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Closed-form estimates of the domain of attraction
for nonlinear systems via fuzzy-polynomial models

José Luis Pitarch, Antonio Sal¥ember IEEEand Carlos Vicente Arifio

Abstract—In this work, the domain of attraction of the originof ~ of most fuzzy models, provinglobal fuzzy-model stability
a nonlinear system is estimated in closed-form via level sewith  translates, actually, to onljyocal stability of the original
polynomial boundary, iteratively computed. In particular, the nonlinear system being modelled in most cases.

domain of attraction is expanded from a previous estimate, wch The ab . : v di ded in literat donsi
as, for instance, a classical Lyapunov level set. With the esof € above Issue IS usually disregaraed in literature, consi

fuzzy-polynomial models, the domain-of-attraction analgis can €ring the problem as solved once a feasible “global” fuzzy
be carried out via sum of squares optimization and an iteratve  LMI solution is found with a Lyapunov functioir (x). How-

algorithm. The result is a function wich bounds the domain of ever, stability is proved only for the largest Lyapunov leve
attraction, fr_ee from _the L_Jsual restriction of being positive and set{z : V(z) < V.} in the modelling regior2: in quite
decrescent inall the interior of its level sets.
a few cases, a very small subset of the regiormay be
Index Terms—domain of attraction, fuzzy polynomial systems, actually proved. A slight variation allows for expandingeth
local stability, Sum of Squares, nonlinear systems, robusitability proved domain of attraction (DA) téz : V(z) < V,} N for
{z:V(z) <V.} ¢ Q in some cases [14], [15].
| INTRODUCTION Given the above shortcomings, the objective of this paper
' is presenting a methodology to expand the proved domain
A large class of nonlinear systems caneactlyexpressed, of attraction of nonlinear systems, using fuzzy-polyndmia
locally in a compactregion (denoted amodelling region(2,  models. The methodology is discussed for both continuods an
in the sequel), as a fuzzy Takagi-Sugeno (TS) model, usifgicrete cases. Any (possibly small) subset of the domain of
the “sector nonlinearity” methodology [1]. It expresse® thattraction found with current LMI/SOS results (to be dedote
nonlinearity as a convex time-varying combination of “exft a5 sayB;) can be used as a “seed” of an iterative algorithm
linear equations. The works [2], [3] extend the idea to fuzzpat expands it.
polynomial models, by using a Taylor-series approach which ror completeness, note that, apart from Lyapunov methods,
expresses non-polynomial nonlinearities (or high-de@@g-  domain of attraction estimation can be done numerically.[16
nomial ones) as a convex interpolation between polynomiglgso, relevant results which discuss, specifically, domafin

of reduced degree. attraction estimation for polynomial systems are repoited
Oncelocally exactfuzzy models are available, stability and[17]_[19]_

control design for the original nonlinear system via conopx This paper shows that, once any seed Betis available,

timization (particularly with Linear Matrix InequalitiggM1))  there is no need of using actual Lyapunov functions any more,

has been deeply explored in literature. Indegidbal stability byt only proving that there is a sé, such that trajectories

conditions for Takagi-Sugeno models in LMI form have bee@tarting in it fall into By, so B, belongs to the DA, too. A

explored with quadratic Lyapunov functions [1], paramete50s approach provides a numerical tool to obtain such a set,

dependent [4], non-quadratic [5], polyhedric ones [6], w&re znd an iterative algorithm naturally ensues by usihgJ B;

nonconvex Bilinear Matrix Inequalities (BMI) settings $u@s 45 the new seed. 1B, ¢ B,, SOS algorithms provide,

in [7] where a combination of genetic algorithms plus conveyhich is an estimate of the DA expresed in closed-form as a

optimization is used. Output feedback designs with memrapolynomial.

premise variables have also been developed [8], [9]. The function defining the boundary of the resulting DA
Sum of squares techniques (SOS) [10], are used to exteigimates in this paper is free from the restriction of being

the above framework to fuzzy polynomial models in stabilityecrescent and positive in its interior. That allows for ioyed

analysis [11], [12] as well as controller synthesis [8],]iMa  astimates over previous literature.

polynomial Lyapunov functions. . The structure of the paper is as follows: next section pitssen
However, one of the key issues in practical usefulness ghtation and fuzzy polynomial modeling, known stability

many of the above results is the fact that, given the localigplysis results and motivation are discussed in Section II

Manuscript received Feb 27, 2012; revised Sep 27, 2012 an@,J2013; Section IV pres_er_1t_s the prob_lem Stat[emem joint with aﬂl’g_"
accepted Apr 8, 2013 results and definitions. Section V discusses the expandion o
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Il. PRELIMINARIES Ill. REVIEW OF LEVEL-SET APPROACH TODA

. . . . . . ) ESTIMATION
This paper will consider either a continuous-time nonlmea

system: This section reviews DA estimation based on Lyapunov
level sets in fuzzy systems literature.
i(t) = f(z(t))  =z(t) €R", teR (1)  First, simple global stability conditions which will forre
basis of further developments will be reviewed.
or a discrete-time one: By SOS techniques, the following Lyapunov stability result

is well-known:
Tpr1 = f(zx) 2 €R", KEN
Lemma 1 (continuous-time, [24]) Global asymptotic stability
with sufficiently smoothf (so it admits a Taylor series), beingof a systen{4) can be proved if a polynomial functidi(z)

the origin astableequilibrium point by assumption. can be found verifying:

Notation: In this paper, the trajectory of system (1) —or (2) in V(z) —e(z) € 3y (6)
the discrete developments—, startingzin at timet = 0, will

be denoted ag(t,zy). The set of polynomials in a variable _a_vpi(x) —e(x)eX, Vi=1,....r )
z will be denoted ask ., and then-dimensional vectors of oz

polynomials asR”. Polynomials in some variables which wheree(z) is a radially unbounded positive polynomial, such
can be decomposed as a sum of squares of other polynomigl$jz||2.

will be denoted as:.. SOS decompositions of polynomials

can be found using well-known SDP software [20], [21]. Alsol,‘?_mma 2 (discrete-time, [25], [26]_) Global asymptotic sta-
the notation used in [22] will be used in the rest of th llity of a syster(5) can be proved i/(x) can be found such

paper: given polynomial§F1, ..., F,, }, whereo; denotes the that (6) holds and
number of them M will denote themultiplicative monoid, r
¢ denotes theone and$S the ideal generated by the set of V() = V(Y _07Pi(z) —e(x) € Soa (8)
Fy's. In order to shorten notation, the ideal generated by a i=1
vector of polynomialsP € R” will be defined as the ideal In the above lemmas; = ,/u; are auxiliary variables. Also,
generated by its elements. expression (8) needs to be modified for actual computations,
making it homogeneousn the memberships (i.e., all the
monomials must have the same degreecdi). It can be
achieved by multiplying anything by"_, o2 (which is equal
to one, anyway) as many times as needed (details omitted for
brevity, as the procedure is well known).
If the above conditions are feasible, then the DA has been
In [2] a procedure is presented in which a system (1) @roved to be the whol®™. However, many nonlinear systems
(2) can be equivalently transformed, locally wher €2, to a of interest are not globally staBleHence, refinements to the
fuzzy-polynomial system above conditions are needed in order to obtain a DA estimate
(ideally, as large as possible).

Definition 1 ( [23]). The set of initial conditions defined as
D= {330 eR™: tlgglo P(t, x0) = 0} 3)

is denoted as the Domain of Attraction (DA) of the origin.

B(t) = pi(z(t) Pi(t)) 4)
i=1 A. Local stability analysis: bounded DA estimates
Thp1 = ZM(%)PL,(%) (5 If t_h_e above problem renders infeasible, a I0t_:al stability
P condition can be posed, based on standard invariant-set arg

_ _ ments. Indeed, introducing the notatibh = {z : V(z) < ~}
whereP; € R} are vertex polynomial models,is the number {5 denote the level sets of (), we have:

of fuzzy rules,z are premise variables and the membership ) _
functions; lie in the standard simplek = {;; e R | 0 < Lemma 3 ( [23]). If V(z) > 0 and V(z) < 0 in , then
pis 3, i =1} V, C Q impliesV,, C D.

This paper will study the estimation of the DA of systems in Then, in many literature references, the estimated DA is
the form (4) or (5), when fulfills some algebraic constraintsgjyen by V.- where~* is the largesty such that, c €.
(as a tool to estimate the DA of (1) or (2)). Indeed, proving |n order to apply the above lemma to polynomial systems,
global (or local) Lyapunov stability for the fuzzy-polynash the Positivstellensatzheorem [22] enables checking local
model (4) or (5), allows proving local stability for the ne™  positiveness conditions with SOS programming (sufficient
ear system (1) or (2) respectively. conditions). It will be used to modify conditions (6) and (7)

First, a review on common approaches to DA estimatiadt (6) and (8), in order to make them hold locally §hy as
in literature will be outlined in next section, as well as gollows:

discussion on its limitations. Then, on section IV, addi&b

definitions will allow to state in a more precise way the 1gyen if they are, maybe a low-degree polynomial Lyapunowtion might
problem to be solved for polynomial fuzzy systems. not be enough to prove such global stability.
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Lemma 4 ( [15]). Assume that the modelling region can b&. Sources of conservativeness

defined as: Level-set based estimation of the DA with fuzzy models has
some drawbacks.

1.-Choice of modelling regionif the modelling region
Q is chosen too large, the associated Lyapunov conditions
may render infeasible (consequents separate too muchh Fro
classical Lyapunov theorems, if the linearised systeneislst
a “small enough” modelling region will render a feasible
problent. The problem, then, is how to choose which is the
right modelling region to obtain the largest DA estimate.

2.-Conservative sign conditionOne of the reasons for
infeasibility is requiringV” and —V (increment ofV in the
discrete case) to be positive in &l In fact, it would be need
only inside a suitable level set. For instance, if there igano
than one equilibrium point in the modelling regién all the
above lemmas fail as there is omet 0 whereV = 0 for any
choice of V.

3.-Existence of larger invariant sets i: There exist
invariant sets inf2 which are not level sets of a low-degree
£olynomial Lyapunov function (see later).

Some of these issues have been addressed in literature.
For instance, the third one gives rise to piecewise Lyapunov
functions in the formV (z) = min; V;(z), etc. [27].

Also, in the preliminary works [14], [15] by the authors,
some considerations on DA estimation are discussed. In par-
where F;; belongs to the polynomial coneticular, the first drawback (iterations in the size of moitgil
p(—2L Pi(z),Gi(x),...,Go,(z)) and F;» belongs to region) and the third one (amposterioriexpansion of the DA
the ideal3(H, (z), .., H,, (z)), see [22] for details. However, estimate given a fixed Lyapunov function is proposed: ingdeed
computational complexity increases as more multipliees ain some cases there exists an invariant set in the fiagnm Q2
added involving products of th&';(z) or H;(z) which are for v larger thamy* from Lemma 3).
also members of the cones and ideals. This work presents a unified approach taking into account

Conditions (10) are not linear in decision variables if botthe three issues. The objective will be obtaining a DA esiima
S, Z andV have to be found. However, the problem becomeghen starting from the following situation:
convex if eitherV () is fixed (proposed in [19, chap.?]or « a low-degree solution to the “global” stability problem

Q={z:Gq4(z) >0,Hj(z)=0,d=1,...04,j =1,...,0n}
)
whereGy and H; are, respectively, a collection of, and oy,
polynomials defining the boundary Of
If polynomials Sio(x), Sia(z) € Xs, Zij(x) € Ra, @ =
1,...,r, can be found fullfilling

ZLR(w) + () — Y Sua@)Gao)+
d=1

Oh

— Sio(2)(

(10)

ey T

then V(z) is locally negative inQ) except at the origin and,
hence, its level sets belong to the DA of the origit {fz) > 0
(Lemma 3).

The above lemma is a simplified version of the origin
Positivstellensatzesult in which (10) would be replaced by
the less conservative expression:

Fi1(z) + Fia(x) € Xy (11)

Sio(z) is fixed, for instance t&;o(x) = 1, as proposed in [12].
OnceV(zx) is found, a bound for the maximum fulfilling .
Lemma 3 can be also easily found via SOS techniques.

In order to avoid ill-shaped solutions, additional SOS con-
straints may be added to find the Lyapunov function level
set containing the largest region with a particular preaefin

(Lemmas 1 or 2) cannot be found,
there is a small enough region around the origin where the
“local” stability problem (Lemma 3) is strictly feasible
and an initial level-setB; = {Vi(z) < 1} is proven to
belong to the DA.

In this paper, the goal is to obtain a “local” estimate of the

shape (circle, hypercube, ...) [14], [15], or maximising apA as large as possible. An iterative approach is used inrorde

approximation to the volume based on the maximum-volung avoid as much as possible the above discussed sources of
conservativeness. The main ideas are:

formula for a quadratic form [19].

Discrete systemsEquivalent result can be proved for
discrete-time systems using (8) instead of (7) in condgion
(10). However, the result in Lemma 2 involves a polynomial
whose degree is that d¥; plus that ofl/ in the state variables
as well as two plus the degree Bfin the auxiliary variables
o;; 1t also needs the algebraic manipulations to make the
inequality homogeneous in;, see [2] for details. Hence, the
degree of the polynomials and the number of decision vasabl |\
may be high even for simple local stability problems. In orde
to allow for simpler conditions, if desired —at the expen§e o
conservativeness—, an auxiliary lemma in next section gham
5) will be useful.

2119] uses a Lyapunov function from the linearized systend, @hke) =

setting “regions of interest” smaller thaft in local
stability conditions;

lift the restriction of the DA estimate being a Lyapunov
level set;

« allowing for more than one equilibrium point in the

modelling region(2.

PROBLEM STATEMENT, AUXILIARY DEFINITIONS AND
LEMMAS

In order to fulfill the objectives of the paper, the following
definition is useful to refine the kind of DA to be obtained in
later sections.

SIndeed, if the linearised system is stable, a quadiéfie) will suffice for

V5. If v is maximized, it can be recast as a quasi-convex problem EV small Q.
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Definition 2. The Local Robust Domain of Attraction (LRDA)lternative, a dummy variabjemay be introduced jointly with
of system(4) or (5), referred to regionf2, will be denoted by the equality constraint = z;41, i.e.,p—> ;_, w;Pi = 0. In
Dq. It is defined as the set of initial conditions fulfilling:  this way, equation (8) may be changed, following a Posiivst

lensatz argumentation.
"LZ)(t,LL‘mM) € Qvt Z O,VM el
limy o0 ¥(t, xo, ) = 0,V € T

Note that the condition for the trajectories not leaviflg
above is needed as (4) and (5) are, by assumption, not valid Viz) —Vi(p) —e(x) + Gi(p,z) >0 (16)
outsidef to analyse (1) or (2) respectively. _ . . .

The term “robust” in the definition is due to the fact tha\{vIth5 Gi € I(p = 3y paFi) arising from the equality
Dq, is defined considering “all” possiblg in the simplexI’ constraint.
and not the particular, possibly non-polynomialz) giving Note that (16) is not yet a SOS problem (because of the
actually exact equivalence with the nonlinear system. Thabdnlinear functions:; appearing inz;); however, it is a fuzzy
allows polynomial techniques to be used at the price stimmation so well-known semidefinite relaxations based on
conservativeness. Indeed, based on the above, as (4) Botya’'s theorem [28] may be applied.

(5) include (1) and (2), respectively, €2 (plus many other  For instance, ifG1(p, z) were chosen as the simple expres-
systems), then obviouslf, C D: by finding the LRDA from sion i,
a fuzzy polynomial model, we have found an inner estimate _ b
of the DA of (1) —or (2)-, as defined in [19, Chap. 6]. Gilpz) =l p) - (o= Z;’“P)

Problem statementThe above-defined LRDA may be ) ) - .
a very complicated region and hardly characterizable. TREINY (2, ) a polynomial vector inRy, ., then (16) is a
goal of this paper is to “fit’ the LRDA with aclosed-form smgle-qllmensmngl fuzzy summatl_o_n whose positiveness fo
expression given by a low-degree polynomial boundary whi¢ti € I' 1S proved if ther SOS conditions below hold:

gives larger results than Lyapunov literature. The poly@dm v/ () — v (p)—e(z)+¢(x, p)(p— Pi(z)) € Sipayi=1,...,7
degree will be chosen depending on the available computing (17)
resources. In fact, the above proposed structure@®f will be the actual
In particular, consider a compact set defineddjypoly-  choice in later examples.
nomial bounds® = {z : Qi(z) < 1} 1 :1,...,04, and an
inner regionB = {x € © : V(z) < 1} containing the origin
(V(0) < 1).
The following definition will be later taken in the rest of
paper as the best low-degree fit ©f

Dq = {xo SRUE (12) Lemma 5. The system(5) is globally stable if there exist

functionsV (z) and G1(p, ) such that:

V. DISCRETETIME DA ESTIMATION

Given a particular regiorB; which belongs to the DA of
a system (2), a larger estimate of the DA can be calculated
following the next result.
Definition 3. Consider a decision-variable polynomial of
d Lemma 6. Let By = {z € R" : Vi(z) < 1} C D be a

fi . Th t fitti i : i

g}idi I?id Gdlz)gr?%?;)niteg}ﬁﬁ%"m geBbEéS @IR ng éegilgn (previously proven) bounded subset of the domain of attract

defined to be the solution of'the following problém: ' of (2) and let N be a horizon parameter (number of future
samples) fixe priori. Then, any regiorB; such that

minimize 7 s.t. By C{z e R": Vy(z) < 1}, (18)
1+7 > R(z) when € ©p,, m=1,...,04 (13)  wheré V,(z) = Vi(fIN)(z)), belongs also to the domain of
R(z) <1 when x € B (14) attraction of the syster(2).

R(0)=0 (15) Proof: Following system’s dynamics (2), the points which
being ©,,, each one of the, portions of the frontier of®, in N future samples will be insid®; are those defined by:
defined a®d,, = {z: V(z) > 1, Qn(z) =1}. Vi(zren) <1=Vi(fN(ar)) < 1

In this way, © r will be an inner approximation t® with  5q the regionB, is a subset of the DA as any starting point
a single polynomial restriction. in By will enter the open seB; in a finite number of time
Note that condition (15) is needed in order to avoid thgeps. Hence, it will later reach the origin B C D. -
trivial solutionT = 0, R = 1, requiring that at least one point _ o
has a value different from ofie Corollary 1. If B; contains the origin, whedV — oo, By

Auxiliary lemma: Let us last discuss an auxiliary resui€xactly coincides with the actual DA of the origin of the
regarding lower-complexity SOS conditions for stabiliys Nonlinear discrete system.
commented in the previous section, some deveIOpmems (paE_A slight abuse of notation is involved in the definition of thdeal as

ticularly in discrete-time) require a high-degree polym@m it is generated by an expression which is not a polynomiathis context,
in both state and auxiliary membership variabtesAs an the ideal will be considered to be the product of arbitrarjypomials —to be
obtained by SOS optimization— by any product of the genggafinctions.
4There is no loss of generality in settif(0) to zero, as a straightforward ~ °Notation: fINI(z) = (f o fo...0 f)(x).
—_—

argumentation with affine scalings shows (details omitmdbfevity). N
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Proof: Indeed, no point reaching the origin can avoid Proof: By condition (20), the regioiV, < 1 will be an
enteringB; in a finite number of time steps, as the origin isnner approximation (actually it has to fulfill the requirent
in its interior. m only inside the modelling regiof®) to the region defined by

Remark1. Note thatB; does not need to be a LyapunoW1(zk+1) <1 (the points which ironesample will be inside
level set like the ones considered in classical results dwhiB1): the condition implies thatz(x) is greater than 1 when
implicitly considerN = 1). In fact, there is no need of it beingV1(zx+1) > 1 andz € Q.

even an “invariant” set as understood in literature [23]. Condition (21) implies thal; () should be greater than one
for those pointsz € Q such thatry; € . Jointly with (20)

o , the condition discards the pointse 2 for which V; (z41) <
A. Application to Fuzzy Polynomial Systems 1 butzjyr & Q.

Despite of Lemma 6 gives an exact description of ftie So conditions (20),(21) together mean that all points in
step DA, unlessf is linear, the result is a very high-degred’s(z) < 1 will fulfill Vi(zps1) < 1 and zx41 € Q, i.e.
expression if fuzzy polynomial models for system (2) areduse:;.; € B;. Hence the obtained level set can be usedBas
(both in the state variables and in the membership functionm (18), for N = 1.

So, the results in the above lemma may be of little use if Figure 1, in whichQ) is, for clarity, only defined by a circle
a reasonably simple approximation of the DA of a nonline&@)(x) < 1, illustrates the different regions involved in the
system were needed for subsequent analysis or representationditions: the pink regio/, < 1 must not intersect green

In order to obtain a simpler reliable representation for thenes V) (zx41) > 1) and red ones@(zyy1) > 1).

DA, the following lemmas propose the use of fuzzy poly- Lastly, conditions (19), (22) and (23) are the adaptation of
nomial models in order to describe the nonlinear dynamiase best-fit conditions (15), (13) and (14), respectivedythe
Hence, inspired on the “best fitting region” of Definition 3setting now in consideration, in order to obtain the “opfima
they obtain a user-defined low degree polynomial in order 16, according to Definition 3. [
characterize the LRDA.

The basic idea motivating the results below is obtaining —CQ(x) = 1
low-degree approximation of the 1-step DA(f(z)) < 1 in
Lemma 6 and, later, iterating such approximation. —Vi(x) = 1
Lemma 7. Consider a known seed s@&, C Dg defined il - VilXis 1) = 1
by By = {z € Q:Vi(z) < 1} and a user-defined modelling \ — Q(Xk+1) = 1
region 2 defined byo, restrictionsQ = {z : Q;(z) < 1} \ - = =Vo(x) = 1
[l : 1,..,04, such that it is compact. Then, the regior 2| \

By = {z:Qi(z) <1,Va(z) <1} belongs to D, and
Bs D B, if a function Vo(x) can be found solving the Xzo»
following problem:

minimizer s.t. 2
V2(0) =0 (19)

Vg(x)—l—Fl(m,p)—l—Gl(x,p)>OV{x,p} (20)

Va(x) — 1 — Fy(z, p) + Ga(x, p) > 0 V{z, p} (21) 61

1—Va(z) + 7 — F3(z, p) + Gs(=, p)

+ Ga(z,p) > 0 V{z,p} (22)
Fig. 1. Example of regions involved in Lemma 7 (BluB;, Pink+Blue:

1—Va(z) — Fy(x) >0 Va (23) B, plus other relevant boundaries in the legend).

Where The optimization problem in the above Lemma cannot be
e 72>0, solved via SOS techniques. The reason is that conditions
o Fi(z,p) € p(Vi(p) — 1,1 = Q1(2),....1 — Qo,(2)), must involve only polynomial terms in order to be able
o Fy(z,p) € p(Qi1(p)—1,...,Q0,(p) —1,1=Q1(2),...1=  to use semidefinite programming. However, it can be con-

Qo,(2)), verted in an straightforward way to a SOS problem if all

o I3(z,p) € p(1 —Q1(x), ... 1 — Qo,(2)), Vi(x), Va(), Q1(2), ..., Qo, (x) belong to the polynomialR,,
o Fy(z) € p(1 = Vi(z),1 = Q1(2),.... 1 — Qo,(2)), and semidefinite relaxations are suitably applied: the case
o Gs(z,p) € 3(Vi(p) — 1), is identical to the one when transforming (16) to (17) in a
« {Gi(z,p), Ga(z,p), Ga(z,p)}eS(p— 221, 1iPi(x))  previous section (details omitted for brevity).

Note that the same abuse of notation issue discussedRiemark2. Note that the slack variables in Lemma 7 are
footnote 5 has been assumed. introduced instead of directly usind", o?P; (0% = p),
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in order to reduce the degree of the conditions. Therefore, Proof: As B; C ©, we haveB; C By C O.

the computational complexity of the resulting semidefinite Condition (25) means thats(z) is strictly negative in
problem (Lemma 5) is lower. O\B;={z: ©€0, ¢ B;}.

Remark3. Usually, B, will have been obtained with a shape- We will now prove that all trajectories starting iy in the
independent fuzzy technique in literature and this is why, interior of B>\ B, reach in finite timeB; .

Lemma 7, the LRDA conditiorB; C Dg, has been assumed. Indeed, asVa(zy) < 1, and for alll, Q;(z0) < 1 then

If B; had been obtained with a shape-dependent or otHéfz(t)) <1 for all ¢t > ¢, while in By\B; by (25). Hence,
nonlinear stability analysis technique, then the resglti, it Will never exit B>\ By neither via the frontieds(z) = 1,

will be a larger set possibly including points of the DAevidently, nor viaQ;(z) = 1 becausé’z(z) > 1 or Qi(x) <0
outside the LRDA, so it would be a better solution: evidentlyn such points due to (24). So, the only way of a trajectory to

the larger the initial estimaté; is, the better the proposedeXit B2\B1 will be enteringB;.
methodology will work. As the fact that the trajectory remains forever i\ B;

Remarkd4. Note that, as in Lemma 63, does not need to is not possible we can conclude that the trajectory from the

be a Lyapunov level set fulfilling/, (z.+1) — Vi (zx) < 0 in abovex, will enter B; in finite time (see below)_.

all its intgrior, even if the previou(s rgm)ark Sl(Jgg)ests it as alndeed, we havéBy\B; C O\B1. Also, O\B, is compgct
reasonable seed set. Note also that the resulfiags also a1d: by (25)Va((t)) < —e whenz(t) € ©\Bi. Va(z) wil
free from the above Lyapunov decrease condition. In fact, vj§i€ve @ minimumx in ©\B. Consider a trajectory such
don't even need to enforce neith€r > 0 nor Vs > 0 inside &t V2(x(0)) < 1 and Va(x(f)) < ¢ for all ¢ > 0. In that
the level set (with Positivstellensatz conditions). Thasethe ©as€: for allt > (1 — a)/e we would havels(x(1)) < «,

reasons why the proposed methodology obtains better msﬁﬁ’ su::r} trajectOLy IS ncg pczgsal_)lef!n_sl@égBl: the state must
than previous literature. ave left®\ B, (hence,B;\By) in finite time. |

Note that some set§’,, may be empty so, in those cases,

B. Ilterative Procedure there is no need of checking condition (24).

As a natural choice, using thB, obtained in Lemma 7 Corollary 2. If the condition:
to define a new regio3;, a sequence of new functions and
associated regionsgwould be ?eadily obtained by repeatedly Va(@) < TwhenVi(z) < 1,Qu(w) < 11 (26)
applying Lemma 7. is also enforced, theB, = {z € © : Vi(z) < 1}, and
Remark5. There is also the possibility of remodelling whileB1 C B2. So By and V2 can be used again for finding new
iterating, defining a new larger regial, O € in order to points in the domain of attraction, replacing and B; with
obtain larger LRDA estimates, in particular when: Va(z) < them.

1} ¢ Q. Note that in that case conditions (21) must make rpa aqvantage of the above corollary is that there is no

reference to th@reviousmodelling region{2 when Setting up e of considering the union of regions discussed in Theore

F5, in order to fullfill Lemma 6. The other Positivstellensatzl when definingB,, simplifying further computations. An

polynomials £y, F; and Fy must belong to the cone formedi ative algorithm naturally ensues (see Section VI-B).
with the constraints associated @. For further details, see

Example 3 in Section VII.
A. Application to Fuzzy Polynomial Systems

V1. DA ESTIMATION IN CONTINUOUS-TIME SYSTEMS In the following, fuzzy polynomial models (4) and restric-

The following theorem states conditions so that, given tions will be used in the context of the above theorem to obtai
particular regionB; elsewhere proved to belong to the DA ofLRDA estimatesD, of the domain of attractiorD of (1) in
(1), a larger one can be found via invariant set consideratioa modelling regionf2. In this way, SOS programming can
Theorem 1. Let © — {z : Qux) < 1, [ : 1,..,0,} be ust_ed. In order for the polynomial model to be ya}l?d, the
be a compact user-defined region of ir;terest 7\/\@]3(3:) condm_on(a cQ must be gnforced l_)y a swtaple definition of
differentiable. LetB; — {z € © : Vi(z) < 1} c D be a @, being® the region of interest discussed in Theorem 1.

(previously proven) bounded subset of the domain of atomct Remark6. The “region of interest® is introduced, instead of
of the origin of systen(l). If we can find a differentiable the full modelling regiorf2, in order to reduce conservatism by

functionVs () such that, giver > 0, the following conditions eliminating the need of checkirig, < 0 in the wholeQ2, which
hold: may be infeasible. Indeed, note that if there are equilibriu
points in®\ B; then (25) will not hold. A suitable choice for
Va(z) 21V zeCy  m:l, .0 (24) o will be later discussed.

Va(2) < —¢(z) whenVi(z) 2 1, Quz) <1V (25) Lemma 8. Consider a known seB; C Dg defined by

where By = {x€Q:Vi(z) <1} and a user-defined regio®
o Ly defined byo, restrictions® = {z : Q;(z) < 1} 1 : 1,..., 04,
Cm={z: Qm=1,Qm >0, Vi 21, and Qy <1l #m} such that® c Q and it is compact. Then, the region
Then, the interior of the regioBy = {z : Qi(z) < Bz = {z:Qi(x) <1,Va(z) <1} belongs to D, and
1, Va(x) <1} U By belongs toD. Bs; D By, if a continuous differentiable functioz(xz) can
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be found solving the following SOS problem: B. lterative Procedure
o Lemma 8 starts with a seed sBf = {z : V; < 1} and a
minimizer s.t. user-defined regio® which, obviously, should intersect with
V2(0) =0 (27)  the seed set (in most of practical cases, it will actuallytaion

oVo(x the seed set). The result is a new level et V, < 1} larger
= ai )p te) = Fiz,p) + Giz,0) €¥ep (28) yhan B, such that its intersection with k{f;ongs to }the DA.
Va(2) = 1= Fom (2, p) 4 Gom (2, p) € Sapm: 1,...,04 (29) a) Progressive enlargement of the DA estimafes a
’ natural choice, if© were fixed, using the largér, obtained
1= Va(z) +7 — Fam(x) + Gsm(z) € Xz m:1,...,00 (30) with Lemma 8 to define a new seed regidh, then the
1—Va(z) — Fu(z) €2, (31) conditions of Lemma 8 are fulfilled and, thus, it can be amplie
again with the new seed. Hence, a sequence of new functions

Where and associated regions would be readily obtained by regiigate
o 7>0,e>0, applying Lemma 8.
o Fi(z,p) € p(Vi(z) — 1,1 = Q1(x), ..., 1 = Qo, (7)), b) Choice of region of interes®: There are various
o Bon(z,p) € p(Vi(z) —1,2%E ), posibilities for choosing a regio® but:
o I3m(z) € p(Vi(z) — 1), « a large® might eventually lead to (28) being infeasible,
o Fy(z) € p(1 = Vi(2),1 = Q1(2),.... 1 = Qo,(2)), e.g, if © included more than one equilibrium point.
o Gop(z,p) € I(Qum(x) —1,p =71, piPi(x)), « asmall® would lead to little improvement in the domain
o Gyn(z) € 3(Qm(z) — 1), of attraction estimates and, also, the restrictions (3@) an
o Gi(z,p) € S(p = Xio miPi()). (31) would be hard to fulfill if 5 were a low-degree
Proof: Conditions (28) and (31) mean (25) and (26) polynomial and® andV; defined complicated shapes.
respectively. ASQ,,, = %p, constrainingp = >, i P;(x) Furthermore, as iterations progress and the DA estimates

by “Positivstellensatz” multipliers, then condition (2&)plies grow larger (encompassing most 6, then constraining

(24), also condition (30) implies (13), and condition (310 the initial “small” choice may not be a good option. This

implies (14). m fact, jointly with the above issues arising in the choice@pf
Note that, inspired in Definition 3, minimization efabove motivate incorporating iterations in the size and shapeaiohs

allows obtaining a regiom, which best fits© subject to the region, as discussed below.

additional constraint of belonging g, c) Proposal for modification o®: Although there might

Remark7. As in the discrete case, the above optimizatioR€ altérnative options, for instance, the new region ofrgste
problem doesn't involve polynomial finite conditions. Sa, i ¢@n be defined by a user-defined “zoom” factor 1 as:
prder to be able t_o use semidefinite programming, a recasting O={recQ:Vi(z) <v, veR} (32)
is needed by takingVi(z), Va(z), Q1(x), ..., Qo, ()} € Ra _ _ _ N
and a finite number of terms from the cones and ideals. Sé&g smallew is, the smaller the regio® — B, is, so condition

again, the transformation from (16) to (17) (details onditter V2 < 0 there becomes less restrictive.

brevity). If V1(x) wereC! differentiable, and enhanced proposal for
The above lemma generalises particular cases in literatfi choice 0f© may be based on the evident fact that for any

as follows: fixed timed > 0, the set{zy € R : Vi (z(d)) < 1,2(0) =

xo} is included in the domain of attractidp. Intuitively, from

Corollary 3. If By = {0} and all conditions of Lemma 8 arethe first order Taylor series expansionaf(z(t)),

set with the particular choiceB; (z, p) € p(1—Q1(x),...,1— oV

Qoq(ﬂf)), 5, =0, F3,, = 0, and (31) is omitted, 15 is a V1(1(5>) ~ Vi(l‘()) +5—1£C(0>

Lyapunov function whose level sgt : V2 < 1} belongs to . ) ) Oz )

the DA of the origin, recovering classical local-stabiligsults the new region of interest in Corollary 8 can be, choosing

(Lemma 3). 0> 0:

Proof: If By :_{0_} relaxing requirements of positivenessg _ {I €0 Vi(a)+ 58V1 () Z,:Mipi(l") <v, ze G}
and decrescence insidé&; < 1} should not be done because Or =

such V; does not exist. Hence, the terii (z) — 1 should (33)

be removed from the generator of the cones. Also, (31) whigthereG € 1 is, in general case, a sphere limiting the search
refers to conditions insid&; N O (i.e, the origin) is redundant zone and ensuring compatness£ 2 if 2 is compact). The
with (27). The rest of conditions can then be interpretechas tconstantv has the same meaning as in (32) ané a new
usual ones on Lyapunov functions (locally @. B user-defined constant.

Note that the accuracy of these steps is not very relevant

Corollary 4. If condm(_)ns n Corollgry 3 are solved getting because regio® can actually be arbitrarily defined by the
V5 and, later, only(29) is posed setting a neW, equal to an : ; .
user in Theorem 1. Also, in order to be less conservative, the

scaled version of the one just computed, then [15] is Obdimeoriginal nonlinear system may also be remodelled: indezd, f

Indeed, [15] discusses ondyposterioriscaling of Lyapunov a given® C 2, the closer the modelling regidn is to © the
functions. less uncertain the fuzzy model will be.
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To clarify the proposed methodology, the Examples 1 aidbte. Conditions on the above algorithm are a particulariza-
2 at Section VIl use the following algorithm (particular eastion of those in Lemma 8 as follows:

of Lemma 8): « (34), (35), (36) and (39) correspond to (27), (28), (31),

Algorithm 1. Starting from a knownB; = {Vj(z) < 1}, and (30), respectively _
By € D and Vi (z) € R,, carry out the following steps: « (37)and (38) are conditions (29) but forcifig : Va(z) =

. Lo C 1} to be contained inside® to avoid the result of
1) Choose a starting combination of region increase pa-

; o each iteration being an “intersection” (i.e., forcirgy
rameterss > 0 (gradient) andv > 1 (zoom), defining a . . . ' ;
candidate region of interes(33), in next iteration to be defined by onlgne polynomial

2) Find a new polynomialVz(x) solving the following inequality), settingFz, = 0.

SOS problem: Remark8. With condition (36), i.e.,Jo < 1 whenV; < 1,
Corollary 2 applies and the proved domain of attraction
minimizer such that increases in each iteration. Note that improvements coame fr

the fact that there is no need for eitdér> 0, V; < 0, Vo > 0

V2(0) =0 (3% or 1, < 0in all the interior of the level sets, contrary to usual
Lyapunov approaches.
Vs T
(D2 (Vi — 1) — (R —
(5p P te—¥u(i—1) —¥u(R —a"2) VII. EXAMPLES

,wm(v,vlfg%pwﬂm(p,pi) €Xp,il,r Example 1. Non-fuzzy polynomial system.
o (35) First, a simple example from [23, Example 8.9] is provided
r in order to show the performance of the proposed methodology
1=V =9u(1=Vi) —s(R—a"z) €5z (36) inthis paper over standard level-set ones in the referrecteo
Consider the polynomial system:

Vi T S
Vo =14 ¢2i(Vi +6——p —v) — ¢gi(R — 2" ) 1= —22

+d3(p—PF;) €3z i1, (37) ) o o
For the above system, linearization shows that the origin is

oV stable: there is a neighbourhood of it belonging to its DA
1

Vo —1—tpri(v — Vi 4 6——p) + ¢us(R — 2”7 x) provable with a Lyapunov functiol (z) = 1.52% —zaz; + 123,
Ox ‘ see [23] for details. However, phase plane simulation shows
+05(p—P) €Xapiz L (38) that it has an unstable limit cycle so the DA of the origin is

limited by it.
oV T The Lyapunov-based methodology proposed in [23] obtains
1= Vot 7+ dei(V1+ 5%” —v) = ¥si(R=272) 2 initial estimate of the DA from a rough bounding bf
+or(p—P) €N, i:1,...,r (39) givenby{x:V(x)<0.801}. Then, zooming out this region
. ] ] by performing a trial-and-error contour plotting, the abov
wheree > 0, 7 > 0, R is a user-defined radius of a ggtimate is expanded tor : V(z) < 2.25}.

sphere belonging t0, ¢; € X, ¥ji € Y20, & € Ry, Now, using the proposal in this paper, the regiBp =

1

and ¢x; € Ry p- _ _ {z: V() < 2.25} is used as the algorithseedregion. The
3) If the above problem is feasible, Sét(x) = Va(z) and jpjtial step-size parameters are setite= 1.1, § = 0.2 and a
return to Step 1. . 4*" degree polynomial boundafs is chosen. With\,, = 0.1,
4) If problem in Step 2 is not feasible, then: As = 0.1, Algorithm 1 runs for 9 iterations until it stops due
a) Ifv > 1, setv = max(1l,v-A,) (A, user-defined to lack of progress. The largest region obtained with!a
step) and go back to Step 2. degree polynomial boundary s : Va(z) < 1}, where

b) If v =1, reduced by As (user-defined step) and 9 9 4
go back to Step 2. Va(z) = 0.18157x% — 0.58255x 122 + 0.0058x3 4 0.03272]

¢) Ifv=1andé < 0 stop the algorithm, due to 10159752325 + 0.143462223 — 0.070921 23 + 0.053z
lack of progress. The finally proved DA estimate

B, is obtained in closed-form by the currekit(z), Then, four more iterations are executed by reducing startin
computed in the last feasible iteration (i.e., afteflgorithm parameters to = 1.02, § = 0.05 and also setting
settingV; = V4 in Step 3): a 6" degree for the new polynomial boundarigs Finally,

the new DA estimate is, explicitly:
By ={z:Vi(x) < 1, 2] + 25 < R?*} s ) A
By = {x : —0.020232°15 — 0.40121 25 4+ 0.59527 — 0.1633x]

A slack variablep = 3. u; P; will be introduced as in Lemma 5 in 2 4 6 6 2.2
next steps. Note also that Zreéiozn (33) might be defined by h-thmgree +0.337825 — 0.051425 + 0.020627 + 0.05525 — 0.15867x 75

polynomial for§ # 0, so it may have a strange shape and can take large 3 5 3 3 3
values far from the origin. Hence, to avoid numerical proisea low-degree +0.09z125 — 0.02082125 + 0.182z722 — 0.05782775

best-fitting region (Definition 3) to (33) may also be obtaine this step for 9 4 4 2
later use if needed. Details omitted for brevity. +0.049z775 + 0.0388x775 < 1}
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1
‘‘‘‘‘ V() < 0.801 3 Py(z) =21 — Emi’ 4+ 1.56 - 107329
-==B;:=V(z) <225

which gives a two-vertices fuzzy polynomial model (4) with
1o membership functions:(= z):

sin(z1) — Pa(x)
mt) = = G 050
For other sizes of the modelling regiéh resulting in different
ranges ofry, suitable vertex models may be obtained by the
same Taylor-series methodology.

A starting regionB; is obtained with well-known method-
ologies [19], [29]: a search was made for a polynomial
Lyapunov functionV; (z) giving the maximum radiu®; of a
circle included in its level sefV;(z) < 1}, and such that;
decreases in a spherical modelling region around the ooigin
radius R..

As there is a saddle poirt, whatever the choice fdr; is,
we will have V; (e;) = 0. Forcefully, any Lyapunov function
search from literature (for instance, Lemma 1, Lemma 4) will
-3 -2 -1 0 1 2 3 not be feasible forR. > |lei|| = 4.44. So, to obtain a first
seed setR, was set to 4.42 in the numerical implementations,
corresponding to curv€’; in Figure 3. In fact, because of the

= Limit cycle

Bs

p2(x) =1 — pa(a)

Fig. 2. [Example 1] Domain of attraction evolution using” order . . . .

polynomial curves (blue) anét” order ones (brown). Seed s&; taken 'nh_ere_nt conse_rv_atlsm fro_m fuzzy modelling, the smgle@ad

from [23]. point in the original nonlinear system becomes a “strip” of
possible equilibrium points (for different values gj in the
fuzzy model.

The improvement over estimates in [23] can be checkedThe Lyapunov function is found by using Lemma 4, i.e.,

on Figure 2. In fact, the obtained boundary B} is pretty solving the SOS problem of maximising; subject to
close to the actual limit cycle (see Figure 8.2 in the cited

source, and green contour below for numerical simulation- V—exax+ (ITI - Rﬁ)) €3y

based approximations to it) which is tlexact shape of the V—1—y(2x’e—R? €%,

DA for which a closed-form solution is, however, unavaikabl 1 -V 4 s(aTe—RY) ex,
oV

Example 2: Continuous-time non-polynomial system. Pi(x) +exlz) — ¢y(R?> —2Ta) e X, i=1,2

( Or
for e = 0.001, and multipliers{¢;, ¢;} € ¥,. The Lyapunov
function’s degree has been set to 4. Obviously, higher @sgre
would yield better results, but the objective of the paper is
showing that improvements in DA estimation can be made
without increasing the polynomial degree

Consider the nonlinear system:

1 = —3x1 + 0.5z

&9 = x2(—2 + 3sin(xy)) (41)

which has equilibrium points at = 0, at (z; = 0.7297 +

2km, o = 6z1) and at(x; = —0.7297+ (2k+1)7, z2 = 611) The largest circle proved to belong to the DA with this

for k € Z. . .
tandard methodolo , and the Lyapunov level set
The objective is to estimate the domain of attraction of tnsﬁnited by the dashe?j)-/pginle curve “In?;iglu" invFig\iJreSS 'S

origin In a state-space. modellllng regithdefined as a sphere The proved domain of attraction is then enlarged following
of radius . centered inz = 0: Algorithm 1, looking for4* degree new polynomials (z).
Q= {(x1,20) |22 4+ 22 < R?} Figure 3 shows how the estimated domain of attraction in-
creases from the Lyapunov-only solution, i.e.,“Initid]”, as
For instance, forR. = 10, we have the two equilibrium jterations progress. First, with a zoom factor= 1.2 and
points inside: e = (0,0) ande; = (0.7297,4.378). § =0, andA, = 0.1, Algorithm 1 works for five iterations
Linearisation shows thaf, is a stable node (two negative feakeaching region labelled aB.,.., in the figure.
Jacobian eigenvalues), andis a saddle point (one stable and Using B...m as seed, restarting the algorithm with=
one unstable eigenvalues). 0.03, As = 0.01 andv = 1, the algorithm runs for 12 more
Taking into account the rangel0 < z; < 10 and using the jterations, and gives the best feasible DA proved (curvedFi
5t degree Taylor expansion efn(x), there exists an exact B," in the Figure).
fuzzy-polynomial representation i@ such thatsin(z1) =  Although simulations show that the domain of attraction is
(@) Pr(x) + po(2) P2 (x), where: quite larger, iterations find hard to obtain a better estmat
1. ) using aclosed4th degree boundary. Indeed, each new can-
Pi(z) =21 — gT/‘f +9.16-107°a} didate region has to be valid for the family of “all” systems
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O == & which has the same equilibrium as (41). However, due to
== Gy the large sampling period in the Euler approximation, the
8 - --Initial B, | domain of attraction may change, as discussed below. Adso, f
ol == =B.oom illustration, the degree of the fuzzy-polynomial approaiion
—Final B, | of sin(x;) has been chosen differently.
al Eq. & The objective again is to estimate the domain of attraction
* Sa(_ldic of the origin in a state-space circular modelling region of
ol PO | radius R. centered inz = 0. The discrete system has the
same equilibrium points as the continuous-time one.
X2 o} 1 For instance, using the'’3 degree Taylor expansion of
sin(x1;) computed in the range; | < 10, there exists an exact
-2r 1 fuzzy-polynomial representation ift such thatsin(zix) =
1 (Ik)Pl (xk) + ,ug(xk)Pg(mk), where:
_47 i
1 .
Py(xy) = z1x — —27,
6l ] 6
Py(x) = 13 — 0.0105423,
_87 4
which gives a two-vertices fuzzy polynomial model (5) with
- ‘ ‘ ‘ ‘ membership functionszf = x):
-10 -8 -6 6 8 10 )
. . X1 . o _sin(zig) — Po(zy) _
C4: Starting modelling regiorf2 with a single equilibrium pa(zy) = —0.1561223 o pe(wr) =1 — pa (o)
(Eq) pqint inside (classical Lyapunov techniques used ) 1k
= locally in C1); _ _ A starting regionB;, is again obtained with well-known
Initial By: Level set of the Lyapunov function provings; Lvapunov methodologies [301. The wav is to search for a
B:oom: Last iteration withv # 1, § = 0; yapu V - gl S_ [30]. W y s S
Final By: Last iteration withv = 1, § # 0. polynomial V; («) which gives the maximum radiuB; of a
Fig. 3. [Example 2] Domain of atiraction evolution using" order Circle included in the regiox : Vi(z) < 1} such thatly
polynomial curves. decreases in a circular region around the origin of radius

Let us detail how initiall; was crafted in this example:

As in Example 2, whatever the choice fdf is, any
ﬁyapunov function search from literature will not be fedsib
for R. > Jle1]] = 4.44, so R. was set to 4.15 in the
numerical implementatioAshence( in the previous sections

betweenP; andP;: however, the difference between the verte
polynomials grows larger as we depart further from the arigi
Anyway, the obtained result “FindB,” is substantially larger
than the |n|_t|al _Lyr_;\punov level set “InitiaB;” from usual corresponds to curve, in Figures 4 and 5.
methodologies in literature.

The starting Lyapunov function may be found by two
In summary, the largest set proved to belong to the LRDprroa:hes! g Hyaptinov funct y ! y

Dq is th t: N N .
o 1S the se 1) Solving the SOS problem of maximisirfg; subject to

By = {x: —0.2828x1 —0.123825—0.131522 —0.0918x21; V() — exTr + 1/)1($T$ ~R%) ex,

— 0.046822 4+ 0.0056x3 + 0.025222x5 + 0.1111232, V(z) =1 — dn(a"z — B2) €%,
+0.003923 + 0.0099z7 + 0.0123z325 1= V(@) + ds(aTz — B2) €%,
+0.03582222 + 0.002z,25 4+ 0.0017z5 < 1}
Note. In general the proved DA with Lemma 8 is an inter-
section between a level set and the region of interest, i.e., Z(0)V (z) — V(Z 02Pi(z)) — Z(0)exT x—
By = {z : Va(z) < 1N O}. However, in this particular case, i
the intersection notation is not needed (in fact the pogsibi 01 Z(0)(R2 — 2T2) € Sy y
is intentionally not allowed enforcingr : Va(x) < 1} C © C
Q). The next example considers the more general case. wheree = 0.001, Z(0)is used to make conditions homo-
Note also that the techniques by the authors in [15] obtaina  geneouin o® , and{¢: ¥, } € %, are Positivstellensatz
DA estimate larger than “InitiaB;” but smaller thanB. .o, N multipliers.
C, (not shown for brevity), much smaller than the one “Final ~ The drawback with this approach is that the degree of
B," obtained in this work. the polynomial conditions above grows quickly with
the Lyapunov function’'s degree (because computations
Example 3: Discrete-time system. involve products ofr* and powers ofr).

Consider the following nonlinear system obtained by thegl’%8 cannot be increased without leading to an infeasible proldee to

Euler discretization of (41) at sample tifié= 0.1 seconds: the intrinsic conservativeness issues of the fuzzy-patyiabapproach [2].
9The changen = o2 is enforced. Also, suitable manipulations (multipli-
T1k+1 = 0.7z15 + 0.05224 (42) cation by powers ol = 3", 02) in the termV (3, 02 P;(x)) are implicitly
Topt+1 = 22 (0.8 + 0.3 sin(z1y)) assumed for homogeneization.
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2) If the idea of introducing slack variablesis applied a) Circle of radiusR. = 5.5: Consider the user-defined
(Lemma 5), the above problem can be expressed sgherical region(s in Figure 4):
maximising R; subject to:
Csz = {z:2? + 22 <557}
V —exle + 4 (ax — R?) €3,

V—1—qa’c—R?) €%,

€

so ) = (s in this case. Note, importantly, that it includes the
. 5 saddle point so no Lyapunov function can be ever found to
1=V +4ys(a’z—R]) € decrease in alC;.

Figure 4 shows how the estimated domain of attraction
increases from the Lyapunov-only solution “Initid#,” as
iterations progress.

V —Vi(p) —exlx — ¢14(R? — 2" 2) The final estimation of the LRDA is given by:
+o20p = i) € B 0012 Bo = {x: Valz) <1, 22 + 22 < 5.5}
wheree = 0.001 and multipliersg¢, € X7 , ¢1; €
Exyp, l/}j IS
an the exa][nmet_, the jecondhappgoach h?f b:eghusled, af:d e () = 0.0030542% — 0.001322325 — 0.0202123 +
yapunov function’s degree has been set to 4. The largest ci 9 9 2 2 3
cle proved to belong to the DA with this standard methodolog)éj'01636331332 — 0.001495z722 + 0.004w7 + 0.00075z1 25+
is C», and the Lyapunov level set is limited by the dashed-blug0-03096z1z5 + 0.02511z1 25 + 0.3249521 — 0.00034x5+
curve Initial B, in figures 4 and 5. 0.002525 4 0.02942x3 + 0.03055627
The proven domain of attraction is then enlarged following
Lemma 7, as proposed in section V-B, iteratively searching b) Circle of radius R. = 10: Note that, as iterations
for new polynomialsVs(z) of 4** degree. Two trials of the progress in the above case),(the obtained sets approach the
iterations with different modelling regions have been édns boundary of the modelling regiofis (actually, theycrossit).

with

ered. Hence, that suggest that larger regions might be obtained if
the modelling region is expanded. This second case cossider
,,,,, C expanding a little the modelling region in each iteratiorilun
6 -G a final targetR., = 10 is reached (or the algorithm stops
Eq & improving).
Al + saddle Figure 5 shows the final DA estimation.
, points The new LRDA found (“FinalBy” on the picture) is
NG By ={z: Va(z) <1, 22 + 23 < 10}, being
27 Y| —Final B,
- - -Initial By Va(z) = 0.00864zF — 0.0021423 25 — 0.045425+
' 0.013132222 + 0.004272225 — 0.004227 4 0.003525x1 x5
Xzo| 1 4 0.0388x122 + 0.0394z 125 + 0.464221 + 0.000625
+0.0045425 4+ 0.0162722 — 0.05847z,  (43)
2t 1
VIIl. CONCLUSIONS
-4+ 1 . . .
In this paper, a sum-of-squares iterative methodology has
been presented, with the objective of improving an initial
5 ‘ ‘ ‘ ‘ ‘ estimate of the domain of attraction of a nonlinear systene. T

6 -4 2 0 2 4 6 result is a DA estimate defined in closed-form by polynomial
X boundaries. A Taylor-series based fuzzy polynomial model

Cr: SSJtr]aéf'e”%qTﬁ’igﬁﬂ';g(ézg)'%';iﬁltoiiiiég.'argeSt circle with a is needed in first place. Then, the newly obtained level sets

Cy: largest circle in DA proved with classical Lyapunov avoid the need of constraints (positiveness, decreaddgitise
. tﬁchmqugsnpvef?l{ including the saddle point (al already-proven regions. In this way, the requirements ofia t
'5: New modelling region, including the saddle point (always . .
infeasible with previous literature results): Lyapunoy function are relaxgd. The procedures are difteren
Initial B;: Level set of the classical Lyapunov function provial; for the discrete and the continuous cases.
Final Bo: Last iteration of iterative algorithm in Section V-B. With the proposals in this work, conservatism with respect
Fig. 4. [Example 3.a)] Domain of attraction evolution using* order to solutions from previous literature is reduced: Lyapunov
polynomial curves and fixed.. based solutions can be used as a “seed” for the algorithms

here developed.
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_____ Cq
-G [11]
- = =Initial B,
—C4 [12]
——Final B,
Eq & [13]
* saddle
points (14]
[19]
[16]
[17]
(18]
X1
Cy: Starting modelling region close to largest circle with a [19]
single equilibrium (Eq) point inside (same as Fig. 4);
Cy: largest circle in DA proved with classical Lyapunov [20]
techniques ove€’; (same as Fig. 4);
Cy: Circular modeling region folRe = 10;

Initial By: Lyapunov level set proving@’z (same as Fig. 4);

Final B2: DA estimate in last iteration. [21]
Fig. 5. [Example 3.b)] Domain of attraction evolution usidd® order
polynomial curves for increasingly larger modelling regi@dius. [22]
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