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Closed-form estimates of the domain of attraction
for nonlinear systems via fuzzy-polynomial models

José Luis Pitarch, Antonio Sala,Member IEEEand Carlos Vicente Ariño

Abstract—In this work, the domain of attraction of the origin of
a nonlinear system is estimated in closed-form via level sets with
polynomial boundary, iteratively computed. In particular , the
domain of attraction is expanded from a previous estimate, such
as, for instance, a classical Lyapunov level set. With the use of
fuzzy-polynomial models, the domain-of-attraction analysis can
be carried out via sum of squares optimization and an iterative
algorithm. The result is a function wich bounds the domain of
attraction, free from the usual restriction of being positive and
decrescent inall the interior of its level sets.

Index Terms—domain of attraction, fuzzy polynomial systems,
local stability, Sum of Squares, nonlinear systems, robuststability

I. I NTRODUCTION

A large class of nonlinear systems can beexactlyexpressed,
locally in a compactregion (denoted asmodelling region, Ω,
in the sequel), as a fuzzy Takagi-Sugeno (TS) model, using
the “sector nonlinearity” methodology [1]. It expresses the
nonlinearity as a convex time-varying combination of “vertex”
linear equations. The works [2], [3] extend the idea to fuzzy
polynomial models, by using a Taylor-series approach which
expresses non-polynomial nonlinearities (or high-degreepoly-
nomial ones) as a convex interpolation between polynomials
of reduced degree.

Oncelocally exactfuzzy models are available, stability and
control design for the original nonlinear system via convexop-
timization (particularly with Linear Matrix Inequalities(LMI))
has been deeply explored in literature. Indeed,global stability
conditions for Takagi-Sugeno models in LMI form have been
explored with quadratic Lyapunov functions [1], parameter-
dependent [4], non-quadratic [5], polyhedric ones [6], or even
nonconvex Bilinear Matrix Inequalities (BMI) settings such as
in [7] where a combination of genetic algorithms plus convex
optimization is used. Output feedback designs with measurable
premise variables have also been developed [8], [9].

Sum of squares techniques (SOS) [10], are used to extend
the above framework to fuzzy polynomial models in stability
analysis [11], [12] as well as controller synthesis [8], [13], via
polynomial Lyapunov functions.

However, one of the key issues in practical usefulness of
many of the above results is the fact that, given the locality
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of most fuzzy models, provingglobal fuzzy-model stability
translates, actually, to onlylocal stability of the original
nonlinear system being modelled in most cases.

The above issue is usually disregarded in literature, consid-
ering the problem as solved once a feasible “global” fuzzy
LMI solution is found with a Lyapunov functionV (x). How-
ever, stability is proved only for the largest Lyapunov level
set {x : V (x) < Vc} in the modelling regionΩ: in quite
a few cases, a very small subset of the regionΩ may be
actually proved. A slight variation allows for expanding the
proved domain of attraction (DA) to{x : V (x) < Vc}∩Ω for
{x : V (x) < Vc} 6⊂ Ω in some cases [14], [15].

Given the above shortcomings, the objective of this paper
is presenting a methodology to expand the proved domain
of attraction of nonlinear systems, using fuzzy-polynomial
models. The methodology is discussed for both continuous and
discrete cases. Any (possibly small) subset of the domain of
attraction found with current LMI/SOS results (to be denoted
as, say,B1) can be used as a “seed” of an iterative algorithm
that expands it.

For completeness, note that, apart from Lyapunov methods,
domain of attraction estimation can be done numerically [16].
Also, relevant results which discuss, specifically, domainof
attraction estimation for polynomial systems are reportedin
[17]–[19].

This paper shows that, once any seed setB1 is available,
there is no need of using actual Lyapunov functions any more,
but only proving that there is a setB2 such that trajectories
starting in it fall intoB1, so B2 belongs to the DA, too. A
SOS approach provides a numerical tool to obtain such a set,
and an iterative algorithm naturally ensues by usingB2 ∪B1

as the new seed. IfB1 ⊂ B2, SOS algorithms provideB2

which is an estimate of the DA expresed in closed-form as a
polynomial.

The function defining the boundary of the resulting DA
estimates in this paper is free from the restriction of being
decrescent and positive in its interior. That allows for improved
estimates over previous literature.

The structure of the paper is as follows: next section presents
notation and fuzzy polynomial modeling, known stability
analysis results and motivation are discussed in Section III.
Section IV presents the problem statement joint with auxiliary
results and definitions. Section V discusses the expansion of
the domain of attraction estimate for discrete systems and,
based on it, proposes a computational low-cost iterative pro-
cedure using SOS techniques. Section VI discusses a similar
procedure for continuous systems and section VII gives some
examples in order to show the improving results. Finally
Section VIII concludes the paper.
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II. PRELIMINARIES

This paper will consider either a continuous-time nonlinear
system:

ẋ(t) = f(x(t)) x(t) ∈ R
n, t ∈ R (1)

or a discrete-time one:

xk+1 = f(xk) xk ∈ R
n, k ∈ N (2)

with sufficiently smoothf (so it admits a Taylor series), being
the origin astableequilibrium point by assumption.

Notation: In this paper, the trajectory of system (1) –or (2) in
the discrete developments–, starting inx0 at time t = 0, will
be denoted asψ(t, x0). The set of polynomials in a variable
z will be denoted asRz , and then-dimensional vectors of
polynomials asRn

z . Polynomials in some variablesz which
can be decomposed as a sum of squares of other polynomials
will be denoted asΣz. SOS decompositions of polynomials
can be found using well-known SDP software [20], [21]. Also,
the notation used in [22] will be used in the rest of the
paper: given polynomials

{

F1, ..., Fof

}

, whereof denotes the
number of them,M will denote themultiplicative monoid ,
℘ denotes thecone, andℑ the ideal generated by the set of
Fd’s. In order to shorten notation, the ideal generated by a
vector of polynomialsP ∈ Rn

z will be defined as the ideal
generated by its elements.

Definition 1 ( [23]). The set of initial conditions defined as

D =
{

x0 ∈ R
n : lim

t→∞
ψ(t, x0) = 0

}

(3)

is denoted as the Domain of Attraction (DA) of the origin.

In [2] a procedure is presented in which a system (1) or
(2) can be equivalently transformed, locally whenx ∈ Ω, to a
fuzzy-polynomial system

ẋ(t) =

r
∑

i=1

µi(z(t))Pi(x(t)) (4)

xk+1 =

r
∑

i=1

µi(zk)Pi(xk) (5)

wherePi ∈ Rn
x are vertex polynomial models,r is the number

of fuzzy rules,z are premise variables and the membership
functionsµi lie in the standard simplexΓ = {µi ∈ R | 0 ≤
µi,

∑

i µi = 1}.
This paper will study the estimation of the DA of systems in

the form (4) or (5), whenx fulfills some algebraic constraints
(as a tool to estimate the DA of (1) or (2)). Indeed, proving
global (or local) Lyapunov stability for the fuzzy-polynomial
model (4) or (5), allows proving local stability for the nonlin-
ear system (1) or (2) respectively.

First, a review on common approaches to DA estimation
in literature will be outlined in next section, as well as a
discussion on its limitations. Then, on section IV, additional
definitions will allow to state in a more precise way the
problem to be solved for polynomial fuzzy systems.

III. R EVIEW OF LEVEL-SET APPROACH TODA
ESTIMATION

This section reviews DA estimation based on Lyapunov
level sets in fuzzy systems literature.

First, simple global stability conditions which will form the
basis of further developments will be reviewed.

By SOS techniques, the following Lyapunov stability result
is well-known:

Lemma 1 (continuous-time, [24]). Global asymptotic stability
of a system(4) can be proved if a polynomial functionV (x)
can be found verifying:

V (x) − ǫ(x) ∈ Σx (6)

−∂V
∂x

Pi(x)− ǫ(x) ∈ Σx ∀ i = 1, . . . , r (7)

whereǫ(x) is a radially unbounded positive polynomial, such
as ‖x‖22.
Lemma 2 (discrete-time, [25], [26]). Global asymptotic sta-
bility of a system(5) can be proved ifV (x) can be found such
that (6) holds and

V (x) − V (
r

∑

i=1

σ2
i Pi(x)) − ǫ(x) ∈ Σσ,x (8)

In the above lemma,σi =
√
µi are auxiliary variables. Also,

expression (8) needs to be modified for actual computations,
making it homogeneousin the memberships (i.e., all the
monomials must have the same degree inσi). It can be
achieved by multiplying anything by

∑r
i=1 σ

2
i (which is equal

to one, anyway) as many times as needed (details omitted for
brevity, as the procedure is well known).

If the above conditions are feasible, then the DA has been
proved to be the wholeRn. However, many nonlinear systems
of interest are not globally stable1. Hence, refinements to the
above conditions are needed in order to obtain a DA estimate
(ideally, as large as possible).

A. Local stability analysis: bounded DA estimates

If the above problem renders infeasible, a local stability
condition can be posed, based on standard invariant-set argu-
ments. Indeed, introducing the notationVγ = {x : V (x) < γ}
to denote the level sets ofV (x), we have:

Lemma 3 ( [23]). If V (x) ≥ 0 and V̇ (x) < 0 in Ω, then
Vγ ⊂ Ω impliesVγ ⊂ D.

Then, in many literature references, the estimated DA is
given byVγ∗ whereγ∗ is the largestγ such thatVγ ⊂ Ω.

In order to apply the above lemma to polynomial systems,
the Positivstellensatztheorem [22] enables checking local
positiveness conditions with SOS programming (sufficient
conditions). It will be used to modify conditions (6) and (7)
or (6) and (8), in order to make them hold locally inΩ, as
follows:

1Even if they are, maybe a low-degree polynomial Lyapunov function might
not be enough to prove such global stability.
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Lemma 4 ( [15]). Assume that the modelling region can be
defined as:

Ω = {x : Gd(x) > 0, Hj(x) = 0, d = 1, . . . og, j = 1, . . . , oh}
(9)

whereGd andHj are, respectively, a collection ofog and oh
polynomials defining the boundary ofΩ.

If polynomialsSi0(x), Sid(x) ∈ Σx, Zij(x) ∈ Rx, i =
1, . . . , r, can be found fullfilling

− Si0(x)(
∂V

∂x
Pi(x) + ǫ(x)) −

og
∑

d=1

Sid(x)Gd(x)+

oh
∑

j=1

Zij(x)Hj(x) ∈ Σx, i = 1, ..., r (10)

then V̇ (x) is locally negative inΩ except at the origin and,
hence, its level sets belong to the DA of the origin ifV (x) ≥ 0
(Lemma 3).

The above lemma is a simplified version of the original
Positivstellensatzresult in which (10) would be replaced by
the less conservative expression:

Fi,1(x) + Fi,2(x) ∈ Σx (11)

where Fi,1 belongs to the polynomial cone
℘(−∂V

∂x
Pi(x), G1(x), ..., Gog (x)) and Fi,2 belongs to

the idealℑ(H1(x), .., Hoh(x)), see [22] for details. However,
computational complexity increases as more multipliers are
added involving products of theGd(x) or Hj(x) which are
also members of the cones and ideals.

Conditions (10) are not linear in decision variables if both
S, Z andV have to be found. However, the problem becomes
convex if eitherV (x) is fixed (proposed in [19, chap. 4]2) or
Si0(x) is fixed, for instance toSi0(x) = 1, as proposed in [12].
OnceV (x) is found, a bound for the maximumγ fulfilling
Lemma 3 can be also easily found via SOS techniques.

In order to avoid ill-shaped solutions, additional SOS con-
straints may be added to find the Lyapunov function level
set containing the largest region with a particular predefined
shape (circle, hypercube, . . . ) [14], [15], or maximising an
approximation to the volume based on the maximum-volume
formula for a quadratic form [19].

Discrete systems:Equivalent result can be proved for
discrete-time systems using (8) instead of (7) in conditions
(10). However, the result in Lemma 2 involves a polynomial
whose degree is that ofPi plus that ofV in the state variables
as well as two plus the degree ofV in the auxiliary variables
σi; it also needs the algebraic manipulations to make the
inequality homogeneous inσi, see [2] for details. Hence, the
degree of the polynomials and the number of decision variables
may be high even for simple local stability problems. In order
to allow for simpler conditions, if desired –at the expense of
conservativeness–, an auxiliary lemma in next section (Lemma
5) will be useful.

2 [19] uses a Lyapunov function from the linearized system, and takeΩ ≡
Vγ . If γ is maximized, it can be recast as a quasi-convex problem (GEVP).

B. Sources of conservativeness

Level-set based estimation of the DA with fuzzy models has
some drawbacks.

1.-Choice of modelling region:If the modelling region
Ω is chosen too large, the associated Lyapunov conditions
may render infeasible (consequents separate too much). From
classical Lyapunov theorems, if the linearised system is stable,
a “small enough” modelling region will render a feasible
problem3. The problem, then, is how to choose which is the
right modelling region to obtain the largest DA estimate.

2.-Conservative sign conditions:One of the reasons for
infeasibility is requiringV and −V̇ (increment ofV in the
discrete case) to be positive in allΩ. In fact, it would be need
only inside a suitable level set. For instance, if there is more
than one equilibrium point in the modelling regionΩ, all the
above lemmas fail as there is onex 6= 0 whereV̇ = 0 for any
choice ofV .

3.-Existence of larger invariant sets inΩ: There exist
invariant sets inΩ which are not level sets of a low-degree
polynomial Lyapunov function (see later).

Some of these issues have been addressed in literature.
For instance, the third one gives rise to piecewise Lyapunov
functions in the formV (x) = mini Vi(x), etc. [27].

Also, in the preliminary works [14], [15] by the authors,
some considerations on DA estimation are discussed. In par-
ticular, the first drawback (iterations in the size of modelling
region) and the third one (ana posterioriexpansion of the DA
estimate given a fixed Lyapunov function is proposed: indeed,
in some cases there exists an invariant set in the formVγ2

∩Ω
for γ2 larger thanγ∗ from Lemma 3).

This work presents a unified approach taking into account
the three issues. The objective will be obtaining a DA estimate
when starting from the following situation:

• a low-degree solution to the “global” stability problem
(Lemmas 1 or 2) cannot be found,

• there is a small enough region around the origin where the
“local” stability problem (Lemma 3) is strictly feasible
and an initial level-setB1 = {V1(x) < 1} is proven to
belong to the DA.

In this paper, the goal is to obtain a “local” estimate of the
DA as large as possible. An iterative approach is used in order
to avoid as much as possible the above discussed sources of
conservativeness. The main ideas are:

• setting “regions of interest” smaller thanΩ in local
stability conditions;

• lift the restriction of the DA estimate being a Lyapunov
level set;

• allowing for more than one equilibrium point in the
modelling regionΩ.

IV. PROBLEM STATEMENT, AUXILIARY DEFINITIONS AND

LEMMAS

In order to fulfill the objectives of the paper, the following
definition is useful to refine the kind of DA to be obtained in
later sections.

3Indeed, if the linearised system is stable, a quadraticV (x) will suffice for
smallΩ.
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Definition 2. The Local Robust Domain of Attraction (LRDA)
of system(4) or (5), referred to regionΩ, will be denoted by
DΩ. It is defined as the set of initial conditions fulfilling:

DΩ =

{

x0 ∈ Ω :
ψ(t, x0, µ) ∈ Ω∀t ≥ 0, ∀µ ∈ Γ
limt→∞ ψ(t, x0, µ) = 0, ∀µ ∈ Γ

}

(12)

Note that the condition for the trajectories not leavingΩ
above is needed as (4) and (5) are, by assumption, not valid
outsideΩ to analyse (1) or (2) respectively.

The term “robust” in the definition is due to the fact that
DΩ is defined considering “all” possibleµ in the simplexΓ
and not the particular, possibly non-polynomial,µ(x) giving
actually exact equivalence with the nonlinear system. That
allows polynomial techniques to be used at the price of
conservativeness. Indeed, based on the above, as (4) and
(5) include (1) and (2), respectively, inΩ (plus many other
systems), then obviously,DΩ ⊂ D: by finding the LRDA from
a fuzzy polynomial model, we have found an inner estimate
of the DA of (1) –or (2)–, as defined in [19, Chap. 6].

Problem statement:The above-defined LRDA may be
a very complicated region and hardly characterizable. The
goal of this paper is to “fit” the LRDA with aclosed-form
expression given by a low-degree polynomial boundary which
gives larger results than Lyapunov literature. The polynomial
degree will be chosen depending on the available computing
resources.

In particular, consider a compact set defined byoq poly-
nomial boundsΘ = {x : Ql(x) ≤ 1} l : 1, ..., oq, and an
inner regionB = {x ∈ Θ : V (x) < 1} containing the origin
(V (0) < 1).

The following definition will be later taken in the rest of
paper as the best low-degree fit ofΘ.

Definition 3. Consider a decision-variable polynomial of
predefined degree denoted asR(x). The best fitting region
ΘR = {x ∈ Θ : R(x) ≤ 1}, fulfilling B ⊂ ΘR ⊂ Θ, is
defined to be the solution of the following problem:

minimize τ s.t.

1 + τ ≥ R(x) when x ∈ Θm, m = 1, . . . , oq (13)

R(x) ≤ 1 when x ∈ B (14)

R(0) = 0 (15)

beingΘm each one of theoq portions of the frontier ofΘ,
defined asΘm = {x : V (x) ≥ 1, Qm(x) = 1}.

In this way,ΘR will be an inner approximation toΘ with
a singlepolynomial restriction.

Note that condition (15) is needed in order to avoid the
trivial solution τ = 0, R = 1, requiring that at least one point
has a value different from one4.

Auxiliary lemma: Let us last discuss an auxiliary result
regarding lower-complexity SOS conditions for stability.As
commented in the previous section, some developments (par-
ticularly in discrete-time) require a high-degree polynomial
in both state and auxiliary membership variablesσ. As an

4There is no loss of generality in settingR(0) to zero, as a straightforward
argumentation with affine scalings shows (details omitted for brevity).

alternative, a dummy variableρ may be introduced jointly with
the equality constraintρ = xk+1, i.e., ρ−∑r

i=1 µiPi = 0. In
this way, equation (8) may be changed, following a Positivstel-
lensatz argumentation.

Lemma 5. The system(5) is globally stable if there exist
functionsV (x) andG1(ρ, x) such that:

V (x)− V (ρ)− ǫ(x) +G1(ρ, x) > 0 (16)

with5 G1 ∈ I(ρ − ∑r
i=1 µiPi) arising from the equality

constraint.

Note that (16) is not yet a SOS problem (because of the
nonlinear functionsµi appearing inG1); however, it is a fuzzy
summation so well-known semidefinite relaxations based on
Polya’s theorem [28] may be applied.

For instance, ifG1(ρ, x) were chosen as the simple expres-
sion

G1(ρ, x) = φ(x, ρ) · (ρ−
r

∑

i=1

µiPi)

being φ(x, ρ) a polynomial vector inRn
{ρ,x}, then (16) is a

single-dimensional fuzzy summation whose positiveness for
µi ∈ Γ is proved if ther SOS conditions below hold:

V (x)−V (ρ)−ǫ(x)+φ(x, ρ)(ρ−Pi(x)) ∈ Σ{ρ,x} i = 1, . . . , r
(17)

In fact, the above proposed structure ofG1 will be the actual
choice in later examples.

V. D ISCRETE-TIME DA ESTIMATION

Given a particular regionB1 which belongs to the DA of
a system (2), a larger estimate of the DA can be calculated
following the next result.

Lemma 6. Let B1 = {x ∈ R
n : V1(x) < 1} ⊂ D be a

(previously proven) bounded subset of the domain of attraction
of (2) and letN be a horizon parameter (number of future
samples) fixeda priori. Then, any regionB2 such that

B2 ⊆ {x ∈ R
n : V2(x) < 1}, (18)

where6 V2(x) = V1(f
[N ](x)), belongs also to the domain of

attraction of the system(2).

Proof: Following system’s dynamics (2), the points which
in N future samples will be insideB1 are those defined by:

V1(xk+N ) < 1 ≡ V1(f
N (xk)) < 1

So the regionB2 is a subset of the DA as any starting point
in B2 will enter the open setB1 in a finite number of time
steps. Hence, it will later reach the origin asB1 ⊂ D.

Corollary 1. If B1 contains the origin, whenN → ∞, B2

exactly coincides with the actual DA of the origin of the
nonlinear discrete system.

5 A slight abuse of notation is involved in the definition of theideal as
it is generated by an expression which is not a polynomial. Inthis context,
the ideal will be considered to be the product of arbitrary polynomials –to be
obtained by SOS optimization– by any product of the generating functions.

6Notation: f [N](x) = (f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

N

)(x).
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Proof: Indeed, no point reaching the origin can avoid
enteringB1 in a finite number of time steps, as the origin is
in its interior.

Remark1. Note thatB1 does not need to be a Lyapunov
level set like the ones considered in classical results (which
implicitly considerN = 1). In fact, there is no need of it being
even an “invariant” set as understood in literature [23].

A. Application to Fuzzy Polynomial Systems

Despite of Lemma 6 gives an exact description of theN -
step DA, unlessf is linear, the result is a very high-degree
expression if fuzzy polynomial models for system (2) are used
(both in the state variables and in the membership functions).
So, the results in the above lemma may be of little use if
a reasonably simple approximation of the DA of a nonlinear
system were needed for subsequent analysis or representation.

In order to obtain a simpler reliable representation for the
DA, the following lemmas propose the use of fuzzy poly-
nomial models in order to describe the nonlinear dynamics.
Hence, inspired on the “best fitting region” of Definition 3,
they obtain a user-defined low degree polynomial in order to
characterize the LRDA.

The basic idea motivating the results below is obtaining a
low-degree approximation of the 1-step DAV (f(x)) < 1 in
Lemma 6 and, later, iterating such approximation.

Lemma 7. Consider a known seed setB1 ⊂ DΩ defined
by B1 = {x ∈ Ω : V1(x) < 1} and a user-defined modelling
region Ω defined byoq restrictionsΩ = {x : Ql(x) ≤ 1}
l : 1, ..., oq, such that it is compact. Then, the region
B2 = {x : Ql(x) ≤ 1, V2(x) ≤ 1} belongs to DΩ and
B2 ⊃ B1, if a function V2(x) can be found solving the
following problem:

minimizeτ s.t.
V2(0) = 0 (19)

V2(x)− 1− F1(x, ρ) +G1(x, ρ) > 0 ∀{x, ρ} (20)

V2(x)− 1− F2(x, ρ) +G2(x, ρ) > 0 ∀{x, ρ} (21)

1− V2(x) + τ − F3(x, ρ) +G3(x, ρ)

+G4(x, ρ) > 0 ∀{x, ρ} (22)

1− V2(x)− F4(x) > 0 ∀x (23)

Where

• τ > 0,
• F1(x, ρ) ∈ ℘(V1(ρ)− 1, 1−Q1(x), ..., 1 −Qoq(x)),
• F2(x, ρ) ∈ ℘(Q1(ρ)−1, ..., Qoq(ρ)−1, 1−Q1(x), ..., 1−
Qoq(x)),

• F3(x, ρ) ∈ ℘(1−Q1(x), ..., 1 −Qoq(x)),
• F4(x) ∈ ℘(1− V1(x), 1 −Q1(x), ..., 1−Qoq(x)),
• G3(x, ρ) ∈ ℑ(V1(ρ)− 1),
• {G1(x, ρ), G2(x, ρ), G4(x, ρ)}∈ℑ(ρ−

∑r
i=1 µiPi(x))

Note that the same abuse of notation issue discussed in
footnote 5 has been assumed.

Proof: By condition (20), the regionV2 < 1 will be an
inner approximation (actually it has to fulfill the requirement
only inside the modelling regionΩ) to the region defined by
V1(xk+1) < 1 (the points which inonesample will be inside
B1): the condition implies thatV2(x) is greater than 1 when
V1(xk+1) ≥ 1 andx ∈ Ω.

Condition (21) implies thatV2(x) should be greater than one
for those pointsx ∈ Ω such thatxk+1 6∈ Ω. Jointly with (20)
the condition discards the pointsx ∈ Ω for whichV1(xk+1) <
1 but xk+1 6∈ Ω.

So conditions (20),(21) together mean that all points in
V2(x) < 1 will fulfill V1(xk+1) ≤ 1 and xk+1 ∈ Ω, i.e.
xk+1 ∈ B1. Hence the obtained level set can be used asB2

in (18), forN = 1.
Figure 1, in whichΩ is, for clarity, only defined by a circle

Q(x) < 1, illustrates the different regions involved in the
conditions: the pink regionV2 < 1 must not intersect green
zones (V1(xk+1) > 1) and red ones (Q(xk+1) > 1).

Lastly, conditions (19), (22) and (23) are the adaptation of
the best-fit conditions (15), (13) and (14), respectively, to the
setting now in consideration, in order to obtain the “optimal”
V2 according to Definition 3.
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Q(x) = 1

V1(x) = 1

V1(xk+ 1) = 1

Q(xk+ 1) = 1

V2(x) = 1

V2(x)<1

Q(x)>1

Q(xk+ 1)>1

(x)<1

V1(x k
+ 1
)>1

Fig. 1. Example of regions involved in Lemma 7 (Blue:B1, Pink+Blue:
B2, plus other relevant boundaries in the legend).

The optimization problem in the above Lemma cannot be
solved via SOS techniques. The reason is that conditions
must involve only polynomial terms in order to be able
to use semidefinite programming. However, it can be con-
verted in an straightforward way to a SOS problem if all
V1(x), V2(x), Q1(x), ..., Qoq (x) belong to the polynomialsRx

and semidefinite relaxations are suitably applied: the case
is identical to the one when transforming (16) to (17) in a
previous section (details omitted for brevity).

Remark2. Note that the slack variablesρ in Lemma 7 are
introduced instead of directly using

∑

i σ
2
i Pi (σ2 = µ),
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in order to reduce the degree of the conditions. Therefore,
the computational complexity of the resulting semidefinite
problem (Lemma 5) is lower.

Remark3. Usually,B1 will have been obtained with a shape-
independent fuzzy technique in literature and this is why, in
Lemma 7, the LRDA conditionB1 ⊂ DΩ has been assumed.
If B1 had been obtained with a shape-dependent or other
nonlinear stability analysis technique, then the resulting B2

will be a larger set possibly including points of the DA
outside the LRDA, so it would be a better solution: evidently,
the larger the initial estimateB1 is, the better the proposed
methodology will work.

Remark4. Note that, as in Lemma 6,B1 does not need to
be a Lyapunov level set fulfillingV1(xk+1) − V1(xk) < 0 in
all its interior, even if the previous remark suggests it as a
reasonable seed set. Note also that the resultingB2 is also
free from the above Lyapunov decrease condition. In fact, we
don’t even need to enforce neitherV1 > 0 nor V2 > 0 inside
the level set (with Positivstellensatz conditions). Theseare the
reasons why the proposed methodology obtains better results
than previous literature.

B. Iterative Procedure

As a natural choice, using theB2 obtained in Lemma 7
to define a new regionB1, a sequence of new functions and
associated regions would be readily obtained by repeatedly
applying Lemma 7.

Remark5. There is also the possibility of remodelling while
iterating, defining a new larger regionΩ2 ⊃ Ω in order to
obtain larger LRDA estimates, in particular when{x : V2(x) ≤
1} 6⊂ Ω. Note that in that case conditions (21) must make
reference to thepreviousmodelling regionΩ when setting up
F2, in order to fullfill Lemma 6. The other Positivstellensatz
polynomialsF1, F3 andF4 must belong to the cone formed
with the constraints associated toΩ2. For further details, see
Example 3 in Section VII.

VI. DA ESTIMATION IN CONTINUOUS-TIME SYSTEMS

The following theorem states conditions so that, given a
particular regionB1 elsewhere proved to belong to the DA of
(1), a larger one can be found via invariant set considerations.

Theorem 1. Let Θ = {x : Ql(x) ≤ 1, l : 1, ..., oq}
be a compact user-defined region of interest, withQl(x)
differentiable. LetB1 = {x ∈ Θ : V1(x) < 1} ⊂ D be a
(previously proven) bounded subset of the domain of attraction
of the origin of system(1). If we can find a differentiable
functionV2(x) such that, givenǫ > 0, the following conditions
hold:

V2(x) ≥ 1 ∀ x ∈ Cm m : 1, .., oq (24)

V̇2(x) < −ǫ(x) whenV1(x) ≥ 1, Ql(x) ≤ 1 ∀l (25)

where

Cm = {x : Qm = 1, Q̇m > 0, V1 ≥ 1, and Ql ≤ 1 ∀l 6= m}
Then, the interior of the regionB2 = {x : Ql(x) ≤
1, V2(x) ≤ 1} ∪B1 belongs toD.

Proof: As B1 ⊂ Θ, we haveB1 ⊆ B2 ⊆ Θ.
Condition (25) means thaṫV2(x) is strictly negative in

Θ\B1 = {x : x ∈ Θ, x 6∈ B1}.
We will now prove that all trajectories starting inx0 in the

interior of B2\B1 reach in finite timeB1.
Indeed, asV2(x0) < 1, and for all l, Ql(x0) < 1 then

V2(x(t)) < 1 for all t ≥ t0 while in B2\B1 by (25). Hence,
it will never exit B2\B1 neither via the frontierV2(x) = 1,
evidently, nor viaQl(x) = 1 becauseV2(x) ≥ 1 or Q̇l(x) < 0
in such points due to (24). So, the only way of a trajectory to
exit B2\B1 will be enteringB1.

As the fact that the trajectory remains forever inB2\B1

is not possible we can conclude that the trajectory from the
abovex0 will enter B1 in finite time (see below).

Indeed, we haveB2\B1 ⊂ Θ\B1. Also, Θ\B1 is compact
and, by (25),V̇2(x(t)) < −ǫ whenx(t) ∈ Θ\B1. V2(x) will
achieve a minimumα in Θ\B1. Consider a trajectory such
that V2(x(0)) ≤ 1 and V̇2(x(t)) < ǫ for all t ≥ 0. In that
case, for allt > (1 − α)/ǫ we would haveV2(x(t)) < α,
so such trajectory is not possible insideΘ\B1: the state must
have leftΘ\B1 (hence,B2\B1) in finite time.

Note that some setsCm may be empty so, in those cases,
there is no need of checking condition (24).

Corollary 2. If the condition:

V2(x) ≤ 1 whenV1(x) ≤ 1, Ql(x) ≤ 1 ∀l (26)

is also enforced, thenB2 = {x ∈ Θ : V2(x) ≤ 1}, and
B1 ⊂ B2. SoB2 and V2 can be used again for finding new
points in the domain of attraction, replacingV1 andB1 with
them.

The advantage of the above corollary is that there is no
need of considering the union of regions discussed in Theorem
1 when definingB2, simplifying further computations. An
iterative algorithm naturally ensues (see Section VI-B).

A. Application to Fuzzy Polynomial Systems

In the following, fuzzy polynomial models (4) and restric-
tions will be used in the context of the above theorem to obtain
LRDA estimatesDΩ of the domain of attractionD of (1) in
a modelling regionΩ. In this way, SOS programming can
be used. In order for the polynomial model to be valid, the
conditionΘ ⊂ Ω must be enforced by a suitable definition of
Ql, beingΘ the region of interest discussed in Theorem 1.

Remark6. The “region of interest”Θ is introduced, instead of
the full modelling regionΩ, in order to reduce conservatism by
eliminating the need of checkinġV2 < 0 in the wholeΩ, which
may be infeasible. Indeed, note that if there are equilibrium
points inΘ\B1 then (25) will not hold. A suitable choice for
Θ will be later discussed.

Lemma 8. Consider a known setB1 ⊂ DΩ defined by
B1 = {x ∈ Ω : V1(x) < 1} and a user-defined regionΘ
defined byoq restrictionsΘ = {x : Ql(x) ≤ 1} l : 1, ..., oq,
such that Θ ⊂ Ω and it is compact. Then, the region
B2 = {x : Ql(x) ≤ 1, V2(x) ≤ 1} belongs to DΩ and
B2 ⊃ B1, if a continuous differentiable functionV2(x) can
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be found solving the following SOS problem:

minimizeτ s.t.
V2(0) = 0 (27)

−(
∂V2(x)

∂x
ρ+ ǫ)− F1(x, ρ) +G1(x, ρ) ∈ Σx,ρ (28)

V2(x)−1−F2m(x, ρ)+G2m(x, ρ) ∈ Σx,ρ m : 1, ..., oq (29)

1− V2(x) + τ − F3m(x) +G3m(x) ∈ Σx m : 1, ..., oq (30)

1− V2(x) − F4(x) ∈ Σx (31)

Where
• τ > 0, ǫ > 0,
• F1(x, ρ) ∈ ℘(V1(x)− 1, 1−Q1(x), ..., 1 −Qoq (x)),
• F2m(x, ρ) ∈ ℘(V1(x)− 1, ∂Qm(x)

∂x
ρ),

• F3m(x) ∈ ℘(V1(x)− 1),
• F4(x) ∈ ℘(1− V1(x), 1 −Q1(x), ..., 1−Qoq(x)),
• G2m(x, ρ) ∈ ℑ(Qm(x)− 1, ρ−∑r

i=1 µiPi(x)),
• G3m(x) ∈ ℑ(Qm(x)− 1),
• G1(x, ρ) ∈ ℑ(ρ−

∑r
i=1 µiPi(x)).

Proof: Conditions (28) and (31) mean (25) and (26)
respectively. AsQ̇m = ∂Qm

∂x
ρ, constrainingρ =

∑

i µiPi(x)
by “Positivstellensatz” multipliers, then condition (29)implies
(24), also condition (30) implies (13), and condition (31)
implies (14).

Note that, inspired in Definition 3, minimization ofτ above
allows obtaining a regionB2 which best fitsΘ subject to the
additional constraint of belonging toDΩ.

Remark7. As in the discrete case, the above optimization
problem doesn’t involve polynomial finite conditions. So, in
order to be able to use semidefinite programming, a recasting
is needed by taking{V1(x), V2(x), Q1(x), ..., Qoq (x)} ∈ Rx

and a finite number of terms from the cones and ideals. See,
again, the transformation from (16) to (17) (details omitted for
brevity).

The above lemma generalises particular cases in literature,
as follows:

Corollary 3. If B1 = {0} and all conditions of Lemma 8 are
set with the particular choicesF1(x, ρ) ∈ ℘(1−Q1(x), ..., 1−
Qoq (x)), F2m = 0, F3m = 0, and (31) is omitted,V2 is a
Lyapunov function whose level set{x : V2 ≤ 1} belongs to
the DA of the origin, recovering classical local-stabilityresults
(Lemma 3).

Proof: If B1 = {0} relaxing requirements of positiveness
and decrescence inside{V1 ≤ 1} should not be done because
such V1 does not exist. Hence, the termV1(x) − 1 should
be removed from the generator of the cones. Also, (31) which
refers to conditions insideB1∩Θ (i.e, the origin) is redundant
with (27). The rest of conditions can then be interpreted as the
usual ones on Lyapunov functions (locally inΘ).

Corollary 4. If conditions in Corollary 3 are solved getting
V2 and, later, only(29) is posed setting a newV2 equal to an
scaled version of the one just computed, then [15] is obtained.

Indeed, [15] discusses onlya posterioriscaling of Lyapunov
functions.

B. Iterative Procedure

Lemma 8 starts with a seed setB1 = {x : V1 < 1} and a
user-defined regionΘ which, obviously, should intersect with
the seed set (in most of practical cases, it will actually contain
the seed set). The result is a new level set{x : V2 < 1} larger
thanB1 such that its intersection withΘ belongs to the DA.

a) Progressive enlargement of the DA estimate:As a
natural choice, ifΘ were fixed, using the largerV2 obtained
with Lemma 8 to define a new seed regionB1, then the
conditions of Lemma 8 are fulfilled and, thus, it can be applied
again with the new seed. Hence, a sequence of new functions
and associated regions would be readily obtained by repeatedly
applying Lemma 8.

b) Choice of region of interestΘ: There are various
posibilities for choosing a regionΘ but:

• a largeΘ might eventually lead to (28) being infeasible,
e.g., if Θ included more than one equilibrium point.

• a smallΘ would lead to little improvement in the domain
of attraction estimates and, also, the restrictions (30) and
(31) would be hard to fulfill ifV2 were a low-degree
polynomial andΘ andV1 defined complicated shapes.

Furthermore, as iterations progress and the DA estimates
grow larger (encompassing most ofΘ), then constrainingΘ
to the initial “small” choice may not be a good option. This
fact, jointly with the above issues arising in the choice ofΘ
motivate incorporating iterations in the size and shape of such
region, as discussed below.

c) Proposal for modification ofΘ: Although there might
be alternative options, for instance, the new region of interest
can be defined by a user-defined “zoom” factorυ ≥ 1 as:

Θ = {x ∈ Ω : V1(x) ≤ υ, υ ∈ R} (32)

The smallerυ is, the smaller the regionΘ−B1 is, so condition
V̇2 < 0 there becomes less restrictive.

If V1(x) wereC1 differentiable, and enhanced proposal for
the choice ofΘ may be based on the evident fact that for any
fixed time δ > 0, the set{x0 ∈ R

n : V1(x(δ)) < 1, x(0) =
x0} is included in the domain of attractionD. Intuitively, from
the first order Taylor series expansion ofV1(x(t)),

V1(x(δ)) ≈ V1(x0) + δ
∂V1
∂x

ẋ(0)

the new region of interest in Corollary 8 can be, choosing
δ > 0:

Θ =

{

x ∈ Ω : V1(x) + δ
∂V1(x)

∂x

r
∑

i=1

µiPi(x) ≤ υ, x ∈ G

}

(33)
whereG ∈ Ω is, in general case, a sphere limiting the search
zone and ensuring compatness (G ≡ Ω if Ω is compact). The
constantυ has the same meaning as in (32) andδ is a new
user-defined constant.

Note that the accuracy of these steps is not very relevant
because regionΘ can actually be arbitrarily defined by the
user in Theorem 1. Also, in order to be less conservative, the
original nonlinear system may also be remodelled: indeed, for
a givenΘ ⊂ Ω, the closer the modelling regionΩ is to Θ the
less uncertain the fuzzy model will be.
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To clarify the proposed methodology, the Examples 1 and
2 at Section VII use the following algorithm (particular case
of Lemma 8):

Algorithm 1. Starting from a knownB1 = {V1(x) < 1},
B1 ∈ D andV1(x) ∈ Rx, carry out the following steps:

1) Choose a starting combination of region increase pa-
rametersδ ≥ 0 (gradient) andυ ≥ 1 (zoom), defining a
candidate region of interest7 (33).

2) Find a new polynomialV2(x) solving the following
SOS problem:

minimizeτ such that

V2(0) = 0 (34)

− (
∂V2
∂x

ρ+ ǫ)− ψ1i(V1 − 1)− ψ2i(R − xTx)

−ψ3i(υ−V1−δ
∂V1
∂x

ρ)+φ1(ρ−Pi) ∈ Σx,ρ i : 1, ..., r

(35)

1− V2 − ψ4(1− V1)− ψ5(R− xTx) ∈ Σx (36)

V2 − 1 + φ2i(V1 + δ
∂V1
∂x

ρ− υ)− ψ6i(R− xTx)

+ φ3(ρ− Pi) ∈ Σx,ρ i : 1, ..., r (37)

V2 − 1− ψ7i(υ − V1 + δ
∂V1
∂x

ρ) + φ4i(R− xTx)

+ φ5(ρ− Pi) ∈ Σx,ρ i : 1, ..., r (38)

1− V2 + τ + φ6i(V1 + δ
∂V1
∂x

ρ− υ)− ψ8i(R− xTx)

+ φ7(ρ− Pi) ∈ Σx,ρ i : 1, ..., r (39)

where ǫ > 0, τ > 0, R is a user-defined radius of a
sphere belonging toΩ, ψj ∈ Σx, ψji ∈ Σx,ρ, φk ∈ Rn

x,ρ

andφki ∈ Rx,ρ.
3) If the above problem is feasible, setV1(x) = V2(x) and

return to Step 1.
4) If problem in Step 2 is not feasible, then:

a) If υ > 1, setυ = max(1, υ−∆υ) (∆υ user-defined
step) and go back to Step 2.

b) If υ = 1, reduceδ by ∆δ (user-defined step) and
go back to Step 2.

c) If υ = 1 and δ ≤ 0 stop the algorithm, due to
lack of progress. The finally proved DA estimate
B2 is obtained in closed-form by the currentV1(x),
computed in the last feasible iteration (i.e., after
settingV1 = V2 in Step 3):

B2 = {x : V1(x) < 1, x21 + x22 < R2}
7A slack variableρ =

∑

i µiPi will be introduced as in Lemma 5 in
next steps. Note also that region (33) might be defined by a high-degree
polynomial for δ 6= 0, so it may have a strange shape and can take large
values far from the origin. Hence, to avoid numerical problems, a low-degree
best-fitting region (Definition 3) to (33) may also be obtained in this step for
later use if needed. Details omitted for brevity.

Note. Conditions on the above algorithm are a particulariza-
tion of those in Lemma 8 as follows:

• (34), (35), (36) and (39) correspond to (27), (28), (31),
and (30), respectively

• (37) and (38) are conditions (29) but forcing{x : V2(x) =
1} to be contained insideΘ to avoid the result of
each iteration being an “intersection” (i.e., forcingB1

in next iteration to be defined by onlyone polynomial
inequality), settingF2m = 0.

Remark8. With condition (36), i.e.,V2 ≤ 1 when V1 ≤ 1,
Corollary 2 applies and the proved domain of attraction
increases in each iteration. Note that improvements come from
the fact that there is no need for eitherV1 > 0, V̇1 < 0, V2 > 0
or V̇2 < 0 in all the interior of the level sets, contrary to usual
Lyapunov approaches.

VII. E XAMPLES

Example 1: Non-fuzzy polynomial system.

First, a simple example from [23, Example 8.9] is provided
in order to show the performance of the proposed methodology
in this paper over standard level-set ones in the referred source.

Consider the polynomial system:

ẋ1 = −x2
ẋ2 = x1 + (x21 − 1)x2

(40)

For the above system, linearization shows that the origin is
stable: there is a neighbourhood of it belonging to its DA
provable with a Lyapunov functionV (x) = 1.5x21−x2x1+x22,
see [23] for details. However, phase plane simulation shows
that it has an unstable limit cycle so the DA of the origin is
limited by it.

The Lyapunov-based methodology proposed in [23] obtains
an initial estimate of the DA from a rough bounding ofV̇
given by{x : V (x) ≤ 0.801}. Then, zooming out this region
by performing a trial-and-error contour plotting, the above
estimate is expanded to{x : V (x) ≤ 2.25}.

Now, using the proposal in this paper, the regionB1 =
{x : V (x) ≤ 2.25} is used as the algorithmseedregion. The
initial step-size parameters are set toν = 1.1, δ = 0.2 and a
4th degree polynomial boundaryV2 is chosen. With∆ν = 0.1,
∆δ = 0.1, Algorithm 1 runs for 9 iterations until it stops due
to lack of progress. The largest region obtained with a4th

degree polynomial boundary is{x : V2(x) < 1}, where

V2(x) = 0.18157x21 − 0.58255x1x2 + 0.0058x22 + 0.0327x41

+0.15975x31x2 + 0.14346x21x
2
2 − 0.0709x1x

3
2 + 0.053x42

Then, four more iterations are executed by reducing starting
algorithm parameters toν = 1.02, δ = 0.05 and also setting
a 6th degree for the new polynomial boundariesV2. Finally,
the new DA estimate is, explicitly:

B2 = {x : −0.02023x51x2 − 0.401x1x2+0.595x21− 0.1633x41

+0.3378x22− 0.0514x42+0.0206x61+0.055x62− 0.15867x21x
2
2

+0.09x1x
3
2 − 0.0208x1x

5
2 + 0.182x31x2 − 0.0578x31x

3
2

+0.049x21x
4
2 + 0.0388x41x

2
2 < 1}
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Fig. 2. [Example 1] Domain of attraction evolution using4th order
polynomial curves (blue) and6th order ones (brown). Seed setB1 taken
from [23].

The improvement over estimates in [23] can be checked
on Figure 2. In fact, the obtained boundary ofB2 is pretty
close to the actual limit cycle (see Figure 8.2 in the cited
source, and green contour below for numerical simulation-
based approximations to it) which is theexact shape of the
DA for which a closed-form solution is, however, unavailable.

Example 2: Continuous-time non-polynomial system.

Consider the nonlinear system:

ẋ1 = −3x1 + 0.5x2
ẋ2 = x2(−2 + 3 sin(x1))

(41)

which has equilibrium points atx = 0, at (x1 = 0.7297 +
2kπ, x2 = 6x1) and at(x1 = −0.7297+(2k+1)π, x2 = 6x1)
for k ∈ Z.

The objective is to estimate the domain of attraction of the
origin in a state-space modelling regionΩ defined as a sphere
of radiusRe centered inx = 0:

Ω = {(x1, x2) |x21 + x22 < R2
e}

For instance, forRe = 10, we have the two equilibrium
points insideΩ: e0 = (0, 0) and e1 = (0.7297, 4.378).
Linearisation shows thate0 is a stable node (two negative real
Jacobian eigenvalues), ande1 is a saddle point (one stable and
one unstable eigenvalues).

Taking into account the range−10 ≤ x1 ≤ 10 and using the
5th degree Taylor expansion ofsin(x1), there exists an exact
fuzzy-polynomial representation inΩ such thatsin(x1) =
µ1(x)P1(x) + µ2(x)P2(x), where:

P1(x) = x1 −
1

6
x31 + 9.16 · 10−3x51

P2(x) = x1 −
1

6
x31 + 1.56 · 10−3x51

which gives a two-vertices fuzzy polynomial model (4) with
membership functions (z ≡ x):

µ1(x) =
sin(x1)− P2(x)

7.6 · 10−3x51
, µ2(x) = 1− µ1(x)

For other sizes of the modelling regionΩ, resulting in different
ranges ofx1, suitable vertex models may be obtained by the
same Taylor-series methodology.

A starting regionB1 is obtained with well-known method-
ologies [19], [29]: a search was made for a polynomial
Lyapunov functionV1(x) giving the maximum radiusR1 of a
circle included in its level set{V1(x) ≤ 1}, and such thatV̇1
decreases in a spherical modelling region around the originof
radiusRe.

As there is a saddle pointe1, whatever the choice forV1 is,
we will have V̇1(e1) = 0. Forcefully,any Lyapunov function
search from literature (for instance, Lemma 1, Lemma 4) will
not be feasible forRe ≥ ‖e1‖ = 4.44. So, to obtain a first
seed set,Re was set to 4.42 in the numerical implementations,
corresponding to curveC1 in Figure 3. In fact, because of the
inherent conservatism from fuzzy modelling, the single saddle
point in the original nonlinear system becomes a “strip” of
possible equilibrium points (for different values ofµ) in the
fuzzy model.

The Lyapunov function is found by using Lemma 4, i.e.,
solving the SOS problem of maximisingRi subject to

V − ǫxTx+ ψ1(x
Tx−R2

e)) ∈ Σx

V − 1− ψ2(x
Tx−R2

e) ∈ Σx

1− V + ψ3(x
Tx−R2

i ) ∈ Σx

−(
∂V

∂x
Pi(x) + ǫxTx)− φi(R

2
e − xTx) ∈ Σx i = 1, 2

for ǫ = 0.001, and multipliers{φi, ψj} ∈ Σx. The Lyapunov
function’s degree has been set to 4. Obviously, higher degrees
would yield better results, but the objective of the paper is
showing that improvements in DA estimation can be made
without increasing the polynomial degree.

The largest circle proved to belong to the DA with this
standard methodology isC2, and the Lyapunov level set is
limited by the dashed-purple curve “InitialB1” in Figure 3.

The proved domain of attraction is then enlarged following
Algorithm 1, looking for4th degree new polynomialsV2(x).
Figure 3 shows how the estimated domain of attraction in-
creases from the Lyapunov-only solution, i.e.,“InitialB1”, as
iterations progress. First, with a zoom factorυ = 1.2 and
δ = 0, and∆υ = 0.1, Algorithm 1 works for five iterations
reaching region labelled asBzoom in the figure.

Using Bzoom as seed, restarting the algorithm withδ =
0.03, ∆δ = 0.01 andυ = 1, the algorithm runs for 12 more
iterations, and gives the best feasible DA proved (curve “Final
B2” in the Figure).

Although simulations show that the domain of attraction is
quite larger, iterations find hard to obtain a better estimate
using aclosed4th degree boundary. Indeed, each new can-
didate region has to be valid for the family of “all” systems
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C1: Starting modelling regionΩ with a single equilibrium
(Eq) point inside (classical Lyapunov techniques used
locally in C1);

Initial B1: Level set of the Lyapunov function provingC2;
Bzoom: Last iteration withν 6= 1, δ = 0;

Final B2: Last iteration withν = 1, δ 6= 0.

Fig. 3. [Example 2] Domain of attraction evolution using4th order
polynomial curves.

betweenP1 andP2: however, the difference between the vertex
polynomials grows larger as we depart further from the origin.
Anyway, the obtained result “FinalB2” is substantially larger
than the initial Lyapunov level set “InitialB1” from usual
methodologies in literature.

In summary, the largest set proved to belong to the LRDA
DΩ is the set:

B2 = {x : −0.2828x1−0.1238x2−0.1315x21−0.0918x2x1

− 0.0468x22 + 0.0056x31 + 0.0252x21x2 + 0.1111x22x1

+ 0.0039x32 + 0.0099x41 + 0.0123x31x2

+ 0.0358x21x
2
2 + 0.002x1x

3
2 + 0.0017x42 < 1}

Note. In general the proved DA with Lemma 8 is an inter-
section between a level set and the region of interest, i.e.,
B2 = {x : V2(x) < 1 ∩ Θ}. However, in this particular case,
the intersection notation is not needed (in fact the possibility
is intentionally not allowed enforcing{x : V2(x) < 1} ⊂ Θ ⊂
Ω). The next example considers the more general case.

Note also that the techniques by the authors in [15] obtain a
DA estimate larger than “InitialB1” but smaller thanBzoom∩
C1 (not shown for brevity), much smaller than the one “Final
B2” obtained in this work.

Example 3: Discrete-time system.

Consider the following nonlinear system obtained by the
Euler discretization of (41) at sample timeT = 0.1 seconds:

x1k+1 = 0.7x1k + 0.05x2k
x2k+1 = x2k(0.8 + 0.3 sin(x1k))

(42)

which has the same equilibrium as (41). However, due to
the large sampling period in the Euler approximation, the
domain of attraction may change, as discussed below. Also, for
illustration, the degree of the fuzzy-polynomial approximation
of sin(x1) has been chosen differently.

The objective again is to estimate the domain of attraction
of the origin in a state-space circular modelling region of
radiusRe centered inx = 0. The discrete system has the
same equilibrium points as the continuous-time one.

For instance, using the 3th degree Taylor expansion of
sin(x1k) computed in the range|x1| < 10, there exists an exact
fuzzy-polynomial representation inΩ such thatsin(x1k) =
µ1(xk)P1(xk) + µ2(xk)P2(xk), where:

P1(xk) = x1k − 1

6
x31k

P2(xk) = x1k − 0.01054x31k

which gives a two-vertices fuzzy polynomial model (5) with
membership functions (zk ≡ xk):

µ1(xk) =
sin(x1k)− P2(xk)

−0.15612x31k
, µ2(xk) = 1− µ1(xk)

A starting regionB1, is again obtained with well-known
Lyapunov methodologies [30]. The way is to search for a
polynomialV1(x) which gives the maximum radiusR1 of a
circle included in the region{x : V1(x) < 1} such thatV1
decreases in a circular region around the origin of radiusRe.
Let us detail how initialV1 was crafted in this example:

As in Example 2, whatever the choice forV1 is, any
Lyapunov function search from literature will not be feasible
for Re ≥ ‖e1‖ = 4.44, so Re was set to 4.15 in the
numerical implementations8, henceΩ in the previous sections
corresponds to curveC1 in Figures 4 and 5.

The starting Lyapunov function may be found by two
approaches:

1) Solving the SOS problem of maximisingRi subject to

V (x) − ǫxTx+ ψ1(x
Tx− R2

e)) ∈ Σx

V (x) − 1− ψ2(x
Tx−R2

e) ∈ Σx

1− V (x) + ψ3(x
Tx−R2

i ) ∈ Σx

Z(σ)V (x) − V (
∑

i

σ2
i Pi(x)) − Z(σ)ǫxTx−

φ1Z(σ)(R
2
e − xTx) ∈ Σx,σ

whereǫ = 0.001,Z(σ)is used to make conditions homo-
geneous9 in σ2 , and{φ1 ψj} ∈ Σx are Positivstellensatz
multipliers.
The drawback with this approach is that the degree of
the polynomial conditions above grows quickly with
the Lyapunov function’s degree (because computations
involve products ofσ2 and powers ofx).

8Re cannot be increased without leading to an infeasible problem due to
the intrinsic conservativeness issues of the fuzzy-polynomial approach [2].

9The changeµ ≡ σ2 is enforced. Also, suitable manipulations (multipli-
cation by powers of1 =

∑

i σ
2
i ) in the termV (

∑

i σ
2
i Pi(x)) are implicitly

assumed for homogeneization.
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2) If the idea of introducing slack variablesρ is applied
(Lemma 5), the above problem can be expressed as
maximisingRi subject to:

V − ǫxTx+ ψ1(x
Tx−R2

e)) ∈ Σx

V − 1− ψ2(x
Tx−R2

e) ∈ Σx

1− V + ψ3(x
Tx−R2

i ) ∈ Σx

V − V (ρ)− ǫxTx− φ1i(R
2
e − xTx)

+ φ2(ρ− Pi(x)) ∈ Σx,ρ i : 1, 2

where ǫ = 0.001 and multipliersφ2 ∈ Σn
x,ρ, φ1i ∈

Σx,ρ, ψj ∈ Σx.

In the example, the second approach has been used, and the
Lyapunov function’s degree has been set to 4. The largest cir-
cle proved to belong to the DA with this standard methodology
isC2, and the Lyapunov level set is limited by the dashed-blue
curve InitialB1 in figures 4 and 5.

The proven domain of attraction is then enlarged following
Lemma 7, as proposed in section V-B, iteratively searching
for new polynomialsV2(x) of 4th degree. Two trials of the
iterations with different modelling regions have been consid-
ered.

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

X 1

X 2

C1

C2

Eq &

saddle

points

C3

Final B2

Init ial B1

C1: Starting modelling region close to largest circle with a
single equilibrium (Eq) point inside;

C2: largest circle in DA proved with classical Lyapunov
techniques overC1;

C3: New modelling region, including the saddle point (always
infeasible with previous literature results);

Initial B1: Level set of the classical Lyapunov function provingC2;
Final B2: Last iteration of iterative algorithm in Section V-B.

Fig. 4. [Example 3.a)] Domain of attraction evolution using4th order
polynomial curves and fixedRe.

a) Circle of radiusRe = 5.5: Consider the user-defined
spherical region (C3 in Figure 4):

C3 = {x : x21 + x22 < 5.52}

soΩ ≡ C3 in this case. Note, importantly, that it includes the
saddle point so no Lyapunov function can be ever found to
decrease in allC3.

Figure 4 shows how the estimated domain of attraction
increases from the Lyapunov-only solution “InitialB1” as
iterations progress.

The final estimation of the LRDA is given by:

B2 = {x : V2(x) < 1, x21 + x22 < 5.52}

with

V2(x) = 0.003054x41 − 0.00132x31x2 − 0.02021x31+

0.01636x21x
2
2 − 0.001495x21x2 + 0.004x21 + 0.00075x1x

3
2+

0.03096x1x
2
2 + 0.02511x1x2 + 0.32495x1 − 0.00034x42+

0.0025x32 + 0.02942x22 + 0.030556x2

b) Circle of radiusRe = 10: Note that, as iterations
progress in the above case (a), the obtained sets approach the
boundary of the modelling regionC3 (actually, theycrossit).
Hence, that suggest that larger regions might be obtained if
the modelling region is expanded. This second case considers
expanding a little the modelling region in each iteration until
a final targetRe = 10 is reached (or the algorithm stops
improving).

Figure 5 shows the final DA estimation.
The new LRDA found (“FinalB2” on the picture) is

B2 = {x : V2(x) < 1, x21 + x22 < 102}, being

V2(x) = 0.00864x41 − 0.00214x31x2 − 0.0454x31+

0.01313x21x
2
2 + 0.00427x21x2 − 0.0042x21 + 0.003525x1x

3
2

+ 0.0388x1x
2
2 + 0.0394x1x2 + 0.4642x1 + 0.0006x42

+ 0.00454x32 + 0.01627x22 − 0.05847x2 (43)

VIII. C ONCLUSIONS

In this paper, a sum-of-squares iterative methodology has
been presented, with the objective of improving an initial
estimate of the domain of attraction of a nonlinear system. The
result is a DA estimate defined in closed-form by polynomial
boundaries. A Taylor-series based fuzzy polynomial model
is needed in first place. Then, the newly obtained level sets
avoid the need of constraints (positiveness, decrease) inside the
already-proven regions. In this way, the requirements of a true
Lyapunov function are relaxed. The procedures are different
for the discrete and the continuous cases.

With the proposals in this work, conservatism with respect
to solutions from previous literature is reduced: Lyapunov-
based solutions can be used as a “seed” for the algorithms
here developed.
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C1: Starting modelling region close to largest circle with a
single equilibrium (Eq) point inside (same as Fig. 4);

C2: largest circle in DA proved with classical Lyapunov
techniques overC1 (same as Fig. 4);

C4: Circular modeling region forRe = 10;
Initial B1: Lyapunov level set provingC2 (same as Fig. 4);
Final B2: DA estimate in last iteration.

Fig. 5. [Example 3.b)] Domain of attraction evolution using4th order
polynomial curves for increasingly larger modelling region radius.
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Jośe Luis Pitarch was born in Castellón, Spain,
in 1983. He received the M.Sc. degree in Indus-
trial Engineering with honors in 2008 at Jaume I
University of Castellón (SPAIN). He worked with
BP Oil Refinery of Castellón as process control
engineer in 2009. He received the M.Sc. degree in
Control, Robotics and Industrial Computing in 2010
at Technical University of Valencia (SPAIN), where
he is currently working toward the Ph.D. degree in
the Systems Engineering and Control department.
He is the author or coauthor of 6 conference papers

and 2 journal papers. His research interests include Takagi-Sugeno and fuzzy
polynomial systems, LMI/SOS approaches to nonlinear control, and domain
of attraction estimation.

Carlos Vicente Ariño was born in Sagunto, Spain,
in 1979. He received the M.Sc. degree in Industrial
Engineering in 2003 and the Ph.D. degree in Control
Engineering in 2008, both from Technical University
of Valencia (SPAIN). Since 2006, he has been with
the Industrial Systems Engineering and Design De-
partment, Jaume I University of Castellón (SPAIN).
He is the author or coauthor of many conference
papers and 14 journal papers. His current research
interests include fuzzy control theory, robust control,
nonlinear control and predictive control.

Antonio Sala (M’03) was born in Valencia, Spain,
in 1968. He received the B.Eng. Honours degree in
Combined Engineering in 1990 at Coventry Univer-
sity (UK), the M.Sc Degree in Electrical Engineering
in 1993, and his Ph.D. in Control Engineering in
1998 both from UPV (Valencia Technical University,
Spain). He is full professor in UPV. He has been
teaching in UPV since 1993 at the Systems and
Control Engineering Department in a wide range of
subjects in the area, such as linear systems theory,
multivariable process control and intelligent control,

in both undergraduate and Ph.D. courses. He has supervised five Ph.D.
thesis and more than 25 final M.Sc. projects. He has taken partin research
and mobility projects funded by local industries, government and European
community. He has published more than 50 journal papers and more than 110
conference ones. Antonio Sala is Associate Editor of IEEE Transactions on
Fuzzy Systems and Area Editor of Fuzzy Sets and Systems. In the past, he
has been member of the IFAC Publications committee.


