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In designing a phase-locked loop to be used as a demodu­

lator for PM or PSK signals two important criteria include 

short acquisition time and high accuracy. The settling time 

of phase step response and the steady-state phase error var­

iance of a loop may be considered as measures of the acqui­

sition time and the accuracy of the loop respectively. We 

have established relationships between the settling time of 

phase step response and the steady-state phase error vari­

ance for both of the first and second order loops. With 

this, it is a simple matter to find proper filter parameters 

for a satisfactory or nearly optimum loop performance with a 

short settling time and a small phase error variance. 

I. INTRODUCTION 

When we design a phase-locked loop (PLL) to be used as a demodu­

lator for angle modulated or phase-shift-keyed (PSK) signals, there 

exist two important criteria that we must take into consideration. 

The first one is that the phase-locked loop should follow the change 

of phase of incoming signal as quickly as possible, and the second 

is that its steady-state mean square phase error should be kept as 

small as possible. Obviously these are contradictory requirements 

that cannot be satisfied simultaneously. Therefore, we have to make 

a compromise between fast response and small steady-state phase er­

ror variance. For this purpose it is necessary to investigate the 

relationships between phase step response and steady-state phase er­

ror characteristics of PLLs. 

In this paper we will consider the PLL shown in Fig. 1 and spe­

cifically be concerned with relationships between the steady-state 

phase error variance and the settling time of phase step response of 
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Fig. 1 Block diagram of phase-locked loop. 

the PLL. The settling time may be considered as a control-theoretic 

measure of the loop's acquisition time, while the phase error vari­

ance gives an indication of the accuracy of the loop. The relation­
ship will lead to a solution of the problem: what loop filter is to 

be placed in the loop or what filter parameters are to be chosen for 

a given loop in order to obtain a satisfactory performance of the 

loop. 

II. PHASE STEP RESPONSE 

In Fig. 1, the input to the PLL is the sum of a signal 

s (t) = IT A sin { W 0 t + W (t) } (1) 

and white Gaussian noise n(t) of spectral density No /2. The output 

of voltage-controlled oscillator (VeO) is assumed to be 12 GICOS{WO 

. t + W' (t) L 

n'(t) LINEAR 
FI L TER 

"'( t) • 
--~o--~ ASINq,(t) 

\f'(t) veo 

Fig. 2 Equivalent model for the PLL. 

The block diagram depicted in Fig. 2 is a well-known equivalent 
model for the PLL system. It has been shown 1)-3) that system oper­

ation may be described by the stochastic differential equation 

~ (t) = ~ (t) - G F (s ) {A s in¢ (t) + n' (t)}; s = d ~ . (2 ) 



Here ¢(t) = wet) - w'(t) is the instantaneous phase error of the VCO 

with respect to the input signal set), and F(s) is the transfer 

function of the loop filter in operator form. The noise n' (t) is 

Gaussian and essentially white at least over the frequency region up 

to wo, and its spectral density is No /2. The loop gain is given by 

G = GIG 2 , where Gl is the rms value of the VCO output and G2 is a 

constant representing the sensitivity of the VCO; i.e., W' (t) = G2 

-met). 

In the following we shall consider the phase step response of the 

PLL for some typical loop filters. The loop is assumed to be noise­

free. 

For the first-order loop with phase step input, F(s) 

0, and (2) reduces to 

I and wet) 

d¢ (T) 
err- sin ¢ (T) , (3) 

where T is time variable normalized with AG, i.e., T = AGt. The so­

lution of (3) can be found to be 

T = - lnj tan + j . 
The equation (4) gives the transient response of the first-order 

loop to phase step input. 

For the second-order noise free loop with a loop filter whose 

transfer function is F(s) = I + (k/s), (2) becomes 

(4) 

(5 ) 

where k' = k/AG. Solving the second-order differential equation (5) 

numerically, we can obtain the transient response of the second­

order loop to phase step input. 

The third loop we will consider is the second-order loop with im­

perfect integrator. The transfer function of loop filter is given 

by F (s) (s + k) / (s + 6). For this loop (2) becomes 

(6 ) 

where 6' = 6/AG. The equation (6) gives the phase step response of 

the particular second-order loop when solved numerically. 

For the second-order loop with RC filter whose transfer function 

is F(s) = a/ (s + a), (2) becomes 
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0, (7) 

where a' a/AG. 

For various choices of filter parameters and initial conditions, 

(5)-(7) have been solved numerically to obtain transient responses 

of the loops to phase step input. The settling time to characterize 

those responses has been defined as follows: the settling time T of 
s 

phase step response is defined as the value of T for I¢(T) I to de-

crease to and stay within 5 or 10 per cent of \¢(O)\. 

III. SETTLING TIME VS. PHASE ERROR VARIANCE CHARACTERISTICS 

As mentioned before, the settling time is a measure of the acqui­

sition time of PLL, while the steady-state phase error variance 

gives an indication of the accuracy of the loop disturbed by the 

noise at the input. 

The steady-state phase error variance 0¢ is known to be given 
by 1)-3) 

(8) 

where a is the signal-to-noise ratio (SNR) in the bandwidth of the' 

loop, and is given by 

a = 

4A --- (the first-order loop), GN o 

4A 1 
GN o l+k' (the second-order loop), 

4A 1+6' 
GNo l+k' (the second-order loop with imperfect integrator), 

4A ---- (the second-order loop with RC filter). (9) GN o 

The steady-state phase error variance and the settling time of 

phase step response are both related to loop filter parameters and 

loop gain. Therefore, the phase error variance can be related to 

the settling time through loop filter parameters. 

Figure 3 shows relations between the magnitude of phase step and 

the settling time for the first-order loop. From this figure we can 

obtain the settling time T = AGT of the first-order loop for any 
s s 

combination of the magnitude of-phase step and the value of AG. 

Here Ts is a settling time in second corresponding to TS' 

Figure 4 indicates relation between the SNR a = 4A/GN o and the 



steady-state phase error vari­

ance 0¢ for the first-order 

loop. As a decreases, 0¢ in­

creases as expected. 

In Fig. 5 the phase error 

variance is shown as a func-

tion of the settling time for 

the second-order loop with 

various initial conditions and 

SNRs. As is apparent from the 

definition of the SNR, i.e., a 

= (4A/GN o )/(I+k'), the phase 

error variance of the second­

order loop approaches that of 

the first-order loop as k' de­

creases. Observe that, as k' 

is increased, the phase error 

variance increases, while the 

settling time decreases for 

small k'. But it starts to 

swing back and forth as k' is 

increased further. This may 

be explained as follows: As k' 

increases, a decreases and as 

a result the phase error vari­

ance increases. On the other 

hand, as we can expect from 

the fact that the damping co­

efficient of the linearized 

second-order loop is equal to 

Ij21k', the loop becomes less 

damped and the step response 

tends to be more oscillatory 

as k' increases. This results 

in the swinging behavior of 

the settling time. 
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Fig. 3 Relations between magnitude 

of phase step and settling time for 

first-order loop. 
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Fig. 4 Relation between SNR and 

steady-state phase error variance 

for first-order loop. 

30 

There is another observation besides the above. The value of k' 

which minimizes the settling time tends to decrease as the magnitude 

of phase step increases. This is illustrated in Fig. 6, which shows 

relations between the shortest attainable settling time and the 

phase error variance for various magnitudes of the phase step. This 
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for second-order loop. 

observation tells us a fact that in order to obtain a fast aCQuisi­

tion it is necessary to make the loop less damped as the magnitude 

of phase step increases. 

Figure 7 shows the settling time vs. phase error variance charac­

teristics of the second-order loop with imperfect integrator. Ob­

serve that the phase error variance for the particular loop is 

slightly less than that for the second-order loop. This agrees with 

the fact that the SNR for the second-order loop with imperfect inte­

grator is (1 + ~') times as large as the SNR for the second-order 

loop as is obvious from (9). Here~' is arbitrarily chosen to be 

O. l. 

Figure 7 can be of use for finding a proper value of k' which 

will make both of the settling time and the phase error variance 

small. 

Figure 8 shows the shortest attainable settling time vs. the 

phase error variance characteristics for the second-order loop with 

imperfect integrator. 

The phase error variance of the second-order loop with RC filter 



0.4 

PHASE STEP: ~ 
1X-10.0 

.... -fx 5 "-

-tX1O % '0 0.3 

ILl 
U 
Z 
~ 

ii: 
<C 
> 

a: 0.2 
0 0.8 a: 
a: 
ILl 

ILl 
If) 0.3 0.25 <C 0.2 z 0.3 Q. 0.25 

0.1 0.2 0.15 

0 
0 5 10 15 

SETTLING TIME (7.-AGTs ' 

(a) 

0.20 

PHASE STEP : ~ 

0{-30.0 

- fX5 % 

~ -f X1O % 

0.15 

ILl 
u 
Z 
~ 

a: 
~ 
> 

~ 0.10 
a: 
a: 
ILl 

ILl 
If) 
<C z 
Q. 

0.8 
0.05 

0.15 

0 
0 5 10 15 

SETTLING TIME (T.- AGT.) 

(c) 

Fig. 7 Settling time vs. phase 

0.20 

.... 
'0 

0.15 

ILl 
U 
Z 
<C 
ii: 
~ 
> 

a: 0.10 
0 
a: 
a: 
ILl 

ILl 
\I) 

<C z 
Q. 

0.05 

0 
0 

0.4 

~ 0.3 

ILl 
U 
Z 
~ 

ii: 
~ 
> 

a: 0.2 
0 a: a: 
ILl 

ILl 
If) 

~ 
Q. 

0.1 

00 

error 

0.8 

5 
SETTLING 

(b) 

5 
SETTLING 

(d) 

PHASE STEP:" 

01.-20.0 

-- fX5% 
....-+ t X10 % 

87 

0.3 0.25 0.2 
0.25 0.2 0.15 

10 15 
TIME ( Ts-AGT.) 

PHASE STEP: t 
0(-10.0 

-- t)(5% 

-iX1O % 

0.25 0.2 
0.2 

0.15 

10 15 
TIME (7.- AGT.' 

variance characteristics 

of second-order loop with imperfect integrator. 



88 

0.20 0.20 

PHASE STEP: ~ PHASE STEP: j 
CX-20.0 Of.-30.0 
-",1'5% -,)(5% 

~ - t X1O % ~ 
- ",Xl0% 

0.15 '0 0.15 

I&J LLI 
U 

~ Z 
of( of( 

0: 0: 
of( ~ > 
0: 0.10 0: 0.10 
~ 0 

0: 
0: 0: 
I&J LLI 

I&J LLI 
III III 
of( 

0.25 
of( 

:J: 0.2 ::r:: 
Il. Il. 

0.05 0.2 0.15 0.05 

0.15 

0 00 0 5 10 5 10 
SETTLING TIME ( Ts-AGT.> SETTLING TIME ( Ts ... AGTs> 

(e) (f) 

0.4 0.20 

PHASE STEP: ¥ PHASE STEP: ¥ 
0'--10.0 Of.-20.0 

- ¥'X5% -- ¥X5% 

~ - ¥Xl0 el. ~ - YX10-1. 
0.3 0.15 

LLI 
I&J U 

Z u 
of( z 
0: ~ 

0: of( of( > > 

0: 0.2 0: 0.10 
~ 0 

0: 0: 0: LLI LLI 

I&J I&J II) III 
~ of( 

0.15 ::r:: Il. Il. 0.15 
0.1 0.15 0.1 0.05 0.15 0.1 

0 
10 

0 
5 10 0 5 0 

SETTLING TIME ( 7s·AGT.> SETTLING TIME ( Ts=AGT.> 

(g) (h) 

Fig. 7 (Continued) 



~ 

1&.1 
U 
Z • ~ • > 

0.20 

0.15 

a: 0.10 
o 
a: 
a: 
1&.1 

PHASE STEP: ¥ 
"" ... 30.0 

0.05 

O~---------L----------~--------o 5 10 
SETTLI NG TIME (75 -AGT. ) 

(i) 

Fig. 7 (Continued) 

~ 

1&.1 
U 
Z 
~ 
a: 
;! 

0.20 

0.15 

PHASE STEP x 5 % 

+--*- "'-laD 

-"'-2QO 
PHASE STEP : ~. 11:.0.6250 

~~E~W~:; ~a~·.2:g?~2S 
PHASE STEP: JI/2, 11.0.5125 

= PHASE STEP: 5a/8. 11'.0.4500 

~l PHASE STEP: 3Jl/4, 11:'0.3750 

~! PHASE STEP: 7a/8, 1i.0.2875 

ilil 
1111 

a: 0.10 
o 

III 
!iiI I a: 

a; 
1&.1 

1&.1 
III • :I: 
Q. 

0.05 

II 
I 
I 

OL-----~----~------~-----L----~ 
o 2.0 4.0 6.0 8.0 10.0 

SETTLING TIME (7s=AGT.> 

Fig. 8 Relations between 

shortest attainable settling 

time and phase error variance 

for second-order loop with im­

perfect integrator. 

is the same as that of the first-order loop irrespective of the 

value of a'. However, its settling time is longer than that of the 

first-order loop. For example, it is nearly four times as long as 

that of the first-order loop when a' = 0.5. 

For phase step input, the shortest settling time and the smallest 

phase error variance are attained by the first-order loop. However, 

this does not necessarily imply the unconditional superiority of the 

first-order loop over higher order loops. If the quiescent frequen­

cy of the VCO is caused to change from Wo to any other frequency W 

by the change of power supply voltage or ambient temperature or by 

any other extraneous disturbance, the first-order loop will not be 

able to correct the frequency error W - Wo by itself and a steady­

state phase error of (w - wo)!AG will remain. 

On the other hand the second-order loop has not only the shortest 

settling time and the smallest phase error variance among all the 

second-order loops but also a capability of correcting frequency er­

ror. In view of this the second-order loop may be considered to be 
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most preferable as a demodulator for PM or PSK signals. 

The other second-order loops will also have nonzero steady-state 

phase error, if the quiescent frequency of VCO is different from the 

carrier frequency Wo of incoming signal. The steady-state phase er­

ror for the second-order loop with imperfect integrator is (6/k)(w 

-wo)/AG, which is less than that of the first-order loop when k > 6. 

With the help of the result given above it is possible for us to 

find a proper loop filter and its parameters for a satisfactory loop 

performance, when the loop is used as a demodulator for PM or PSK 

signals. 

IV. CONCLUSIONS 

We have established relationships between the settling time of 
step response and the steady-state phase error variance for both of 

the first and second-order loops. With this, it is a simple matter 

to find proper filter parameters for a satisfactory or nearly opti­

mum loop performance with a short settling time and small offset and 

steady-state phase error variance which imply a short acquisition 

time and a high accuracy respectively. 
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