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   Characteristics of the stress intensity factor of a circumferential crack in a 

cylinder under radial temperature distribution, which can be regarded as linear, were 

investigated systematically. The simplified method previously developed by the 

authors enabled our systematical approach. The investigation was conducted to 

comprehend the previously reported fact on the stress intensity factor. That is, the 

stress intensity factor under a given linear temperature distribution tends to decrease 

monotonously as the crack becomes longer than a specific value. It was shown that 

this tendency was a fundamental characteristic of the stress intensity factor for the 

problem and it was concluded that the cause of this was the moment redistribution due 
to the increase in crack length. In addition, it was pointed out that the stress intensity 

factor of the crack for a specific cylinder length was larger than that for an infinite 

length.
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              1. Introduction 

   There are interesting experimental data which 
indicate a surface circumferential crack inside a hol-

low cylinder, shows tendency of crack arrest when the 

inside of the cylinder is subjected to cyclic cooling 

from uniform  temperaturem. If the crack propagation 

rate in this situation fits the Paris law, this tendency 

may be explained by investigating the characteristics 

of the stress intensity factor  (SIF)  . As the test pieces 

used in these experiments were too short to satisfy the 

long cylinder assumption which has been often used 

for obtaining the SIF for the structure, the effect of 

cylinder length on the SIF has to be considered. In 
addition, the SIF for the problem  is affected not only 

by cylinder configuration but also by edge restraint, 

cooling rate, etc. So the effects of these factors on the 

SIF should be systematically evaluated to grasp the 

characteristics of the SIF and to understand the crack
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arrest tendency through them. 

   Keeping these situations in mind, we derived a 

closed form equation of the SIF for a circumferential 
crack in a cylinder (with its edges rotation-

restrained) subjected to radial temperature distribu-

tion. Solution was given for a case temperature 

distribution can be regarded as linear, as a first 

 step(2)'(3). The closed form equation enables us to 

evaluate the effects that cylinder length and crack 

location have on the SIF easily and systematically. 
As the results of parametric study by using the equa-

tion, it was reported that  i  ) the SIF shows its maxi-
mum when the crack is located at the midpoint of the 

cylinder  length(3) and  ii  ) the SIF for the problem 
decreases monotonously as the crack becomes longer 

than a specific  value(2). 

  Though the tendency  ii  ) of the SIF described 

above is for a specific radial temperature distribution, 

this information is expected to contribute in making a 

reasonable maintenance rule for structural compo-
nents, once their characteristics are fully understood. 

For example, a guideline for the crack to show a 

tendency towards crack arrest may be obtained which 

will enable us to omit fatigue analysis in maintenance. 

From this point of view, the characteristics of the SIF

 JSME International Journal Series A, Vol. 42, No. 2, 1999

 NII-Electronic Library Service



The Japan Society of Mechanical Engineers

260

are studied analytically in detail by utilizing the 
assumption of linear radial temperature distribution. 
It is assumed that the crack is located at the midpoint 
of the cylinder length, taking the fact  i  ) into account. 

   In the following sections, the ideas and basic ways 
of thinking applied in studying the characteristics of 
the SIF are described first. Then the effects the 
structural parameters have on SIF are studied. 

2. Closed form SIF of a Circumferential Crack in a 
  Cylinder under Linear Radial Temperature Dis-

  tribution 

   In this section, the closed form SIF of circumfer-
ential crack in a cylinder under radial temperature 

 distribution("), which can be regarded as linear, is review-
ed as the preparation of studying its characteristics. 

   The problem under consideration is described in 
Fig.  I. The cylinder with a circumferential crack 
located at the midpoint of  its  length is subjected to a 
radial temperature distribution  T(22), and the edges 
are rotation-restrained. The edges can move freely in 
the axial direction, as encountered in practical prob-
lems. The material of the cylinder is assumed to be 
homogeneous with isotropic and temperature indepen-
dent physical properties. Bernoulli-Euler assumption 
that sections which are plane and perpendicular to the 
axis before loading remains so after loading, is 
applied. Here, as the temperature difference from the 
cross section average temperature  T  (72)—  Tavg gives 
the desired  SIF(3), we will focus on the temperature 
difference distribution  T(72)—  Tavg, and rewrite this as 

 T(7)). Thus, 

 ('+W(2  J
W/2Tchi=0 (1) 

  —

 T(ri)

a

H/2

H/2

R
m

Fig. 1

 11<J 

A cylinder with a circumferential 

radial temperature distribution

crack under

Series A, Vol. 42, No. 2, 1999

   In case  T(ri) can be regarded as linear, desired 
SIF for the problem  Kcyl can be evaluated by the follow

Kicry:g=closed form  equation(2).              cbf• Acy10 (—Mt) .V7ra • Elf(E)} 
       Acy/o+ f (1 — f) Z  

(  2  ) 
Here, the term in { } is a SIF of an infinite length 
edge cracked beam subjected to pure bending moment 

 (—Mt), where  FM(E=a/W) is the correction factor of 
finite width and  Z= W2/6 is the cross section modulus. 

 Mt is the bending moment that produces an equivalent 
deformation due to thermal stress and defined by the 
following  equation  : 

  Mt=Ea (+1'12 nic177 ( 3  )          1— v J - W/2 

where E,  a and  v are Young's modulus, coefficient of 
thermal expansion and Poisson's ratio, respectively. 
Note that this moment  (—Mt) for thin-walled cylin-
der is determined by the temperature distribution and 
thus called as equivalent thermal moment in the text 
that follows. A with subindexes are various compli-
ances defined in thin-walled cylinder axisymmetric 
bending problems.  Of and  Of are factors defined to 

give the resultant bending moment acting on the 
cracked plane for a thin-walled cylinder, subjected to 
external bending load pair.  Of gives the ratio to the 
external bending load without crack and  Of gives the 
decrement ratio due the existence of the crack. 
Concrete expressions of these parameters are given in 
Appendix. Note that in case  T(72) can no more be 
regarded as linear, a term  (8Kcy/) representing non-
linearity in temperature distribution will be necessary 
in Eq.  (  2  )  . That case will be studied in an another 

paper. 
   We will now focus on the fact that the desired SIF 

 Kcyt in Eq.  (  2  ) is expressed as a product of a term 

determined by structural parameters (such as  Of and 
 Of) and that by negative equivalent thermal moment 

 (—  Mt) determined by the temperature distribution. 
That is, by introducing a function  0, that represents 
the effect of structural parameters on K591, Eq.  (  2  ) is 
rewritten as follows. 

 Kcy/ 0 • ( Mt)  ( 4  ) 

As the equivalent thermal moment determined by 
temperature  Mt is independent of crack length, the 
fact that the tendency of the SIF to monotonously 

decrease as the crack becomes longer than a specific 
 length(2) is due to the characteristics of the structure 

(function  0) can be easily understood. Considering 
this point, we will study the characteristics of the 
function  0, which represents the effect of structure, 
assuming temperature distribution is given (thus  Mt is 
constant) in the following. Specifically, we will inves-
tigate the reason why the SIF decreases when crack

JSME International  .Journal

 NII-Electronic Library Service



The Japan Society of Mechanical Engineers

becomes longer than a specific length, through study-

ing the effect of structural parameters and material 

constants on 0. 

   As a first step, we will define the following func-

tion  Ftcyl. 

   Ftcyi-=-701{1,17ra•Fm()}=           Of  
 Of(1—Of)AtflAcyto  

(  5  ) 
By substituting this function in Eq.  (  4  )  , the desired 
SIF  -KV can be rewritten as follows. 

                  (—M)      Kcyi=•(— MO= Ftcyi.{t v^za • Fill()}. 

 

(  6  ) 
Thus,  Ftcyi can be understood as the ratio of the 
desired SIF K551 and the SIF of an edge cracked beam 
under pure bending moment  (—Me) (i.e. { } in Eq.  
(  6  )  )  . As this SIF of an edge cracked beam under 

pure bending monotonously increases as the crack 
becomes longer, characteristics of  Ftcyl vs. crack 
length will be the key point for the function 0 to 
decrease when the crack becomes longer than a 
specific length. In the following study of the charac-
teristics of 0, we will focus our attention on the 
characteristics of  Ftcyl. 

       3. Characteristics of Function 0 

   In this section, we will study the effects of various 
structural parameters and material constants on the SIF. 

 3. 1 Effect of cylinder length 
   As a first step, effect of cylinder length on 0= 

 K5511(—  Mt) was studied for constant mean radius to 
wall thickness ratio  Rm/W. Wall thickness W of 10 
mm and Poisson's ratio  v of 0.3 are used as standard 
values in numerical evaluation throughout the paper. 
Figure 2 shows a representative result for  R./W-10.5. 

   From this figure, it can be said that  0= 
 K5,11(—  Mt) shows a tendency to monotonously 

decrease after a specific crack length when crack

 Kee 

 Mt) 

0.25 
 0.2 0.11 

  0.1 
 0.05 
   0

 0  .  8 

Fig. 2 The effect of cylinder length on 
      0  (Rni/W  =  10.5,  W  =10 mm,  v  =  0.3)

 1 

8

/H
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becomes longer than a specific length, regardless of 
the cylinder length. Note that this characteristic of 
function 0, which represents the effect of structural 

parameters on the SIF, is equivalent to the character-
istic of the SIF itself under the condition  Mt  = con-
stant. Thus, it can be said that the SIF of a circumfer-
ential crack in a cylinder under radial temperature 
distribution (which can be regarded as linear) 
decreases monotonously as the crack becomes longer 
than a specific length due to the characteristics of the 
structure, at least when  Mc—constant. 

   In Fig. 2, the tendency for  0.----K5511(—M1) to 

generally increase as the cylinder length increases 
 (W/H— 0) and to saturate to a specific value for given 

crack length, can be read. Though it may be thought 
intuitively that 0 for infinite length cylinder is a safe 
evaluation from a practical standpoint, 0 seems to 
show a maximum value at a relatively small W/H. 

   To investigate this phenomenon in more detail, 
we will focus our attention on  F1551, as 0 in Eq.  (  5  ) is 

a product of  Ftcyl (which is affected by cylinder length) 
and a term independent of cylinder length. 

   By substituting all the structural parameters 
defined in Appendix to Eq.  (  5  )  , simplified equation of 

 F1551 is obtained as follows. 
 Ftcyl 

           cosh8H—cos8H      — (
cosh  /3H—cos  8H)+  8D  •  JA(sinh  13H  +sin  $H) 

 (7) 
Here,  JA is the increment of compliance due to the 

presence of crack for an infinitely long beam under 
pure bending, and D are quantities used in replacing 
cylindrical shell by a beam on an elastic foundation 

given concretely in the Appendix. 
   We differentiated  Ftcyl by  (RH) to study the effect 

of cylinder length H on  F1551, as follows. 
    aFtcy/  

 (901/) 
 28D  •  JA  •  sinh  15H  sin  8H  

      {(cosh  /3H—cos  ,3H)+  ,3D  •  JA(sinh  ,3H+  sin  ,3H)}2  
(  8  ) 

From this equation, the fact that  Ftcy  1 shows a peak 
value at  (RH)=  n7r  (n  : integer) can be read. As there 
are many peaks, the maximum of these peaks will be 
determined. 
   First,  (F1551)., which is a limit value of  Ftcy  1 for an 
infinitely long cylinder  ($H—>  co) was considered, as a 
reference value. Based on the knowledge of hyper-
bolic function, 

   lim sink/3H= lim cosh/3H=(81/)            H=( 9 ) 
  RH co pH o 

and combining this with Eq.  (  7  ),  (F1551). is obtained 
as follows.
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 (Ftcyl).=  liM  Ftcyl=1(10)           RH 1+ ,3D • 4/1 
   Though  (Ftcyl), is affected by the crack length 

through  ZIA, which is the increment of compliance due 
to the presence of crack, it is no more affected by the 
cylinder length. So  Ftcy/ normalized by this  (Ftcy1). is 
represented in Fig. 3 to intensify the characteristics of 
the peak values of  Ftu1 for cylinder length. In this 
figure, it can be seen that  Ftcyl (for respective crack 
lengths) increases for short H to reach the maximum 
at  H=7r1,3, and gradually saturates to  (Ft551). for long H. 

   From above-mentioned,  Ftcy1 can be said to show 
its maximum at a specific cylinder length  /3H= 7r for 
a given crack length, mean radius to wall thickness 
ratio and material constants. That is, 0 becomes 
maximum at a cylinder length  /3H= and is larger than 
that for an infinite length cylinder, as shown in Fig. 2. 

 3.  2 Effect of mean radius to wall thickness ratio 
 Rm/W 

   Effect of mean radius to wall thickness ratio 
 Rm/W on function 0 was studied. The fact that  ZIA, 

the increment of compliance due to the presence of 
crack for an infinitely long beam under pure bending, 
can be expressed in the following form (detail in 
Appendix) is focused. 

 4A(e)=12/m(e)/(EW2)  (11) 
By substituting Eq. (11) to Eq.  (  7  )  ,  Ftcy1 can be 
written as follows. 

  Ftcy,—cosh/3H—cos—cos/3H         [(cosh  /3H—cos  /3H)+ /3W  •  (sinh  /3H 
       +sin  RH)-  fn,r($)/(1  — p2)] 

                           (12) 
From this expression, it becomes clear that  Ftcyl is a 
function of three non-dimensional parameters  /3H, 

 /3W and  e=  alW. In addition, from the definition of  3 
(in Appendix),  /3W can be rewritten as follows.

Ftcy

 (Ftcyr 
 1  .  1\1 

 0  .  9 

 0.f

 0  .  6  0.5

Fig. 3 Effect of cylinder length on function 
 Ft,51(Rm/W=10.5, v=0.3)

3 

5

Series A, Vol. 42, No. 2, 1999

      ;13(1— v2)  
,61(13) 

From Eq.  (13)  , the fact that defining  /3W is equivalent 
to defining mean radius to wall thickness ratio  Rm/W 
can be read. 

   As  Ft,,, is the only portion  RW has its influence on 
function 0, which represents the effect of whole struc-
tural parameters on the SIF in interest, it can be said 
that mean radius to wall thickness ratio  Rm/W affects 
0 as  (R./W)-1/2. 

   Quantitative effect of mean radius to wall thick-
ness ratio  Rm/W on 0 is studied next. In case  R./W—> 

 cc,  Ft,1—>1 is easily obtained from Eqs. (12) and  (13)  . 
This means that 0 shows the characteristics of the 

SIF for edge cracked beam under pure bending, which 
monotonously increases as the crack becomes long. 
So there should be a maximum  R.IW for 0 to show 
the tendency to decrease for a longer crack than a 
specific value. 

   Considering the complexity of Eqs. (12) and (13), 
it is difficult to derive this maximum  Rm/W analyti-
cally. Thus non-dimensional 0 for cylinder length 

 RH=7r and typical  Rm/W were summarized in Fig. 4. 
The case of  1?7,21W  =1.5, which exceeds the application 
limit of the closed form SIF Eq. (  2  )  , was plotted for 
reference to show the tendency due to further 
decrease in  R./W. Note that Eq. (  2) was derived 
based on the thin shell cylinder theory and its validity 
was shown for  R./W  5.5(2). 

   From this figure, the following can be read. 
 1. 0 for cylinder with its length  RH  =  7-c decreases 

as the crack becomes longer than a specific length for 
typical cylinders of  Rm/W 20. 

 2. This specific non-dimensional crack length 
 a/W, for the 0 to show its maximum, and this 

maximum 0 increases as the cylinder becomes thinner. 
 3.  3 Effects of material constants 

   From Eqs.  (  5  ) and (12), the fact that Young's 
modulus  E does not affect 0 can be read. On the 
other hand, Poisson's ratio affects 0, as it includes 
terms  /3 and  (1—  ii2). Quantitative study on the effect

 W1.5

 10

8

6

4

2

0

 Rin/W 
= 20 

= 10 .5 
= 5.5 

= 1.5

0  0.2  0.4 

 a/W

 0.6  0.8

Fig. 4 Effect of Rm/W  on 0  (i31/=-7r)
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of Poisson's ratio is summarized in Fig. 5. 
   As preceding numerical examples are based on 

Poisson's ratio  v  =0.3, results in Fig. 5 are normalized 
by  CD for  v  =0.3. From Fig. 5 and the fact that 
Poisson's ratios for all the materials satisfy  v 
the effect of Poisson's ratio on  0 can be neglected on 
the practical standpoint. Therefore, effect of Poisson's 
ratio in the following study is not considered. 

 3.  4 Effect of crack length 
   Characteristic of  0 to monotonously decrease, as 

the crack becomes longer than a specific length, was 
studied. From Eq.  (  6  )  ,  0 can be understood as the 
SIF in interest  Kcy  1 for  (—Mt)=1. In other words,  0 
is a product of  Fte51 and the term in {  }, which is the 
SIF of a edge cracked beam under pure bending 
moment  ( —  Mt)=1. This SIF of an edge cracked 
beam under pure bending monotonously increases as 
the crack becomes long. On the other hand,  Ftcy  1 given 
by Eq.  (  7  ) monotonously decreases as the crack 
becomes long because the only term JA affected by 
crack length in Eq.  (  7  ) is a monotonously increasing 
function of crack length. Thus the characteristic of 
the function  0 to monotonously decrease as the crack 
becomes longer than a specific length, is a result in the 
balance of characteristic of  Ftcy1 and that of the  { } term. 

   Here  Kcyl in Eq.  (  6  ) which is the SIF of a circum-
ferential crack in a cylinder under radial temperature 
distribution, was derived through two  steps(2). First 
this cylinder problem was replaced with a problem of 
a rotary spring connected by two beams on an elastic 
foundation. Then the desired SIF was evaluated as 
the SIF of an edge cracked beam under pure bending, 

using the moment at the rotary spring (cracked  sec-
tion). Thus,  Ftcyr  (—Mt) can be considered to repre-
sent the effective moment at the rotary spring.

1.05

 t00

 9 

E)

0.95

0.90

                      v = 0.2 \\
\\*1111

\ v = 0.4 

                       --e— v = 0 .5

0.85 '  
  0  0.2  0.4 

           a/W 

Fig. 2 The effect of 
 (R./W=10.5,

0.6 0.8

cylinder length on 
 W-10  mm,  2)=0.3)
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Therefore, the fact that  Ftcyz is a monotonously 
decreasing function of crack length indicates that the 
effective moment and the stress induced at the vicinity 
of the crack decreases though  (  —Mt) is constant. 

 3. 5 Dimensional analysis 
 Ftcyl, which is one of the factors of function  0 

representing the effects of structural parameters on 
the circumferential crack in a cylinder under linear 
radial temperature distribution, is a non-dimensional 
function described by non-dimensional variables 13H, 

i3W and  a/W as above-mentioned. Therefore, the 
portion with dimension in function  0 is the term {  } 
in Eq.  (  5  ). By normalizing crack length a by wall 

thickness W and by substituting section modulus  Z= 
 W2/6 into this term {  }, Eq.  (  5  ) is deduced in the 

following form. 
          6              il7ralW • Fm(aIW)}     w1.5(14) 

From this equation, the fact that the scale factor of  0 

is  W(-1') can be read. 

                4. Conclusion

   In this paper characteristics of the SIF of circum-
ferential crack in a cylinder (with its edges rotation-
restrained) under radial temperature distribution 
(which can be regarded as linear) were studied. The 
location of the crack was chosen as the midpoint of its 
length as the SIF shows its maximum for this crack 
location. 
   Considering the fact that the SIF in interest is a 

product of  0 (determined by structural parameters) 
and  —Mt (determined by temperature  distribution)  , 
the effects of various structural parameters on  CD were 
studied under the condition  Mt  =constant. In conclu-
sion, the following were obtained. 

 1.  0 is a function described by non-dimensional 

parameters a -I, i3W and  alW and wall thickness W. 
Scale factor of  0 is  W('). Non-dimensional parame-
ter  /3W has a direct relationship with the square root 
of the familiar parameter  R.IW. 

 2.  0 shows its maximum for a cylinder length 
satisfying  gH  =  7c, when  Rm/W and  a/W are given. 
This maximum value of  0 is larger than that for 
infinite cylinder length. 

 3.  0 for typical  Rm/W(S.  20) shows a tendency to 
monotonously decrease as the crack becomes longer 
(large  al  W) than a specific value, when  /3H and  R./W 
are given. This specific a/W for the  0 to show its 
maximum and this maximum  0 increases as the 
cylinder becomes thinner. 

 4. Characteristic of  0 to monotonously decrease 
for a longer crack length than a specific value can be 
understood as the decrease in the stress induced at the 
vicinity of the crack, due to moment redistribution
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according to the increase in crack length. 

               Appendix 

   A with subindexes in this paper are various  com-

pliances defined by replacing the problem of thin-
walled cylinder under axisymmetric bending (Fig. Al 
left) to a problem of a beam on an elastic foundation 
with bending loads on both ends (Fig. Al  right). 
Spring constant k in this case is given by the following 
equation, by formally writing the flexural rigidity of 
the beam as  D=  EW3112(1—  v2)(4). 

         4 EW    k=4
,34D  ; /3 = 4R02(Al) 

Here,  R,  : mean radius,  W  : wall thickness,  E  : 
Young's modulus,  v : Poisson's ratio. Note that  a has 
a dimension of inverse of length. 

   By using this  /3, compliances for a beam on an 
elastic foundation in Fig. A2 derived by  Hetenyi(5) was 
rewritten to be applied for thin-walled cylinder prob-
lem as  follows(2). 

       1 sinh fili+sin i3H  A
bf(A2)       /3D coshRH-+cos  /3H-2

M1

R.

0

M1

R
m

       02 

 Replacement 
 of a cylinder 

M

Fig. Al

M2  --3,2  M2 
             92 

of axisymmetric bending problem 
by a beam on an elastic foundation

  e.6r 
                              • vbf'vbf— 

 If M

 H  /  2

Fig. A2 Definition of compliance Abf and  Abf

Series A, Vol. 42, No. 2, 1999

 31D.
 sinh  A cos  A-I-sin A  cosh  A

sinh2  A  —sin2 A

 Of defined as the ratio of the  resultan bending 
moment acting on the midpoint of cylinder length to 
the external bending load pair (case of  M1=M2=---M in 
Fig. Al left) can be written by using  these compli-
ances as follows. 

 Of= Atf lAbf (A4) 
Note that the midpoint of cylinder length corresponds 
to the position circumferential crack is located for the 
study in this paper. 

   The resultant moment  Of  •  M at this location is 
redistributed by the existence of the crack. The 
redistribution factor  Of was written as  follows(2). 

 =  Abil(Abf  JA) (A5) 

   The correction factor for finite width  FM and 
increment in compliance due to the existence of crack 

 ZIA used in numerical examples are Eq.  (A6)(6) and 

 (A7)  (7), respectively. 

   Fm()=\/ 7-Ce2tan 7re 

              2 

 0.923+  0.199[1  —sin  (ze/2)]4                            (A6)

; A=      2 

 (A3) 
 t bending 

length to 

 ;e compli-

       cos  (7W2) \flu/ 
      z(1.1215)2 •   JA(e)== 

        2E  (1—  e)2(1  +2)2 

 X[1  4  $(1—  $)(0.44+0.25$)]( W\2  

              2   

                         (A7) 
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