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Abstract

Class imbalance and class overlap are two of the major problems in data mining

and machine learning. Several studies have shown that these data complexities

may affect the performance or behavior of artificial neural networks. Strategies

proposed to face with both challenges have been separately applied. In this work,

we introduce a hybrid method for handling both class imbalance and class overlap

simultaneously in multi–class learning problems. Experimental results on three

remote sensing data show that the combined approach is a promising method.
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1. Introduction1

In supervised classification learning, the intrinsic difficulties in the data may2

significantly affect generalization performance of standard classifier algorithms.3

An important issue that has been identified into the 10 challenging problems is4

when the datasets suffer from skewed class distributions, that is, the number of5

samples of one class out numbers the other classes (class imbalance) [1]. Ex-6

isting research indicates that class imbalance problem causes seriously negative7

effects on the classification performance [2], since the classifier algorithms are of-8

ten biased towards the majority classes [3]. This phenomenon appears with high9

frequency in many real–world applications where it is often costly misclassified10

examples of the minority class. Typical examples are remote sensing [4], medical11

diagnosis [5], biological data analysis [6], fraud detection [7] and credit assess-12

ment [8].13

Most of the research addressing the imbalance problem can be grouped into14

three categories: (i) Assigning distinct costs to the classification errors for pos-15

itive and negative samples [9, 2], (ii) Resampling the original training data set,16

either by over-sampling the minority class and/or under-sampling the majority17

class until the classes are approximately equally represented [10, 11, 12], and (iii)18
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Internally biasing the discrimination-based process so as to compensate for the19

class imbalance [13, 4, 14].20

It is generally accepted that imbalance is the main responsible for a significant21

degradation of the performance on individual classes. However, recent works have22

pointed out that there does not exist a direct correlation between class imbalance23

and the loss of performance. These studies suggest that the class imbalance is not24

a problem by itself, but the degradation of performance is also related to other25

factors, i.e., the degree of class overlapping [15, 16, 17]26

The class overlapping occurs in those zones where the decision boundary re-27

gions intersect. The overlapped samples have a high probability of being mis-28

classified for any classifier. Hence, several Instance Selection (IS) methods has29

been developed to address this challenging task [18]. The IS approaches that seek30

to remove points that are noisy or do not agree with their neighbours are called31

Edition algorithms. The most popular editing methods are based on the nearest32

neighbour rule.33

Class overlap and class imbalance has been widely studied in the literature34

and treated separately. Rarely, however, both at the same time. There are also35

very few approaches facing with this complexities in multi-class scenarios. In this36

paper, we introduce a novel hybrid algorithm to face with class imbalance and37
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class overlapping simultaneously on multi-class problems.38

This method is based on using a Gabriel graphs editing technique to remove39

noisy and border–line negative samples to reduce the class overlapping, and then40

a modified the back-propagation algorithm to face with imbalanced classes. Our41

main contributions in this paper are: a) to propose a new cost function (based in42

the mean square error) to deal with the class imbalance problem, b) we adapted43

the Gabriel graphs editing (GGE) to become it effective to reduce the class overlap44

in the neural network context and c) to combine the point a and b to generate an45

effective strategy dealing with the class overlap and class imbalance.46

The rest of this paper is organized as follows. Related works are briefly re-47

viewed in Section 2. In Section 3 we introduce the modified back-propagation48

algorithm for tackling the class imbalance problem. The editing algorithm is de-49

scribed in Section 4. In section 5 we present a hybrid method dealing with the50

class overlap and class imbalance. Section 6 and 7 we show the experimental set51

up and results respectively. Finally, section 8 is the conclusion.52

2. Related Works53

Back-propagation is now the most widely used tool in the field of artificial54

neural networks (NN). However, despite the general success of back-propagation,55
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several major deficiencies are still needed to be solved. The major disadvantage56

of back-propagation is the slow rate of convergence of net output error; this is57

especially a major difficulty in “imbalanced” classification problems [19, 3], i.e.,58

where the training set contains many more samples of some “dominants” classes59

(majority classes) than the other “subordinates” classes (minority classes).60

In the back-propagation algorithm, the class imbalance poses severe problems61

in training stage as the learning process becomes biased towards the majority62

classes, ignoring the minority classes and leaving them poorly trained at the end63

of the training stage. The learning process also becomes slower an it take a longer64

time to converge to expect solution [19].65

Many researches has been done in addressing the class imbalance problem66

[2]. In the NN field, the modified learning algorithm has been proposed for deal-67

ing with this problem. In reference [19] a modified back-propagation is proposed,68

this consists of calculating a direction in weight-space which decreases the error69

for each class (majority and minority class) in the same magnitude, in order to70

accelerate the learning rate for two-class imbalance problems. In the reference71

[4, 20, 3, 14], the error function was modified by introducing different costs asso-72

ciated with making errors in different classes. Basically, when the sum of square73

errors is calculated, each term is multiplied by a class dependent (regularization)74
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factor. This compensates class imbalance [4, 20, 14] and accelerates the conver-75

gence of the NN [3]. However, the main drawback of these approaches is the76

use of free parameters, because these parameters control the updating amount of77

weights whether training samples are in the minority or majority classes.78

The most popular strategies to deal with the class imbalance problem have79

been at the data level. These methods for balancing the classes are the most inves-80

tigated because they are independent of the underlying classifier and can be easily81

implemented for any problem. The data level methods resampling the original82

dataset, either by over-sampling the minority class or by under-sampling the ma-83

jority class, until the classes are approximately equally represented. Both strate-84

gies can be applied in any learning system since they act as a preprocessing phase,85

thus allowing the system to receive the training instances as if they belonged to86

a well-balanced dataset. By using this strategy, any bias of the learning system87

towards the majority class due to the skewed class priors will hopefully be elimi-88

nated.89

The simplest method to increase the size of the minority class corresponds90

to random over-sampling, that is, a non-heuristic method that balances the class91

distribution through the random replication of positive examples. Nevertheless,92

since this method replicates existing examples in the minority class, overfitting is93
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more likely to occur. Chawla et al.[10] proposed an over-sampling technique that94

generates new synthetic minority samples by interpolating between several pre-95

existing positive examples that lie close together. This method, called SMOTE96

(Synthetic Minority Over-sampling TEchnique), allows to the classifier to build97

larger decision regions that contain nearby samples from the minority class.98

On the other hand, random under-sampling [21] aims at balancing the dataset99

through the random removal of negative examples. Despite its simplicity, it has100

empirically been shown to be one of the most effective resampling methods. Un-101

like the random approach, many other proposals are based on a more intelligent102

selection of the negative examples to be eliminated.103

Several works point out class imbalance as an obstacle when applying machine104

learning algorithms to real world domains. However, in some cases, learning105

algorithms perform well on several imbalanced domains [22]. Recent work shows106

that class imbalance is not always a problem [17, 16]. Japkowicz and Stephen [21]107

suggest that some classifiers are not sensitive to the class imbalance problem in108

cases where the classes are separable. In the same way some researchers [20, 23]109

affirm that the class imbalance is not an intrinsic problem if the distributions do110

not overlap.111

The overlapping appears when the samples of the minority class share a region112
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with the majority one, where all the samples are intertwined (this is an intrinsic113

problem of the data). Garcı́a et al. [17] have shown that overlap can play an114

even larger role in determining classifier performance than the class imbalance115

problem. Lawrence et al. [20] suggest that when distribution is overlapped, it116

is desirable to pre-process or editing the data in a manner that results in reduced117

overlap. The similar idea was studied in [22]. That work shows that data clean-118

ing strategies usually lead to a performance improvement for highly overlapped119

datasets. Tang and Gao [24] use the inverse k-nearest neighbor and k-nearest120

neighbor (K-NN) algorithms to eliminate potential noisy patterns, and extraction121

of boundary pattern. The goal of that work is to deal with the classification prob-122

lem, which involves class overlapping. Nevertheless, the main drawback of these123

approaches is that parameter setting in k-NN impacts directly on the classification124

performance. Kretzschmar et al. [25] introduce variance-controlled NN (VC-125

NNs), which were developed to handle class overlap. These VCNNs are feed for-126

ward models trained by minimizing an error function involving the class-specific127

variance (CSV) computed at their outputs. This minimization suppresses abrupt128

changes in the responses of the trained classifiers in regions of the input space129

occupied by overlapping classes. The main restriction is that VCNNs require the130

selection of additional free parameter (to adjust of influence of CSV) specified131
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empirically by the user.132

3. A Modified Back-Propagation (MBP)133

The multilayer perceptron (MLP) neural network [26] usually comprises one134

input layer, one or more hidden layers, and one output layer Input nodes corre-135

spond to features, hidden layers are used for computations, and output nodes are136

related with the number of classes. A neuron is the elemental unit of each layer.137

It computes the weighted sum of its inputs, adds a bias term and drives the re-138

sult thought a generally non-linear (commonly a sigmoid) activation function to139

produce a single output.140

The most popular training algorithm for MLP is the back-propagation algo-141

rithm, which uses a set of training instances for the learning process. Given a142

feed-forward network, the weights are initialized to small random numbers. Each143

training instance sent through the network and the output from each unit is com-144

puted. The target output is compared with the estimated output of the network by145

calculating the error, which is fed-back through the network.146

To adjust the weights, the back-propagation algorithm uses a gradient descent147

to minimize the squared error. At each unit in the network starting from the output148

unit and moving to the hidden units, its error value is used to adjust the weights of149
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its connections as well as to reduce the error. This process is repeated for a fixed150

number of times, or until the error is small.151

On other hand, in the back-propagation algorithm the class imbalance problem152

generates unequal contributions to the mean square error (MSE) in the training153

phase [19]. Clearly the major contribution to the MSE is produced by the majority154

class.155

Let us consider a training dataset (TDS) with two classes (J = 2) such that156

N =
∑J

j nj and nj is the number of samples from class j. Suppose that the MSE157

by class can be expressed as158

Ej(U) =
1

N

nj∑
n=1

J∑
p=1

(tnp − znp )
2 , (1)

where tnp is the desired output and znp is the actual output of the network for the159

sample n.Then the overall MSE can be expressed as160

E(U) =
J∑

j=1

Ej(U) = E1(U) + E2(U) . (2)

If n1 << n2 then E1(U) << E2(U) and ‖∇E1(U)‖ << ‖∇E2(U)‖, conse-161

quently ∇E(U) ≈ ∇E2(U). So, −∇E(U) it is not always the best direction to162

minimize the MSE in both classes. [19].163

Considering that the class imbalance problem affects negatively in the back-164

propagation algorithm due to the disproportionate contributions in the MSE, it is165
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possible to consider a cost function (γ) that balance the MSE as follows:166

E(U) =
∑J

j=1 γ(j)Ej = γ(1)E1(U) + γ(2)E2(U)

= 1
N

∑J
j=1 γ(j)

∑nj

n=1

∑J
p=1(t

n
p − znp )

2 ,

(3)

where γ(1)‖∇E1(U)‖ ≈ γ(2)‖∇E2(U)‖ avoiding that the minority class be ig-167

nored in the learning process. In this work, we propose a new cost function defined168

as:169

γ(j) =
‖∇Emax(U)‖
‖∇Ej(U)‖

(4)

where ‖∇Emax(U)‖ corresponds to the largest majority class.170

On the other hand, when a cost function is included in the training process, the171

data probability distribution is altered [20]. Nevertheless, the cost function γ(j)172

(Eq. 4) reduces its impact in the data distribution probability because the cost173

function value is diminished gradually. In this way, the class imbalance problem is174

reduced in early iterations, and later γ(j) reduces its effect on the data distribution175

probability.176
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4. Editing technique for handling class overlap177

The editing techniques have been proposed to remove noisy samples as well178

as close border cases (overlapping), leaving smoother decision boundaries [27].179

The aim is to improve the classifier accuracy. The most popular editing schemes180

are based on the well-know k Nearest Neighbour (k-NN) rule. However, this rule181

only takes into account the distances to a number of close neighbors. Alternative182

concepts of neighborhood have been proposed to consider geometrical relation183

between a sample and some of its neighbours [28].184

The Gabriel Graph has recently been used for introducing a set of editing185

methods for the k-NN rule [29]. The Gabriel Graph Editing (GGE) consists of ap-186

plying the general idea of Wilson’s algorithm [30], but using the graph neighbours187

of each sample instead of the Euclidean or other norm-based distance neighbour-188

hood. Two samples x and y are graph neighbours in a GG = (V,E) if there exists189

an edge (x, y) ε E between them. Taking into account the definitions of GG, the190

graph neighbourhood of a given point requires that no other point lies inside the191

union of the zones of influence (i.e. hypersphere of influence) corresponding to192

all its graph neighbours.193

The application of GGE has some additional properties as compared to the194

conventional methods: first, they consider the number of neighbours as a variable195
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feature which depends upon every prototype. Secondly, since the graph neigh-196

bourhood of a sample always tends to be widely distributed around it, the infor-197

mation extracted from samples close to decision boundaries may be richer in the198

sense of the prototypes distribution [28].199

The original GGE was proposed to improve the k-NN accuracy [29]. How-200

ever, in this work the original GGE was adapted to do it effective in the back-201

propagation context. The aim was to remove noisy and overlapping samples of202

the majority classes, but keeping all the positive samples. This task allows im-203

proving the back-propagation learning over the minority classes. The proposed204

GGE can be summarized as follows:205

• For each sample p, constructs the corresponding GG.206

• Consider p in the Training Dataset (TDS), if all its graph neighbours are of207

its same class.208

• Other issue, if p belongs to some majority class, then discard p from TDS.209

5. Methodology for dealing with class imbalance and the class overlapping210

on multi-class problems211

This section provides an overview of the method here proposed to deal with212

class imbalance and class overlapping simultaneously, which consists of combin-213
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ing an editing technique and a cost function. This strategy can be summarized as214

follows:215

1. MBP: To deal with class imbalance problem.216

(a) To modify the back-propagation (MBP) algorithm applying a cost func-217

tion (Eq. 4) in order to avoid that the minority classes would be ig-218

nored in the training process, and to accelerate the convergence of the219

neural network.220

2. GGE: To deal with class overlapping problem.221

(a) To edit the TDS with the GGE technique (sec. 4), removing only222

majority samples in the overlap region and producing a local balance223

of the classes.224

3. MBP + GGE (Proposed strategy).225

(a) To train the MLP with the modified back-propagation algorithm over226

the edited TDS.227

6. Experimental Protocol228

In this section we first provide details of the data sets chosen for the experi-229

mentation, the performance measures used to evaluate the classifiers and the re-230
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sampling methods. Finally, a briefly description of the configuration parameters231

of the methods.232

6.1. Database description233

We used in our experiments five remote sensing datasets: Cayo, Feltwell234

Satimage, Segment and 92AV3C. Feltwell is related to an agriculture region near235

to Felt Ville, Feltwell (UK) [31], Cayo represents a particular region in the gulf of236

Mexico, and Satimage consists of the multi-spectral values of pixels in 3x3 neigh-237

borhoods in a satellite image. Segment contains instances drawn randomly from238

a dataset of 7 outdoor images [32]. 92AV3C dataset2 corresponds to a hyperspec-239

tral image (145x145 pixels) taken over Northwestern Indianas Indian Pines by the240

AVIRIS sensor.241

In order to covert Cayo in a highly imbalanced dataset some of their classes242

were merged as follows: join the classes 1,3,6,7 and 10 for integrating the class243

1; join the classes 8, 9 and 11 for integrating the class 3, finally, the rest of classes244

(2,4 and 5) we obtain from original dataset. M92AV3C is a subset of 92AV3C,245

it contains six classes (2, 3, 4, 6,7 and 8) and 38 attributes. The attributes were246

2https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.

html
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selected using a common features selection algorithm (Best-First Search [33])247

implemented in WEKA3:248

Feltwell,Satimage, Segment and 92AV3C were random under-sampling to249

generate severe class imbalance datasets. A brief summary of these multi-class250

imbalance datasets is shown in the Table 1. Note that are highly imbalanced251

datasets. For each database, a 10–fold cross–validation was applied. The datasets252

were divided into ten equal parts, using nine folds as training set and the remaining253

block as test set.254

Table 1: A brief summary of some basic characteristics of the datasets. The bold numbers represent

the samples of minority classes.

dataset Size Attr. Class Class distribution

MCayo 6019 4 5 2941/293/2283/322/133

MFelt 10944 15 5 3531/2441/91/2295/178

MSat 6430 36 6 1508/1531/104/1356/93/101

MSeg 1470 19 7 330/50/330/330/50/50/330

M92AV3C 5062 38 6 190/117/1434/2468/747/106

3Available in: http://www.cs.waikato.ac.nz/ml/weka/
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6.2. Classifier performance and Significance Statistical Test255

The most traditional metric for measuring the performance of learning systems256

is the accuracy which can be defined as the degree of fit (matching) between the257

predictions and the true classes of data. However, the use of plain accuracy to eval-258

uate the classifiers in imbalanced domains might produce misleading conclusions,259

since it is strongly biased to favour the majority classes [34, 14]. Shortcomings of260

this evaluator has motivated search for new measures. One the most widely-used261

techniques for the evaluation of binary classifiers in imbalanced domains is the262

Receiver Operating Characteristic curve (ROC), which is a tool for visualizing,263

organizing and selecting classifiers based on their trade-offs between true positive264

rates and false positive rates. Furthermore, a quantitative representation of a ROC265

curve is the area under it, which is known as AUC [35]. The AUC measure for266

multi-class problems can be defined as:267

AUC =
2

‖J‖(‖J‖ − 1)

∑
ji,jkεJ

AUCR(ji, jk) (5)

where AUCR(ji, jk) is the AUC for each pair of classes ji and jk.268

Kubat and Matwin [36] use the the geometric mean of accuracies measured269

separately on each class. For multi-class problems it can be computed as:270
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g −mean = (
J∏

i=1

acci)
1
J , (6)

where acci is the accuracy on the class i and J the number of classes.271

Statistical tests are used to evaluate whether the performance of a new method272

or learning algorithm on the same problem is significantly different. Into the273

framework of empirical analysis, the Student’s paired t-test is the most widely274

used parametric statistical procedure. However, it is well-known that it is con-275

ceptually inappropriate and statistically unsafe to require certain assumptions like276

the data is normally distributed [37]. In this work, we adopt the non–parametric277

statistical Friedman test to perform a multiple comparison, which is equivalent of278

the repeated-measures ANOVA. This test used to check if all methods perform279

equal on the selected datasets can be rejected. The first step in calculating the test280

statistic is to rank the algorithms for each dataset separately; the best performing281

algorithm should have the rank of 1, the second best rank 2, etc. The Friedman282

test uses the average rankings to calculate the Friedman statistic, which can be283

computed as,284

χ2
F =

12N

K(K + 1)
(
∑
j

R2
j −

K(K + 1)2

4
) (7)

where K denotes the number of methods, N the number of data sets, and Rj the285
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average rank of method j on all datasets. Iman and Davenport [38] showed that χ2
F286

presents a conservative behaviour, so they proposed a better statistic distributed287

according to the F−distribution with K − 1 and (K − 1)(N − 1) degrees of288

freedom,289

FF =
(N − 1)χ2

F

N(K − 1)− χ2
F

(8)

When the null-hypothesis is rejected, we can use post-hoc tests in order to290

find the particular pairwise comparisons that produce statistical significant dif-291

ferences. The Bonferroni-Dunn post-hoc test is applied to report any significant292

difference between individual methods here used. The test uses the average rank293

of each method and compare it to each other if these differ by at least the critical294

difference, which is given by295

CD = qα

√
K(K + 1)

6N
(9)

where the value qα is based on the studentized range statistic divided by
√
2.296

6.3. Resampling Methods297

SMOTE, and random under sampling (RUS) are used in the empirical study,298

because are a popular approaches to deal with the class imbalance problem. How-299
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ever, it methods have internal parameters that enable the user to set up the resulting300

class distribution obtained after the application of these methods. In this paper,301

we decided to add or remove examples until a balanced distribution was reached.302

This decision was motivated for two reasons: a) by simplicity (to avoid use many303

free parameters) and b) by effectiveness. Results obtained with the other classi-304

fiers [39], have shown that when AUC is used as a performance measure, the best305

class distribution for learning tends to be near the balanced class distribution.306

6.4. Neural network configuration307

The MLP was trained with the standard back-propagation (SBP) and modi-308

fied back-propagation (MBP) algorithm in batch mode. For each TDS, MLP was309

initialized ten times with different weights. The results here included correspond310

to the average of those achieved in the ten different initialization and of ten par-311

titions. The learning rate (η) was set to 0.1 and only one hidden layer was used.312

The stop criterion was established at 25000 epoch or an MSE below to 0.001.313

The number of neurons for the hidden layer was obtained from the trial and error314

strategy. So, the number of neurons was 7, 6, 12, 10, 10 for MCayo, MFelt, and315

MSat, MSement and M datasets respectively.316
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7. Results and discussion317

In order to asses the performance of the proposed method, we have carried out318

an experimental comparison with respect to well-known resampling approaches.319

In total, seven strategies were examined: (i) Standard Back-Propagation Algo-320

rithm (SBP), (ii) Modified Back-Propagation Algorithm (MBP), (iii) Standard321

Back-Propagation with Grabiel Graph Editing (SBP+GGE), (iv) Modified Back-322

Propagation with Grabiel Graph Editing (MBP+GGE), (v) SMOTE, (vi) SMOTE323

with Grabiel Graph Editing (SMOTE+GGE) and (vii) Random Under Sampling324

(RUS). The datsets that were preprocessed by the SMOTE, SMOTE+GGE and325

RUS strategies were applied to the SBP algorithm.326

In this paper, we have omitted other neural networks approaches as the two-327

phase technique [4], threshold moving [2], or modified error function [14], be-328

cause these methods contain many prior free parameters, so it is difficult to make329

a fair comparison.330

With the aim of show the effectiveness of combining the MBP and the GGE331

techniques, in Fig. 1, the performance by class of the SBP, the MBP, the SBP+GGE332

and the proposed strategy (MBP+GGE), are presented separably (the bold boxes333

belong to minority classes). The results show that the minority classes perfor-334

mance is severally affected by the class imbalance. In Fig. 1a, 1e, 1i, and 1q335
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are observed that the class imbalance problem cause that some minority classes336

are not enough learned. So these minority classes show 0% of accuracy. The ef-337

fects the class imbalance problem is slow down the convergence of the SBP due338

to disproportionate contribution in the MSE in the training phase (see section 3).339

An immediate consequence of this, is the difficulty of achieving effective perfor-340

mance (in terms of classification) in a “reasonable” time. Especially in situations341

where there is an extreme class imbalance.342

On other hand, the Fig. 1 shows that when the class imbalance is compensated343

(MBP) the minority classes performance is improve (Fig. 1b, 1f, 1j, 1n, and 1r).344

However, in hight overlapped TDS is not enough (Fig. 1j and 1r).345

GGE technique is used to reduce the overlapping between classes. Fig. 1c,346

1g, 1k, 1o, and 1s, present the results obtained to apply the GGE technique. Note347

that it archive improve the minority classes performance, specially in overlapped348

TDS (see class 5 in Fig. 1k and 1o). Nevertheless, the class imbalance problem349

continues to affect. For example, observe Mfelt, and M92AV3C datasets (Fig.1g350

and 1s respectively). A negative consequence of GGE technique is that when351

increase the minority classes accuracy, the majority classes performs is affected.352

The four column of the Fig. 1 presents the combining the MBP and GGE353

(MBP+GGE). These results show a remarkable improvement in minority classes354
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performance and exhibit a better performance that to apply individually the MBP355

and GGE techniques.356

The modification of the training algorithm including a cost function (MBP)357

increases the recognition rate of less represented classes, accelerating the conver-358

gence of the network, and to apply GGE technique reduce the confusion of the359

minority classes in the overlap region. So the results presented in Fig. 1d, Fig. 1h,360

Fig. 1l, Fig. 1p and Fig. 1t, demonstrate the effectiveness of combining the MBP361

and GGE techniques.362

Fig. 2 shows experimental results of compare the proposed method with re-363

spect to others well-known resampling approaches. The experimental results are364

presented in graphics where boxes represent the accuracy by class, and the bold365

boxes belong to minority classes. Fig. 2 exhibits that, the worst accuracy for the366

minority classes is shown by the RUS strategy (mainly over MFelt and MSat, see367

Fig. 2h and 2l). This means that when TDS is severely imbalanced removes sam-368

ples to balance the class distribution, and it is not effective on back-propagation,369

because the RUS involves a loss of useful information that could be important for370

the training process. In the M92AV3C and MSeg datasets, the RUS shows a good371

minority classes performance, however, is not a tendency.372

SMOTE was very successful in MCayo and MFelt, but in MSeg, Sat, and373
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Figure 1: The comparison of methods deal with class imbalance problem and class overlap. The

graphics shows accuracy by class. The bold boxes belong to minority classes. The acronyms

SMO, it mean SMOTE.
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M92AV3C datasets the minority classes performance is worst than the proposed374

method (see class 5 in Fig.2j and 2n, and class 1 in Fig. 2r). We believe that the375

explanation is that these datasets present high level of overlapping. For example376

MSat dataset shows high level of overlapping between the C-01 and C-05 classes,377

in other words, it is not enough to balance the TDS for improving the classifier378

performance over minority classes when the TDS overlaps. This is the reason of379

the low accuracy in class C-05 for RUS, MBP and SMOTE.380

On other hand, MBP+GGE presents better results than the SMOTE for over-381

lapping datasets (see MSeg MSat, and M92AV3C, Fig. 2 j, n and r), this is due382

to the data cleaning method (GGE) is more efficient in highly overlapped regions.383

The MBP+GGE method starts to be less effective as overlapping is reduced (for384

example see MCayo and MFelt in Fig. 2).385

The accuracy showed by SMOTE+GGE was very similar at SMOTE, how-386

ever, despite of that SMOTE+GGE include GGE technique this method was in-387

effective on overlapped datasets (see MSat, Fig. 2 l). The explanation is that,388

as SMOTE was firstly applied the overlap level was increased too, thus GGE389

was not able to remove the enough overlap for improving the accuracy of minor-390

ity class. To prove this, we repeat the experiment: we first applied GGE over391

MSat, and then MSat was over-sampled using SMOTE. The results obtained were392
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very successful and similar at achieved by MBP+GGE. The AUC= 0.756(0.050),393

g-mean= 0.713(0.071), C-05 accuracy = 0.91(0.02). This results show the ef-394

fective of the GGE technique to reduce the class overlap and for improving the395

accuracy of the classifier over minority classes.396

SMOTE and SMOTE+GGE strategies have made great improvement on the397

minority classes. However, they add information to the TDS by introducing new398

(non-replicate) minority classes samples, which involves a larger TDS and longer399

training times for the same number of training epochs. In addition, when the400

dataset present high overlapping the SMOTE can be not good choice, because can401

be increase the class overlapping. Meanwhile SMOTE+GGE is recommendable402

to apply first GGE and after the SMOTE, i.e., GGE+SMOTE.403

Fig. 2 shows that the results obtained by MBP+GGE are very competitive404

with the results obtained by SMOTE and SMOTE+GGE. As well as MBP+GGE405

does not have internal parameters that the user needs to set up before to apply it406

and use of a TDS sight more reduced (much less training time). These are main407

advantages of MBP+GGE over SMOTE and SMOTE+GGE.408

Table 2 summarize the experimental results in terms of AUC and g−mean on409

the five datasets when using six different strategies previously enumerated. For410

each method, the average ranking is shown. As can be seen in the table, the orig-411
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Figure 2: The comparison of methods deal with class imbalance problem and class overlap. The

graphics shows accuracy by class. The bold boxes belong to minority classes. The acronyms

SMO, it mean SMOTE.
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inal (imbalanced) training set has the highest Friedman score (AR), which means412

that this strategy performs worse than other methods, whereas MBP+GGE is the413

best performing algorithm for AUC an g−mean. Note, that SMOTE performs414

equal to MBP+GGE when the results are evaluated with AUC.415

Table 2: Performance on three datasets measured using AUC, g−mean and average rank (AR)

AUC

Dataset Imbalanced1 MBP GGE MBP+GGE SMOTE1 SMOTE+GGE1 RUS1

MCayo 0.477 (0.020) 0.715 (0.034) 0.636(0.064) 0.828(0.040) 0.860 (0.040) 0.847 (0.024) 0.722 (0.035)

MFelt 0.658 (0.022) 0.839 (0.033) 0.700(0.017) 0.880(0.031) 0.895 (0.046) 0.884 (0.027) 0.749 (0.028)

MSat 0.663 (0.026) 0.752 (0.044) 0.774(0.049) 0.757 (0.041) 0.826 (0.038) 0.705 (0.038) 0.726 (0.031)

MSeg 0.871(0.032) 0.916(0.098) 0.905(0.030) 0.918(0.095) 0.880(0.053) 0.882(0.031) 0.914(0.027)

M92AV3C 0.512(0.061) 0.589(0.106) 0.615(0.039) 0.780(0.086) 0.690(0.136) 0.638(0.079) 0.796(0.054)

AR 7.0 4.2 4.6 2.4 2.4 3.8 3.6

g−mean

Dataset Imbalanced1 MBP GEE MBP+GGE SMOTE1 SMOTE+GGE1 RUS1

MCayo 0.00 (0.00) 69.18 (4.18) 48.38(24.67) 81.99 (4.18) 82.24 (2.48) 80.63 (2.86) 70.22 (4.10)

MFelt 0.00 (0.00) 82.29 (4.10) 0.00(0.00) 87.54 (3.42) 89.05 (5.30) 88.14 (2.88) 53.05 (27.77)

MSat 0.00 (0.00) 49.36 (28.5) 73.89(6.71) 72.27 (5.38) 80.12 (5.28) 0.000 (0.00) 0.00 (0.00)

MSeg 66.60(31.81) 90.09(9.91) 89.21(3.82) 91.29(9.46) 78.83(24.62) 85.57(9.53) 90.37(3.46)

M92AV3C 0.00(0.00) 49.40(12.73) 32.17(26.39) 73.33(8.51) 54.79(26.28) 41.40(23.12) 77.77(6.39)

AR 6.7 4.0 4.9 2.2 2.4 4.2 3.6

1 Classification using SBP
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The Iman and Davenport statistic computed using Equation 8 yields FF = 4.43416

and FF = 4.06, for AUC and g−mean respectively. The critical value of the F−417

Distribution with 6 and 24 degrees of freedom for α = 0.05 is 2.51. Given that418

the Iman and Davenport statistics are clearly greater than their associated critical419

value, the null-hypothesis that all methods perform equally can be rejected with420

a level of significance α = 0.05. Then a post-hoc statistical analysis was used421

to detect significant differences for the control algorithm (method with the lowest422

ranking) in each measure.423

Fig. 3 display a graphical representation of the results of Bonferroni-Dunn’s424

post-hoc test, where for each method on the y−axis (ordered in ascending rank),425

the AR is plotted on the x−axis. For each AR we sum the critical difference ob-426

tained by the Bonferroni method, CD = 3.60 for α = 0.05 in the two measures427

considered. The vertical dashed line segment represents the end of the best per-428

forming algorithm and the start of the next significantly method. MBP+GGE is429

the best algorithm, although according to Bonferroni-Dunn’s test, only the differ-430

ence to the Imbalanced approach is different4.431

The effects of the MBP+GGE can be better analysed by considering the num-432

4Other powerful tests, such as Holm and Hochbergs ones would be necessary, for comparing

the control algorithm with the rest of algorithms.
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Figure 3: Bonferroni-Dunn’s Critical Difference Diagram for AUC and g−mean

ber of samples that remain in the TDS after its application. Results in Figure 4433

suggest a higher decrease in the size of the dataset when it is processed with the434

GGE, whereas using SMOTE increase twice of the original size. RUS reduce435

more the TDS size, however, not always present a good classifier performance.436

Reducing the dataset involve to reach a better neural network learning time and437

reduce storage requirements.438
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Figure 4: Training size after resampling TDS with the techniques GGE, SMOTE, SMOTE+GGE

and RUS. The acronyms Orig., GG and SMO, they mean Imbalance TDS, GGE and SMOTE

respectively.
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8. Conclusions439

In this work, we propose an hybrid method (MBP+GGE) for dealing with class440

imbalance and the class overlapping on multi-class problems. The MBP+ GGE is441

based on combination of modified back-propagation (MBP) with a Gabriel graph442

editing technique (GGE). For modified back-propagation algorithm we proposed443

to include a new cost function (based on MSE) in the algorithm, and for doing444

effective the Gabriel graph editing we adapted it in the back-propagation context.445

MBP+GGE generates two effects: a) MBP: to compensate the class imbalance446

during the training process and b) GGE: to reduce the confusion of the minority447

classes in the overlap region. With the edition of the majority classes it is possible448

to reduce the confusion between the minority and majority classes.449

The MBP+GGE strategy was compared with the conventional class imbal-450

ance techniques: RUS, SMOTE, MBP, GGE and SMOTE+GGE. Results show451

that SMOTE and SMOTE+GGE are very effective even with highly imbalanced452

datasets, but inadequate on overlapped datasets. MBP+GGE show a better perfor-453

mance on class overlap problems. The data cleaning step used in the MBP+GGE454

seems to be specially suitable in situations having a high degree of overlapping,455

moreover, GGE produces a small training dataset.456

The SMOTE is needed to find the most appropriate re-sampling rate, i.e., to457
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determine the number of samples when we introduce them in the minority classes458

before applying it. So the main advantages of MBP+GGE over SMOTE and459

SMOTE+GGE are: a) does not have internal parameters that the user needs to set460

up before applying it and b) use of a TDS sight more reduced (much less training461

time). As we see from the results, MBP+GGE is a very competitive strategy for462

dealing with class imbalance and the class overlapping on multi-class problems.463

Further research is required to investigate the potential of the strategy pro-464

posed in this paper in “severe” multi-class imbalance and highly class overlap-465

ping problems. So, the exploration of the other editing strategies is necessary466

when approaching the graph based on editing scheme. Also, the study of new cost467

functions which help to speed up the neural network convergence in order to avoid468

altering the data probability distribution.469
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