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Abstract 

Photovoltaic conversion requires two successive steps: accumulation of 

photogenerated charge and charge separation. Determination of how and where 

charge accumulation is attained and how this accumulation can be identified, is 

mandatory to understand the performance of a photovoltaic device and to develop 

its further optimization. Here we analyze the mechanism of carrier accumulation 

in lead halide perovskite, CH3NH3PbI3, thin absorber solar cells by impedance 

spectroscopy (IS). A fingerprint of the charge accumulation in high density of 

states of the perovskite absorber material has been observed at the capacitance of 

the samples. This is, as far as we know, the first observation of charge 

accumulation in the light absorbing material for nanostructured solar cells, 

indicating that it constitutes a new kind of photovoltaic device, differentiated from 

sensitized solar cells, that will require its own methods of study, characterization 

and optimization.  

mailto:sero@fca.uji.es
mailto:npark@skku.edu
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Nanostructured solar cells constitute a powerful alternative for the development of 

the third generation of photovoltaic devices. The second generation, thin film solar 

cells, allows in many cases a reduction of production cost in comparison with first 

generation, Si solar cells. In the third generation, in addition, an increase of the 

efficiencies is potentially attainable.1 To reduce the cost of the photovoltaic 

devices, an efficient strategy is to relax the quality requirements of the materials 

forming the device. But in conventional Si solar cells high crystal quality is 

required, as both photogenerated electrons and holes are transported along the 

same material and defects act as recombination centers reducing the cell 

performance. The material quality can be relaxed if just one carrier is transported 

along one specific material. This is the working principle of sensitized solar cells 

(SSCs) where light absorption and carrier transport are decoupled.2 In sensitized 

solar cells, charge is photogenerated in dye (DSSCs), thin semiconductor (SSSCs) or 

in a semiconductor quantum dot (QDSSCs), for small semiconductor nanocrystal 

sensitizers where the regime of quantum confinement is reached.3,4 The 

photogenerated charge is quickly injected into two different transport media (TM). 

One for electrons (ETM), generally a wide band gap semiconductor as TiO2, and the 

other one for holes (HTM). As only a single carrier is present in the transporting 

media, the carrier recombination is reduced and less demanding materials can be 

employed. In this context, the necessity of nanostructured devices arises from the 

fact that a single molecular layer or semiconductor extremely thin absorber (~nm) 

cannot completely harvest the incident sunlight. By nanostructuring the electrode, 

the effective area to be covered by the sensitizer can be increased by several 

orders of magnitude. In fact the appearance of these electrodes enormously 
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increased the efficiency of DSSCs.2 In this sense, the role of nanostructured metal 

oxide electrodes is well defined as selective electron contact and ETM with high 

effective surface area to enhance cell harvesting.  

 Since the seminal paper on DSSCs of O'Regan and Grätzel in the early 

1990s2, the recent demonstration of all-solid nanostructured solar cells with 

efficiency higher than 10% constitutes one of the most important breakthroughs in 

this field.5-8 Open circuit voltages as high as 1.3 V (ref. 9) and efficiencies of 

12.3%,7,8 even higher than the record liquid DSSC, have been very recently 

demonstrated. In this kind of cell, nanoparticles or thin film of CH3NH3PbX3, with 

perovskite crystalline structure (where X is a halogen element I, Cl, Br or a 

combination), are deposited on a nanostructured semiconductor with or without 

hole transporting material (HTM). Lead halide perovskites have already shown a 

great potential in QDSSCs with a liquid HTM.10,11 However, it was the recent 

reports on all-solid devices, with easier perspectives for industrialization, that has 

revolutionized the field of nanostructured photovoltaic devices. However,  the 

working principles of these devices are not completely understood as there are 

clear evidences that these devices do not work as the conventional sensitized solar 

cell, where both ETM and HTM are needed. Solar cells with lead halide perovskite 

and no ETM have been prepared with η=10.9% using Al2O3 nanostructured 

electrode in which perovskite cannot photoinject due to a type I band alignment,6 

while devices with no HTM and η=5.5%, have been prepared contacting directly 

the perovskite with an Au contact.12  

 In this work, to unveil the working principles of these devices, and 

concretely understand the mechanism of charge accumulation needed for the 
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photovoltaic conversion, a systematic study based on impedance spectroscopy (IS) 

characterization has been carried out, under dark and under illumination 

conditions. The direct signature of perovskite light absorbing material has been 

observed in the capacitance of the device, indicating charge accumulation in the 

electronic states of perovskite. In the DSSC the charge accumulation in the light 

absorbing material (the dye) has not been detected by electrochemical 

measurement, and for QDSSCs it was detected indirectly as a change in the 

capacitance slope.13 Here we present the first report of charge accumulation in the 

light absorbing material for nanostructured solar cells, which is attributed to a 

density of states (DOS) that is larger in the perovskite absorber than in either ETM 

or HTM. This fact makes lead halide perovskite solar cells a new type of 

photovoltaic device halfway between nanostructured and thin-film solar cells. 

 

Results  

Performance of flat and nanostructured solar cells  

In order to have a general view of the performance of photovoltaic devices using 

perovskite as light absorbing material, different cells with flat and nanostructured 

(NS) electrodes have been prepared using CH3NH3PbI3 as light absorbing material. 

CH3NH3PbI3 was prepared following the previously reported methods.5 Briefly, 

glass covered with a thin-film of transparent conductive SnO2:F (FTO) was used as 

substrate for electrode preparation. A compact layer of TiO2 was deposited on top 

of FTO. Electrodes prepared in this way are called hereafter "Flat" electrodes. Two 

types of NS electrodes were prepared with an additional layer formed by TiO2 or 

ZrO2 nanoparticles. Finally on these electrodes are sequentially deposited 
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CH3NH3PbI3, spiro-MeOTAD as HTM and Au contact. SEM, TEM and energy 

dispersive X-ray spectroscopy (EDXS) characterization of Flat and NS devices can 

be found in Supplementary Figures S1, S2, S3 and S4. Blank cells prepared exactly 

in the same way but without perovskite have been also prepared. See Methods 

section for more details about sample preparation. 

 Fig. 1 shows the current-potential (J-V) curves of samples prepared with the 

different electrodes at 1 sun illumination. The solar cell parameters, components 

and geometrical issues of these samples are reported in Table 1. All the prepared 

devices exhibit high open circuit potential, VOC. The photocurrent, JSC, obtained 

decreases from NS TiO2 to NS ZrO2 to Flat electrode. The light absorption 

measured for NS ZrO2 with perovskite electrodes is lower than for NS TiO2 

electrodes of the same thickness, see Supplementary Figure S5. Cell prepared with 

NS TiO2 also exhibits higher FF and consequently the highest conversion efficiency 

of the set, a significant η=7.8%. Sample prepared on NS ZrO2 electrode presents an 

appreciable efficiency of 4.2%. It is also interesting to point out that non negligible 

efficiency and photocurrent is obtained even for Flat device, as it has been already 

seen for other inorganic semiconductors14 but not for dyes,15 due to the high 

perovskite extinction coefficient. In Supplementary Figure S6 the results obtained 

in this work for NS and flat samples are compared with our previous report on all-

solid quantum dot sensitized solar cells of TiO2/Sb2S3/P3HT (ref. 14) in order to 

highlight the consistence of both results.  
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Figure 1: Solar Cell Performance. Current potential J-V curves of lead iodine 

perovskite with three different electrodes: FTO/Compact TiO2 (Flat), 

FTO/Compact TiO2/Nanoestructured TiO2 (NS TiO2) and FTO/Compact 

TiO2/Nanoestructured ZrO2 (NS ZrO2). Solar cell parameters and conversion 

efficiency are summarized in Table 1. 

Table 1: Solar Cell Parameters. Structure, material, thickness, area and solar cell 

parameters of the devices analyzed in Fig. 1. The solar cell parameters indicated 

are short circuit current, JSC, open circuit voltage, VOC, fill factor, FF, and 

photoconversion efficiency, η. 

Compact layer 
/nanostructured 

film 

Thickness 
nanostructured 

film 
(μm) 

Area 
(cm2) 

JSC 
(mA/cm2) 

VOC 
(mV) 

FF 
η 

(%) 

TiO2 / - 0 0.180 4.4 841 0.39 1.5 

TiO2 / ZrO2 0.36 0.195 12.0 899 0.39 4.2 

TiO2 / TiO2 0.55 0.195 18.1 903 0.48 7.8 

 

 The conduction band (CB) of CH3NH3PbI3 is situated at -3.93 eV vs. vacuum 

while TiO2 is situated around -4 eV as it has been determined by ultraviolet 
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photoelectron spectroscopy (UPS).5 Therefore photogenerated charge in 

CH3NH3PbI3 perovskite can potentially be injected into TiO2 as there exists an 

adequate band alignment. This is not the case for ZrO2 with a CB 0.82 eV higher 

than the CB of TiO2.16 ZrO2 is commonly used as control measurement for the 

characterization of sensitizers as no injection into ZrO2 is observed, in contrast 

with TiO2.17 In fact no photovoltaic performance was observed for samples 

prepared with compact ZrO2 layer instead of compact TiO2, as we have verified 

experimentally.  

 The electrical differences between TiO2 and ZrO2 electrodes have been 

investigated by three electrode electrochemical measurements using a liquid 

electrolyte. Liquid electrolytes are excellent contacts for nanostructured samples 

as liquid wets all the NS surface. Moreover, through the utilization of a redox 

couple the Fermi level at the solution can be fixed, and all the observed voltage 

drop is at the semiconductor electrode side. Fig. 2 shows the capacitance of 

different electrodes formed with a compact layer and a nanoporous layer of TiO2 

and ZrO2. It can be observed that the capacitance of bare FTO layer presents only a 

slight variation as function of the applied voltage, Vapp. Similar behaviour is 

observed for the electrode with ZrO2 compact layer (ZZ) and with nanoporous 

ZrO2 layer but no compact layer (0Z)). Thus, NS ZrO2 layers are not charged with 

the applied bias. Moreover, at high Vapp an exponential increase of capacitance is 

observed for the electrode with only TiO2 compact layer (T0), corresponding to the 

chemical capacitance of the compact TiO2.18,19 The increase of capacitance is higher 

for the electrode with also NS layer of TiO2 (TT) due to the higher TiO2 volume 

than T0 electrode. Contrary to ZrO2, TiO2 can be charged. The chemical capacitance 

pattern reflects the exponential TiO2 Density Of States (DOS). 18,19 As the Vapp is 



8 
 

increased, charge is accumulated in the TiO2 DOS while not in ZrO2. Only when TiO2 

compact layer is used with ZrO2 nonporous electrode (TZ) exponential increase of 

the chemical capacitance can be observed, corresponding to the chemical 

capacitance of TiO2 compact layer, as can be inferred from the results in Fig. 2. This 

analysis gives an additional proof that no charge is accumulated into ZrO2. In this 

case, ZrO2 is acting as scaffold for perovskite as Al2O3 in a previous reports.6,9  

Figure 2: Capacitance of non-sensitized electrodes. Capacitance has been 

extracted from IS measurements in liquid electrolyte with I-/I3- redox couple. 

Capacitance of bare conductive Sn2O:F (FTO) electrode is compared with 

electrodes with up to different layers of TiO2 and ZrO2. The electrodes are called 

using the notation XY, where X is a compact layer and Y a porous layer, T and Z 

mean TiO2 and ZrO2 layer respectively. 0 means no layer i.e. T0 compact TiO2 layer 

with no nanoporous layer. 

 

Impedance spectroscopy interpretation  

Just from J-V curves it is difficult to extract conclusions about the mechanism that 

determines the different behavior observed among the different electrodes 

analyzed. It is not straightforward, and many times impossible, to decouple the 
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effect on J-V curve of each part of the device, only with this characterization. 

Nevertheless Impedance Spectroscopy (IS) is a frequency characterization 

technique that allows to decouple physical processes with different characteristic 

times.19 Its interpretation is not trivial, but once the appropriate models are 

developed this technique allows separate characterization of each part of the full 

device at the cell working conditions. We have employed this method to analyze 

the prepared solar cells under dark and 1 sun illumination conditions. Here we 

have focused in the determination of charge accumulation, strictly needed for the 

photovoltaic process. The detailed analysis of all aspects of the impedance spectra, 

is beyond the scope of this communication. Nevertheless we have developed an 

advanced model that allows to extract all the relevant information from the 

impedance spectra, taking in consideration some previous results on DSSCs.20 All 

details on the IS model employed for the characterization of the measured samples 

can be found in Supplementary Note 1. 

 Fig. 3 shows an example of the Nyquist plots obtained for the analyzed cells. 

The results correspond to NS TiO2 and ZrO2 solar cell under dark and under 

illumination, both at Vapp =0 and 0.8 V. The first remarkable fact is that, in spite of 

the clear differences between TiO2 and ZrO2 electrodes, discussed previously as 

regard of Fig. 2, similar impedance patterns are obtained for both electrodes. It is 

also significant the apparition of a transmission line (TL) under dark and low Vapp 

conditions, characterized by a straight line followed by an arc, see Fig. 3a and 3b. 

TL is the classical feature obtained for nanostructured electrodes where transport 

is coupled with recombination,21 see Supplementary Figure S9. But in the case of 

NS TiO2 electrodes usually is not possible to observe it for very thin electrodes, as 

in the case of Fig. 3, see Table 1, and at least electrodes thicker than 2-3 µm are 
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needed to appreciate this feature. These two facts are indicating that new 

behaviors, in comparison with conventional sensitized solar cells, can be attributed 

to NS perovskite solar cells.  

 

Figure 3: Nyquist plots of lead iodine perovskite solar cells in TiO2 and ZrO2 

electrodes. Nyquist plot of solar cell prepared in the form FTO/Compact 

TiO2/Nanostructured Oxide/Perovskite/spiro-MeOTAD/Au. Left column 

correspond to the device using TiO2 as nanostructured oxide, while right column to 

device with ZrO2, shown in Fig. 1 and summarized in Table 1. (a) and (b) 

correspond to IS measurements under dark conditions transmission line behavior 

is clearly visible. The inset is a zoom of the low impedance region. (c) and (d) 

correspond to measurements under 1 sun illumination. Nyquist plots for two 

different applied DC signal, Vapp, are shown in the graphs. Solid lines are the fits 

obtained using equivalent circuits previously used for solid DSSC with spiro-

MeOTAD,22 and in some cases additional R-C feature to the TL for an accurate 

fitting, see Supplementary Figure S9. 
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The capacitance and the density of states  

The direct finger print of charge accumulation should be observed in the 

capacitance as chemical capacitance reflects the capability of a system to accept or 

release additional carriers due to a change in its Fermi level.18 The Nyquist plots in 

Fig. 3 present a rich impedance pattern with several features. It is not 

straightforward to determine in which part of IS spectra is contained the 

information about chemical capacitance, see Supplementary Note 1 for further 

discussions. IS spectra has been fitted using equivalent circuits previously used for 

solid DSSC with spiro-MeOTAD.22 The use of spiro-MeOTAD as HTM adds an extra 

degree of complexity in the analysis as it has been pointed out recently,23 and in 

some cases it introduces an additional R-C feature to the TL circuit. Focusing in the 

spectra under illumination conditions, Fig. 3c and d, three regions can be 

discriminated, at high, intermediate and low frequencies, called hereafter hf, if and 

lf, respectively. Taking into consideration these features, capacitance of different 

electrodes has been determined from if region, see Supplementary Note 1. 

 

Figure 4: Capacitance analysis of flat samples and NS samples with and 

without perovskite. Left graph plots capacitance of flat with perovskite (PS) and 

blank samples without PS, NS TiO2 and ZrO2 samples present NS layers of 0.35 µm 
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TiO2 and 0.39 µm ZrO2 respectively. Right graph plots the capacitance of NS TiO2 

and ZrO2 samples with perovskite of samples with different NS layer thickness as it 

is indicated in the legend. Capacitance obtained in measurements under dark and 

under 1 sun illumination (light) conditions are plotted. Capacitance for both 

graphs has been extracted by fitting the IS spectra from the if region as discussed 

in Supplementary Note 1. Capacitance has been normalized to the electrode 

volume. Red and green dashed lines and only eye guides to highlight the difference 

in capacitance obtained for samples with and without perovskite. 

 

 From the general knowledge of IS analysis of DSSC, it is well established 

that the compact layer generally used to cover the conducting glass, has a large 

effect on the capacitance, when the interface is polarized at reverse or moderate 

forward bias. It is therefore important to analyze such layer using the Flat samples 

in order to separately determine the capacitance contribution of NS layers which 

are the active photovoltaic layers. Fig. 4 shows the capacitance extracted from IS 

spectra fitting, for Flat and NS samples, with and without perovskite, for both TiO2 

and ZrO2 electrodes. The left graph includes Flat and blank NS samples (without 

perovskite) while right graph includes NS solar cells with perovskite. In the left 

graph of Fig. 4, two regions, independently of the NS film material, can be 

appreciated. One at low Vapp, Vapp <0.6-0.7 V, and the other one at high Vapp. For Flat 

sample at low Vapp the growth of capacitance with the voltage is moderate and in 

Fig. 4 it is appreciated as practically constant with the logarithmic scale employed 

in the representation, see red dashed line used as eye guide. At high Vapp an 

increase on the capacitance slope is observed. This exponential enhancement of 

capacitance can be attributed to the chemical capacitance of flat TiO2 compact 

layer, as it has been pointed out in Fig. 2 for T0 electrode with only TiO2 compact 

layer. Moreover, the less voltage dependent capacitance at low Vapp could be 
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related with the capacitance of the spiro-MeOTAD with some contribution from the 

interface capacitance at compact TiO2/spiro-MeOTAD.24 We consider that the role 

of perovskite in this capacitance is minor (just reducing the compact TiO2/spiro-

MeOTAD interface effective area) as the amount of perovskite involved is minimal. 

Confirming this aspect, it is observed a similar behavior for perovskite free (blank) 

NS samples independently of the NS layer material TiO2 or ZrO2. For blank NS 

samples an increase of capacitance at high Vapp is also observed, and it is more 

significant for NS TiO2 as in this case the chemical capacitance of the NS TiO2 layer 

also participates, as it has been discussed in Fig. 2. Note that with the experimental 

procedure reported in the Methods section for the preparation of CH3NH3PbI3 the 

amount of perovskite deposited in Flat sample is low and it is not enough to 

produce a distinguishable continuous thin layer of perovskite as can be observed 

in SEM pictures in Supplementary Figure S3. This fact prevented the investigation 

of the capacitance of thicker CH3NH3PbI3 layers. 

 In the case of complete NS devices with perovskite, right graph Fig. 4, a clear 

difference in the capacitance value is observed, obtaining higher capacitances for 

samples with perovskite than for blank samples, see red and green dashed lines in 

Fig. 4. It is worth to point out that the normalized capacitance is independent of the 

electrode material (TiO2 or ZrO2), the NS layer thickness and the illumination 

conditions at which the IS characterization was carried out (only NS ZrO2, 0.35 µm 

thickness, under dark separates from the general trend at low Vapp). This 

observation indicates that the capacitance, observed in this case, is neither the 

interfacial resistance at the compact TiO2 interface nor the spiro-MeOTAD nor the 

TiO2 (compact or NS) chemical capacitance, or at least not only the TiO2 chemical 

capacitance as similar behavior is observed in ZrO2 samples. The remaining 
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possibility is that this capacitance is originated by the perovskite deposited in the 

NS layer. Charge accumulation in perovskite material is directly observed. As 

chemical capacitance maps the DOS, the high perovskite capacitance indicates a 

high DOS density in this material. This is as far as we know the first observation of 

charge accumulation in the light absorbing material for nanostructured solar cells 

using a combination of absorber, ETM and HTM. This conclusion is supported also 

by the observation of a large capacitance in Flat sample with a thin film of 

perovskite, further described below.. 

 In order to highlight this new feature observed in NS perovskite solar cells, 

classical all-solid DSSC with dye N719 and spiro-MeOTAD as HTM has been 

prepared and characterized, see Supplementary Figures S10 and S11. 

The comparison of the capacitance observed for DSSC and the other 

samples (with NS TiO2 or ZrO2) analyzed here is displayed in Fig. 5. It is well 

known that the chemical capacitance extracted from DSSC is the chemical 

capacitance of the NS TiO2 layer.18,19,22 Chemical capacitance of DSSC, obtained 

from if region, represented with inverted triangles with red edge in Fig. 5 reflects 

the exponential DOS of TiO2. Note the significant difference between the chemical 

capacitance of DSSC and NS TiO2 perovskite solar cell (consider only the 

capacitance extracted at if region). Only at high Vapp both capacitances merge 

indicating a possible contribution of both materials, perovskite and NS TiO2, to the 

charge accumulation. In the case for NS ZrO2 samples with perovskite, the main 

contribution to the capacitance is from perovskite but a contribution of compact 

TiO2 cannot be ruled out at high Vapp. These results indicate that although 

sensitized solar cells and perovskite NS solar cells presents similar configuration 
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(when NS TiO2 electrode is used) the working principles are different with charge 

accumulation and transport in perovskite material exhibiting a very large DOS. 

Deep knowledge of these working principles of perovskite NS solar cells is 

mandatory for a further improvement of this new kind of devices. 

 

Figure 5: Capacitance analysis of TiO2 and ZrO2 and comparison with a solid 

DSSC using N719 dye. Left graph plots capacitance of: flat sample with perovskite 

(PS); blank NS TiO2 (0.35 µm thickness) with no PS; NS TiO2 (0.55 µm thickness) 

with PS extracted from measurement under dark and under 1 sun illumination 

(light) conditions; and all-solid DSSC (2.2 µm thickness) with N719 as dye and 

spiro-MeOTAD as HTM. Right graph plots capacitance offlat sample with 

perovskite (PS); blank NS ZrO2 (0.39 µm thickness) with no PS; NS TiO2 (0.36 µm 

thickness) with PS extracted from measurement under dark and under 1 sun 

illumination (light) conditions; and all-solid DSSC (2.2 µm thickness) with N719 as 

dye and spiro-MeOTAD as HTM. Capacitance has been normalized to the electrode 

volume. Capacitance for both graphs has been extracted by fitting the IS spectra 

from the if region if nothing else is indicated. In some cases capacitance has been 

extracted from the hf region as it is indicated in the legend. 
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Thin film solar cell 

Since the results reported so far in the literature indicate that the organometal 

halide perovskite may work both as light absorber and as ambipolar electron and 

hole transport material, it is of great interest to explore the operation of these 

materials in thin film solar cell configuration, in which a compact layer is 

sandwiched between selective contacts. It is important, therefore, to confirm that 

the distinctive large DOS observed in nanostructured samples is found as well in 

planar samples. We have commented above on very thin layers of CH3NH3PbI3 but 

the capacitance results were not conclusive. Therefore we have also prepared a 

Flat cell of CH3NH3PbI3-xClx following a processing method recently reported,8 

obtaining a Flat sample with a perovskite layer of 300 nm. The measurements of 

capacitance of such thin film configuration, described in Supplementary Note 2, 

indicate a large capacitance that doubtless corresponds to the perovskite layer, see 

Supplementary Figure S13, confirming our results above for nanostructured 

perovskite samples about the huge intrinsic DOS of this type of materials.  

Discussion 

In this Article we showed for the first time the charge accumulation in the light 

absorbing materials, CH3NH3PbI3 perovskite, in a nanostructured solar cell. High 

DOS has been observed for perovskite. This direct evidence has been observed by 

the capacitance extracted from IS measurements for both NS TiO2 or ZrO2 

electrodes, in spite of the large differences from the electrical point of view 

between these two materials. This study indicates that the analyzed solar cell 

constitutes a new kind of photovoltaic device halfway between sensitized and thin-

film solar cell for NS TiO2 and a thin-film solar cell with ZrO2 scaffold for NS ZrO2. 
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The optimization and further improvement of a new photovoltaic technology 

requires of a deep knowledge of the working principles of this photovoltaic device. 

Understanding how charge accumulation is reached and how it can be identified 

and characterized is an important step forward in this direction, with significant 

implications in the development of this technology.  

 

Methods 

Electrode preparation and characterization. The electrodes analyzed in this 

study include flat and nanoporous morphologies for TiO2 and ZrO2. The 

semiconductor compact layers (CL) were prepared by spin coating on Fluorine-

doped Tin Oxide (FTO) covered glass substrates (Pilkington TEC 15) a solution of 

M (IV) bis(ethyl acetoacetato)-diisopropoxide (M = Ti or Zr) 0.15 M in 1-butanol. 

The coated films were cooled down, and the spin–cast was repeated twice with a 

double concentrated precursor solution followed by a thermal treatment at 450 ºC. 

The thicknesses determined by Scanning Electron Microscopy were 100 nm and 

60 nm for TiO2 and ZrO2, respectively. Porous TiO2 film was prepared by doctor 

blade method using 20 nm sized paste prepared according to the method described 

elsewhere25 and sintering at 450 ºC for 30 min in air. Porous ZrO2 film was also 

prepared by doctor blade method using ZrO2 paste with a particle size of 15 nm25 

and sintered under the same condition with porous TiO2 film. The thicknesses of 

nanoporous films were  0.3-2 µm for solar cell characterization and 2-4 µm for 

electrode characterization. CH3NH3PbI3 perovskite precursor solution was 

prepared by mixing PbI2 (1.23 mmol, 99%, Aldrich) and CH3NH3I (1.23 mmol, 

synthesized) in γ-butyrolactone (1 mL, 99%, Fluka) producing 40 wt.% solution. 

The CH3NH3I was readily synthesized by reacting CH3NH2 (0.273 mol, 40% in 

methanol, TCI) with HI (0.227 mol, 57 wt.% in water, Aldrich) according to the 

method reported elsewhere.5,10 The perovskite precursor solution kept at 60 oC 

with stirring for 12 hr was deposited on the prepared flat or nanoporous TiO2 and 

ZrO2 films by spin-coating process, which was followed by heating at 100 oC for 15 

min. The perovskite-adsorbed films were covered with hole transport material 
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(HTM) using spin-coating method, where HTM solution is composed of 0.14 M 

2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9’-spirobifluorene (spiro-

MeOTAD, Merck), 64 mM bis(trifluoromethane)sulfonamide lithium salt (Li-TFSI, 

99.95%, Aldrich), and 0.198 M 4-tert-butylpyridine (tBP, 96%, Aldrich) in the 

mixture of chlorobenzene (99.8%, Aldrich) and acetonitrile (99.8%, Aldrich) with a 

volume ratio of 10:1. A 70 nm-thick Au (99.99%) layer as a counter electrode was 

evaporated on the top of the HTM overlayer under ca. 10-6 mbar. J-V characteristics 

of QDSCs were performed under 1 sun illumination (AM 1.5 G, 100 mWcm−2) with 

an ABET Sun 2000 solar simulator (1000W Xe source) and a Keithley 2400 source 

meter. Measurements were carried out without mask. This procedure 

overestimates the efficiency ~10%.26 Photoelectrochemical measurements were 

performed using a FRA-equipped PGSTAT-30 from Autolab. A three electrode 

configuration was used where a Pt wire was connected as counterelectrode and 

Ag/Ag+ non-aqueous as reference electrode. Anhydrous and degassed acetonitrile 

with redox iodide/triiodide (0.5 M LiI, 0.05 M I2) was used as electrolyte. Cyclic 

voltametries were recorded at a scan rate of 50 mV/s and impedance 

characterization was performed at forward bias, applying a 20mV AC sinusoidal 

signal over the constant applied bias with the frequency ranging between 400 kHz 

and 0.1 Hz. 
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