
Quaternion Neuro-Fuzzy Learning Algorithm for Fuzzy Rule Generation

Ryusuke Hata
Graduate School of Engineering

University of Fukui
Fukui, Japan

hata.r.1324@gmail.com

Md. Monirul Islam
Department of Computer
Science and Engineering
Bangladesh University of

Engineering and Technology
Dhaka, Bangladesh

Kazuyuki Murase
Graduate School of Engineering

University of Fukui
Fukui, Japan

murase@u-fukui.ac.jp

Abstract—In order to generate or tune fuzzy rules, Neuro-
Fuzzy learning algorithms with Gaussian type membership
functions based on gradient-descent method are well known.
In this paper, we propose a new learning approach, the
Quaternion Neuro-Fuzzy learning algorithm. This method is
an extension of the conventional method to four-dimensional
space by using a quaternion neural network that maps
quaternion to real values. Input, antecedent membership
functions and consequent singletons are quaternion, and
output is real. Four-dimensional input can be better
represented by quaternion than by real values. We compared
it with the conventional method by several function
identification problems, and revealed that the proposed
method outperformed the counterpart: The number of rules
was reduced to 5 from 625, the number of epochs by one
fortieth, and error by one tenth in the best cases.

Keywords-neuro-fuzzy; quaternion neural networks; fuzzy;
neural networks

I. INTRODUCTION

In the field of fuzzy control, the practical applications of
fuzzy inference have increased, and generations of fuzzy
rules have become important. These include tuning of
membership functions and rules. However, when a fuzzy
system model is designed, it is sometimes too hard or
impossible for human beings to give the desired fuzzy rules,
due to the ambiguity, uncertainty or complexity of the
identifying system. Many methods have been constructed
by combining fuzzy systems and neural networks to
generate or tune fuzzy rules of fuzzy system models [1].
These methods, called Neuro-Fuzzy learning algorithms
(NFs), recently have been successfully applied to, e.g.
control system and system identification. Further, a variety
of system structures and learning algorithms are available
for NFs.

In this paper, we use a method of tuning fuzzy rules and
its parameters by back propagation learning algorithm of
neural networks [1]. Such NFs, whose antecedent
membership function is fixed for each fuzzy inference rule
under the simplified fuzzy inference method, can generate
fuzzy rules by automatic tuning of its parameters and the
consequent singleton values based on a gradient-descent
method. However, if we use multi-input for this method, the

number of parameter of antecedent membership functions
increase rapidly with increasing the number of fuzzy
inference rules. For this reason, it takes a long period of
time for learning and the learning accuracy may deteriorate
[2].

We focused on Quaternion Back Propagation (QBP) [3]
of Quaternion Neural Networks (QNNs). QNN is an
extension of Real-valued Neural Networks (RVNNs) and
has better learning ability than RVNNs [3]. Further, QNN
has been applied to time series prediction, rigid control and
color night vision [4].

In this paper, we propose the Quaternion Neuro-Fuzzy
learning algorithm (QNF). It extends the antecedent
membership function and the consequent singleton of the
conventional method to four-dimensional space and
generates real-valued output for quaternion inputs. Further,
we compared it with the conventional method by several
function identification problems, and show the superiority.

II. NF AND QNF

III. Conventional NF
In the conventional NF, if the inputs are xi (i = 1, 2, , n)

and the output is Y, then fuzzy inference rules of the
simplified fuzzy inference are shown below:

Rule 1: If x1 is M11 and x2 is M12 … xn is M1n

Then Y is W1

Rule 2: If x1 is M21 and x2 is M22 … xn is M2n

Then Y is W2

…

Rule m: If x1 is Mm1 and x2 is Mm2 … xn is Mmn

Then Y is Wm
�����������������

where Wj (j=1, 2, , m) are real value of the consequent
singleton.

The antecedent membership functions Mji (j = 1, 2, , m;
i = 1, 2, , n) are given by Gaussian function as,

2013 Second International Conference on Robot, Vision and Signal Processing

978-1-4799-3184-2/13 $31.00 © 2013 IEEE

DOI 10.1109/RVSP.2013.22

61

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Community Repository of Fukui

https://core.ac.uk/display/61366303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

���(��) = ��� �− 	�� −
���� ��� � � � � � � � � � � � � � � � � � � ��

The inference result Y is as follows. First, the grade of the
antecedent is given by

�� = ∏ ���(��)���� � � � (j = 1 , 2 , … , m) � � � � � � � ��

Then, the inference result Y is calculated by the following
gravity method.

� = ∑ ��������
∑ ������

 ��

The error function to be minimized during the training is
given by

� = �
� (� − �)� = �

� �� 	 ��

where T is the desired output. During the training, each
parameter ��,
��, �� is updated by,

∆�� = −" #$
#��

= −" #$
#%

#%
#��

� = −"� ��
∑ �&�&��

� � � � � � � � �
 ��

∆
�� = −' #$
#*�+

= −' #$
#%

#%
#��

#��
#-�+

#-�+
#*�+

��

= −2'���
��.%

∑ �&�&��
/+.*�+

0�+
� ��

∆�� = −1 #$
#0�+

= −1 #$
#%

#%
#��

#��
#-�+

#-�+
#0�+

��

= −1���
��.%

∑ �&�&��
	/+.*�+�3

0�+3 ��

where ", '
45 1 are the learning rate.

We can perform the learning process by giving the initial
value to each parameter and by using Eq. (6) – (8).

IV. The QNF

In the learning algorithm we propose that each parameter
is extended to a quaternion, and is given by the following
flow.

Fuzzy inference rules are shown below:
Rule 1: If X1 is M11 and X2 is M12 … Xn is M1n

Then Y is W1

Rule 2: If X1 is M21 and X2 is M22 … Xn is M2n

Then Y is W2

…

Rule m: If X1 is Mm1 and X2 is Mm2 … Xn is Mmn

Then Y is Wm
� � � � � ��

where, the variables except Y are quaternion, Y is the real-
valued output. 6� = ��� + 8��9 + :��

; + <��> is the quaternion
input. ��� = ���� + 8���9 + :���

; + <���> is the quaternion

membership function. �� = ��� + 8��9 + :��
; + <��> is

the quaternion singleton. Here, marks R, I, J and K denote
one real and three imaginary parts of quaternion (same as
above). Further, i, j and k in front of the variables represent
imaginary numbers, and 8 = : = < = √−1. The antecedent
membership functions are given by

���A(��A) = ��� B− 	��A −
��A�� ��A� C ��

where, marks R, I, J and K are given to mark A (same as
above). This means that Gaussian function is given to the
real and imaginary parts of the antecedent membership
functions. The inference result Y is calculated as follows.
First, the grade of the real and imaginary parts of the
antecedent is given by

��A = ∏ ���A(��A)���� ��

Second, the quaternion inference result D = D� + 8D9 +
:D; + <D> is calculated by the gravity method.

D = ∑ B���EF���GF���
HFI��J����EF���GF���

HFI��J�C����
∑ ���EF���GF���

HFI��J�����
���������

�����

Finally, the real-valued inference result Y is calculated as
follows:

� = KL→�(D) �����

KL→�(D) = (D� − D9)� + (D; − D>)� ���� �� � �� ��� ���� �� �����

where Eq. (14) is the activation function that we have newly
developed. It is similar to the one used for complex-valued
neural networks [5]. By this activation function, we are able
to get the real-valued inference result Y.

The error function is the same as Eq. (5). During the
training, each parameter is updated by,

∆�� = −" #$
#��E

− 8" #$
#��G

− :" #$
#��

H − <" #$
#��J

� � � � � � � � � � � � ��	��

∆
�� = −' #$
#*�+E − 8' #$

#*�+G − :' #$
#*�+

H − <' #$
#*�+J � � � � � � � � � � � � � � ��
��

∆�� = −1 #$
#0�+E − 81 #$

#0�+G − :1 #$
#0�+

H − <1 #$
#0�+J � � � � � � � � � � � � � � � �����

where ", '
45 1 are the learning rate. Since Eq. (15) –
(17) are not available directly, we need to expand each
equation as follows (here, we present only the real part of
each parameter).

#$
#��E

= #$
#% N #%

#OE
#OE
#��E

+ #%
#OG

#OG
#��E

+ #%
#OH

#OH
#��E

+ #%
#OJ

#OJ
#��E

P � � � � �� ��

#$
#*�+E = #$

#%
#��E

#-�+E
#-�+E

#*�+E N #%
#OE

#OE
#��E

+ #%
#OG

#OG
#��E

+ #%
#OH

#OH
#��E

+ #%
#OJ

#OJ
#��E

P ��

����

62

#$
#0�+E = #$

#%
#��E

#-�+E
#-�+E

#0�+E N #%
#OE

#OE
#��E

+ #%
#OG

#OG
#��E

+ #%
#OH

#OH
#��E

+ #%
#OJ

#OJ
#��E

P ��

�����

Then, each partial differential of Eq. (18) – (20) is
determined as follows.
#$
#% = ��

#%
#OE = 2(ZQ − ZR) (2 2)

#%
#OG = −2(ZQ − ZR) (2 3)

#%
#OH = 2(ZS − ZT) (2 4)

#%
#OJ = −2(ZS − ZT) (2 5)

#O
#��E

= ���EF���GF���
HFI��J�	∑ �&∗�&�� �

	∑ �&E�&�� �3F	∑ �&G�&�� �3F�∑ �&
H�&�� �3F	∑ �&J�&�� �3 (2 6)

#O
#��E

= ���EF���GF���
HFI��J�	∑ �&∗�&�� �F	∑ �&�&�&�� �.���EO

	∑ �&E�&�� �3F	∑ �&G�&�� �3F�∑ �&
H�&�� �3F	∑ �&J�&�� �3 (2 7)

#��E

#-�+E = ��E

-�+E ��

#-�+E

#*�+E = 2���� 	��� −
���� ���� ��

#-�+E

#0�+E = −���� 	��� −
����� 	������ ��

Where, �I∗ denotes the quaternion conjugate of �I.

As same as the conventional method, we can perform the
learning process by giving the initial value to each

parameter and using Eq. (15) – (17).

V. SIMULATION RESULTS

In the previous section, we proposed the QNF to get
fuzzy rules, and presented its learning algorithm under
Gaussian type membership functions. In this section, we
compare it with the conventional method by several
function identification problems, and show that the
proposed method is a useful tool for learning a fuzzy system
model.

Function Identifications
We take the following two nonlinear functions with four

inputs and one output. Eq. (31) and (32) are quoted from a
literature [6].

Function 1:

V = 	�/�FW/33FX.��3

[W.W� + B	\]^_^F�]`a_a�`b.c.X.X[[C
W.de � � � � � � � � � ��

Function 2:

V = 	�/�FW/33FX.��3

\[.�� ∙ W ghi(j/^)F� klg(j/a)Fd
�� � � � � � � � � � � � � � ��

Where, ��, ��, �\, �W ∈ [−1, 1] are the input variables, and
V ∈ [0, 1] is the output variable.

Then, using these two functions, we compare the new
method with the conventional method about the epoch and
the evaluation error when the number of rules is the same.

Tables 1 and 2 are the initial values of each parameter of
each method. In two functions, for initialization, we divided
each antecedent input space in five by Gaussian type
membership functions. Accordingly, the conventional
method, the number of fuzzy rule is twenty five. However,
in the new method, we give x1, x2, x3 and x4 to one real and
three imaginary parts of one input. Note that, in terms of the
number of the fuzzy rules, the new method (5 rules) is
smaller than the conventional method (625 rules).

Table 1. NF Table 2. QNF

In Eq. (33), Eall is the fuzzy inference error for the

training set. Then, we applied both methods to Functions 1
and 2, and tuned the fuzzy rules until Eall becomes smaller
than the threshold δ. The results are shown in Tables 3 and
4. Results shown are the average of 20 trials. In these
Tables,

�*qq = �
�r ∑ (�s − �s)�rs�� ��

where Yd is the fuzzy inference, Td is the desired output, and
N is the number of training set.

In Tables 1 and 2, the training set is given by

Equivalent-81

��, ��, �\, �W ∈ {−0.9, 0, 0.9} ���

Equivalent-625

��, ��, �\, �W ∈ {−0.9, −0.5, 0, 0.5, 0.9} � � � � � � � � � � � � � 	 ��
Table 3. NF vs. QNF for Function 1

The evaluation error is given as follows. First, we
perform learning each fuzzy rule by the conventional
method and the new method. Second, we input 14641
evaluation data (��, ��, �\, �W) (where these ranges of x1, x2,
x3 and x4 are increments of 0.2 from -1 to 1) for Functions 1
and 2 to each learned fuzzy rule. Finally, we get the mean

(-1, 0.12) 0.5

(-0.5, 0.12) 0.5
(0, 0.12) 0.5

(0.5, 0.12) 0.5
(1, 0.12) 0.5

Mji Wj

(-1, 0.12) (0.6, 0.5, 0.4, 0.3)
(-0.5, 0.12) (0.6, 0.5, 0.4, 0.3)

(0, 0.12) (0.6, 0.5, 0.4, 0.3)
(0.5, 0.12) (0.6, 0.5, 0.4, 0.3)

(1, 0.12) (0.6, 0.5, 0.4, 0.3)

� �K
j

J
j

I
j

R
j WWWW ,,,A

jiM

Function 1
Number of data δ No.

NF QNF NF QNF NF QNF NF QNF
5150 227 0.0229 0.0044 0.00007 0.00017 0.4811 0.6225
5221 173 0.0259 0.0036 0.00008 0.00030 0.4889 0.3235

Equivalent-81 0.003 4709 287 0.0331 0.0030 0.00007 0.00006 0.4338 0.3183
8709 197 0.0058 0.0035 0.00004 0.00009 0.4402 0.4945
8963 215 0.0056 0.0032 0.00003 0.00010 0.4388 0.4682

Equivalent-625 0.003 9941 185 0.0032 0.0035 0.00003 0.00010 0.3626 0.4744

Epoch Evaluation Standard deviation Max. absolute error

Random-81 0.003

Random-625 0.003

NF: α=0.1, β=0.01, γ=0.01, QNF: α=0.1, β=0.01, γ=0.01

63

squared error between its output and the desired output for
Functions 1 and 2. This is the evaluation error.

Table 4. NF vs. QNF for Function 2

The evaluation error is given as follows. First, we
perform learning each fuzzy rule by the conventional
method and the new method. Second, we input 14641
evaluation data (��, ��, �\, �W) (where these ranges of x1, x2,
x3 and x4 are increments of 0.2 from -1 to 1) for Functions 1
and 2 to each learned fuzzy rule. Finally, we get the mean
squared error between its output and the desired output for
Functions 1 and 2. This is the evaluation error.

As an example, using the random data 2 in Table 4, we
generated each fuzzy rule for the conventional method and
the new method. Fig. 1 (a) and (b) are each result of the
fuzzy inference for 14641 evaluation data. Fig. 2 (c) is the
desired output of Function 2. Further, Fig. 2 (a) and (b)
shows the absolute error between each result of the fuzzy
inference and the desired output.

Fig. 1. Desired output and fuzzy inference for Function 2: (a) NF. (b) QNF.
(c) Desired output for Function 2.

From Fig. 1 and 2, compared with the new method, the
conventional method could not learn enough as a whole.
Further, the new method could fit to such random training
sets.

Fig. 2. Absolute error between desired output and fuzzy inference for
Function 2: (a) NF. (b) QNF.

VI. DISCUSSION

By the analysis of the results shown in Tables 3 and 4,
Fig. 1 and 2, we can describe as follows.

(1) The number of rules was drastically reduced from 625
to 5. And also, the number of epochs to converge was
around one twentieth. We used a simple activation function,
other types of activation functions need to be tested.

(2) In terms of the evaluation error, we found that the
new method is much better than the conventional method
for two functions. In particular, the evaluation error for
random training sets showed good result for all functions.
Thus, we can say that although the freedom of parameters is
limited, the new method could fit for training sets well.

(3) In terms of the maximum absolute error, for both
Functions 1 and 2, the conventional method showed slightly
better results than the new method. We consider that this is
because of the overfitting of the new method. However,
from Fig. 2, we found that the new method, overall error is
smaller than the conventional method.

From the above results of the simulation, we can
conclude that the new method has equivalent to or better
accuracy than the conventional method. Furthermore, the
new method has a feature that while the parameters have
less flexibility, it can fit for training sets well. Therefore, we
can say that the new method is a useful tool for learning the
fuzzy system model.

VII. SUMMARY

In this paper, we proposed the new method extending the
conventional method to the four-dimensional space for
tuning fuzzy rules. Then, we gave the general formulas for
this algorithm under Gaussian type membership functions.
Finally, in several function identification problems, we

Function 2
Number of data δ No.

NF QNF NF QNF NF QNF NF QNF
5488 208 0.0332 0.0040 0.00009 0.00025 0.5623 0.5794
5899 322 0.0350 0.0028 0.00009 0.00013 0.4918 0.5045

Equivalent-81 0.003 5014 160 0.0459 0.0053 0.00008 0.00025 0.4830 0.6485
11275 347 0.0065 0.0026 0.00006 0.00011 0.4169 0.4776
10791 305 0.0071 0.0032 0.00006 0.00009 0.4144 0.6141

Equivalent-625 0.003 11335 232 0.0033 0.0038 0.00002 0.00005 0.4136 0.6647

Epoch Evaluation Standard deviation Max. absolute error

Random-81 0.003

Random-625 0.003

NF: α=0.1, β=0.01, γ=0.01, QNF: α=0.1, β=0.01, γ=0.01

64

showed that the new method outperforms the conventional
approach for learning a fuzzy system model.

In the future, we like to show the effectiveness of the
proposed method in the subject that can be represented by
quaternion such as 3D-image and time series data.
Furthermore, when we extend our algorithm for
multivariate input, we consider proposing the hierarchical
algorithm so as to suppress the increase of the number of
the fuzzy rules, beside the use of hyper-complex numbers.

ACKNOWLEDGEMENTS

Supported by grants to KM from the Japanese Society for
Promotion of Sciences and the University of Fukui.

REFERENCES

[1] Ichihashi, H.: Iterative fuzzy modeling and a hierarchical network. In:
Proceedings of the Fourth IFSA Congress, Vol. Engineering, Brussels
(1991) 49-52

[2] Shi, Y., Mizumoto, M., Yubazaki, N., & Otani, M.: A method of
fuzzy rules generation based on neuro-fuzzy learning algorithm. J. Jpn
Soc. Fuzzy Theory Systems, 8 (4) (1996) 695–705

[3] Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., & Nishimura, H.:
Quaternion neural network with geometrical operators. Journal of
Intelligent and Fuzzy Systems, 15 (3) (2004) 149-164

[4] Kusamichi, H., Isokawa, T., Matsui, N., Ogawa, Y., & Maeda, K.: A
new scheme for color night vision by quaternion neural network. In 2nd
International Conference on Autonomous robots & agents (2004)

[5] Amin, M. F., Murase, K.: Single-layered complex-valued neural
network for real-valued classification problems. Neurocomputing 72 (4)
(2009) 945-955

[6] Yubazaki, N., Yi, J. & Hirota, K.: A Proposal of SIRMs (Single Input
Rule Modules) Connected Fuzzy Inference Model for Plural Input Fuzzy
Control. J. Jpn Soc. Fuzzy Theory Systems, 9 (5) (1997) 699-709

65

