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This work was motivated by the fact that although fracture toughness of a material in the ductile-to-brittle transition temperature
region 𝐽

𝑐
exhibits the test specimen thickness (TST) effect on 𝐽

𝑐
, frequently described as 𝐽

𝑐
∝ (TST)

−1/2, experiences a contradiction
that is deduced from this empirical formulation; that is, 𝐽

𝑐
= 0 for large TST. On the other hand, our previous works have showed

that the TST effect on 𝐽
𝑐
could be explained as a difference in the out-of-plane constraint and correlated with the out-of-plane

𝑇
33
-stress. Thus, in this work, the TST effect on 𝐽

𝑐
for the decommissioned Shoreham reactor vessel steel A533B was demonstrated

from the standpoint of out-of-plane constraint.The results validated that𝑇
33
was effective for describing the 𝐽

𝑐
decreasing tendency.

Because the Shoreham data included a lower bound 𝐽
𝑐
for increasing TST, a new finding was made that 𝑇

33
successfully predicted

the lower bound of 𝐽
𝑐
with increasing TST.This lower bound 𝐽

𝑐
prediction with 𝑇

33
conquered the contradiction that the empirical

𝐽
𝑐
∝ (TST)

−1/2 predicts 𝐽
𝑐
= 0 for large TST.

1. Introduction

The cleavage fracture toughness 𝐽
𝑐
of a material in the

ductile-to-brittle transition (DBT) temperature region, which
is important in the assessment of aging steel structures and
reactor pressure vessels, has been known to exhibit test speci-
men size effects, even when tested using a standardized spec-
imen [1–9]. For example, 𝐽

𝑐
obtained using a shallow cracked

specimen exhibits a higher value than that obtained using a
deep cracked specimen. Another known size effect is the test
specimen thickness (TST) effect on 𝐽

𝑐
, hereafter abbreviated

as the TST effect on 𝐽
𝑐
, which is described as 𝐽

𝑐
∝ 𝐵
(−1/2) (𝐵 ≡

TST) [2, 10]. The two most physically logical explanations
in general are the statistical weakest link (SWL) size effect
and the loss of the crack-tip constraint [2]. Both explanations
lead to an increasing toughness with decreasing TST. The
difference in 𝐽

𝑐
obtained with a different planar specimen

configuration, including the crack depth [4], has been
explained as the differences in the crack-tip constraint or the
hydrostatic stress triaxiality, which 𝐽 fails to describe [3, 5–9].

However, the TST effect has been explained in terms of
the SWL size effect being dominant [6, 11–13], even though
𝐽
𝑐
does not decrease indefinitely with thickness [6], which

contradicts the prediction from the SWL size effect [2].
Based on the above, the authors believed that the contri-

bution of the crack-tip constraint to the TST effect on 𝐽
𝑐
could

be demonstrated if the TST effect (especially the bounded
nature of 𝐽

𝑐
with increasing TST) was demonstrated using

a series of nonstandard test specimens whose planar config-
urations are identical but whose thickness-to-width ratios,
𝐵/𝑊, are changed to realize different thickness specimens
and if the test results were reproduced using finite element
analysis (FEA). This use of nonstandard test specimens was
prompted by the inability to predict the bounded nature of 𝐽

𝑐

using the SWL formulation.This predictionwas thought to be
enabled by these specimens because the out-of-plane crack-
tip constraint will increase and saturate with increasing 𝐵/𝑊,
but the in-plane crack-tip constraint will not change. The
fracture toughness tests for a series of nonstandard compact-
tension (CT) and three-point-bend (3PB, also named as
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Figure 1:Three-dimensional coordinate system for the region along
the crack front.

SE(B) specimen) specimens for 0.55% carbon steel S55C
[14–16] and 0.40% carbon chromium molybdenum steel
SCM440 [17] validated the noticeable contribution of the out-
of-plane crack-tip constraint to the TST effects on 𝐽

𝑐
, and

the constraint parameter 𝑇
33
-stress was demonstrated to be

effective for correlating this out-of-plane crack-tip constraint
with the TST effects on 𝐽

𝑐
[14–17]. These results indicated

a possibility of correlating the fracture toughness of a test
specimen and the crack-like flaws in the structure more
accurately by considering 𝑇

33
.

This work is an extension of our previous studies regard-
ing the point that the contribution of the out-of-plane crack-
tip constraint to the TST effect on 𝐽

𝑐
was demonstrated for the

decommissioned Shoreham reactor vessel steel, ASTM A533
Grade B Class 1 (A533B) [1], which is experimentally formu-
lated as 𝐽

𝑐
[N/mm] = 2.3 ⋅ |𝑇

33
|
0.6 (80 ≤ |𝑇

33
| ≤ 320MPa)

to describe the 𝐽
𝑐
decreasing tendency for increasing TST.

Because the Shoreham data included a lower bound of 𝐽
𝑐
for

increasing TST, a new finding was made that 𝑇
33
successfully

predicted the lower bound 𝐽
𝑐
with increasing TST.This lower

bound 𝐽
𝑐
prediction with 𝑇

33
resolves the contradiction that

the empirical 𝐽
𝑐
∝ (TST)

−1/2 predicts 𝐽
𝑐
= 0 for large TST.

2. TST Effect on 𝐽
𝑐

Described by the 𝑇
33

-Stress

2.1. 𝑇-Stress. In an isotropic linear elastic body containing a
crack subjected to symmetric (mode I) loading, the leading
two terms in a series expansion of the stress field very near to
the crack front are [18]

{{{{{{{

{{{{{{{

{

𝜎
11

𝜎
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𝜎
33
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𝜎
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𝜎
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,

𝑇
33

= 𝐸𝜀
33

+ ]𝑇
11
,

(1)

where 𝑟 and 𝜃 are the in-plane polar coordinates of the plane
normal to the crack front, as shown in Figure 1, and 𝐾I is the
local mode I stress intensity factor (SIF) at location A. Here
𝑥
1
is the direction formed by the intersection of the plane

normal to the crack front and the crack plane. The terms 𝑇
11

and 𝑇
33

are the amplitudes of the second-order terms in the
three-dimensional series expansion of the crack front stress
field in the 𝑥

1
and 𝑥

3
directions, respectively.

2.2. TST Effect on 𝐽
𝑐
Described by 𝑇

33
-Stress. In our previous

works [14, 15, 17], the following relationships were obtained
for 0.55% carbon steel S55C [14, 15] and 0.40% carbon
chromiummolybdenum steel SCM440 [17]with bothCT and
3PB specimens:

S55C at 20
∘C:

{{{{{{{

{{{{{{{

{

𝐽c [N/mm] = 2.6 [N1/2] ⋅
𝑇33



1/2

(CT, 60 ≤
𝑇33

 ≤ 180MPa)

𝐽c [N/mm] = 3.1 [N1/2] ⋅
𝑇33



1/2

(3PB, 80 ≤
𝑇33

 ≤ 160MPa) ,

SCM440 at −50
∘C:

{{{{{{{

{{{{{{{

{

𝐽c [N/mm] = 4.6 [N1/2] ⋅
𝑇33



1/2

(CT, 120 ≤
𝑇33

 ≤ 260MPa)

𝐽c [N/mm] = 4.8 [N1/2] ⋅
𝑇33



1/2

(3PB, 100 ≤
𝑇33

 ≤ 210MPa) .
(2)

Theobject of theseworkswas to demonstrate that the out-
of-plane crack-tip constraint has a noticeable contribution to
the TST effect on 𝐽

𝑐
and that the TST effect can be correlated

with amechanical parameter𝑇
33
(expressing the out-of-plane

crack-tip constraint).
Because the bounded nature of 𝐽

𝑐
with increasing TST

could not be realized with the tested specimens of thickness-
to-width ratios 𝐵/𝑊 = 0.25, 0.4, and 0.5, the tested results
with large 𝐵/𝑊 were searched in the published documents,
and the decommissioned Shoreham reactor vessel steel data
[1] were found to fulfill our requirement. In the following,
Shoreham’s 𝐽

𝑐
data were compiled to validate the relationship

𝐽
𝑐

∝ |𝑇
33
|
𝛾 (𝛾: material constant) and, in particular, to

correlate the bounded nature of 𝐽
𝑐
for increasing TST with

𝑇
33
.

3. Compilation of the Decommissioned
Shoreham Reactor Vessel Steel Fracture
Toughness Test Data from the Standpoint of
Out-of-Plane Constraint

3.1. Prediction of a Lower Bound of 𝐽
𝑐
for Increasing TST with

𝑇
33
. From our recent elastic FEA results for the nonstan-

dard 3PB specimen with various 𝐵/𝑊 values, as shown in
Figure 2(a), themidplane𝑇

33
normalized in the form of𝛽

33
=

𝑇
33
(𝜋𝑎)
1/2

/𝐾I exhibited a strong dependence on 𝐵/𝑊 [17].
𝛽
33
was negative for 𝐵/𝑊 < 1.5, whereas it was positive and

approached ]𝛽
11

(𝛽
11

= 𝑇
11
(𝜋𝑎)
1/2

/𝐾I) for increasing TST.
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Figure 2: The TST effect on the normalized 𝑇
33

of the nonstandard 3PB specimen at the specimen midplane (𝑊 = 25mm, 𝑎/𝑊 = 0.5;
] = 0.3) [16] recompiled in the log-log form.

The negative 𝛽
33

recompiled in the log-log form, as shown
in Figure 2(b), exhibited |𝛽

33
| ∝ (𝐵/𝑊)

−1 for 𝐵/𝑊 ≤ 0.5

and a bounded nature for 𝐵/𝑊 ≥ 1.1 in an engineering
sense.This engineering onset of the bounded nature of |𝛽

33
| =

0.2 was defined as the bounded value |𝛽
33∞

|. Because the
SIF corresponding to the fracture load 𝐾

𝑐
exhibited a small

changewithTST [14–17], it was thought that the experimental
formulation 𝐽

𝑐
= 𝐶|𝑇

33
|
𝛾 (𝐶, 𝛾: material constants) together

with |𝑇
33∞

| = |𝛽
33∞

| ⋅ 𝐾
𝑐
/(𝜋𝑎)
1/2 could predict the lower

bound value of 𝐽
𝑐min with increasing TST as follows:

𝐽
𝑐min = 𝐶

𝑇33∞


𝛾

= 𝐶{

𝛽33∞
 𝐾c

(𝜋𝑎)
1/2

}

𝛾

. (3)

3.2. Compilation of the Decommissioned Shoreham Reactor
Vessel Steel Fracture Toughness Test Data from the Standpoint
of the Out-of-Plane Constraint. To determine whether the
relationship 𝐽

𝑐
= 𝐶|𝑇

33
|
𝛾 is valid for other materials and

especially whether the lower bound 𝐽
𝑐min can be predicted

by 𝑇
33
, the decommissioned Shoreham reactor vessel steel [1]

A533B was selected in this work because a large amount of
fracture toughness test data for A533B with various thickness
3PB specimens at a common temperature −91∘C (located in
the DBT temperature region) was published. Amore detailed
description for the fracture toughness tests can be found in
[1].

Here, the fracture toughness test data for 3PB specimens
with width 𝑊 = 25.4 and 50.8mm whose thicknesses 𝐵

= 8, 15.9, 31.8, and 63.5mm (thickness-to-width ratio 𝐵/𝑊

= 0.157∼2.5) were recompiled from the published results [1]
on the standpoint of the out-of-plane crack-tip constraint.
Although the eight replicate fracture toughness test results
reported in [1] for these 3PB specimens were considered to be

valid overall, some of the individual𝐾
𝐽𝑐
datum still appeared

to deviate greatly from the remainder in each 𝐵/𝑊 set.
Considering the fact that the 𝐾

𝐽𝑐
scatter from eight replicate

tests always exceeded the guideline value as given in ASTM
E1921 [19], we thought it was necessary to recompile these
test results because the impact of the apparent deviated 𝐾

𝐽𝑐

datum for each 𝐵/𝑊 set was considered non-negligible in
studying the TST effect on the cleavage fracture toughness.
Therefore, the cases withmaximum andminimum𝐾

𝐽𝑐
values

were excluded, with the test results of the remaining cases
summarized in Tables 1 and 2.

The 𝐾
𝑐
in the tables was obtained as the SIF 𝐾 corre-

sponding to the fracture load 𝑃
𝑐
from the following equation

in ASTM E1921 [19]:

𝐾 =
𝑃𝑆

𝐵𝑊3/2
𝑓(

𝑎

𝑊
) . (4)

Here, 𝑆 = 4𝑊 is the support span, and 𝑓 is a function of
𝑎/𝑊, which is given in the ASTM E1921 [19].

𝐾
𝐽𝑐
in the table is the fracture toughness in terms of the

SIF. 𝐽
𝑐
was calculated from𝐾

𝐽𝑐
as 𝐽
𝑐
= 𝐾
2

𝐽𝑐
⋅ (1 − ]2)/𝐸, where

the value of Young’s modulus of 𝐸 = 207.9GPa and the
value of Poisson’s ratio of ] = 0.29 were used, as specified
in [20]. 𝑇

33𝑐
, which reflects the fracture load and the actual

crack length, was calculated from the 𝛽
33
solutions of elastic

FEA, as summarized in the Appendix. 𝜇 andΣ are the average
and standard deviation of each value, respectively. 2Σ/𝜇 is a
reference value that was used to represent the magnitude of
the data scatter.

It is seen from Tables 1 and 2 that, except for the case
of 𝑊 = 50.8mm with a very thin thickness 𝐵 = 8mm
(2Σ/𝜇 = 63.8%), the reference value 2Σ/𝜇 of 𝐾

𝐽𝑐
was in the

range from 33.1% to 45.6% for the selected specimens, which
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Table 1: Fracture toughness test and FEA results for A533B compiled from the Shoreham reactor pressure vessel data [1] (3PB,𝑊 = 25.4mm,
−91∘C; 𝜇: average, Σ: standard deviation).

𝐵mm (𝐵/𝑊) Serial number 1 2 3 4 5 6 𝜇 Σ 2Σ/𝜇 %

8 (0.315)

𝑎/𝑊
∗ 0.5 0.49 0.5 0.5 0.5 0.5 0.50 0.0 1.6

𝑃
𝑐
kN∗ 9.61 9.49 9.02 9.52 9.61 8.99 9.37 0.3 6.2

𝐾
𝑐
MPam1/2 80.3 76.8 75.3 79.6 80.3 75.1 77.9 2.4 6.3

𝐾
𝐽𝑐
MPam1/2

∗

149 131 118 124 157 98 129.5 21.4 33.1
𝐽
𝑐
N/mm 97.8 75.6 61.3 67.7 108.6 42.3 75.6 24.3 64.3

𝑇
33𝑐

MPa −234.4 −226.0 −219.9 −232.2 −234.4 −219.1 −227.7 7.0 −6.2

15.9 (0.63)

𝑎/𝑊
∗ 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.0 0.0

𝑃
𝑐
kN∗ 18.2 18.8 17.4 17.3 18.4 17.9 18.0 0.6 6.2

𝐾
𝑐
MPam1/2 81.7 84.1 78.2 77.6 82.5 80.3 80.7 2.5 6.2

𝐾
𝐽𝑐
MPam1/2

∗

130 126 92 89 131 100 111.3 19.8 35.5
𝐽
𝑐
N/mm 74.5 69.9 37.3 34.9 75.6 44.1 56.0 19.3 68.8

𝑇
33𝑐

MPa −112.7 −116.0 −107.9 −107.1 −113.8 −110.9 −111.4 3.5 −6.2

31.8 (1.25)

𝑎/𝑊
∗ 0.52 0.52 0.52 0.52 0.53 0.52 0.52 0.0 1.6

𝑃
𝑐
kN∗ 35.4 37.5 38.5 32.9 35.1 34.6 35.7 2.0 11.4

𝐾
𝑐
MPam1/2 79.3 84.1 86.4 73.8 81.2 77.6 80.4 4.5 11.3

𝐾
𝐽𝑐
MPam1/2

∗

89 126 128 84 96 90 102.2 19.6 38.4
𝐽
𝑐
N/mm 34.9 69.9 72.2 31.1 40.6 35.7 47.4 18.6 78.4

𝑇
33𝑐

MPa −12.5 −13.3 −13.6 −11.6 −9.8 −12.2 −12.2 1.4 −22.4

63.5 (2.5)

𝑎/𝑊
∗ 0.5 0.49 0.49 0.5 0.49 0.49 0.49 0.0 2.1

𝑃
𝑐
kN∗ 76.3 57.9 77.0 49.2 60.4 70.4 65.2 11.2 34.2

𝐾
𝑐
MPam1/2 80.3 59.0 78.6 51.7 61.6 71.8 67.2 11.5 34.2

𝐾
𝐽𝑐
MPam1/2

∗

94 62 89 52 63 78 73.0 16.6 45.6
𝐽
𝑐
N/mm 38.9 16.9 34.9 11.9 17.5 26.8 24.5 10.8 88.4

𝑇
33𝑐

MPa 15.0 9.3 12.4 9.7 9.7 11.3 11.3 2.2 39.0
∗Published results in [1].

satisfied the guideline for 2Σ/𝜇 given in ASTM E1921 [19]
for 𝐾
𝐽𝑐
. Here the guideline for 2Σ/𝜇 is 56(1–20/𝜇)% with the

range from 40.7% to 47.4% for the data in Tables 1 and 2.
As a result, it could be concluded that the scatter in the 𝐾

𝐽𝑐

data of the selected specimens summarized in the tables was
acceptable in an engineering sense.

One interesting fact was that the change in 𝐾
𝑐
, that is,

the SIF for the fracture load 𝑃
𝑐
, exhibited a relatively small

dependence on 𝐵/𝑊, although a significant change in the
fracture toughness 𝐽

𝑐
was observed. The average 𝐾

𝑐
for each

𝐵/𝑊 was in the range from 67.2 to 80.7MPa m1/2 for 𝑊 =

25.4mm and 75.8 to 95.7MPa m1/2 for 𝑊 = 50.8mm. This
result was similar to the experience with S55C [14–16] and
SCM440 [17], which validated one of the assumptions used
to predict the lower bound of 𝐽

𝑐
for large TST proposed in

Section 3.1.
The relationship between 𝐽

𝑐
and 𝑇

33𝑐
for A533B is shown

in Figure 3; note that 𝑇
33𝑐

reflects the fracture load and the
actual crack length for each 𝐵/𝑊, as summarized in Table 1
and 2. The solid marks represent the average for each 𝐵/𝑊.
The difference in 𝑊 was distinguished by the color of the
marks. As shown in Figure 3, all the data in Tables 1 and 2
are fitted to the power law expression

𝐽
𝑐
[N/mm] = 2.3 ⋅

𝑇33


0.6 (5)

for A533B tested using 3PB specimens at −91∘C. 𝐽
𝑐
seemed to

be bounded for 2|𝑇
33𝑐

| < 100MPa. The bounded value of 𝐽
𝑐

in Figure 3 for the case of 𝑊 = 25.4 mm was obtained from
Table 1 as an average 𝐽

𝑐
for the specimens of 𝐵/𝑊 = 1.25

and 2.5. For the case of 𝑊 = 50.8 mm, the bounded 𝐽
𝑐
was

obtained from Table 2 as an average for 𝐵/𝑊 = 1.25.
On the other hand, if the method to predict the lower

bound 𝐽
𝑐min for increasing TST proposed in Section 3.1 is

applied, for the case of 𝑊 = 25.4mm as an example, first
|𝑇
33∞

| is calculated with |𝛽
33∞

| = 0.2 for the case of 𝑎/𝑊 =

0.5 and 𝐾
𝑐

= 79.7MPam1/2 (the averaged SIF for B/W =
0.315∼1.25 was used from Table 1, considering the fact that
𝐾
𝑐
exhibited a very small dependence on TST) as |𝑇

33∞
| =

|𝛽
33∞

| ⋅ 𝐾
𝑐
/(𝜋𝑎)
1/2

= 0.2 × 79.7/(𝜋 0.0127)
1/2

= 79.8MPa.
Then, the lower bound 𝐽

𝑐min is predicted from (3) as 𝐽
𝑐min =

2.3 × |79.8|
0.6

= 31.8N/mm, and it was close to experimental
average 36.0N/mm. In case of 𝑊 = 50.8mm, by the same
method, 𝐽

𝑐min = 27.2N/mm was obtained and was also very
close to the experimental average 27.9N/mm.

In summary, the TST effect on 𝐽
𝑐
of A533B could be

described by 𝑇
33
, as 𝐽
𝑐

= 2.3 ⋅ |𝑇
33
|
0.6 for 80 ≤ |𝑇

33
| ≤

320MPa. In addition, the lower bound value of 𝐽
𝑐min =

31.8N/mm was obtained for 𝑊 = 25.4mm and 𝐽
𝑐min =

27.2N/mm for 𝑊 = 50.8mm; both of them were close to
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Table 2: Fracture toughness test and FEA results for A533B compiled from the Shoreham reactor pressure vessel data [1] (3PB,𝑊 = 50.8mm,
−91∘C; 𝜇: average, Σ: standard deviation).

𝐵 mm (𝐵/𝑊) Serial number 1 2 3 4 5 6 𝜇 Σ 2Σ/𝜇 %

8 (0.157)

𝑎/𝑊
∗ 0.48 0.49 0.48 0.49 0.49 0.48 0.49 0.0 2.3

𝑃
𝑐
kN∗ 17.4 15.5 16.8 19.4 15.2 17.7 17.0 1.5 18.1

𝐾
𝑐
MPam1/2 96.6 88.7 93.2 110.8 86.8 98.0 95.7 8.6 17.9

𝐾
𝐽𝑐
MPam1/2

∗

122 101 112 205 94 123 126.2 40.3 63.8
𝐽
𝑐
N/mm 65.6 44.9 55.3 185.1 38.9 66.7 76.1 54.5 143.4

𝑇
33𝑐

MPa −327.7 −300.5 −316.0 −375.3 −294.2 −332.3 −324.3 29.0 −17.9

15.9 (0.313)

𝑎/𝑊
∗ 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.0 0.0

𝑃
𝑐
kN∗ 36.7 30.5 35.9 34.9 23.3 35.9 32.9 5.2 31.6

𝐾
𝑐
MPam1/2 105.8 88.0 103.4 100.5 67.1 103.4 94.7 14.9 31.6

𝐾
𝐽𝑐
MPam1/2

∗

129 93 122 121 69 122 109.3 23.4 42.8
𝐽
𝑐
N/mm 73.3 38.1 65.6 64.5 21.0 65.6 54.7 20.5 74.8

𝑇
33𝑐

MPa −225.4 −187.4 −220.3 −214.1 −142.9 −220.2 −201.7 31.8 −31.6

31.8 (0.63)

𝑎/𝑊
∗ 0.5 0.5 0.5 0.5

— —

0.50 0.0 0.0
𝑃
𝑐
kN∗ 62.7 56.5 60.6 43.6 55.9 8.5 30.6

𝐾
𝑐
MPam1/2 93.2 83.9 90.0 64.9 83.0 12.7 30.6

𝐾
𝐽𝑐
MPam1/2

∗

99 88 96 66 87.3 14.9 34.2
𝐽
𝑐
N/mm 43.2 34.1 40.6 19.2 34.3 10.8 62.7

𝑇
33𝑐

MPa −98.4 −88.6 −95.1 −68.5 −87.7 13.4 −30.6

63.5 (1.25)

𝑎/𝑊
∗ 0.51 0.52 0.52 0.51 0.52

—

0.52 0.0 2.1
𝑃
𝑐
kN∗ 119.0 77.3 107.1 96.4 84.6 96.9 16.8 34.7

𝐾
𝑐
MPam1/2 91.5 61.4 85.0 74.0 67.1 75.8 12.4 32.7

𝐾
𝐽𝑐
MPam1/2

∗

99 62 86 76 70 78.6 14.4 36.6
𝐽
𝑐
N/mm 43.2 16.9 32.6 25.4 21.6 27.9 10.3 73.5

𝑇
33𝑐

MPa −13.2 −7.2 −10.0 −10.7 −7.9 −9.8 2.4 −48.8
∗Published results in [1].

the experimental average value, which indicated that 𝑇
33
can

successfully predict the bounded nature of 𝐽
𝑐
.

4. Discussion

In this work, the TST effect and the bounded nature of 𝐽
𝑐

observed for the decommissioned Shoreham reactor vessel
steel, A533B, at −91∘C, which is in the DBT range [1], were
compiled by 𝑇

33
-stress in the general form of (5). In (5), the

similar power law relationship between 𝐽
𝑐
and 𝑇

33
was also

valid for the combination of S55C [14, 15] and SCM440 [17]
tested using both CT and 3PB specimens. In addition, 𝑇

33
,

which seemed to be useful for predicting the bounded nature
of 𝐽
𝑐
for S55C [16], has also been proven to be valid for A533B.

In these empirical equations, the TST effect and the bounded
nature of 𝐽

𝑐
were described with a single out-of-plane elastic

parameter 𝑇
33

taken at the specimen midplane. Although
the depicted relationship between the fracture toughness 𝐽

𝑐

of a material and 𝑇
33

must be validated for other materials
and other types of test specimen configurations, using 𝑇

33

as a relevant out-of-plane constraint parameter is definitely
worthy of further investigation.

It could be argued that the relationship 𝐽
𝑐

∝ 𝐵
(−1/2)

∝

|𝑇
33
|
0.6 (Figure 3) is similar to the formulation deduced from

the SWL model, but no more than what is predicted by the

SWL model (𝐽
𝑐
∝ 𝐵
(−1/2)

) [2], because |𝑇
33
| first approaches

to 0 for large TST (Note: with increase in TST for 3PB
specimen, negative𝑇

33
first increases, crosses 0 and converges

to V𝑇
11
). As Anderson et al. indicated, as a contradiction of

the SWL model, the “fracture toughness does not decrease
indefinitely with thickness [6].” On the point that𝑇

33
exhibits

a saturating tendency for large TST, 𝑇
33
has also been proven

to be able to predict the bounded behavior of 𝐽
𝑐
(Figure 3).

The advantage of using 𝑇
33

is that 𝑇
33

has the characteristic
to not only describe the TST effect on 𝐽

𝑐
but to also predict

the bounded nature of 𝐽
𝑐
. This advantage of 𝑇

33
successfully

avoids the contradiction deduced from the SWL model; that
is, 𝐽
𝑐

→ 0 for 𝐵 → ∞.
ASTM E1921 [19] presents a method to adjust 𝐽

𝑐
for CT’s

TST change by considering the empirical relationship 𝐽
𝑐

∝

𝐵
(−1/2), under the assumption that 1-inch (1T) thickness CT

toughness data exists.The presentedmethod in this paper for
a 3PB specimen can be generally applied to any type of test
specimens, if a curve similar to Figure 2 is obtained. The fact
that 1TCT test data are not necessary for ourmethod can help
practitioners in their works.

When the proposed general formulation of (3) is practi-
cally used for determining the lower bound of 𝐽

𝑐
for a specific

material tested with a fracture toughness test specimen, the
material constants 𝐶 and 𝛾 should be first determined by
conducting measurements on at least two different-sized
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Figure 3: Relationship between 𝐽
𝑐
and 𝑇

33𝑐
(A533B, −91∘C, 3PB).

P

Symmetry
plane

a
CD
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NE for caliper notch = 3

NE for small notch = 2

NE for precrack notch

NE for support = 4

NE for span = 20
(bias = 8)

na = 189

RD = 1

(bias = 2)
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Δl

Δl/4
Rings = 20

a

N𝜃 = 16
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Singular element

∗N𝜃 : elements in the circumferential direction
NE: number of elements, na: elements in the thickness direction

(b) Details of crack-tip for elastic analysis

Figure 4: Typical finite element model of the 3PB specimen.

specimens. Nevertheless, if measurements on only one size
of specimen are conducted, (3) can also be simply but not
accurately applied for predicting the lower bound fracture
toughness just by assuming 𝛾 = 1/2 in the relationship
𝐽
𝑐
∝ |𝑇
33
|
𝛾 for that one size of specimen considered, because

the material constant 𝛾 = 1/2 has been verified for the
materials S55C and SCM440 tested with both CT and 3PB
specimens [14, 15, 17]; in addition, this work validated that the
approximated 𝛾 = 0.6which is close to 𝛾 = 1/2was applicable
for the material A533B tested using 3PB specimens.

The normalized 𝑇
33
-stress solutions used in this work

were taken at the specimen midplane. It is true that these

values are distributed in the specimen thickness direction
[21]. There are many possibilities to treat this 3D effect, but,
considering the fact that the fracture tends to initiate at the
specimen midplane, the values at the specimen midplane
were chosen to represent the characteristic intensity of these
values.

5. Conclusions

This paper demonstrated for the decommissioned Shoreham
reactor vessel steel A533B [1] that the out-of-plane crack-tip
constraint has a noticeable contribution to the TST effect
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Table 3: Summary of the generated mesh for elastic analysis (𝑆/𝑊 = 4, 𝑅
𝑠
= 0.4mm).

𝑊 mm 𝐵/𝑊 𝑎/𝑊 Δ𝑙/𝑎 Number of elements (NE) for precrack notch CD NR Nodes Elements

25.4

0.315 0.49
0.50

0.0016

6 10

30 368609 87591

0.63 0.52 0.0015 28 366579 87143

1.25 0.52
0.53

0.0015 30 368609 87591

2.5 0.49
0.50 0.0016 30 368609 87591

50.8

0.157 0.48
0.49

0.00082
0.00080

10

9
10

30
30

371654
372669

88263
88487

0.313 0.49 0.00080 10 30 372669 88487
0.63 0.50 0.00079 9 30 371654 88263

1.25 0.51
0.52

0.00077
0.00076

12
15

28
25 372669 88487

Table 4: Normalized 𝑇
33
-stress solutions (𝛽

33
) at the specimen

midplane for 3PB specimens (] = 0.29).

𝑊 = 25.4mm 𝑊 = 50.8mm
𝐵/𝑊 𝑎/𝑊 𝛽

33
𝐵/𝑊 𝑎/𝑊 𝛽

33

0.315 0.49 −0.582 0.157 0.48 −0.938
0.50 −0.583 0.49 −0.947

0.63 0.52 −0.281 0.313 0.49 −0.596

1.25 0.52 −0.032 0.63 0.50 −0.298
0.53 −0.025

2.5 0.49 0.031 1.25 0.51 −0.041
0.50 0.037 0.52 −0.034

on 𝐽
𝑐
and that the magnitude of this out-of-plane crack-

tip constraint can be described by the elastic 𝑇
33
-stress. The

experimental expression of the TST effect on 𝐽
𝑐
using 𝑇

33
-

stress, which was proposed for 0.55% carbon steel S55C and
0.40% carbon chromium molybdenum steel SCM440 with
both CT and 3PB specimens in our previous work [14, 15, 17],
was shown to be a correct description for A533B. In concrete,
the experimental relationship for A533B was compiled as
𝐽
𝑐
[N/mm] = 2.3 ⋅ |𝑇

33
|
0.6 (80 ≤ |𝑇

33
| ≤ 320MPa) to describe

the 𝐽
𝑐
decreasing tendency for increasing TST. Because the

Shoreham data included a lower bound 𝐽
𝑐
for increasing

TST, a new discovery was that 𝑇
33
successfully predicted the

lower bound of 𝐽
𝑐
with increasing TST. This lower bound

of 𝐽
𝑐
prediction with 𝑇

33
resolved the contradiction that the

empirical 𝐽
𝑐
∝ (TST)

−1/2 predicts 𝐽
𝑐
= 0 for large TST.

Appendix

The normalized 𝛽
33
solutions used to calculate 𝑇

33𝑐
in Tables

1 and 2 were obtained from the elastic FEA. In the present
FEA, all the 3PB specimen dimensions were specified in
accordance with those recorded in [1], and the material
properties were set to be consistent with those specified in
[20] for A533B.

The typical FEA model of the 3PB specimen used in
the present elastic analysis is shown in Figure 4, with the
details for the generated mesh being summarized in Table 3.
The details of the elastic FEA procedure can be found in
our recent work [17]. The normalized 𝑇

33
-stress, 𝛽

33
, at the

specimen midplane is summarized in Table 4, which is in
a good agreement with the interpolated solutions from our
previous results [22].

Nomenclature

𝐵: Specimen thickness
𝐶: Material constant (see (3))
𝐸: Young’s modulus
𝐽: 𝐽-integral
𝐽
𝑐
and 𝐽
𝑐 avg: Fracture toughness and its average

𝐽
𝑐min: Lower bound fracture toughness

𝐾I: Local mode I stress intensity factor (SIF)
𝐾
𝐽𝑐
: Fracture toughness (𝐾

𝐽𝑐
= [𝐸 ⋅ 𝐽c/(1 − ]2)]

1/2

)

𝐾
𝑐
: SIF corresponding to fracture load

𝑃
𝑐
: Fracture load

𝑅
𝑠
: Crack tube radius

𝑆: Support span for 3PB specimen
𝑇
11
and 𝑇

33
: 𝑇-stresses

𝑇
33𝑐

: 𝑇33-stress corresponding to fracture load
𝑇
33∞

: Bounded value of 𝑇
33
-stress

𝑊: Specimen width
𝑎: Crack length
𝑟, 𝜃: In-plane polar coordinates
𝑥
𝑗
: Crack-tip local coordinates (𝑗 = 1, 2, 3)

Δ𝑙: Singular element size
Σ: Standard deviation
𝛽
11
, 𝛽
33
: Normalized forms of the 𝑇-stresses

𝛽
33∞

: Bounded value of 𝛽
33

𝛾: Material constant (see (3))
𝜇: Average value
]: Poisson’s ratio
𝜎
𝑖𝑗
: Stress components (𝑖, 𝑗 = 1, 2, 3).
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