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Abstract

We introduce an example of noncommutative geometry-like supersymmetric standard
model. We give a spectral triple based on Minkowskian superspace. Its Dirac operator
fluctuated by its algebra gives supersymmetric matter kinematic term and mass term of
the matter fields. The squared Dirac operator gives gauge kinematic terms and Higgs
kinematic terms. Traceless condition of the gauge kinematic term gives every matter
particle a hypercharge identical to that of standard model. Coupling constants of gauge
symmetries coincide like as nonsupersymmetric noncommutative theory. We show math-
ematically unsettled problems of the model which we will overcome in a short span of
time.

keyword: noncommutative geometry, supersymetric standard model, spectral triple

1 introduction

The standard model of elementary particles has some shortcomings[1]. Firstly, it has many
free parameters, masses of particles, gauge coupling constants, mixing angles, coefficients of
Higgs potential. Why on earth is the gauge symmetry SU(3) x SU(2) x U(1)? Secondly, there
exists so-called hierarchy problem. The vacuum expectation value of Higgs field gives masses
of particles, quarks,leptons, gauge particles and Higgs particle itself. One-loop corrections to
the Higgs squared mass parameter m%{ include the square of very large energy scale Ay, at
which new physics enters to alter the high-energy behavior of the theory, so that masses of
low energy scale directly or indirectly undergo fine tuning from the huge energy scale, for an
example Plank scale[2].

Alain Connes and his co-workers proposed a method to describe the standard model in
terms of noncommutative geometry(NCG)[3][4][5]. It is a full geometric description for in-
teraction of elementary particles. The metric to determine the geometry is given by Dirac
operator that is the denominator of Green function for matter fields and both gauge and
Higgs fields are introduced by internal fluctuations of the operator. They have shown that if
an involutive algebra A satisfies the conditions as follows:

1. A chirality operator v and an antilinear isometry J exist,
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2. Relations between the above operators are given by

J? =¢, (1)
JD =€'DlJ, 2)
Jy=¢€"~vJ, D = —D~ (3)
whrere ¢,¢’, " = {£1}3,
[a,b°] =0, Va,bc A, b° = Jb*J ! (order zero condition), (4)
[D,a],b"] =0, Va,bc1® Ar C A (order one condition), (5)

the only possible gauge symmetry that A realizes is U(3) x SU(2) x U(1)[6]. While the three
coupling constants of gauge symmetries in the usual standard model are independent of each
other and even if they evolve according to renormalization group equations, they do not unify
at any energy scale, they in the NCG model coincide like as SU(5) grand unified theory. On
the top of that, the spectral action principle in curved space-time gives the Lagrangian of
gravity as well as gauge fields coupled to matter[7].

In spite of these advantages, even in the NCG model, the hierarchy problem will not be
solved unless it is extended to incorporate supersymmetry. In the supersymmetric standard
model, there exist two Higgs supermultiplets and Higgs bosons accompany higsinos as their
superpartners. Every loop correction of Higgs boson which contributes to A%]V accompanies
higgsino loop correction with the same size and with an opposite sign so that the leading term
diverges like as logarithm of Ay at most and we need not the fine tuning. This merit must
inhabit supersymmetric NCG models, too.

In this paper, we use notations of supersymmetry given by Julius Wess and Jonathan
Bagger[8]. We show the prescription to extend the Connes’s style of construction to that of
supersymmetric particle models, which do not have the hierarchy problem. We apply the NCG
method of supersymmetric version to obtain an example model of minimum supersymmetric
model(MSSM) in flat space. This model was given by S.Ishihara, H.Kataoka, A.Matsukawa,
H.Sato and M.Shimojo. We describe some mathematical problems which make the model not
full geometric but geometry-like. They will be soon overcome by an another model in [9].

2 The prescription for construction NC supersymmetic
model

The local geometry of a manifold is determined by metric g, or infinitesimal length element
ds. In the NCG construction, the element ds is represented by the Dirac propagator D!, and
the noncommutative geometry for the standard model consists of ”"spectral triple”, (A, #H, D),
where A is an involutive algebra and D is a Dirac operator, both of which act on Hilbert space
‘H. We consider the product of the space-time manifold M by the finite geometry F' and we
have A = Ay @ Ap, H = Hy @ Hp. In order to extend the geometry to the supersymmetric
version, we consider that M is the superspace(z,, 6., 04) and that both the algebra A, and
the space Hys consist of chiral and antichiral superfields,

A= (A; @ Ap) @ (A- ® Ar), (6)
H=Hs @Hr)® (H- @ HF), (7)



Notes on Supersymmetric Connes’s Model

where

Ay ={ay € Ay|Dsay =0}, Hy = {x € H|D4yx = 0}, (8)
A_={a_ € Ay|Dya_ =0}, H_ ={x € H|Dyz =0}, (9)

In order for a four component Dirac spinor to correspond to an element of the the space H,
we express a matter superfield as
X
v-(X) a0

where the chiral superfield X has x, as a fermionic component which describes the left-handed
spinor and the antichiral superfield = has Ea which is the right-handed spinor,

_ 1 ) —
X = ¢+ 00" 00, + 10090010 + V20 - éeeauxaﬂe +00F,, (11)
_ 1 _ ) _
E*::¢*-—i90“08u¢*%—1999m3¢*—%\/§9§%—:%5990“8“54—99F?. (12)

The Dirac operator consists of Dy, given by supersymmetric covariant derivatives Dy, Dg
and Dp given by mass matrix m. The mass dimension of Djy; and Dp shoud be one, since
ds = D~!. Using operators Dy, D; defined by

1 — =6 1 55

Doz—z(DaDa—FDaD ):—Z(DD+DD)7 (13)
1 . - _ . )

Dl = —Zﬁa’r]a(DdDa + DaDd) = ﬁanaDaa = 5(770“ﬁ>6w (14)

these operators of our example are given as follows:

D =Dy + Dp, (15)

1 0 0 1 0 m*
DM—D0®(O 1)+D1®(1 0)’ DF—1®(mT o)’ (16)

where o is Pauli matrix, n%,7% are elements which obey Clifford algebra:

n*n’ —nn® =2, (17)
NaNs — Ml = 2844 (18)
n°nz —nen” = 0. (19)

Here, we define a mapping C' from chiral superfield X to antichiral superfield X* and an

operator J for ¥ as
0 C
J = (C 0) . (20)

We introduce the real structure J for the basis (¥, ¥¢)T as follows:

J:(g g) (21)

This real structure commutes with the Dirac operator D.
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For the basis (¥, W¢)T of H, the Dirac operator is expressed by

D= ( 0 Dy + chw) ’ (22)
where
D} = JDrJ !
0 cmTc—1 0 mt
- (C’m"‘C’1 0 ) - (m 0 ) (23)

In order to obtain the action with gauge symmetry, we consider the internal automorphism
of the algebra A. The left and right action of the automorphism on the superfield of (10) are
elements of unitary group and expressed by

X' = X, X' = Xe N —enIN X = 0N 0L, (24)

A Lx A RT AR g A Rx
I3 Ag :*’ =k :\:*QZAE — Ce zAéc 1:* :ezA5 = (25>

B =et
—iAL
e “x 0
u = ( 0 e’iA?*) , (26)

the whole automorphism is expressed by

When we denote u as

U =yJug v
B oMY gAY 0 .
= 0 emg* eiAg*
e—iAX 0

where A, ,A¢ are algebras of the unitary groups, and we put A, = Ai + Af, Ae = Ag‘ + A?.
Under the automorphism, the replacement of the operator D is given by
D=U'DU
=U'DyU + U'DRU

With the fluctuated operator Dy, the kinematic terms of matter superfields which interact
with gauge field are given by

Ematter,gauge = \I]T,DM\IJ|997@7,,7W_>O

1 L1575
=~ JX'DDe" X g — JE"DDe" =¥y, (29)

where the both of V, and V are vector superfields defined by
Ve = eihlgmifs (s =x,8). (30)

In the Non-supersymmetric NCG, kinematic terms of gauge bosons and Higgs bosons are
given by Tr(f(D?/m3)), where f is a positive function. The calculation for the trace is
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carried out by heat kernel expansion[7]. In our example, the kinematic terms of superfields
which include these bosons are simply given by the trace of squared Dirac operator. The
gauge kinematic term is expressed as follows:

1 ~
Egauge = ZfOTT<(KDM)2>90@,nﬁ—>O’ (31)

where

e~V 0
= ( O eng) 5 <32)

and fo is an overall constant coefficient.

The fluctuation of Dy gives rise to superfield H which includes Higgs scalar field as its
bosonic component and is expressed as

Dp =UDrU
0 H*
(4 ). (53)
where 3 - ‘
H = e Mme™he, (34)

The interaction term between this superfield and the matter superfields are given by
Lonatter Higgs = V' Dp¥® = XTH*=* + ZT AT X, (35)

which constitute superpotential of this theory.

While the squared D represents the interaction between gauge field and matter field, the
squared Dp gives the Higgs kinematic term which includes the interaction with gauge field.
It is expressed by

1 ~ T~ -
Lriggs.gauge = §TT<(KDF)2>99@ =Tr(e”"e HTe X H"). (36)

While the fluctuation of Dirac operator(28) has been defined to keep it selfadjoint, KD in (31)
and (36) is determined to respect gauge invariance. In fact, under the gauge transformation
U =UV, Tr(K'D'K'D’") = Tr(KDKD), since the space-time derivatives in the trace are
covariant derivatives or total derivatives.

3 NC geometry-like MSSM

3.1 Matter kinematic term and Hypercharge

Let us be engaged in the description of minimal supersymmetric standard model of noncom-
mutative geometry-like version. We let the space H g be the space of superfields each of which
contains a matter fermion as spinor component. Each generation of fermions has dimension
(15+15), where 15=12+43. The 12 corresponds to left- and right-handed quarks with gauge
color degrees of freedom. The 3 corresponds to leptons and the other 15 to antiparticles.
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In the quark sector, the chiral superfield X in (10) corresponds to one of left-handed quarks
which is expressed as

ULa
Xqa = ( dza) ®3, (37)

where 3 represent the color gauge degrees of freedom. On the other hand, the antichiral
superfield =* corresponds to right-handed quarks,

=% 3, & o3 (38)

In the lepton sector, the chiral superfield X corresponds to a weak isospin multiplet (v, e)p,

and Z* corresponds to right-handed electron-like fields, eg,
X* =X = (XZL) E=E, (39)
XeL

In order to describe the internal automorphism of A which generates gauge symmetry, we
adopt a notation as follows: for the fundamental and its complex conjugate representation of
U3) =2 SU(3) @ U(1) gauge symmetry, we take

my = e_i%ﬁi_i’)/) m_ = e—i%ﬁ;—i')’l*, (40)
as well as
mt = (m+)* _ ei%5:+i7/*,mi = (m_)* — ei%ﬂrf—iw’ (41)
T AT .y T AT
mT = 71300 = ()t T = e T = ) (42)

where \; are Gell-Mann matrices and 3; and +/ are chiral scalar superfields. For the represen-
tation of SU(2), we let

wy = e—i%ai7 W — e—i%a:, 'LUT_ = (w+>T — 617101:7 (43)

and For U(1),

*

Ap=e M A= N = (M) =, A = (\) = = 2T (44)

where 7; are Pauli matrices, «; and « are also chiral scalar superfields.

In Table 1, We list up the superfields of the Hilbert space and the left and right actions of
internal automorphisms for them. The actions in the Table enable us to calculate the vector
superfields in (30). In the quark sector, they are given by

AT . D A>\-_.-r-* ST e Ikl
GVX — ezAxe—zAX — 6171 ie—z%ﬁlezgai 6_2710”627 —1iy

2V (SU(3)) =2V (5U(2) =2V (U (1)) = =2V (45)

e’ e

2V (SU(3)) e2V () 2V(U()) — €2V(uR>
=e ® e—2V(U() ) € = | p2vm | (46)

T ﬁ . _.ﬁ * e_i'y*ei'y N
eVs :euﬁze 1261@)( ) e Y ety
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Table 1 :The list of superfields and internal automorphisms for them.

particle
quark sector  left action right action
i AT " A
X M (qa)L e—ZA)L(I — w+ mi — 6_1 QT/BZ_ZFY — (e—'LA)I?)T
=M ug L R A T (e
= df A
lepton sector
X :lg e*ii\i =wp AL
=T . ep eNeT =\ \x
antiparticle
quark sector
X (¢5)r  mE wl
= (ug)L m”_;_ )\j_
= (de)r m’y At
lepton sector
X (1%) A wl
E : (GC)L )\+ )\+

where we have defined vector superfield V(G(n)) which corresponds to gauge group G(n) and
V) which corresponds to matter field s. In the lepton sector, they are expressed by

eVx = @i B0l miF i g—in iy o2V (SU@) 2V (U() = 2V (47)
oVe — 200" =20y _ ,—4V(U() _ eVﬁT _ 62V(ER). (48)
The vector superfield V(G(n)) is expanded in the Wess-Zumino gauge by

V(G(n)) = gn(—00"0A( + 000X — 000N ™ + 0999 D™)
= gn(—00"0 A" + 099N — iGPON™ + 9999 D ™)AL, (49)

where G(n) is expressed by

Gn)={ UQ) n=1, (50)

' )‘71 n=3
Al = T? n—29 . (51)
5 ’I’L:1,]_I

The relation between V) and V(G(n)) are similar to that of their components. For example,
V@ = V(SU(3))+V(SU(2))+ V(U(1)) (see (45)), so that A = ga A + g2 i + g1 3 AL,
AD = gsA®) 4+ g A@) 4 ¢/ IAND) " and so on.

Now,according to (29), we can calculate the kinematic terms of matter superfields which
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include the interaction with vector superfields. They are expressed by
1 1 e T —
£matter,gauge = _Z Z XTDDQVXX|@ — Z Z .:TDD€V5 \:*|@

=Y pIDHIDOrp, —ix 7D e + FIF, — iv2(pI A xe = XA p,) — oI DG,
s=q,l

Y (HIDEDOGE —ig, ot DYE, + FTF — iVASTADE, — £ 6%) + T Dt )

s=uRr,dRr,eRr

(52)
where the covariant derivative D* is given by
DY) =09, —iA. (53)

In (52), the action of vector superfields VX,Vg for pairs of a component of U and a
component of ¥ form a matrix which represents the internal fluctuations of Dj;. Since a
scalar multiple of identity does not affect the metric, i.e. the Dirac operator, we impose that
these matrices are traceless. For example, when we take the part sandwiched between the
spinor (X,¢) in UT and the spinor(y,£) in ¥, it is expressed by

A(l)’

—(iga AT 1 igl Pim @ 1,5) @ 13 0 0
. ,A(l)' A
0 —i(g) %=+ —5-)®13 0
. A(l)/ A(l)
0 0 —i(g1—5— —915-)® 13
)\’L
+14 ® (—igs) A S,
(54)

in the quark sector and

( ) Tz (1)
( (ZQQA Zgl ) ® 12 0 ) , (55)

o AWM
0 Z2g1 S

in the lepton sector, where 15 and 13 corresponds to the color and weak isospin gauge degrees
of freedom. The traceless condition for this matrix is expressed by

1
gAY = Sq ALY, (56)
Substituting (56), the covariant derivative for each field of (53) is given by

. 1 1
D) = 0, — i(gsAY + 24P + 291 54) .,

, 4 1

D = 0, — i(gaA® + 5915A0),., (57)
, 2 1

D) = 9, — i(gsA® — 2154,

. 1
DY) = 0 — i(g2A®) — g1 5 AD) .,

1
D) = 0, +i201 5 AL (58)
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. - _ . N R : :
In (57) and (58), the coeflicient of ig, 1,1,(, coincides with the weak hyvpercharge of each
particle.

When we consider the part between the scalar (¢, ¢7) in W and the spinor (v.£) in W,

we obtain the condition for gauginos as

gi At ;gl/\(‘”. g AN = g A, (59)

which are similar to (56). In the same way, when we take the trace of the elements between

scalar fields in W' and W, we obtain
| \
gy D = Eng“-& (60)
Taking into account (56).(59) and (60), we obtain that

I o
VUQ)) = GVU). (61)
3.2 Gauge kinetic term and coupling constants

The supersymmetric gauge kinematic term (31) is expressed in terms of vector superfields Vi

by

fs

5) s I (5)2 s 5 | -"(.1 t (s)\ (g G wn
W v —f Z T { Zp) pls)pr 5D[_- 2 )\t Jo ::an(; IaGs) o ED;‘ JALs) \. o
LD A©a g AW LS P\ g 62
+—_l “ 11 (1(1 1 S o Oai 0 { )‘-J

where s runs over matter scalar superfields, but not over antimatter fields, because (62) already
have taken into account the contribution from antimatter sector.

\ (q) (3 402 . . —l . .
Since A" = _q;e,,-'lﬂ - ggxl}, g ,_1}, the contribution of F,7 to Lyauge 1s given by

TrEg PO = 5 B ECOITI(AN,)

fins
n=1".2.3

1 1 1 /1\°
=2 x Eq;f BBt gy —q,f;;’;ff (i 46 % 0 (—;) giEL ) F

;J’f/
(63)
(n) . . 3
where F,;,' is the field strength of the gauge field A ,”' expressed by
) (n) o qln) ' 1(n) aln) a5
;'W =AY = O AY — g, [AYY ALY (641)

In the r.h.s of (63), the factors 2. 3. 6 are from the fact that the left-handed quark ¢ transforms
as (3,2) under the gauge group SU(3) x SU(2), % il are from Tr(A5A)), % is the weak

hypercharge. In the same way, we obtain that

; . 2 2
) 1 I (3 3) s c I 4 2 (1) 1 oy
> Tr(E)FO) :_‘)WW FUIE 3 x L) g g FL L) (65)

sl
1 } I . 3 )
Z Tr (’!;Ir;/]] l”“\J' — ) }1'”})“‘! (2)puare + _1(2 X {_l)‘_ + 1 x (_2) )(Jrl ‘!Jrlrj‘]/lp ‘“!”) (66)

sl I
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The sum of (63).(65) and (66) amounts to

1 I|’|’.U J'JJ') IH..U

_Eﬁi Z TT(!L;(;:;J Jols) ) . f ':\,(]éfq \'-i)fJL (3)geirt + (;j;‘ (2,{.}( (2) i + %.‘rflz}'.lll}} (1) ) {(JI)
Normalizing the Yang-Mills terms to —llr,,E;j” Fmvt gives
=4

‘ [ . -
=93 =391 2fogs =1 (68)

We have also calculated the other terms of (62) and obtained the whole of supersymmetric
gauge kinematic terms which is expressed by

3 .
Z’g””ﬁ{. _ E {__ F (n)i F (n)pri 5{;)\{\” Jlfr}_;JDl:_}u.])\\”)} o D:\}H -')\{”'.]"(}—f"/\[??)?-;:' 1 G ,f)f_”]a’}f)(”;‘!} )

I fies
n=1
(69)
where D:‘,H " is the covariant derivative given by
DUE = 0, F —i[AVY F]. (70)
3.3 Higgs-matter interaction
The Dirac operator Dy which acts on the finite space Hp is given by
0 0 m,;, 0
1 0 0 0 mj -
Pe=1t,r o o 0 (71)
0 mL 0 0
in the gquark sector and
0 0 0
D=0 0 m)|. (72)
0 ml 0

in the lepton sector. Using left and right actions of the Table 1, the superfield which corre-
sponds to (34) is expressed as follows: in the quark sector,

-~ -4 I o -
H = ¢ Mome e

ST AT . T gy

.7 ;L Ad At e

— fJ—f G0 —i __-1’,-{‘_—{13 My, 0 (__-;—__; 9y € .;-.
0 my L

= iy (H,. Hy). (73)

where m,, /mg is u/d quark mass and H,.H, arc given by

0\ i .
m.“) ©5 (74)

f!d _ (J'.f' —‘; r)_-‘ (_f”rf) ¢ .?'."'_.' (?-))

Hy =c'72"
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In the lepton sector, in the same way, m. is electron mass and
H, =inH,, (76)

H 77'041' (_gne) e—i’y

= yeH ds (77)

where y, is a parameter which represents the ratio m. to mg.

The interaction (35) is expanded as follows:

£matter,Higgs YU*—'TH X + Yd~—‘d Hd Xd + Ye:THgX + h. C., (78)

where y, / yaq is the ratio of the mass of u-type / d-type quark of the generation to m,/mg,
respectively.

Substituting (45),(46),(47),(48) along with (61),(77) to (36) , the whole of super-Higgs
kinematic term is expressed by

-V [T —Vy igitT -V& [T —Vy itT
EHz'ggs,gauge :Trquark(e ¢ H'e XHT )+Trlepton(e ¢t H'e XHT )

4 % -4 ~

e's? _ngyuHT ida; ,—ido *+ 7% 7%

:TT(<€—i§v*+i§vydﬁT el 3 i T o5 VN (v HE ya HY)
d

+ 27— 2iv" yegZTzei%aie—i%a* em*—szyeg:
:yu2H1];e—2V(SU(2))6—2V(U(1))Hu +(ya2 + ye2>HCTle—2V(SU(2))€2V(U(1))Hd. (79)
When we expand the chiral Higgs superfield to

000,y 0"0 + 00F,.,  (80)

_ 1
H, = 0t 6 —00000] 2 —
on, +100"00,0p, + 1 000n, + V201, NG

and define vector superfield V(") 1/ (ha) a5
Vi) = v(SU@2)) +V(U(1), VI =V(sU(2) -V (U(1), (81)
(79) is written down to

ﬁHiggs,gauge

~itpn, " DGy, 5 2i(tn, A, —so* Ay )
+ (ya® +ye?) (—ID,Shd)sohdIQ — ¢}, D"y, + F) Fy,
—itpn, " Dy, + V2 (Pn NP, — @Ld)\(hd)whd)> ; (82)

where the covariant derivative D(*+) D(4) are given by gauge bosons of the vector field V)
V(ha) | respectively,

) 1

D) =9, —i(g2 AP +gl§A§}>), (83)
‘ 1

Dflhd) =0, — z(ggAff) -0 §AE})). (84)

At last, we have obtained the all terms of supersymmetric standard model in this section
without soft-breaking terms.

11
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4 conclusion and problems

We proposed a NC geometry-like construction of MSSM. We define the supersymmetric spec-
tral triple (M, D,.A). The space H and the algebra A consist of chiral and antichiral subspaces,
respectively. In addition we defined the real structure which commutes with the Dirac oper-
ator D. The Dirac operator and fluctuations in Table 1 give the kinematic terms of matter
superfield which interact with super-gauge field as well as super-Higgs field. The squared
Dirac operator gives gauge kinematic terms and Higgs kinematic terms which interact with
the super-gauge field. We impose traceless condition on the fluctuation of Dy i.e.,vector su-
perfields and we obtained the correct weak hyperchares of matter fields. Normalizing the
Yang Mills terms, we obtained the relations between coupling constants of the gauge sym-
metries identical to those of SU(5) grand-unified theory. Altogether, we got the all exactly
supersymmetric terms of MSSM.

So far, we seem to be satisfied physically with the situation. Regrettably, this model has
some mathematically unsettled problems. At first, we must discover a Z, grading operator =y
which obeys the condition (3). We need the condition to constrain the gauge group of the NCG
model to SU(3) x SU(2) x U(1). Secondly, this model is described by Grassmann variables
and constructed on Minkowskian space so that the Dirac operator dose not have compact
resolvent. When we denote the resolvent of D as T, T = (D — )"}, X ¢ Spectrum(D), T must
be compact,i.e., the norm of 7" must be infinitesimal up to a finite dimensional subspace of H.
Already on a non-super Minkowskian space, the Dirac operator (iy*0,, —m) is not elliptic and
ds = D~ is not always bounded. In addition to that, this model is based on superspace which
includes Grassmann variables so that the Dirac operator is far from positive definite and the
space ‘H cannot be called "Hilbert” space, that is, inner product is not well-defined in H. All
calculations of non-supersymmetric NCG theories has always been developed on Euclidean
space and the results are analytically-continued to Minkowskian form by Wick rotation. To
overcome the above problems, we must rewrite our spectral triple from on the Minkowskian
superspace to on the Euclidean space without Grassmann variables[9].

Finally, since there exist no squark, no slepton, no higgsino in our world, whether the
theory is NC geometric or not, supersymmetry must be broken in low energy scale. We also
have to introduce soft breaking terms in the NC geometric framework|2].
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