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Abstract. This paper introduces a new metric, named Index of Balanced Ac-
curacy, for evaluating learning processes in two-class imbalanced domains. The
method combines an unbiased index of its overall accuracy and a measure about
how dominant is the class with the highest individual accuracy rate. Some theoret-
ical examples are conducted to illustrate the benefits of the new metric over other
well-known performance measures. Finally, a number of experiments demon-
strate the consistency and validity of the evaluation method here proposed.

1 Introduction

Many learning approaches assume that the problem classes share similar prior proba-
bilities. However, in many real-world tasks this assumption is grossly violated. Often,
the ratios of prior probabilities between classes are significantly skewed. This situation
is known as the imbalance problem. A two-class data set is said to be imbalanced when
one of the classes (the minority one) is heavily under-represented as regards the other
class (the majority one) [6]. This topic is particularly important in those applications
where it is costly to misclassify examples from the minority class. Because of examples
of the minority and majority classes usually represent the presence and absence of rare
cases, respectively, they are also known as positive and negative examples.

As pointed out by many authors, the performance of a classification process over
imbalanced data sets should not be expressed in terms of the plain accuracy and/or
error rates [2—4, 8, 9]. The use of these simple measures might produce misleading
conclusions since they do not take into account misclassification costs, are strongly
biased to favor the majority class, and are sensitive to class skews.

Alternative measures have been proposed to evaluate classifiers in imbalanced sce-
narios. Some widely-known examples are Receiver Operating Characteristic (ROC)
curve, the area under the ROC curve (AUC) [1], the geometric mean of class accu-
racies [7] and the f-measure [3]. Another measure, less renowned but possibly more
powerful than those previously cited, refers to the optimized precision [9]. All these
measures are combinations of error/accuracy rates measured separately on each class,
thus alleviating biased results of the classification performance. Nevertheless, most of
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these measures do not consider how dominant is the accuracy on an individual class
over another. Hence their results do not reflect the contribution of each class to the over-
all performance. In some cases, it could be interesting (and complementary) to know
whether the accuracies on each class are balanced and if not, to find out which is the
’dominant class’ (the class with the highest accuracy rate).

This paper introduces a new method to evaluate the performance of a classification
system in two-class imbalanced data sets. It quantifies a trade-off between an unbiased
measure of overall accuracy and an index of how balanced are the two class accura-
cies. This relationship is represented by means of a two-dimensional graph whose axes
correspond to the square of the geometric mean of class accuracies and the signed dif-
ference between the accuracies on positive and negative classes. The second term is
intended to favor those cases with higher accuracy rate on the positive class. Some il-
lustrative examples are simulated to better explain the differences between the measure
here proposed and other well-known metrics. Final experiments on real-world prob-
lems are designed to demonstrate the consistency and validity of the new performance
evaluation method here introduced.

2 Evaluation of Classifier Performance in Imbalanced Domains

Typical metrics for measuring the performance of learning systems are classification
accuracy and/or error rates, which for a two-class problem can be easily derived from
a 2 x 2 confusion matrix as that given in Table 1. These measures can be computed as
Acc=(TP+TN)/(TP+FN+TN+FP)and Err = (FP+FN)/(TP+FN +
TN + FP).

However, empirical evidence shows that these measures are biased with respect to
the data imbalance and proportions of correct and incorrect classifications. Shortcom-
ings of these evaluators have motivated search for new measures.

Table 1. Confusion matrix for a two-class problem

Predicted positive  Predicted negative

Positive class  True Positive (TP)  False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Some straightforward examples of alternative measures are: (i) True positive rate
(also referred to as recall or sensitivity) is the percentage of positive examples which
are correctly classified, T Prate = TP/(TP + FN); (ii) True negative rate (or speci-
ficity) is the percentage of negative examples which are correctly classified, T Nrate =
TN/(TN + FP); (iii) False positive rate is the percentage of negative examples which
are misclassified, F Prate = FP/(TN + F P); (iv) False negative rate is the percent-
age of positive examples which are misclassified, F Nrate = FN/(TP + FN); (v)
Precision (or purity) is defined as the percentage of samples which are correctly labeled
as positive, Precision = TP/(TP + FP).



One of the most widely-used techniques for the evaluation of classifiers in imbal-
anced domains is the ROC curve, which is a tool for visualizing, organizing and select-
ing classifiers based on their trade-offs between benefits (true positives) and costs (false
positives). Furthermore, a quantitative representation of a ROC curve is the area under
it, which is known as AUC [1, 5]. When only one run is available from a classifier, its
AUC can be computed as AUC = (T'Prate + T Nrate)/2 [10].

Kubat et al. [7] use the geometric mean of accuracies measured separately on each
class, Gmean = /T Prate - T Nrate. This measure is associated to a point on the
ROC curve, and the idea is to maximize the accuracies of both classes while keeping
them balanced.

Both AUC and Gmean minimize the negative influence of skewed distributions of
classes, but they do not distinguish the contribution of each class to the overall per-
formance, nor which is the prevalent class. This means that different combinations
of TPrate and TNrate produce the same value of the corresponding metric (AUC or
Gmean).

More recently, Ranawana and Palade [9] proposed a new measure called optimized
precision which is computed as OP = Acc — (|T Nrate — T Prate|/(T Nrate +
T Prate)). This represents the difference between the global accuracy and a second
term that computes how balanced the two class accuracies are. High OP performances
require high global accuracies and balanced class accuracies. Nevertheless, it has to
be pointed out that it can be strongly affected by the biased influence of the global
accuracy.

3 The New Performance Evaluation Method

This section introduces a new measure, named Index of Balanced Accuracy (IBA),
whose expression results from the computation of the area of a rectangular region in
a two-dimensional space here called Balanced Accuracy Graph. This space is defined
by the product of the accuracies on each class (Gmean?), which is a suitable measure
of the overall accuracy in imbalanced domains, and by a new simple index here intro-
duced, the Dominance, which measures how prevalent is the dominant class rate with
respect to the other. A final simulated example illustrates the benefits of the IBA with
respect to some well-known classifier performance metrics.

3.1 The Dominance Index

As previously pointed out, AUC and Gmean are unable to explain the contribution
of each class to the overall performances, giving the same result for many different
combinations of (T Prate, T Nrate).

A new simple index called Dominance is here proposed for evaluating the rela-
tionship between the TPrate and TNrate. The expected role of this index is to inform
about which is the dominant class and how significant is its dominance relationship.
The Dominance can be computed as follows:

Dominance = T Prate — T Nrate (D)



This measure can take on any value between —1 and +1, since both the TPrate and
the TNrate are in the range [0, +1]. A Dominance value of +1 represents a situation
of perfect accuracy on the positive class, but failing on all negative cases; a value of
—1 corresponds to the opposite situation. The closer the Dominance is to 0, the more
balanced both individual rates are. In practice, the Dominance can be interpreted as an
indicator of how balanced the TPrate and the TNrate are.

3.2 The Balanced Accuracy Graph

In order to take advantage of the good properties of the Gmean and the Dominance
and to avoid their shortcomings, this section introduces the Balanced Accuracy Graph
(BAG) as a tool to visualize and measure the behavior of a classifier from the joint
perspective of global accuracy and Dominance. With the aim of simplicity, Gmean? is
used instead of Gmean.
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Fig. 1. The balanced accuracy graph. The plot represents the optimal point (Dominance = 0
and Gmean? = 1), producing the maximum area

Fig. 1 illustrates the BAG as a two-dimensional coordinate system where the X
axis corresponds to Dominance and the Gmean? is plotted on the Y axis. The BAG
depicts relative trade-offs between Dominance and Gmean?. The performance of a
classifier measured as a pair (Dominance, Gmean?) corresponds to a single point
in this graph. The upper central point (0,+1) represents a perfect classifier where
TPrate = TNrate = 1, while points (—1,0) and (+1,0) match with the useless
cases of T'Prate = 0,T Nrate = 1 and T Prate = 1,T Nrate = 0, respectively.

The upper left (—1,41) and upper right (+1, +1) points correspond to "unfeasible
cases’ because when Dominance is —1 or +1, one of the two class rates is 0 what makes
impossible for the Gmean to achieve values greater than 0. Actually, there is an infinite
number of points in the BAG which represents unfeasible cases.

3.3 Index of Balanced Accuracy

Given a point (d, ¢g) in a BAG, it would be interesting to quantify the trade-off between
Dominance and Gmean? represented by that point. To this end, we propose to use the
rectangular area whose vertices are at points (—1,0), (=1, 9), (d,g) and (d,0) (see
Fig. 1 for the case with d = 0 and g = 1). The area of such a rectangle is here named
Index of Balanced Accuracy (IBA), which can be formalized as:



IBA = (1 + Dominance) - Gmean® 2)

When substituting Dominance and Gmean?, the resulting function provides useful
details for a better understanding about how IBA supports the trade-off. Besides, we
add 0 < o < 1 to weight the value of Dominance. Significant effects are obtained for
a < 0.5. However, note that if o = 0, the IBA turns into the Gmean?.

IBA, = (1+«- (T'Prate — TNrate)) - T Prate - T Nrate 3)

The IBA can take on any value between 0 and +1, which is the area of the greatest
possible rectangle, that is, the one corresponding to a point with Dominance= 0 and
Gmean? = 1 (optimal classification). Fig. 2 illustrates the surface of the IBA (with o =
1) as a function of TPrate and TNrate, showing that its maximum is +1 and that it occurs
for TPrate = T Nrate = 1. These facts can also be demonstrated by analytically
optimizing the mathematical expression of IBA (Eq. 3).
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Fig. 2. The IBA function (« = 1)

3.4 A Theoretical Example

Finally, a theoretical example is designed to clear up the benefits/advantages of the IBA
with respect to other well-known metrics for classifier evaluation.

Let f(0) be a classifier that depends on a set of parameters §. Suppose that 6 should
be optimized so that f(6) can discriminate between the two classes of a particular im-
balanced problem (with a ratio 1:10). Let 7" and V' be the training and validation sets,
respectively. During learning, four possible configurations (6;, 62, 03, 64) have been
obtained from T, and then the corresponding classifiers f(6;) have been run over V.
Table 2 reports the results of several performance measures used to evaluate each partic-
ular classifier f(6;). The last step in learning should be to pick up the best configuration
0* according to the performance measure adopted.

First of all, note that configurations #; and 6, correspond to cases with a clearly bi-
ased behavior, whereas 05 and 03 produce less differences between TPrate and TNrate.
Both accuracy and AUC would select one of those biased 6; and 6. In the case of accu-
racy, this is because it strongly depends on the majority class rate. The geometric mean
and OP suggest one of the moderate configurations 65 and 63, ignoring the fact that
the minority class is usually the most important. While the former does not distinguish
between them, OP would prefer 6, rather than 65 because its computation is affected



Table 2. Several performance measures for the theoretical example (highlighted are the best re-
sults for each metric)

TPrate TNrate Acc Gmean AUC OP IBA; IBAgs IBAg1
61 0550 0950 0914 0.723 0.750 0.647 0314 0418 0.502
f2 0680 0810 0.798 0.742 0.745 0.711 0.479 0515 0.544
fs 0810 0.680 0.692 0.742 0.745 0.605 0.622 0.587 0.558
#s 0950 0550 0.586 0.723 0.750 0.320 0.732 0.627 0.543

by the accuracy. These drawbacks can be overcome when using the IBA measure by
appropriately tuning the parameter o (see Eq. 3). One can see that IBAg ; selects 63,
which corresponds to the moderate case with the highest TPrate.

4 Experiments

In this section we present an experiment with the aim of validating usefulness and
consistency of the IBA measure. To this end, we will compare IBA with a number
of representative metrics: accuracy, geometric mean, AUC, and optimized precision.
The experiment is carried out on 17 real data sets taken from the UCI Machine Learn-
ing Database Repository (http://archive.ics.uci.edu/ml/) and a private li-
brary (http://www.vision.uji.es/~sanchez/Databases/). All data sets were
transformed into two-class problems by keeping one original class and joining the ob-
jects of the remaining classes. From these databases, here we have included the results
of the four cases representing the most diversity of situations. The majority/minority
ratio for each of these databases is: Breast (2.42), Glass (11.59), Satimage (9.28),
and Laryngeal-2 (12.06). The results for the rest of databases are available at (http:
//www.vision.uji.es/~sanchez/Results).

For each database, we have estimated the performance measures mentioned above
by repeating 5 times a 10—fold cross—validation when using different classifiers: the
nearest neighbor (1-NN) rule, a multi-layer perceptron (MLP), a support vector classi-
fier (SVC), the naive Bayes classifier (NBC), a decision tree (J48), and a radial basis
function network (RBF).

4.1 The Results

For each database, the six classifiers have been used and their results (TPrate and
TNrate) have been evaluated in terms of the five performance metrics. From this, each
measure will suggest the best classifier. Our study will consist of judging the decision
inferred from each measure with the aim of remarking the merits of IBA when com-
pared to other metrics.

From results in Table 3, some preliminary conclusions can be drawn. In general, as
expected, accuracy appears ineffective in imbalanced domains. IBA usually chooses the
classifier with the highest TPrate, demonstrating to be robust as regards to the param-
eter o. The rest of measures are usually affected by high TNrates, thus undervaluing



the relevance of TPrate. Focusing on each particular database, some comments can be
remarked:

Breast: 1NN and NBC provide similar results in terms of TPrate and TNrate. How-
ever, OP and IBA suggest INN because its performances on both classes are more
balanced. In contrast, the other measures select NBC, where the overall error is
lower due to a greater bias to the majority class.

Glass: IBA prefers NBC because the TPrate is clearly the best and even it is higher than
the TNrate. Gmean, AUC and OP choose J48 because they are strongly affected by
the overall error, despite the low performance on the minority class makes this
classifier useless.

Satimage: This is a straightforward case, in which all measures (except accuracy) give
NBC as the best classifier. Both TPrate and TNrate are high enough and they are
sufficiently balanced.

Laryngeal-2: Gmean, AUC and IBA select NBC, which seems to be the classifier with
the best performance. The fact that OP prefers MLP is because it depends on the
overall accuracy (here particularly affected by a significant imbalance ratio).

5 Conclusions and Further Extensions

In this paper, we have introduced a new method to evaluate the performance of classi-
fication systems in two-class problems with skewed data distributions. It is defined as a
trade-off between a global performance measure (Gmean?) and a new proposed signed
index to reflect how balanced are the individual accuracies (Dominance). High values
of the new measure IBA are obtained when the accuracies of both classes are high and
balanced. Unlike most metrics, the IBA function does not take care of the overall ac-
curacy only, but also intends to favor classifiers with better results on the positive class
(generally the most important class). The most closely related measure to IBA is the
optimized precision, although this is biased to the majority class.

Theoretical and empirical studies have shown the robustness and advantages of IBA
with respect to some other well-known performance measures. Future work will pri-
marily be addressed to extend the combination of Dominance with other global metrics
especially useful for certain real-world applications. Also, this kind of performance
evaluation methods could be designed to include misclassification costs.
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