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Abstract--Although it is heuristically well-known that a negative resistor can be 

realized with nullors and positive resistors, the minimal realization of it have not 

been discussed systematically in detail. In this paper, based upon the general funda­

mental properties of linear active networks, it is proved systematically that nullors 

not less than one ( two) and positive resistors not less than three ( one, respective­

ly ) are necessary to realize a negative resistor and there exist only two circuits for 

the topologically minimal realization disregarding the labelling of nullors and resis­

tors. 

1. INTRODUCTION 

It has been already known that negative resistors can be realized by 

means of positive resistors and nullors ( where "nullor" is the abbrevi­

ation of a pair of a nullator and a norator which from now on are denoted 

by Nu or 5, and No or 6, respectively)' [ 1 ]. It seems that none of pa­

pers consider the topologically minimal realization of a negative resis­

tor on the basis of the given port characteristics and the general funda­
mental properties of the nullor-model network. Furthermore, it seems also 

that the variety in the nullor-model representations of other functional 

circuits results in the fact that there exist the circuits not less than 

one for the topologically minimal realization of a negative resistor [ 2 

], [ 3 ]. Then, it is considered significant to systematize all the topo­

logically minimal realization circuits of a negative resistor from the 

above viewpoints [ 4 J. 
In this paper, based upon the general fundamental properties of line-

ar active networks, the least number of elements needed for the topolo­

gically minimal realization of a negative resistor and all the topologi­

cally minimal realization circuits of it are found systematically. 
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Communication Laboratories, Nippon Telegraph and Telephone Public Corporation, 
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2. PRELIMINARIES 
( 1 ) One port considered in this paper consists of nullors and posi­

tive resistors and contains no independent sources. Suppose that one port 

has no redundancy corresponding to the following Lemmata I and 2 [ 5 ]. 

[ Lemma I ] The following transformations guarantee that the values of 

all the branch variables in N port remain unchanged before and after the 

transformations: 

(1) If a loop ( cut-set) consists of only nullators, replace an arbi­

trary one of them by an open ( a short, respectively) circuit. 

(li) Suppose that there exists a loop ( cut-set, respectively) which con­

sists of nullators more than one and y-branch. If y-branch is a norator, 

replace it by a short ( an open, respectively) circuit and further re­

peat the transformation (I ). If y-branch is a regular branch, replace 

it by an open ( a 5hort, respectively) circuit. 
[ Lemma 2 ] The following transformations guarantee that the values 

of all the branch variables in N port remain unchanged before and after 

the transformations except for the current ( voltage) values of branches 

which are included in each loop ( cut-set, respectively) : 
(]I) If a loop ( cut-set) consists of only norators, or of norators 

and independent voltage ( current) sources, replace an arbitraly one 

of the norators by an open ( a short, respectively) circuit. 
(TV) Suppose that there exists a loop ( cut-set, respectively) which 

consists of norators more than one and y-branch. If y-branch is a null­

ator, replace it by a short ( an open, respectively) circuit and further 

repeat the transfomation (]I). If y-branch is a regular branch, replace 

it by an open ( a short, respectively) circuit. 

( 2 ) In the graph Go for N port consisting of nullors and positive 

resistors, let G~ ( G~ ) be the voltage ( current) graph which is ob­

tained from the graph Go by replacing all nullators ( norators ) and all 

norators ( nullators, respectively) by short circuits and open circuits 

, respectively, where the port branches are dealt with in the same way as 

the resistive branches. Let a common tree~ be a set of branches which 
is a tree of both Gv and G~ . Furthermore, let tTcV

( ~i ) be a tree of the 

graph Go such that some port tree branches of~ , conductive tree bran­

ches of trc and nullators ( norators ) branches are taken as the tree 

bra~ches of the graph Go and the other port co-tree branches of~ , re­

sistive co-tree branches of~ , and norators ( nullators, respectively) 

branches, as the co-tree branches of the graph Go • 

( 3 ) If the values of resistors in the network are independent alge­

braically and all the network variables are uniquely determined for the 

arbitrary inplAt waveforms, the network is called the non-trivial one in 

a topological sense. In realizing the active circuit, it is called the 



topologically minimal realization when the circuit is realized on the 

basis of the above topological conditions and moreover each element of 

the realized circuit is essential to specify the given port character­
istics. 

( 4 ) The statement that one port is topologically non-trivial is 

equivalent to each of the following statements [ 6 ]: 
Statement 1: There exists a common tree~ in the graphs G~ and G~. 
Statement 2: There exist 'd! and 'tJt in the graph Go' 

Sta tement 3: Matrices !.s& and 1.65 are nons ingular*. 
( 5 ) Since negative resistors have finite immittances and it is 

assumed in the minimal realization of a negative resistor that there 
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is no redundancy in the network structures, the following assumptions are 
valid for the realization of a negative resistor without loss of gener­

ality: 

( i ) The graphs G-v and G-<.for the negative resistor are connected 
graphs. 

( ii ) Neither G.". nor G~ for the negative resistor consists of only tree 
branches or only co-tree branches. 

( iii) The port branch of one port is always chosen as a tree branch of 

J';;v and u-J in the gr aph Go. 

( 6 ) Now, provided that the port branch is chosen as a tree branch 
of ~~ in the graph Go, let us get the general express ion of a nega ti ve 

resistor in terms of the explicit network structures [ 7 ]. Suppose 
from now on that the reference directions for all the branch voltages 

and all the branch currents including the port branch variables are the 

associated reference directions [ 8 ]. Then, applying KVL and KCL to one 

port on the bas is of ~i of the graph Go, we have 

where vi ~ [ 
.1" ]T ,.." d 

J;}r , an 
vi ( it): ,... ....... 

J<.,t ( it ): 
)?)s (h): 

J!j (£6 ): 

vI = - P v t 

{, 
.... -

.~ A [ 
.:z-:. = 

and ",.t = pT.1 
" - ~ , (1) 

v, .J 
T' T]T.t ~ [ 

~6.J J!fr ,2:-
• .T 

1-p.J ~6.J 

the co-tree branch voltage current, respectively vector, 
the tree branch voltage ( current, respectively ) vecto~ 
the nullator-branch voltage ( current, respectively) vector, 

the norator-branch voltage ( current, respectively) vector, 

~~ it): the ~onductive branch voltage ( current, respectively ) vecto~ 

~ ~): the resistive branch voltage ( current, respectively) vector, 

~ if): the port-branch voltage ( current, respectively) scalar, 

*: The matrix [56 is the square matrix defined by eq. ( 2 ) and the matrix llS is the . 
square matrix defined for !tv in the graph Go in the same way as the matrix .l~' for j;'. 
From now on, the symbols '~" and" A " denote the matrix and the scalar, respectively. 
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and furthermore, L denotes the principal submatrix of :he fundamental 

loop matrix and gT denotes the transpose of it. The matrix,l is defined 

in detail by the following equation: 
P No G 

N 1.1. [ ~sP !..r6!rrr J F = 
R . !.1?1> :'R6 ~Rfr 

(2) 

where the submatrix l«~ denotes the lrilxl@\ matrix which shows whether the 

fundamental loop with respect to thee< co- tree branch contains the f1 tree 

branch or not and~1 andl~ldenote the number of seta( and that of set t3 ' 
respectively. Furthermore, the branch characteristics are as follows: 

}(.R = .BiR ~ itr=,e~ ~ J<.s = 12 ~ its = f!.. ~ J<,6 = the arbitrary vector, ~ (3) 

and i6 = the arbitrary vector, J 
where 1!, and fl are the lEI )(/RI posi ti ve diagonal matrix and the I GlxlGI pos i­

tive diagonal matrix, respectively. Provided that the following matrix 
~R is nonsingular, which .is guaranteed by the property stated in ( 7 ) 
of the preliminaries, the port characteristics of one port is expressed 

from eqs.( 1 ), ( 2 ), and ( 3 ) by the following equation: 
T -/ -I) (4) . 

ip = FRP KpJ FR6 Ft6 Fsp - FRP vp ..... ,.""" .,."" """"., ""-' 
~ ~ T . ~ T 

where K R = ~ - FR6 FS6 :'r~ E. ~R6 and ~ = R + ~Rfi q ~R(f. 
Consequently, considering that the reference directions of the port 

branch variables are the associated reference directions, the condition 

that eq. ( 4 ) satisfies the port charact.eristic of the negative resistor 

is obtained as follows: 

!!p ~ (fJ?& 6-; ~p - !RP) "7 O. (5) 
If there is no conductive tree branches in the graph Go, eqs. ( 4 ) and 
( 5 ) are rewritten as the following eqs.( 4') and ( 5'), respectively: 

ip = Eftp fr' (FR6 Fit Fsp - FRP) Vp (4') 
T -, ·1 - - - - ( 5 I ) 

FRP!! (f.R6 FS6 F~p - FRP) > o. - -.....,.. and 

( 7 ) Note that it is derived from eq. ( 5 ) that the graph Go of a 

negative resistor, that is, one port must contain at least one resistive 

co-tree branch, and note that the necessary and sufficient condition 

for the existence of one port is equal to the following: ( i ) there 

exis t 'tre'll" and d"c"" in the graph Go wi th the port branch chos en as the 

tree branch or the co-tree branch and (ii ) the fundamental loop matrix 

of the resistor subnetwork of one port~ £~ is nonsingular [ 7 ]. 

3. NECESSARY AND SUFFICIENT CONDITION FOR THE NUMBER OF ELEMENTS NEEDED 
FOR THE MINIMAL REALIZATION OF A NEGATIVE RESISTOR 

In this section, on the basis of the above preliminaries stated in 

the section 2, the number of nullors and positive resistors needed for 

the minimal realization of a negative resistor is discussed in detail. 



In order to make it clear, first of a~l, the necessary condition is 
given in the next theorem. 
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[ Theorem l ] If negative resistors are realized by means of nullors 
arid positive resistors, nx is not less than one and nr: is not less than 
three, or nJt is not less than two and nr is not less than one, where n1'l 
and n~denote the number of nullors and the number of positive resistors, 
respectively. 

Proof: 

Let us prove this by the contraposition. Then, we shall prove that 

any negative resistor cannot be realized in each of the following four 
cases: case(l) n~ = 0 and n~ ~ 1, case(2) n~~ 1 and n~ = 0, case(3) n~= 
1 and nr = 1, and case(4) n~= 1 and n~ = 2. 

Cases (1) and (2): It is clear that any negative resistor can not be 
realized in the cases (1) [ 8 ] and (2) [ 5 ]. 

Case (3): Consider eqs.(2) and (4) which are expressed on the basis of 
~4, in which the tree branches are the port branch and a nora tor bra~ch, 
and the co-tree branches are a nu1lator branch and a res~stive branch. 
Then, considering in eq. (2) of this case (3) that there is no redundancy 

corresponding to Lemmata 1 and 2, we have Fs, I 0" FR,f I 0" FM I 0" and 
moreover F56 i 0 because the nonsingu1ar matrix ,is6 is the 1 x 1 matrix". 
Furthermore, since the principal submatrix of the fundamental loop mat­
rix defined by eq. (2) is the totally unimodular matrix, without loss of 
genera1i ty, it is assumed that F~6 = F$p = FR.p = FR€ = 1. 

If the above conditions are substituted into eq.(4), the coefficient 
of v1' in the right -hand side of eq. (4) becomes 

T -, , 

FRP R (FR' F;, Frp - FRP ) =0 , 

where R denotes the scalar positive resistance of a resistive co-tree 
branch. However, since the above equation contradicts the requirement of 
eq.(S), it is concluded that any negative resistor can not be realized 
in this case (3). 

Case (4): In this case, both G~and G~consist of three branches including 
the port branch. Since the port branch and a resistive branch must be 
chosen as a tree branch and a co-tree branch, respectively, o~ the com~ 
mon tree ~ in G".. and G.;" the other branch may be chosen as a tree branch 

or a co-tree branch of~. Then, without loss of generality, this case 
(4) is divided into the following two cases: (i) n(.= 2 and (ii) nc= 1, 

where nc: denotes the number of the common tree branches of ~ in G-v- and 
G~. Case (4-1) nc= 2: Consider eqs.(2) and (4) which are expressed on 
the basis of~l, in which the tree branches are the port branch, a nora~ 
tor branch, and a conductive branch, and the co-tree branches are a 
nullator branch and a resistive branch. Then, considering in eq.(2) of 

this case (4-i) that there is no redundancy corresponding to Lemmata 1 
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and 2, \\le obtain FR 6 =I 0, FR? I 0, FR9" I 0, and moreover Fs, I 0 because 

the nonsingular matrix X56 is the lxl matrix in this case (4-i). Fur­

thermore, since the principal submatrix of the fundamental loop matrix 

defined by eq. (2) is the totally unimodular matrix, without loss of gene­

rali ty, we can assume that FS-6 = FR6 = FR.p = FRf = 1. Substi tuting the abo­
ve conditions into eq. (5), we have 

t R + c-
I 
(1 - F!f( ) rl 

(Fsp - 1) > 0, (6) 
namely 

R + c- I (1 - F~) > 0 and Fsp ""7 1 ( 7) 

or 

R + c-
I 

(1 - F~) < 0 and F~p < 1 , (8) 

where Rand C denote the scalar positive resistance of a resistive co­

tree branch and the scalar positive conductance of a conductive tree 

branch, respectively. However, the condition of Fsp) 1 in eq. (7) and 
that of R +C\1-F"-1- )<0 in eq. (8) contradict the fact that each of PSt> and 

Fs~ is one of the elements of the totally unimodular matrix! defined by 

eq. (2). Therefore, it is concluded that any negative resistor can not be 

realized in this case (4-j). Case (4-ii) nc= 1 : Consider eqs. (2) and (4) 

which are expressed on the basis of ~~, in which the tree branches are 

the port branch and a norator branch, and the co-tree branches are two 

resistive branches. Then, considering in eq. (2) of this case (4-ii) that 

there is no redundancy corresponding to Lemmata 1 and 2, we have the 

follO\ving conditions; Fspf 0, FR6(E- at"")* I 0, each element of Fl<p (~CQ2,)i:I) 
~ ~ ~ 

is non - zero, and moreover FSG 10 because the nonsingular matrix ..!)G is 

the 1~1 matrix in this case (4-ii). Furthermore, since the principal sub­

matrix of the fundamental loop matrix defined by eq. (2) is the totally 

unimodular matrix, without loss of generality, it is assumed that P~p = 
FSb = 1 and ~R; = [1,1]. Let ~ = [a,b] I £ and J!.= diag(R,, R2)' 

where ~ and R~ denote the scalar positive resistances of two resistive 

co-tree branches, and at least one of a and b is non-zero scalar. Then, 

suhstituting the above conditions into eq. (5), we have 
-1·\ (9) 

(a - l)R,+ (b - 1)R270. 

However, eq. (9) contradicts the fact that the elements of the matrix L 
, that is, a and b must be ones of the totally unimodular matrix L de­

fined by eq. (2). Therefore, it is also concluded that- any negative re­

sistor can not be realized in this case ( 4-jD. 

The proof of the case (4) is completed by those of the cases (4-i) 

and (4-jj). Then, the proof of this theorem is completed by those of the 

cas e s (1), ( 2). ( 3), an d (4). Q. E . D . 

[ Theorem 2] The number of elements needed for the minimal realiza-

r;::;1t.<m. 
*: CYOJ denotes the nx 111 matrices of real numbers. 



tion of a negative resistor is n'Jt = 1 and ny 

Proof: 
3, or n" = 2 and ny = 1. 
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The necessity is proved by the theorem 1, while the sufficiency is 

clearly proved from the fact that each of the circuits shown in Fig.1 (a) 

and (b) is the negative resistor. Q.E.D. 

4. ALL THE MINIMAL REALIZATION CIRCUITS OF A NEGATIVE RESISTOR 
The least number of elements needed for the minimal realization of a 

negative resistor was given by the theorem 2. In this section, all the 

minimal realization circuits of a negative resistor with the above least 

number of elements are found systematically. 

[ Theorem 3] The minimal realization circuits of a negative resis­
tor by means of nu110rs and positive resistors are only the two circuits 

shown in Fig.1 (a) and (b). 

Proof: 

Sufficiency: It is obvious that each of the circuits of Fig.l (a) 

and (b) is the minimal realization circuit of a negative resistor. 

Necessity: Case (1): Let us prove that the minimal realization 

circuit of a negative resistor by means of a nullor and three positive 

resistors is only the circuit shown in Fig.l(a).In this case, both G~ 

and G~consist of four branches, and the port branch and at least one 

resistive branch should be chosen as a tree branch and a co-tree branch, 

respecti ve1y, of the common tree ~ in G/I"and G';'. Then, each of the other 
two resistive branches may be chosen as a conductive tree branch or a re­

sistive co-tree branch aftlc, so this case (1) is divided into the follow­

ing three cases: (j)nc=3, Cii)nc=2, and (ijj)nc=l, wherenc denotes the num­

ber of the common tree branches.Case(1-i)nc=3:In this case, from the 

above statements, it is evident that we can select the tree~iwhich con­

sists of the port tree branch, a norator tree branch, two conductive 

tree branches, a nullator co-tree branch, and a resistive co-tree branch. 

Then, considering eq. (2) on the basis of the above~iand the fact that 

(a) (b) 

Fig.l. All minimal realization circuits of a negative resistor. In 
each figure in this paper, 0 and 00 show a nu11ator and a norator, 
respectively. 
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in eq. (2) of this case (1-;) there is no redundancy corresponding to 

Lemmata 1 and 2, we obtain the following condi tions; FS6 "/=0, F/(f 10, all 

elements of J).fr (€-ri'(~ are non-zero, and moreover Fs, (€:rI'~ro because the 

nonsingular matrix !)6 is the lxl matrix in the case (l-j). Furthermore, 

since the principal submatrix of the fundamental JooP matrix defined 

by eq. (2) is the totally unimodular matrix, without loss of generality 

it is assumed that FSG =FRG = FRP =1, and!..R~ =[1,1]. Let !)t =[a"bl and.Q= 

diag(G, ,Gz ), where G, and G2 denote the scalar positive conductances of 
two conductive tree branches. Then, substituting the above conditions 

into eq.(S), we have 

\R + (1 - a)G~'+ (1 - b)G~'} (FSf - 1) >0, 

R + (1 a)G~'+ (1 - b)G;'? 0 and Frr> 1 

(10) 
namely 

(11) 
or 

R + (I - a) G~' + (1 - b) G;' ~ 0 and F Sf"::: 1, (12 ) 
where R denotes the scalar positive resistance of a resistive co-tree 

branch. However, the condition of Fsp)l in eq.(ll) and that of R+(l-a)Gi+ 

(l-b)G;'<O in eq. (12) contradict the fact that Fsp, a, and b are the ele­

ments of the totally unimodular matrix~ . Therefore, it is concluded in 

the case (I-i) of nc=3 that any negative resistor can not be realized. 

Case(l-ii) nc=2:In this case, from the same reason as the case (I-i), it 

is evident that we can select the tree~~ which consists the port tree 

branch, a conductive tree branch,a nullator co-tree branch, and two resis­

tive co-tree branches. Since the graph Gois assumed to be connected and 

the number of tree branches of~~ is three, the number of all nodes in 

the nullor-model network is four. In consideration of the bilaterality of 

the negative resistor, no mutual couplings between the branches in the 

nullor-model network,and no distinction between nullators and norators, 

it can be assumed that the network structure of the negative resistor 

seen at the port branch is symmetric. Consider eq. (2) on the basis of the 
• T T T 

above tree~A. and let ERr> = [a, ,a,2, ], !Rfi- = [b l ,b2 ], and !/?6 = [c
" 

C.,2.] 

for the simplicity of the explanation. Considering in eq. (2) of this 

case (l-ii) that there is no redundancy corresponding to Lemmata I and 2, 

we can assume that at least one element of each pair of (Fs'P ,F>~), ( at ' 

b l ), (a.2.' b.z), (a" a2), (b
" 

b2.), and (c, ,c,2.) is non-zero. 
From the above stated, first of all, the port branch, a nullator 

branch, and a norator branch can be fixed as shown in Fig.l (a) without 

loss of generality. Since the nonsingular matrix L~6 is the l~l matrix in 

this case (l-ii) and is the submatrix of the totally unimodular matrix L 
, without loss of generality we obtain FS6 = 1. Then, a conductive tree 
branch must be inserted between the node ® and the node CD in Fig. 1 (a) 

because the fundamental loop associated with the nullator co-tree branch 
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in ~..: mus t contain a nora tor tree branch. Hence, we have Fsp = F.9t= 1. Se­

condly, it is assumed that the fundamental cut-set associated with the 

port tree branch in ~i must contain at least one resistive co-tree branch 
because of no redundancy corresponding to Lemmata 1 and 2 in the graph ~. 

In consideration of the above stated and the elimination of the apparent 

redundancy ( namely, the each parallel connection of a nullator branch and 
a resistive branch, a norator branch and a resistive brancn, and a con­

ductive branch and a resistive branch) in the graph Go, it is assumed 
that two resistive co-tree branches must be inserted only between the 

node CD and the node @, and the node.Q) and the node ®, res1'ecti vely. 

Consequently, in this cas·e (l-ij) of ne = 2, the circuit in Fig. 1 (a) is 

obtained uniquely. 

Case (1- iii) nc.= 1: In this case, from the same reason as the case (I­

ii), it is evident that we can select the tree~.j.,which consists of the 

port tree branch, a norator tree branch, a nullator co-tree branch, and 
three resistive co-tree branches. Then, considering eq.(2) on the basis 
of the above tree~~and the fact that there is no redundancy correspoding 

to Lemmata I and 2, we have the followings; FS'P1 0, all elements of l)p ( 

f.~I) are non-zero, FR6(€- 1W 3x l) 10, and moreover FS6=/= 0 because the non~ 
'V v-'\o ..... 

singular matrix ~.s6'is the V<l matrix i~ this case (1- iii ). Furthermore, 

since the principal submatrix of the fundamental loop matrix defined by 

eq.(2) is the totally unimodular one, without loss of generality, it is 
r T 

assumed that F56 = F$p= 1 and FRP = [ 1,1,1 ]. Let F~= [a,b,o ] and R = 
~ - ~ 

diag (R, ,R" ,R3 ), where R I ,R2., and R3 denote the scalar pos i ti ve res is-tan-
ces of three resistive co-tree branches. Then, substituting the above 
conditions into eq. (5), we have 

(a - l)R:'+ (b - l)R~+ (0 - l)R;'..,O. (13) 

However, eq.(13) contradicts the fact that a ,b , and 0 are the elements 

of the totally unimodular matrix~. Therefore, it is concluded in this 
case (1- iii) of nc = I that any negative resistor cannot be realized. 

Case (2): Let us prove that the minimal realization circuit of a 

negative resistor by means of two nullors and a positive resistor is only 

the circuit shown in Fig. 1 (b). In this case, it is evident from the 
p~operty (4) in the preliminaries that both Gv and G~ consist of the pa­
rallel connection of the port tree branch and a resistive co-tree branch. 
Therefore, consider eq.(2) on the basis ofa:rckwhich consists of the port 

tree branch, two norator tree branches, two nullator co-tree branches, 

and a resistive co-tree branch. Then, considering in the eq. (2) of this 

case (2) that there is no redundancy corresponding to Lemmata 1 and 2" 

we have the followings; FRP I 0 and all elements of Fsp (E- ~2)C.1) and FRG ( "" ,.... 
E- ~l(f) are non- zero. Furthermore, s.ince the principal submatrix of the 

fundamental loop matrix is totally unimodular, without loss of generality 
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it is assumed that f}p = [1,1], FRP =1 ,and !..R6= [1,1]. If there exists 

anyone row vector with all non-zero elements in the row vectors of 
2.><.i 

F...,s, (Eo ~ ), then the tree path formed by the nullator co- tree branch 

corresponding to the row vector is equal to that formed by the resistive 

co-tree branch. Hence, it is clear that there exists redundancy of the 

parallel connection of the nullator branch and the resistive branch in 

the graph Go . Therefore, all the elements of each row vector of !:~, should 

not be non-zero. Similarly all the elements of each column vector Of[S6 

should not be non-zero. Then, without loss of generality, it is assumed 

that the 2);2 nonsingular matrix 1)6 is the diagonal one. 

From the above mentioned, all the elements of the principal sub­

matrix! of the fundamental loop matrix are determined and the matrix!: 

becomes r I ] 

F = [-f;;1-i;;i = H -~ -~--~ - (14) 

where the symbol" * " denotes the non-zero element. By synthesizing the 

nullor-model network in accordance with eq.(14), the circuit of Fig.l(b) 

is uniquely obtained. 

The proof of necessity was completed by the proofs of the cases (1) 
and (2). 

Q.E.D. 

5. IMPLEMENTATIONS 
Although it has been already known that the negative resistor can be 

effectively realized by using operational amplifiers, even all the imple­

mentations of the minimal realization circuits in Fig.l with operational 

amplifiers are not well-known. In this section, the implementations of 

the minimal realization circuits using operational amplifiers are consid­

ered. First of all, the implementation of the nullor using operational 

amplifiers is shown in Fig.2. The circuit of Fig.2(a) is a conventional 

operational amplifier with floating input port and unfloating output 

port and has widely been put to practical use, while the circuit of Fig. 

2(b) is an operational amplifier with floating input and output ports, 

and had not been almost made practicable to be on the general market. 

However, the monolithic integrated nullor corresponding to the circuit 

of Fig.2(b)* has been recently developed by the integrated circuit tech-

*: The availability of such universal active elements makes it possible to minimize 
the number of active elements and passive precision elements in implementations of 
analog system functions, for example, as shown in Fig.3. 
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Fig.2. Implementations of a nullor using operational amplifiers. (a) 
A nullor with floating input port and unfloating output port. (b) A 
nullor with floating input and output ports. 
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Fig.3. Implementations of the minimal realization circuits of a neg­
ative resistor using operational amplifiers. All the nodes Q),GD ,CD. 
and @ shown in Fig. 3 correspond to those shown in Fig. 1. Al though 
the polarity of the input terminals in each operational amplifier is 
omitted, it should be selected by considering the stability of each 
circuit. 
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nique [9]. Therefore, it is considered significant to find all the imple­

mentations of the minimal realization circuits of a negative resistor in 

consideration of the existence of the circuit shown in Fig.2(b) in addi­
tion to that of the circuit shown in Fig.2(a). 

The results of these implementations are easily obtained as shown in 

Fig. 3, in which the circui ts of (a), (b), and (c) are derived from that 

of Fig.l (a) and the circui ts of (d), (e), (f), (g), (h), and (i), from 
that of Fig.l(b). Furthermore, it is to be noted in Fig.3 that the cir­

cui ts of (b), (c), (f), (g), (h), and (i) are the floating negative re­
sistors in contrast with those of (a), (d), and (e), and that only the 

circuitSof (a) and (b) have been put to practical use. Therefore, we can 

expect much from the applications of the circuits of Fig.3(c)~ (i) to 

the active network synthesis. 

6. CONCLUSIONS 
This paper has strictly discussed the necessity of the Theorem 3 

and guaranteed that all the topologically minimal realization circuits 

of a negative resistor are only the two circuits shown in Fig.l. Further­

more, all the usefull implementations of the minimal realization circuits 

by means of operational amplifiers are shown in Fig.3. 

Finally, the following fact must be also noted. If the concept of 
" the chain bond between ports for the active N -port including one port" 

which gives the necessary and sufficient condition of the existence of 

transmission path between ports [10] is introduced, the Theorems 1,2, 

and 3 will be proved more easily and systematically. This will be 
appeared in detail elsewhere. 
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