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ToporLoGicaLLY MINIMAL REALIZATION OF A NEGATIVE ReSISTOR USING
NuLLORS AND PosI1TIVE RESISTORS

Tadashi MATSUMOTO*, Kazuhisa HIBINO*, and Kazuo KANEMAKI*
( Received June 15, 1977 )

Abstract— Although it is heuristically well-known that a negative resistor can be
realized with nullors and positive resistors, the minimal realization of it have not
been discussed systematically in detail. In this paper, based upon the general funda-
mental properties of linear active networks, it is proved systematically that nullors
not less than one ( two ) and positive resistors not less than three ( one, respective-
ly ) are necessary to realize a negative resistor and there exist only two circuits for
the topologically minimal realization disregarding the labelling of nullors and reéis-
tors.

1. INTRODUCTION

It has been already known that negative resistors can be realized by
means of positive resistors and nullors ( where "nullor" is the abbrevi-
ation of a pair of a nullator and a norator which from now on are denoted
by Nu or 5, and No or 6, respectively ) [ 1 ]. It seems that none of pa-
pers consider the topologically minimal realization of a negativé resis-
tor on the basis of the given port characteristics and the general funda-
mental properties of the nullor-model network. Furthermore, it seems also
that the variety in the nullor-model representations of other functional
circuits results in the fact that there exist the circuits not less than
one for the topologically minimal realization of a negative resistor [ 2
], [ 3 1. Then, it is considered significant to systematize all the topo-
logically minimal realization circuits of a negative resistor from the
above viewpoints [ 4 ].

In this paper, based upon the general fundamental properties of line-
ar active networks, the least number of elements needed for the topolo-
gically minimal realization of a negative resistor and all the topologi-

cally minimal realization circuits of it are found systematically.

*: Department of Electrical Engineering. But, Kazuo KANEMAKI is now with Electrical
Communication Laboratories, Nippon Telegraph and Telephone Public Corporatien,
Musashino-shi, Japan.



28

2. PRELIMINARIES

( 1) One port considered in this paper consists of nullors and posi-
tive resistors and contains no independent sources. Suppose that one port
has no redundancy corresponding to the following Lemmata 1 and 2 [ 5 ].

[ Lemma 1 ] The following transformations guarantee that the values of
all the branch variables in N port remain unchanged before and after the
transformations:

(1) If a loop ( cut-set ) consists of only nullators, replace an arbi-
trary one of them by an open ( a short, respectively ) circuit.

(L) Suppose that there exists a loop ( cut-set, respectively ) which con-
sists of nullators more than one and y-branch. If y-branch is a norator,
replace it by a short ( an open, respectively ) circuit and further re-
peat the transformation (I ). If y-branch is a regular branch, replace
it by an open ( a short, respectively ) circuit.

[ Lemma 2 ] The following transformations guarantee that the values
of all the branch variables in N port remain unchanged before and after
the transformations except for the current ( voltage ) values of branches
which are included in each loop ( cut-set, respectively )

(m) If a loop ( cut-set ) consists of only norators, or of norators

and independent voltage ( current ) sources, replace an arbitraly one

of the norators by an open ( a short, respectively ) circuit.

(Tv ) Suppose that there exists a loop ( cut-set, respectively ) which
consists of norators more than one and y-branch. If y-branch is a null-
ator, replace it by a short ( an open, respectively ) circuit and further
repeat the transfomation (IT ). If y-branch is a regular branch, replace
it by an open ( a short, respectively ) circuit.

( 2 ) In the graph Go for N port consisting of nullors and positive
resistors, let Gy ( Gi ) be the voltage ( current ) graph Which is ob-
tained from the graph G, by replacing all nullators ( norators ) and all
norators ( nullators, respectively ) by short circuits and open circuits
, respectively, where the port branches are dealt with in the same way as
the resistive branches. Let a common tree Uc be a set of branches which
is a tree of both Gy and G. . Furthermore, let ZLV( ¢ ) be a tree of the
graph Go such that some port tree branches of 95 , conductive tree bran-
ches of J; and nullators ( norators ) branches are taken as the tree
branches of the graph G, and the other port co-tree branches onZ , Te-
sistive co-tree branches of J¢ , and norators ( nullators, respectively )
branches, as the co-tree branches of the graph G, .

( 3 ) If the values of resistors in the network are independent alge-
braically and all the network variables are uniquely determined for the
arbitrary input waveforms, the network is called the non-trivial one in

a topological sense. In realizing the active circuit, it is called the
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topologically minimal realization when the circuit is realized on the

basis of the above topological conditions and moreover each element of
the realized circuit is essential to specify the given port character-
istics. '

( 4 ) The statement that one port is topologically non-trivial is
equivalent to each of the following statements [ 6 ]:

Statement 1: There exists a common treeﬁbz in the graphs Gqo and Gg.
Statement 2: There exist %Y and %% in the graph G, .
Statement 3: Matrices Fs and fgs are nonsingular®.

( 5 ) Since negative resistors have finite immittances and it is
assumed in the minimal realization of a negative resistor that there
is no redundancy in the network structures, the following assumptions are
valid for the realization of a negative resistor without loss of gener-
ality:

( | ) The graphs G, and G¢ for the negative resistor are connected
graphs.

( 1] ) Neither Gy nor G¢ for the negative resistor consists of only tree
branches or only co-tree branches.

(1il') The port branch of one port is always chosen as a tree branch of
oY and J¢ in the graph G,.

( 6 ) Now, provided that the port branch is chosen as a tree branch
ofzziin the graph G, , let us get the general expression of a negative
resistor in terms of the explicit network structures [ 7 ]. Suppose
from now on that the reference directions for all the branch voltages
and all the branch currents including the port branch variables are the
associated reference directions[ 8 ]. Then, applying KVL and KCL to one
port on the basis ofﬁxf of the graph G,, we have

vl= - ot and P=rd, e8]
where 22[ o, vf 17, P20 4%, ix V. P20 v, of, o 1, 5520 ip, 30,
24 1, and
gﬁ ( i} ): the co-tree branch voltage ( current, respectively ) vector
Qf ( i? ): the tree branch voltage ( current, respectively ) vector,
vs ( Zs ): the nullator-branch voltage ( current, respectively ) vector,
w6 ( Zé ): the norator-branch voltage ( current, respectively ) vector,
ve¢ ( Z¢ ): the conductive branch voltage ( current, respectively ) vector,
2r ( Zg ): the resistive branch voltage ( current, respectively ) vector,
ve ( ip ): the port-branch voltage ( current, respectively ) scalar,

*: The matrix Fss is the square matrix defined by eg.( 2 ) and the matrix Fes is the
square matrix defined for %Y in the graph Ge in the same way as the matrix Fse¢ for Jo™.
From now on, the symbols "4" and " 4" denote the matrix and the scalar, respectively.
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and furthermore, F dehotes the principal submatrix of the fundamental
loop matrix and.ET denotes the transpose of it. The matrix F is defined
in detail by the following equation:

P No G
- Fsp Fsg Fog (2)
~ R | Frr Fre Frg |,

where the submatrix Fxg denotes thep(x|f| matrix which shows whether the
fundamental loop with respect to thed co-tree branch contains thef tree
branch or not andp|and|p|denote the number of setel and that of set g,
respectively. Furthermore, the branch characteristics are as follows:
vr = Bir > ie= Gve, =0, i5=0 , ues = the arbitrary vector, }
and ¢ = the arbitrary vector,
where R and ¢ are the |R|x|R|positive diagonal matrix and the|G|x]G| posi-
tive diagonal matrix, respectively. Provided that the following matrix

Kgr is nonsingular, which is guaranteed by the property stated in ( 7 )
“of the preliminaries, the port characteristics of one port is expressed

from eqs.( 1), (2 ), and ( 3 ) by the following equation:

(3)

. T —-‘ -l .
ip = Fgrp KR(ERG Feg Fop - ERP) vp (4
PRI SR e
where Kp = R - Frg Feg Foe G Ire and R =7+ Ire & Tre

Consequenfiy, considering that the reference directions of the port
branch variables are the associated reference directions, the condition
that eq.( 4 ) satisfies the port characteristic of the negative resistor
is obtained as follows:
Frp Kg (Frs i Fsp - Frp) 7 0. (5)
If there is no conductive tree branches in the graph G,, eqs.( 4 ) and
(5 ) are rewritten as the following eqs.( 4') and ( 5'), respectively:
’LP = JPR "(Frs Fs§ Fsp - Frp) vp (4")
and FRPR ' (Frs F:s Fsp - Frp ) > 0. ’ (5
( 7 ) Note that it is derived from eq.( 5 ) that the graph G,of a
negative resistor, that is, one port must contain at least one resistive
co-tree branch, and note that the necessary and sufficient condition
for the existence of one port is equal to the following: ( i ) there
exist gx”‘andiI? in the graph G,with the port branch chosen as the
tree branch or the co-tree branch and (ij ) the fundamental loop matrix
of the resistor subnetwork of one port, XKsg is nonsingular [ 7 ].

3. NECESSARY AND SUFFICIENT CONDITION FOR THE NUMBER OF ELEMENTS NEEDED
FOR THE MINIMAL REALIZATION OF A NEGATIVE RESISTOR

In this section, on the basis of the above preliminaries stated in
the section 2, the number of nullors and positive resistors needed for

the minimal realization of a negative resistor is discussed in detail.
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In order to make it clear, first of all, the necessary condition is
given in the next theorem.

[ Theorem 1 ] If negative resistors are realized by means of nullors
and positive resistors, ny is not less than one and 7%y is not less than
three, or n,is not less than two and 7y is not less than one, where np
and npdenote the number of nullors and the number of positive resistors,
respectively.

Proof:

Let us prove this by the contraposition. Then, we shall prove that
any negative resistor cannot be realized in each of the following four
cases: case(l) na = 0 and n, % 1, case(2) npZ 1 and nnw = 0, case(3) np=
1 and ny = 1, and case(4) np= 1 and ny = 2.

Cases (1) and (2): It is clear that any negative resistor can not be
realized in the cases (1) [ 8 ] and (2) [ 5 ].

Case (3): Consider eqs.(2) and (4) which are expressed on the basis of
@ﬁ, in which the tree branches are the port branch and a norator branch,
and the co-tree branches are a nullator brangh and a resistive branch.

Then, considering in eq. (2) of this case (3) that there is no redundancy
corresponding to Lemmata 1 and 2, we have Fsp # 0, Fre # 0, Fr # 0, and
moreover Fss # 0 because the nonsingular matrix Fs¢ is the 1xX 1 matrix.
Furthermore, since the principal submatrix of the fundamental loop mat-
rix defined by eq.(2) is the totally unimodular matrix, without loss of
generality, it is assumed that Fg = Fsp = Fpp = Fpe = 1.

If the above conditions are substituted into eq.(4), the coefficient
of vp in the right —hand side of eq.(4) becomes

Frp E' (Fas Fog Fep ~Frp )=0,
where R denotes the scalar positive resistance of a resistive co-tree
branch. However, since the above equation contradicts the requirement of
eq.(5), it is concluded that any negative resistor can not be realized
in this case (3).

Case (4): In this case, both Gpand G:consist of three branches including
the port branch. Since the port branch and a resistive branch must be
chosen as a tree branch and a co-tree branch, respectively, of the com-
mon tree ¥ in G. and G¢,the other branch may be chosen as a tree branch
or a co-tree branch of %, . Then, without loss of generality, this case
(4) is divided into the following two cases: (i) ne= 2 and (ii ) n.= 1,
where n,denotes the number of the common tree branches of 2 in Ga. and
Gi. Case (4-1) n.= 2: Consider eqs.(2) and (4) which are expressed on

the basis ofﬁki, in which the tree branches are the port branch, a nora-
tor branch, and a conductive branch, and the co-tree branches are a
nullator branch and a resistive branch. Then, considering in eq.(2) of

this case (4-i) that there is no redundancy corresponding to Lemmata 1
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and 2, we obtain Fge # 0, Frp # 0, Fog # 0, and moreover Fg # 0 because
the nonsingular matrix Fs¢ is the 1x1 matrix in this case (4-i). Fur-
thermore, since the principal submatrix of the fundamental loop matrix
defined by eq.(2) is the totally unimodular matrix, without loss of gene-
rality, we can assume that Fsg = Fpe = Frp = Fpg = 1. Substituting the abo-
ve conditions into eq.(5), we have

- =1
{.R"'G'(I-Fs&)} (Fsp - 1) >0 . 6)
namely ’
R+ G¢'(1 - Fsg ) >0 and Fep>1 (7)
or
R+ G (1 - Fg)<o and Fppe 1, (8)

where R and G denote the scalar positive resistance of a resistive co-
tree branch and the scalar positive conductance of a conductive tree
branch, respectively. However, the condition of Fsp> 1 in eq.(7) and
that of R +dﬁ1-Fy¢)<0 in eq.(8) contradict the fact that each of Fgp and
Fsg 1is one of the elements of the totally unimodular matrix F defined by
eq.(2). Therefore, it is concluded that any negative resistor can not be
realized in this case (4-i). Case (4-ii)"¢= 1 : Consider eqs.(2) and (4)
which are expressed on the basis of gzc, in which the tree branches are
the port branch and a norator branch, and the co-tree branches are two
resistive branches. Then, considering in eq.(2) of this case (4-§) that

there is no redundancy corresponding to Lemmata 1 and 2, we have the
following conditions; Fgp# 0, i?dé 6{“')* f_g, each element of iyp(eGX“H
is non-zero, and moreover pgg #0 because the nonsingular matrix g is
the 141 matrix in this case (4-iji). Furthermore, since the princ{;al sub-
matrix of the fundamental loop matrix defined by eq.(2) is the totally
unimodular matrix, without loss of generality, it is assumed that Fsp =
Fse = 1 and fﬁ; = [ 1, 1 ]. Let E}Z = [a ,b ] # Q and R = diag(R® , Ry),
where p and p, denote the scalar positive resistances of two resistive
co-tree branches, and at least one of g and p» is non-zero scalar. Then,
substituting the above conditions into eq.(5), we have
(@ - DEM+ (b - DRI>0. (9)

However, eq.(9) contradicts the fact that the elements of the matrix g
, that is, 4 and p must be ones of the totally unimodular matrix F de-
fined by eq.(2). Therefore, it is also concluded that any negative re-
sistor can not be realized in this case ( 4-iji).

The proof of the case (4) is completed by those of the cases (4-1)
and (4-{i). Then, the proof of this theorem is completed by those of the
cases (1), (2), (3), and (4). Q.E.D.

[ Theorem 2 ] The number of elements needed for the minimal realiza-

*3 Gammﬁenotes the nxm matrices of real
4 - numbers.
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tion of a negative resistor is 7y = 1 and 7y = 3, Or 7y = 2 and ny = 1.
Proof:
The necessity is proved by the theorem 1, while the sufficiency is
clearly proved from the fact that each of the circuits shown in Fig.l (a)
and (b) is the negative resistor. Q.E.D.

4, ALL THE MINIMAL REALIZATION CIRCUITS OF A NEGATIVE RESISTOR

The least number of elements needed for the minimal realization of a
negative resistor was given by the theorem 2. In this section, all the
minimal realization circuits of a negative resistor with the above least
number of elements are found systematically.

[ Theorem 3 ] The minimal realization circuits of a negative resis-
tor by means of nullors and positive resistors are only the two circuits
shown in Fig.1l (a) and (b).

Proof:

Sufficiency: It is obvious that each of the circuits of Fig.1l (a)
and (b) is the minimal realization circuit of a negative resistor.

Necessity: Case (1): Let us prove that the minimal realization

circuit of a negative resistor by means of a nullor and three positive
resistors is only the circuit shown in Fig.1(a).In this case, both G..
and ¢iconsist of four branches, and the port branch and at least one
resistive branch should be chosen as a tree branch and a co-tree branch,
respectively, of the common treed:in Gyand G;. Then, each of the other
two resistive branches may be chosen as a conductive tree branch or a re-
sistive co-tree branch cf¢f, so this case (1) is divided into the follow-
ing three cases: (j)n.=3, (ii)nc=2, and (ii)ny, =1, where ne denotes the num-
ber of the common tree branches.Case(l-j)nc=3:In this case, from the

above statements, it is evident that we can select the treeﬁ?which con-
sists of the port tree branch, a norator tree branch, two conductive
tree branches, a nullator co-tree branch, and a resistive co-tree branch.
Then, considering eq.(2) on the basis of the abovefﬁiand the fact that

(a) (b)

Fig.1l. All minimal realization circuits of a negative resistor. In
each figure in this paper, o and @ show a nullator and a norator,
respectively.
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in eq.(2) of this case (1-j) there is no redundancy corresponding to
Lemmata 1 and 2, we obtain the following conditions; Fg #0, Fege #0, all
elements of g}¢(eﬁyﬁ are non-zero, and moreover Fg;(é@f5f0 because the
nonsingular matrix Fs¢ is the 1x1 matrix in the case (1-i). Furthermore,
since the principal submatrix of the fundamental loop matrix defined
by eq.(2) is the totally unimodular matrix, without loss of generality
it is assumed that Fe =Frg¢ = Fgp =1, and fge =[1,1]. Let Fss =[a,p] and g=
diag(6G; ,Gz), where G, and G,denote the scalar positive conductances of
two conductive tree branches. Then, substituting the above conditions
into eq.(5), we have

{z+a-ag - b)a;’} (Fsp - 1) >0, (10)
namely "

R+ (1L -a)G'+ (1 - b)G,»o0 and Fgp> 1 (11)
or

R+ (1 - a)eV+ (1 - b)6'<0 and Fgpp< 1, (12)

where R denotes the scalar positive resistance of a resistive co-tree
branch. However, the condition of Fsp>1l in eq.(11) and that of R+(1-a)éf+
(1-b)G;<0 in eq.(12) contradict the fact that Fp, a, and b are the ele-
ments of the totally unimodular matrix ¥ . Therefore, it is concluded in
the case (1-1)of ne=3 that any negative resistor can not be realized.
Case(1-ii) nc=2:In this case, from the same reason as the case (1-i), it

is evident that we can select the treeﬁxf which consists the port tree
branch, a conductive tree branch,a nullator co-tree branch, and two resis-
tive co-tree branches. Since the graph Gyis assumed to be connected and
the number of tree branches of%LL is three, the number of all nodes in
the nullor-model network is four. In consideration of the bilaterality of
the negative resistor, no mutual couplings between the branches in the
nullor-model network,and no distinction between nullators and norators,
it can be assumed that the network structure of the negative resistor
seen at the port branch is symmetric. Consider eq.(2) on the basis of the
above treeZELand let £§;= [a; ,as T, Eﬁ; = [b;,bg ], and ,@; = [e,, 6]
for the simplicity of the explanation . Considering in eq.(2) of this
case (1-ii) that there is no redundancy corresponding to Lemmata 1 and 2,
we can assume that at least one element of each pair of (Fsp ,f5¢), Ca;»
by ), (az, b3), (a, a3), ( by, b3 ), and ( ¢, , ¢z ) is non-zero.

From the above stated, first of all, the port branch, a nullator
branch, and a norator branch can be fixed as shown in Fig.l (a) without
loss of generality. Since the nonsingular matrix Fge is the 1X1 matrix in
this case (1-ii) and is the submatrix of the totally unimodular matrix g
, without loss of generality we obtain Fg = 1. Then, a conductive tree
branch must be inserted between the node() and the node(:) in Fig.1 (a)

because the fundamental loop associated with the nullator co-tree branch
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in 3E£must contain a norator tree branch. Hence, we have Fsp = Fg= 1. Se-
condly, it is assumed that the fundamental cut-set associated with the
port tree branch in tzé must contain at least one resistive co-tree branch
because of no redundancy corresponding to Lemmata 1 and 2 in the graph G.
In consideration of the above stated and the elimination of the apparent
redundancy ( namely, the each parallel connection of a nullator branch and
a resistive branch, a norator branch and a resistive branch, and a con-
ductive branch and a resistive branch ) in the graph G,, it is assumed
that two resistive co-tree branches must be inserted only between the
node@ and the node@ , and the node,@ and the node@, respectively.
Consequently, in this case (1-jj) of n¢= 2, the circuit in Fig. 1 (a) is
obtained uniquely.

Case (1-iii) n¢= 1: In this case, from the same reason as the case (1-

fi), it is evident that we can select the treefﬂbwhich consists of the
port tree branch, a norator tree branch, a nullator co-tree branch, and
three resistive co-tree branches. Then, considering eq.(2) on the basis
of the above treefxaand the fact that there is no redundancy correspoding
to Lemmata 1 and 2, we have the followings; Fsp# 0, all elements of Fep (
e ®" are non-zero, Fre ( e R # 0, and moreover Ex# 0 because the non-
singular matrix Issis the 1x1 matrix in this case (1-iii). Furthermore,
since the principal submatrix of the fundamental loop matrix defined by
eq.(2) is the totally unimodular one, without loss of generality, it is
assumed that Fs¢ = Ep= 1 and f?;= [ 1,1,11]. Let‘§;= [a,b,c ] and R =
diag (R ,# ,R3), where R;,Ry, and Rjdenote the scalar positive resistan-
ces of three resistive co-tree branches. Then, substituting the above
conditions into eq.(5), we have

(@ - DR+ (b - )R+ (e - 1)R3%0. (13)
However, eq.(13) contradicts the fact that a ,b , and ¢ are the elements
of the totally unimodular matrix F. Therefore, it is concluded in this
case (1-iij) of n¢ = 1 that any negative resistor cannot be realized.

Case (2): Let us prove that the minimal realization circuit of a
negative resistor by means of two nullors and a positive resistor is only
the circuit shown in Fig. 1 (b). In this case, it is evident from the
property (4) in the preliminaries that both Gy and G¢ consist of the pa-
rallel connection of the port tree branch and a resistive co-tree branch.
Therefore, consider eq.(2) on the basis ofﬁZf'which consists of the port
tree branch, two norator tree branches, two nullator co-tree branches,
and a resistive co-tree branch. Then, considering in the eq.(2) of this
case (2) that there is no redundancy corresponding to Lemmata 1 and 2,
we have the followings; Fep# 0 and all elements of Fsp (evCRf*‘) and Fre (
e—GX”) are non-zero. Furthermore, since the principal submatrix of the

fundamental loop matrix is totally unimodular, without loss of generality



it is assumed that E& = [1,1], Frp =1 yand fFre= [1,1]. If there exists
any one row vector with all non-zero elements in the row vectors of
Fye (eﬁfﬁ, then the tree path formed by the nullator co-tree branch
corresponding to the row vector is equal to that formed by the resistive
co-tree branch. Hence, it is clear that there exists redundancy of the
parallel connection of the nullator branch and the resistive branch in
the graph Go . Therefore, all the elements of each row vector of Fgy should
not be non-zero. Similarly all the elements of each column vector of fg
should not be non-zero. Then, without loss of generality, it is assumed
that the 2X2 nonsingular matrix Fs is the diagonal one.

From the above mentioned, all the elements of the principal sub-
matrix F of the fundamental loop matrix are determined and the matrixyF

becomes ) 10 % 9
Fsp | F |
g | BPIE ) 10 * (14)
~ Frp | Fre 1:1 1),

where the symbol " * '" denotes the non-zero element. By synthesizing the
nullor-model network in accordance with eq.(14), the circuit of Fig.1(b)
is uniquely obtained.
The proof of necessity was completed by the proofs of the cases (1)
and (2).
Q.E.D.

5. IMPLEMENTATIONS

Althoughit has been already known that the negative resistor can be
effectively realized by using operational amplifiers, even all the imple-
mentations of the minimal realization circuits in Fig.l with operational
amplifiers are not well-known. In this section, the implementations of
the minimal realization circuits using operational amplifiers are consid-
ered. First of all, the implementation of the nullor using operational
amplifiers is shown in Fig.2. The circuit of Fig.2(a) is a conventional
operational amplifier with floating input port and unfloating output
port and has widely been put to practical use, while the circuit of Fig.
2(b) is an operational amplifier with floating input and output ports,
and had not been almost madepracticable to be on the general market.
However, the monolithic integrated nullor corresponding to the circuit
of Fig.2(b)* has been recently developed by the integrated circuit tech-

*: The availability of such universal active elements makes it possible to minimize
the number of active elements and passive precision elements in implementations of
analog' system functions, for example, as shown in Fig.3.



37

Fig.2. Implementations of a nullor using operational amplifiers.(a)

A nullor with floating input port and unfloating output port. (b) A
nullor with floating input and output ports.
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Fig.3. Implementations of the minimal realization circuits of a neg-
ative resistor using operational amplifiers. All the nodes C),QD s @,
and @ shown in Fig.3 correspond to those shown in Fig.l. Although
the polarity of the input terminals in each operational amplifier is
omitted, it should be selected by considering the stability of each
circuit.
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nique [9]. Therefore, it is considered significant to find all the imple-
mentations of the minimal realization circuits of a negative resistor in

consideration ofthe existence of the circuit shown in Fig.2(b) in addi-~

tion to that of the circuit shown in Fig.2(a).

The results of these implementations are easily obtained as shown in
Fig.3, in which the circuits of (a), (b), and (c) are derived from that
of Fig.1(a) and the circuits of (d), (e), (£f), (g), (h), and (i), from
that of Fig.1(b). PFurthermore, it is to be noted in Fig.3 that the cir-
cuits of (b), (¢), (f), (g), (h), and (i) are the floating negative re-
sistors in contrast with those of (a), (d), and (e), and that only the
circuitsof (a) and (b) have been put to practical use. Therefore, we can
expect much from the applications of the circuits of Fig.3(c)~ (i) to
the active network synthesis.

6. CONCLUSIONS

This paper has strictly discussed the necessity of the Theorem 3
and guaranteed that all the topologically minimal realization circuits
of a negative resistor are only the two circuits shown in Fig.l. Further-
more, all the usefull implementations of the minimal realization circuits
by means of operational amplifiers are shown in Fig.3.

Finally, the following fact must be also noted. If the concept of
" the chain bond between ports for the active N-port including one port"
which gives the necessary and sufficient condition of the existence of
transmission path between ports [10] is introduced, the Theorems 1,2,

and 3 will be proved more easily and systematically. This will be
appeared in detail elsewhere.
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