sensitive instruments are commonly 

needed for final measurement, as the increase in injection volume does not compensate the 

pre-concentration factors normally reached by SPE. In addition, peak shape may be 

deteriorated for early eluting analytes when increasing injection volume despite the lower 

eluotropic strength of water sample. Moreover, only clean water is usually directly injected in 

the system otherwise matrix effects could not be properly compensated for. Although, we 

show that effluent wastewater might be considered clean water in our LVI approach. 

Modern multi-class methods applied for the determination of polar pharmaceuticals or drugs 

of abuse are mostly based on liquid chromatography (LC). The use of UHPLC in combination 

with tandem mass spectrometry (MS/MS) using triple quadrupole (QqQ) [2,8,10,11,19–22] or 

ion trap (IT) analyzers [23–27], has made possible the development of faster and more 

sensitive methods. Moreover, the fact of working with short dwell times in new instruments, 

allows increasing the number of selected reaction monitoring (SRM) transitions acquired 

simultaneously per compound making possible not only quantification but also a reliable 

identification. Although LC-MS/MS is the technique of choice at present to analyze polar 

compounds in aquatic samples, the presence of pharmaceuticals in environmental samples has 

also been investigated by LC coupled to high resolution mass spectrometry (HRMS), using 

time-of-flight (TOF MS) [28–30] or Orbitrap analyzers [31–33]. HRMS analyzers have strong 

potential for large screening and for identification/elucidation purposes, but they show less 

sensitivity than state-of-the-art MS/MS instruments, making that LC-MS/MS are considered 

the optimum analyzers for quantification at trace level. 

The goal of the present paper is to develop fast and sensitive analytical methodology 

combining the advantages of UHPLC-MS/MS with last-generation triple quadrupole and 

large-volume direct sample injection. Thus, a rapid method avoiding sample manipulation 



(i.e. pre-concentration and clean-up) has been developed for the determination of forty highly 

consumed compounds, including pharmaceuticals, drugs of abuse and some veterinary drugs, 

in waters. The quantitative validation has been performed at three concentration levels (10, 

100 and 1000 ng/L) in 5 surface water (SW) and 5 effluent wastewater (EWW) samples. 

Several isotopically-labelled internal standards have been tested for correction of expected 

matrix effects. In order to evaluate the applicability of the method, 20 water samples (10 SW 

and 10 EWW) were analyzed. The same samples were analyzed by another laboratory using a 

methodology based on on-line SPE-LC-MS/MS (QqQ).  



2. EXPERIMENTAL 

2.1. Reagents and chemicals 

Pharmaceutical reference standards were purchased from Sigma–Aldrich (St Louis, MO, 

USA), LGC Promochem (London, UK), Toronto Research Chemicals (Ontario, Canada), 

Across Organics (Geel, Belgium), Bayer Hispania (Barcelona, Spain), Fort Dodge Veterinaria 

(Gerona, Spain), Vetoquinol Industrial (Madrid, Spain) and Aventis Pharma (Madrid, Spain). 

All reference standards presented purity higher than 93%. 

Illicit drugs and metabolites studied were amphetamine, 3,4-

methylenedioxymethamphetamine (MDMA or ecstasy), cocaine, cocaethylene and 

benzoylecgonine. These compounds were obtained from Sigma–Aldrich (Madrid, Spain), 

Cerilliant (Round Rock, TX, USA) and the National Measurement Institute (Pymble, 

Australia) as solutions in methanol, acetonitrile or as salt. 

Standard stock solutions of each compound were prepared at 100 mg/L in methanol or 

acetonitrile. Intermediate solutions (10 mg/L) were prepared by dilution of the stock solution 

ten-fold with methanol. Mixed working solutions containing all analytes were prepared daily 

from intermediate solutions by appropriate dilution with water, and were used for preparation 

of the aqueous calibration standards and for spiking samples in the validation study. 

Isotopically-labelled internal standards (ILIS) of omeprazole-d3, acetaminophen-d4, 

diclofenac-d4, valsartan-d8, carbamazepine 10,11-epoxide-d10 and salicylic acid-d3 were from 

CDN Isotopes (Quebec, Canada); atorvastatin-d5 from Toronto Research Chemicals and 

sulfamethoxazole-13C6 and trimethoprim-13C3 were from Cambridge Isotope Laboratories 

(Andover, MA, USA). Deuterated drugs of abuse were purchased from Cerilliant as solutions 

in methanol or acetonitrile at a concentration of 100 mg/L (amphetamine-d6, MDMA-d5, 

benzoylecgonine-d3, cocaine-d3 and cocaethylene-d8). A mix ILIS working solution at 100 



µg/L was prepared in MeOH and used as internal standard. All solutions were stored in amber 

glass bottles at −20 °C. 

HPLC-grade methanol (MeOH), HPLC-grade acetonitrile (ACN), formic acid (HCOOH, 

content >98%), ammonium acetate (NH4Ac, reagent grade) and sodium hydroxide (NaOH, 

>99%) were purchased from Scharlab (Barcelona, Spain). HPLC grade water was obtained 

from distilled water passed through a Milli-Q water purification system (Millipore, Bedford, 

MA, USA). 

2.2. Instrumentation 

UHPLC analysis were carried out with a Waters Acquity ultra-performance liquid 

chromatography (UPLC) system (Waters, Milford, MA, USA), equipped with a binary 

solvent manager and a sample manager. Chromatography separation was performed using an 

Acquity UPLC BEH C18 1.7 µm particle size analytical column 100 mm × 2.1 mm (Waters). 

The mobile phases used were A = H2O and B = MeOH, both with 0.01% HCOOH and 1mM 

NH4Ac. The percentage of organic modifier (B) was changed linearly as follows: 0 min, 5%; 

7 min, 90%; 8 min, 90%; 8.1 min, 5%; 10 min, 5%. The flow rate was 0.4 mL/min. The 

column was kept at 40 °C and the sample manager was maintained at 5 °C. Analysis run time 

was 10 min. The sample injection volume was 100 μL. 

A Waters Acquity UPLC system was interfaced to a triple quadrupole mass spectrometer 

Xevo TQS (Waters) equipped with an orthogonal Z-spray electrospray ionization interface 

(ESI) operated in positive and negative ion mode. Cone gas as well as desolvation gas was 

nitrogen (Praxair, Valencia, Spain) set up 250 L/h and 1200 L/h, respectively. For operation 

in the MS/MS mode, collision gas was argon 99.995% (Praxair, Madrid, Spain) with a 

pressure of 4 x 10-3 mbar in the collision cell (0.15 mL/min). Other parameters optimized 

were: capillary voltages 3.5 kV (ESI+) and 3.0 kV (ESI-); source temperature 150 °C and 

desolvation temperature 650 °C. Cone voltage was selected as 10 V for all compounds, due to 



no variations were observed. Dwell times were automatically selected in order to obtain 

enough points per peak and can be decreased down to 3 ms. 

All data were acquired and processed using MassLynx v 4.1 software (Waters). 

2.3. Sample preparation 

All water samples were centrifuged at 4500 rpm for 5 min. 1-mL surface water or effluent 

wastewater was spiked at 50 ng/L with the ILIS mix. 100 µL of the sample were directly 

injected in the UHPLC–MS/MS system. 

2.4. Validation study 

Acquisition was performed in SRM mode, with the (de)protonated molecular ion of each 

compound chosen as precursor ion. The most abundant product ion of each target analyte was 

typically used for quantification and two additional product ions were used for confirmation. 

LC retention time was also compared with that of the reference standards (within ±2.5%) to 

help to confirm the compounds detected in samples. 14 compounds were quantified using 

their corresponding labelled analyte as internal standard and 5 compounds were quantified 

using an analogue IS (see Table 2). The remaining 21 compounds were quantified by external 

calibration using absolute responses. 

The linearity of the method was studied by analyzing standard solutions in triplicate at eight 

concentrations, in the range from 1 to 2500 ng/L. Satisfactory linearity was assumed when the 

correlation coefficient (r) was higher than 0.99, based on relative responses (analyte peak 

area/ILIS peak area), except for those compounds that were quantified without ILIS (absolute 

response). 

Method accuracy (estimated by means of analysis of spiked samples directly injected into the 

LC-MS/MS system) and precision (expressed as repeatability, in terms of relative standard 

deviation (RSD)) were evaluated in surface water and effluent wastewater, spiked at three 

concentrations (10, 100 and 1000 ng/L). A total of 10 different water samples were used for 



the method validation (5 effluent wastewater and 5 surface water samples). Quantification 

was made by using calibration standards in solvent and relative or absolute responses as a 

function of the ILIS was used or not for matrix effects correction. Recovery values between 

70% and 120%, with RSD lower than 20% were considered as satisfactory. The limit of 

quantification (LOQ) was estimated for a signal to noise (S/N) ratio of 10 from the sample 

chromatograms at the lowest validation level tested, using the quantification transition. 

Adequate blank samples were not found for several analytes as they were present in all 

samples collected. In these cases, LOQ values were estimated from the chromatograms of the 

non-spiked “blank” samples, considering the concentration levels. 

2.5. Water samples 

20 water samples (10 EWWs and 10 SWs) were collected in polyethylene high-density bottles 

in selected sites of the Spanish Mediterranean area (Castellon and Valencia provinces). 

Composite EWW samples were collected from different WWTPs using primary and 

secondary treatment methods. Grab SW were sampled from different rivers (3), reservoirs (3) 

and lakes (4). All samples were taken from October to December in 2012. Samples were 

stored at −18 ºC until analysis. Before analysis, samples were thawed at room temperature. 

2.6. On-line SPE LC-MS/MS QqQ 

An alternative analytical methodology was also applied following the protocol used in routine 

analysis by an ISO 17025 certified laboratory in Spain (IPROMA S.L.). For LC analysis, an 

Agilent 1200SL binary pump was coupled to a hybrid triple quadrupole/linear ion trap mass 

spectrometer system API3200QTRAP from Applied Biosystems-Sciex (Foster City, 

California, USA). On-line SPE was performed by using an Agilent 1200 pump and a Strata-X 

cartridge (2 × 20 mm, 25 μm) from Phenomenex (Torrance, CA, USA). This equipment also 

includes a PAL autosampler (CTC Analytics, Switzerland) for automated sample injection. 

The injection volume to the on-line SPE was 2 mL of water, previously centrifuged at 2500 



rpm for 5 min (wastewater samples were diluted 1/20). Chromatographic separation was 

performed on a reversed-phase column ZORBAX Eclipse XDB-C18 (50 × 4.6 mm, 1.8 μm) 

from Agilent (Palo Alto, CA, USA) maintained at 40 °C. Mobile phases A and B were 0.1% 

formic acid in water and 0.1% formic acid in methanol, respectively. The following linear 

gradient was used: hold at 95%A for 4.5 min, decreased to 70%A over 4.6 min, decreased to 

0%A over 6.5 min and then increased to 95%A over 10.1 min, returning to the initial 

conditions. The flow rate was set to 600 μL/min [34].  



3. RESULTS AND DISCUSSION 

In this work, 35 human and veterinary pharmaceuticals and 5 drugs of abuse were selected 

(Table 1). Eight pharmaceuticals were among the most widely consumed in Spain [35]. The 

rest of compounds were selected due to their reported presence in water samples and to their 

potential negative effect on living organisms of the aquatic environment. Moreover, 4 

compounds corresponded to metabolites of pharmaceuticals: salicylic acid, metabolite of 

acetylsalicylic acid [36]; and 4-aminoantipyrine, 4-acetyl aminoantipyrine and 4-formyl 

aminoantipyrine, metabolites of dipyrone [37,38,39]. 

3.1. MS/MS optimization 

Individual standard solutions were directly infused in the MS/MS system. The majority of the 

compounds (33 out of 40) were determined with ESI operating in positive ionization mode, 

using the protonated molecule [M+H]+ as precursor ion. The 7 remaining compounds were 

determined in negative ionization using [M-H]- as precursor ion. The three most sensitive 

SRM transitions (in terms of signal-to-noise ratio) were selected for each compound. The 

most abundant was used for quantification (Q) whereas the other two transitions were 

acquired for confirmation (q1, q2). The only exception was salicylic acid (only one transition), 

and gemfibrozil and naproxen (two transitions) because of their poor fragmentation. MS/MS 

parameters as well as SRM transitions and retention times are listed in Table 1. This table 

also shows the average (q/Q) ratios obtained from the calibration standards. The RSDs for 

q/Q ratios illustrate whether these ratios might be considered to be concentration dependent or 

not (e.g. RSD < 15% would indicate little variation of the q/Q values over the concentration 

range tested, from 1 to 2500 ng/L). 

Three SRM transitions were acquired per compound, whereas for ILIS, only the 

quantification transition was monitored. Using our fast-acquisition triple quadrupole mass 

analyzer, dwell times as low as 3 ms per transition could be automatically set-up allowing 



satisfactory peak shape (at least 10 points-per peak) and sensitivity for all 40 compounds 

investigated. 

3.2. UHPLC conditions 

In this work, different mobile phases (acetonitrile and methanol) with different composition 

(HCOOH and NH4Ac at various concentrations) were tested. The effects of pH and ionic 

strength of the mobile phase on the peak shape, resolution and efficiencies were evaluated by 

varying the buffer concentration. Finally, a gradient consisting of water (solvent A) and 

MeOH (solvent B) both with 1 mM ammonium acetate and 0.01% formic acid was chosen as 

an appropriate mobile phase. 

Initially, 10 µL were injected in the system as reference conditions. In order to further 

improve sensitivity, injection of increasing sample volumes was performed. On the basis of 

the column dimensions and the particle size (in this case, 2.1 x 100 mm, 1.7 µm), the dead 

volume of the column was estimated to be 400 µL. The recommended injection volume 

should not exceed the 10% of this dead volume, this is, 40 µL. Trying to perform LVI for this 

system, 50 and 100 µL were tested, obtaining satisfactory chromatographic peak shape in all 

cases. The best sensitivity was achieved when injecting 100 µL. Hence, the injection of 100 

µL was selected for further validation. 

3.3. Matrix effects: quantification 

The high complexity and variability of the matrices in water samples (especially in 

wastewaters) affected considerably the recovery values of some compounds. For almost half 

of the studied compounds, matrix effects resulting in ionization suppression were observed, 

being more important in EWW samples than in SW. Thus, acetaminophen and atorvastatin 

showed recoveries between 60-120% in the five SW tested, but decreased down to 27-60% in 

EWW. A few compounds experimented ionization enhancement due to co-eluted matrix 



components, leading to recoveries >100%. This was the case of levamisol, MDMA or 

trimethoprim. Among the different approaches proposed in the literature to remove or 

compensate for the matrix effects, the use of isotopically-labeled internal standards (if 

available) was considered the preferred option. Fourteen compounds could be corrected with 

their own ILIS, as they were available to our laboratory, obtaining satisfactory figures after 

correction, as expected. Erythromycin, levamisol, pravastatin, sulfadiazine and venlafaxine 

were corrected using an analogue ILIS (Table 2). The selection of analogue ILIS was mainly 

based on chemical structure and/or retention time similarity between analyte and ILIS, as it 

was expected that both were affected by similar constituents of the matrix. In particular cases, 

e.g. erythromycin, an ILIS eluting at different retention time and with different chemical 

structure (sulfamethoxazole-13C6) was able to perform an efficient matrix effects correction, 

as previously reported by Gracia-Lor et al. [8]. The rest of the analytes were quantified using 

absolute response as matrix effects in the ten water samples tested were not much relevant.  

3.4. Method validation  

Analytical characteristics of the method were evaluated in two types of water samples: five 

surface water and five effluent wastewater samples, spiked at three concentration levels each 

(10, 100 and 1000 ng/L).   

The linearity of the method was studied in the range 1-2500 ng/L for all compounds. 

Calibration curves showed in all cases correlation coefficients greater than 0.99, and residuals 

lower than 25%. 

Accuracy and precision were estimated from injection of different water samples spiked at the 

three concentrations indicated above. All the “blank” samples contained at least one or more 

target analytes. Thus, the samples were previously analyzed and those with lower drug 



concentration were selected as “blank” samples for method validation. Concentration of target 

compounds found in these “blank” samples were subtracted from the spiked samples. 

The results obtained for most compounds were satisfactory at the three validation levels, with 

recoveries between 70-120% and precision (RSD) below 20% (Table 2). At the lowest level 

(10 ng/L) amphetamine, diclofenac, olanzapine, roxithromycin and salicylic acid could not be 

validated, due to their lower sensitivity. For some compounds, validation was not feasible in 

all the samples tested due to the high analyte concentration found in different “blank” samples 

(e.g. the three dipyrone metabolites or gemfibrozil). In these cases, the number of data used in 

validation was less than 10 (5 SW and 5 EWW) (highlighted as * or ** in Table 2).  

The method presented satisfactory precision for most compounds with RSDs below 20% at 

the three fortification levels. Regarding LOQ, they were ≤3ng/L for 32 out of 40 compounds 

in SW. For another 5 analytes LOQs ranged from 3 to 7 ng/L, and for the remaining 3 were 

slightly higher, between 12-38 ng/L. In EWW, 29 compounds presented LOQs ≤3ng/L, 7 

ranged from 3 to 9 ng/L and the remaining 4 were between 12-41 ng/L. According to our 

data, it seems that the type of water did not much affect the attainable sensitivity despite of 

being a direct injection method. 

3.5. Analysis of water samples  

To demonstrate the applicability of the method developed, 10 effluent wastewater and 10 

surface water samples were analyzed. In every sequence of analysis, a calibration curve in 

solvent was injected at the beginning and at the end of the batch sample. Quality controls 

(QCs) were also included in every sequence, consisting on selected EWW and SW samples 

spiked with all pharmaceuticals at 100 ng/L. QC recoveries were satisfactory (in the range of 

70-120%) for the majority of the compounds. However, QCs recoveries for venlafaxine 

(using atorvastatin-d5 as IS) and for levamisol (using cocaethylene-d8) were around 130%. As 



it has been already reported in the literature, the use of analogues IS does not always assure an 

efficient matrix effects correction [40,41]. 

Identification of positive findings was supported by evaluation of q1/Q and q2/Q ratios. The 

finding was considered as positive when retention time and at least one experimental ion-ratio 

were within the established tolerances [42], when compared with a reference standard. 

Although the acquisition of two SRM transitions per compound together with the accordance 

in the retention time are normally considered sufficient for a reliable confirmation of the 

compound identity, in this work three transitions were acquired in order to increase the 

confidence of the confirmation process [40]. Using three transitions, one can minimize the 

possibilities of reporting false negatives when the ion ratio is not accomplished, in those cases 

where one of the transitions seems to be interfered. As an example, Figure 1 shows positive 

findings of alprazolam, bezafibrate and sulfamethoxazole in EWW. As it can be seen, the 

three transitions showed a peak at the same retention time. Moreover, at least one q/Q ratio 

was within tolerance limits. 

Tables 3 and 4 show the concentration values (ng/L) found for each compound in EWW and 

SW, respectively. 32 analytes were detected in the 10 EWWs analyzed, illustrating the 

frequent occurrence of drugs in wastewaters and the fact that many of them are not 

completely removed in WWTPs. Carbamazepine, used for the treatment of epilepsy and 

bipolar disorder, was the compound most frequently detected, appearing in all samples 

analyzed. This was followed by the angiotensin II antagonist valsartan and 4-acetyl 

aminoantipyrine (metabolite of the analgesic dipyrone), which were present in 90% of 

EWWs. 4-formyl aminoantipyrine (another metabolite of dypirone), the anthelmintic 

levamisol, the antibiotics sulfamethoxazole and trimethoprim, and the antidepressant 

venlafaxine appeared in 80% of EWWs. The highest concentrations corresponded to 4-acetyl 

aminoantipyrine (7.2 µg/L), valsartan (4.6 µg/L), 4-formyl aminoantipyrine (3.2 µg/L) and 



the analgesic naproxen (1.9 µg/L). In these cases, samples were diluted and re-analyzed to fit 

the linear range of the method.  

In relation to surface waters, up to 26 compounds were detected in the samples analyzed. All 

these compounds were also found in EWWs, normally at higher concentrations. Venlafaxine 

and acetaminophen were the compounds most frequently detected, being present in 80% and 

70% of the samples, respectively. 4-acetyl, 4-formyl aminoantipyrine, cocaine and its 

metabolite benzoylecgonine, were present in 60% of SWs analyzed. The highest 

concentration corresponded to dipyrone metabolites: 4-formyl (0.72 µg/L) and 4-acetyl 

aminoantipyrine (0.66 µg/L). 

As an illustrative example, Figure 2 shows UHPLC-MS/MS chromatograms for SW 4 (only 

the quantitative transition Q is shown), which was positive for 19 out of the 40 target 

compounds. Concentration data for this sample are shown in Table 4, where it can be seen 

that acetaminophen presented the highest value (480 ng/L). Four drugs of abuse 

(benzoylecgonine, cocaethylene, cocaine and MDMA) were also detected in the range of 7-31 

ng/L. These figures reveal that licit and illicit drugs can actually reach surface waters due to 

the incomplete removal in WWTPs. 

  3.5.1. On-line SPE HPLC-ESI-MS/MS 

The same 20 samples were analyzed by another laboratory that applied an analytical 

methodology based on on-line SPE-LC coupled to triple quadrupole mass spectrometry. With 

this methodology, only 25 human and veterinary pharmaceuticals and drugs of abuse were 

included in the target method. All of them were determined with ESI operating in positive 

ionization mode. For confirmation, two SRM transitions at the same retention time, and the 

accomplishment of the q/Q ratios were required. Regarding quantification parameters, two 

internal standards were used to correct possible deviations: diclofenac-13C6 for 



pharmaceuticals and cocaine-d3 for drugs of abuse. The linearity of the method was studied in 

the range 2-150 ng/L for all compounds. The method presented satisfactory accuracy and 

precision for all compounds, with recoveries values >85% and RSDs below 13%. Regarding 

LOQ, they ranged from 2 to 20 ng/L for SW and from 40-400 ng/L for EWW. The on-line 

SPE-LC method was implemented in this laboratory under requirements of ISO-170025 [34]. 

Data obtained are also shown in Tables 3 and 4 (between brackets). Six compounds (cocaine, 

benzoylecgonine, diclofenac, naproxen, sulfamethoxazole and venlafaxine) were found in 

EWW samples, less than in the direct injection methodology (32 compounds). This was 

surely due to the higher LOQs obtained in the on-line procedure, due to the dilution step 

(1/20) applied to EWW samples prior to on-line SPE. The concentration values ranged from 

0.048 to 3.1 µg/L and were in agreement with the results obtained by the direct injection 

approach. Regarding surface water samples, where no dilution was performed, up to 8 

compounds could be detected (benzoylecgonine, cocaine, acetaminophen, clarithromycin, 

diclofenac, levamisol, naproxen and venlafaxine). Among them, venlafaxine was the 

compound most frequently detected (3 out of 10 SW analyzed), and the highest concentration 

found was for acetaminophen (0.65 µg/L). All concentration values obtained by this 

methodology were also in accordance with the results reported after direct injection analyses. 

Except for the differences due to the distinct sensitivity of the two procedures, the 

concentrations found by both of them for the wide majority of positive samples were rather 

similar, supporting the applicability and reliability of our more-sensitive large-volume direct 

injection approach.  



4. CONCLUSIONS  

Analytical methodology based on UHPLC-MS/MS QqQ has been developed for the 

simultaneous quantification and confirmation of 40 human and veterinary pharmaceuticals 

and drugs of abuse in effluent wastewater and surface samples. The direct injection of water 

samples (100 µL), without any previous sample treatment, has been shown as an attractive 

approach as it avoids time-consuming sample preparation steps and reduces the amounts of 

solvents used. The determination of target compounds was performed in positive/negative 

voltage switching mode in a single chromatographic run of only 10 min. With a few 

exceptions, a highly reliable identification of the compounds was feasible thanks to the 

acquisition of three SRM transitions per compound and the accomplishment of the ion ratio 

and retention time deviations. Satisfactory accuracy and precision were obtained in recovery 

experiments at three concentration levels in two kinds of water matrices, EWW and SW, 

using 10 different samples to this aim. The LOQs were in most cases lower than 3 ng/L. The 

application of this method to 10 effluent wastewater and 10 surface samples, allowed the 

detection of 32 and 26 compounds, respectively. Carbamazepine was the compound most 

frequently detect (100%) in EWW and venlafaxine (80%) in SW samples. This methodology 

has been proven to be an attractive and efficient approach for rapid determination of 

pharmaceuticals and drugs of abuse in environmental waters, achieving low LOQs without 

the need for a preliminary pre-concentration step.   
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FIGURE CAPTIONS 

Figure 1. UHPLC-MS/MS chromatograms detected in EWW samples. 

Figure 2. UHPLC-MS/MS chromatograms (Q transition) for a surface water sample (SW 4, 

see Table 4) where 19 target compounds were found. Positive/negative voltage switching 

mode applied within the same run. 

  



Table 1. MS/MS optimized conditions for selected compounds. 

Compound ESI 
TR 

(min) 

Precursor 

ion (m/z) 

Q 

transition 

C.E. 

(eV) 

q1 

transition 

C.E. 

(eV) 

q1/Q 

(RSD) 

q2 

transition 

C.E. 

(eV) 

q2/Q 

(RSD) 

4-Acetyl aminoantipyrine + 2.85 245.9 246 > 228 10 246 > 83 20 0.71(3) 246 > 104 20 0.38(4) 

4-Aminoantipyrine + 3.15 204.1 204 > 56 15 204 > 159 10 0.29(5) 204 > 83 15 <0.01(5) 

4-Formyl aminoantipyrine + 2.81 232.1 232 > 83 20 232 > 104 20 0.63(4) 232 > 214 10 0.63(7) 

Acetaminophen + 1.99 152.1 152 > 110 15 152 > 65 25 0.20(5) 152 > 93 20 0.26(8) 

Alprazolam + 5.77 308.9 309 > 281 25 309 > 205 25 0.11(4) 309 > 274 25 0.21(5) 

Amphetamine + 2.81 136.2 136 > 91 15 136 > 119 10 0.43(6) 136 > 65 10 0.12(15) 

Atorvastatin + 6.68 558.9 559 > 440 20 559 > 466 15 0.20(5) 559 > 292 25 0.17(4) 

Benzoylecgonine + 3.32 290.0 290 > 168 15 290 > 105 25 0.34(6) 290 > 92 25 <0.01(16) 

Bezafibrate - 6.10 359.8 360 > 274 20 360 > 154 25 0.24(5) 360 > 85 15 0.07(6) 

Carbamazepine + 5.32 236.9 237 > 194 20 237 > 192 20 0.24(5) 237 > 179 25 0.08(5) 

Clarithromycin + 6.11 590.0 590 > 158 20 590 > 116 25 0.20(13) 590 > 98 25 0.06(9) 

Cocaethylene + 4.24 318.0 318 > 196 20 318 > 82 25 0.71(4) 318 > 150 25 0.18(7) 

Cocaine + 3.74 304.1 304 > 182 15 304 > 82 25 0.56(8) 304 > 105 25 0.19(9) 

Diclofenac - 6.87 294.1 294 > 250 10 294 > 214 20 0.04(3) 294 > 178 20 <0.01(5) 

Enalapril + 4.99 376.9 377 > 234 15 377 > 117 25 0.24(4) 377 > 303 15 0.30(10) 

Erythromycin + 5.62 734.2 734 > 158 25 734 > 576 15 0.11(5) 734 > 558 15 0.03(10) 

Florfenicol - 3.32 355.7 356 > 336 10 356 > 185 20 1.00(1) 356 > 119 25 0.04(15) 

Flumequine + 5.11 261.9 262 > 244 15 262 > 202 25 0.30(9) 262 > 174 25 0.01(13) 

Furaltadone + 2.37 324.9 325 > 100 20 325 > 252 15 1.00(6) 325 > 281 10 0.77(4) 

Gemfibrozil - 7.46 248.9 249 > 121 20 249 > 127 10 0.07(10)    

Irbesartan + 6.26 428.8 429 > 207 25 429 > 195 20 0.17(2) 429 > 180 25 0.04(4) 

Levamisol + 2.48 205.0 205 > 178 20 205 > 91 25 0.29(10) 205 > 123 25 0.43(11) 

Lincomycin + 2.89 407.0 407 > 126 20 407 > 359 15 0.07(9) 407 > 389 15 0.03(9) 

Lorazepam + 5.76 320.9 321 > 275 20 321 > 303 15 0.50(6) 321 > 229 25 0.34(8) 

MDMA + 2.90 194.0 194 > 163 10 194 > 105 20 0.34(5) 194 > 135 20 0.33(9) 

Nalidixic acid + 4.92 233.0 233 > 215 10 233 > 187 25 0.71(4) 233 > 159 25 0.19(8) 

Naproxen - 6.11 230.2 185 > 169 20 229 > 169 15 0.01(15)    

Olanzapine + 3.25 312.9 313 > 256 20 313 > 84 20 0.56(12) 313 > 213 25 0.45(10) 

Omeprazole + 5.23 345.7 346 > 198 10 346 > 136 25 0.45(3) 346 > 151 15 0.32(4) 

Oxolinic acid + 4.24 261.9 262 > 244 15 262 > 216 25 0.13(12) 262 > 158 25 0.04(8) 

Pantoprazole + 5.18 383.9 384 > 200 10 384 > 138 25 1.10(4) 384 > 153 15 0.36(5) 

Pravastatin - 5.76 423.0 423 > 321 15 423 > 303 15 1.00(5) 423 > 101 25 0.53(11) 



Roxithromycin + 6.22 679.1 679 > 158 25 679 > 116 25 0.22(6) 679 > 98 25 0.04(16) 

Salicylic acid - 4.26 137.0 137 > 93 15       

Sulfadiazine + 2.11 251.0 251 > 156 15 251 > 92 25 0.71(5) 251 > 108 20 0.43(2) 

Sulfadoxine + 3.44 310.9 311 > 156 15 311 > 92 25 0.42(8) 311 > 108 25 0.48(13) 

Sulfamethorxazole + 3.26 253.8 254 > 92 25 254 > 156 15 1.27(7) 254 > 108 20 0.56(6) 

Trimethoprim + 2.88 291.0 291 > 123 25 291 > 230 20 1.11(7) 291 > 261 25 0.83(5) 

Valsartan + 6.27 435.8 436 > 207 25 436 > 235 15 1.12(6) 436 > 261 15 <0.01(17) 

Venlafaxine + 4.61 278.1 278 > 58 15 278 > 260 10 0.43(5) 278 > 121 25 0.24(2) 

ILIS            

Acetaminophen-d4 + 1.89 155.9 156 > 114 15       

Amphetamine-d6 + 2.79 141.7 142 > 93 15       

Atorvastatin-d5 + 6.67 563.9 564 > 445 20       

Benzoylecgonine-d3 + 3.32 293.1 293 > 171 20       

Carbamazepine 10,11-

epoxide-d10 
+ 4.47 263.0 263 > 190 25       

Cocaethylene-d8 + 4.23 326.0 326 > 204 20       

Cocaine-d3 + 3.74 306.9 307 > 185 20       

Diclofenac-d4 - 6.85 299.9 300 > 256 10       

MDMA-d5 + 2.90 199.0 199 > 1650 10       

Omeprazole-d3 + 5.22 348.8 349 > 198 10       

Salicylic acid-d4 - 4.26 140.7 141 > 97 15       

Sulfamethoxazole-13C6 + 3.27 260.0 260 >162 15       

Trimethoprim-13C3 + 2.87 294.1 294 >264 18       

Valsartan-d8 + 6.24 443.9 444 > 207 15       

ES. electrospray ionization; TR, retention time; Q quantification; q confirmation, C.E. collision energy 

 

 

 

 



Table 2. Results of the method validation for effluent wastewater (EWW) and surface water (SW). Limit of quantification (LOQ), recovery (%) and relative standard 

deviation at the three validation levels studied. 

Compound 

SW (n=5)   EWW (n=5) 

ILIS used for correction Recovery (RSD) (both in %) LOQ 

(ng L-1) 
 

Recovery (RSD) (both in %) LOQ 

(ng L-1) 10 ng L-1 100 ng L-1 1000 ng L-1   10 ng L-1 100 ng L-1 1000 ng L-1 

4-Acetyl 

aminoantipyrine 
59 (16)a 79 (19)a 72 (5)a 0.8 

 
95b 69b 78 (14)a 2.0 - 

4-Aminoantipyrine 95 (12)a 74 (14)a 81 (9) 0.7 
 

110b 66b 97b 0.4 - 

4-Formyl 

aminoantipyrine 
72 (13)a 105 (12)a  88 (4)a 1.9 

 
120b 68b 82 (18)a 1.7 - 

Acetaminophen 103 (17)a 111 (10) 107 (9) 1.1 
 

131 (3)a 113 (15) 118 (7) 1.5 Acetaminophen-d4 

Alprazolam 88 (18)a 79 (10) 78 (8) 0.3 
 

81 (16)a 74 (9) 77 (11) 1.2 - 

Amphetamine - 96 (12) 78 (19) 6.3 
 

- 110 (11) 107 (11) 12.5 Amphetamine-d6 

Atorvastatin 84 (11) 85 (7) 100 (9) 0.8 
 

92 (14) 92 (5) 109 (2) 0.8 Atorvastatin-d5 

Benzoylecgonine 88 (18) 83 (7) 97 (10) 0.1 
 

88 (20)a 80 (16) 109 (2) 0.1 Benzoylecgonine-d3 

Bezafibrate 87 (20)a 83 (16) 95 (12) 1.3 
 

82 (11)a 102 (24)a 111 (13) 2.1 - 

Carbamazepine 81 (19) 65 (7) 91 (8) 0.2 
 

77 (16)a 75 (15) 94 (8) 1.1 Carbamazepine 10,11-epoxide-d10 

Clarithromycin 93 (4)a 97 (14)a 90 (9) 2.9 
 

117b 73 (17)a 81 (16) 4.1 - 

Cocaethylene 89 (12) 93 (9) 97 (9) 0.7 
 

100 (5) 93 (5) 102 (4) 0.8 Cocaethylene-d8 

Cocaine 77 (19)a 69 (11) 111 (10) 1.0 
 

70 (9) 88 (17) 116 (3) 1.1 Cocaine-d3 

Diclofenac - 82 (14)a 105 (5) 6.8 
 

- 78 (17)a 104 (11) 7.2 Diclofenac-d4 

Enalapril 99 (17) 88 (6) 92 (5) 0.7 
 

109 (9) 81 (4) 94 (8) 1.8 - 

Erythromycin 115 (6) 85 (15) 72 (14) 0.8 
 

125b 92 (23)a 94 (19) 2.1 Sulfamethoxazole-13C6 

Florfenicol 69 (17) 91 (12) 83 (15) 2.2 
 

97 (11) 84 (14) 109 (11) 8.6 - 

Flumequine 87 (14) 87 (10) 113 (5) 0.4 
 

90 (17) 73 (14) 97 (9) 1.2 - 

Furaltadone 88 (11) 87 (10) 88 (10) 0.7 
 

88 (16) 69 (16) 80 (17) 1.4 - 

Gemfibrozil 83 (15)a 99 (12)a 92 (8) 2.3 
 

103b 92b 90 (18) 1.8 - 

Irbesartan 86 (16)a 87 (13)a 97 (8) 0.2 
 

115b 78 (12)a 99 (5) 1.0 - 

Levamisol 83 (15) 95 (7) 101 (5) 0.2 
 

87 (19)a 98 (16) 106 (10) 2.1 Cocaethylene-d8 

Lincomycin 84 (15)a 81 (17)a 104 (10) 0.1 
 

88 (12) 78 (15) 75 (12) 0.4 - 

Lorazepam 88 (14)a 82 (15) 86 (7) 3.1 
 

109 (9)a 78 (20)a 94 (5) 4.5 - 



MDMA 100 (10) 96 (6) 105 (8) 0.5 
 

99 (18) 93 (2) 103 (8) 1.4 MDMA-d5 

Nalidixic acid 93 (14) 91 (9) 114 (6) 1.8 
 

90 (17) 75 (13) 98 (9) 2.7 - 

Naproxen 77 (18)a 70 (7) 80 (13) 11.7 
 

62b 78b 85 (13) 7.3 - 

Olanzapine - 86 (1)a 108 (12)a 0.8 
 

- - 156 (13) 11.6 - 

Omeprazole 103 (13) 89 (8) 98 (8) 0.2 
 

118 (24) 95 (4) 102 (2) 1.1 Omeprazole-d3 

Oxolinic acid 96 (12) 83 (10) 86 (5) 1.8 
 

98 (13) 70 (10) 80 (16) 2.9 - 

Pantoprazole 93 (15) 99 (8) 103 (5) 0.1 
 

93 (13) 81 (12) 105 (8)  0.8 - 

Pravastatin 96 (14) 81 (13) 85 (13) 15.4 
 

113b 82 (10) 83 (8) 16.7 Diclofenac-d4 

Roxithromycin - 92 (4)a 83 (13) 5.6 
 

- 95 (9)a 91 (16) 5.4 - 

Salicylic acid - - 93 (15) 37.6 
 

- 119b 84 (8) 41.1 Salicylic acid-d4 

Sulfadiazine 102 (16) 99 (9) 116 (8) 1.4 
 

106 (19) 97 (7) 111 (12) 1.8 Sulfamethoxazole-13C6 

Sulfadoxine 85 (12) 83 (11) 104 (7) 0.2 
 

80 (18) 64 (12) 86 (16) 0.5 - 

Sulfamethorxazole 96 (16)a 80 (10) 98 (11) 0.5 
 

103b 83 (10)  106 (7) 0.8 Sulfamethoxazole-13C6 

Trimethoprim 83 (14) 87 (13) 93 (10) 1.8 
 

111b 81 (19) 104 (10) 2.3 Trimethoprim-13C3 

Valsartan 74 (11) 88 (4) 98 (12) 3.8 
 

114b 98 (18)a 89 (14)a 4.2 Valsartan-d8 

Venlafaxine 79 (21)a 78 (15) 102 (11) 0.2   111b 88 (19)a 100 (6) 1.0 Atorvastatin-d5 

 

a Validation performed for n=2-4, due to the high analyte concentration found in some “blank” samples 
b Recovery values without RSD mean (n=1) 

 

 

 

 

 

 

 

 



Table 3. Summary of the results obtained for target pharmaceuticals in EWW, applying the analytical 

methodology described in this article. Between brackets, the concentrations obtained using the on-line SPE-

LC-MS/MS alternative method. 

Compound 
EWW (ng/L) 

1 2 3 4 5 6 7 8 9 10 

4-Aminoantipyrine* 9 15 <LOQ - <LOQ 40 43 14 - 26 

Acetaminophen* - - - 14 - 45 <LOQ - 8 - 

Amphetamine* - 21 - - 29 - - - - - 

Benzoylecgonine* <LOQ 40 (48) 6 <LOQ 656 (735) 11 100 (127) 43 (54) <LOQ 43 (50) 

Clarithromycin* - 14 26 - 34 <LOQ 27 15 - - 

Cocaethylene* - <LOQ - - 15 <LOQ 8 - - <LOQ 

Cocaine* 9 <LOQ - <LOQ 72 (54) 12 - 12 8 24 

Diclofenac* - 266 (251) 884 (1115) - 216 (313) 158 (241) 845 (1181) 300 (386) - 212 (322) 

Erythromycin* 13 55 - - 37 18 49 14 - 25 

Flumequine* - - <LOQ - - - - - - 7 

MDMA* - 45 - - 45 <LOQ - 22 - 48 

Nalidixic acid* - - 17 - <LOQ - - - - 8 

Naproxen* - 42 32 - 1942 (3007) - 515 (642) <LOQ - 357 (419) 

Oxolinic acid* - - - - - - - - - 5 

Pantoprazole* - 5 2 - <LOQ 4 4 7 - 4 

Sulfadiazine* - - 28 - - - - 10 - - 

Sulfamethoxazole* 89 35 372 (308) <LOQ 19 21 29 25 - 29 

Trimethoprim* 15 83 9 - 75 4 13 86 - 25 

Venlafaxine* 
414 

(366) 
316 (282) 421 (389) - 343 (457) 263 (314) 252 (265) 201 (208) <LOQ 239 (260) 

4-Acetyl aminoantipyrine 77 3032 253 - 7239 197 1357 2298 18 689 

4-Formyl aminoantipyrine 860 1583 3425 - 3208 766 1898 1235 <LOQ 853 

Alprazolam 14 11 17 - <LOQ 12 13 10 - 12 

Atorvastatin - 7 - - 16 - - - - <LOQ 

Bezafibrate - 29 - - 87 10 35 16 - 53 

Carbamazepine 112 52 119 3 135 64 149 54 2 90 

Gemfibrozil - 765 4 - 538 25 507 365 <LOQ 95 

Irbesartan - 531 <LOQ - 506 404 799 266 <LOQ 484 

Levamisol 44 311 155 - 150 163 768 178 - 497 

Lincomycin - - - - <LOQ - 6 109 - 7 

Lorazepam - 52 - - 109 58 81 46 - 74 

Pravastatin - 16 - - - - <LOQ <LOQ - - 

Valsartan 41 2864 54 - 4575 291 1457 246 13 399 

*Compounds also analyzed by the on-line SPE LC-MS/MS methodology described in section 

-: not detected 

 

 

 

 

 

 

 

 

 

 



31 

 

Table 4 Summary of the results obtained for target pharmaceuticals in SW, applying the analytical 

methodology described in this article. Between brackets, the concentrations obtained using the on-line SPE-

LC-MS/MS alternative method. 

Compound 
SW (ng/L) 

1 2 3 4 5 6 7 8 9 10 

Acetaminophen* - - - 480 (654) 9 13 13 12 32 (10) 10 

Benzoylecgonine* <LOQ <LOQ 18 (8) 31 (23) 6 <LOQ <LOQ 7 6 6 

Clarithromycin* - - 11 34 (45) - - - - - - 

Cocaethylene* - - - 7 - - - - - - 

Cocaine* 8 <LOQ 8 14 (8) - 8 8 10 (5) - <LOQ 

Diclofenac* - 34 (24) 135 (99) 14 - - - - - - 

Erythromycin* - - 10 <LOQ - - - - - - 

Flumequine* 3 - - - - - - <LOQ - - 

Levamisol* - 4 76 (44) 5 - - - - - - 

MDMA* - - 15 13 - - - - - - 

Nalidixic acid* 3 - - <LOQ - - - 4 - - 

Naproxen* - - 67 (56) 114 (172) - - - - - - 

Oxolinic acid* 5 - - - - - - - - <LOQ 

Pantoprazole* - 1 - - - - - - - - 

Sulfamethoxazole* - 21 25 11 13 <LOQ - - - <LOQ 

Trimethoprim* 3 - <LOQ 5 - - - - - - 

Venlafaxine* 9 244 (217) 93 (61) 30 (18) 16 10 <LOQ <LOQ 9 16 

4-Acetyl aminoantipyrine - <LOQ 719 182 8 9 6 <LOQ - 21 

4-Formyl aminoantipyrine - 9 663 101 33 13 - <LOQ - 60 

Alprazolam - 11 8 <LOQ - - - - - - 

Carbamazepine <LOQ 73 22 10 7 - 2 2 - 6 

Gemfibrozil - - 105 80 - - - - - - 

Irbesartan - <LOQ 5 40 - - - - - 6 

Lincomycin - 12 5 1 - - - - - - 

Lorazepam - 13 18 <LOQ - - - - - 44 

Valsartan - - 13 224 - - - - - - 

*Compounds also analyzed by the on-line SPE LC-MS/MS methodology described in section  

-: not detected 
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