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Abstract

We introduce an example of noncommutative geometry-like supersymmetric standard
model. We give a spectral triple based on Minkowskian superspace. Its Dirac operator
fluctuated by its algebra gives supersymmetric matter kinematic term and mass term of
the matter fields. The squared Dirac operator gives gauge kinematic terms and Higgs
kinematic terms. Traceless condition of the gauge kinematic term gives every matter
particle a hypercharge identical to that of standard model. Coupling constants of gauge
symmetries coincide like as nonsupersymmetric noncommutative theory. We show math-
ematically unsettled problems of the model which we will overcome in a short span of
time.
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1 introduction

The standard model of elementary particles has some shortcomings[1]. Firstly, it has many
free parameters, masses of particles, gauge coupling constants, mixing angles, coefficients of
Higgs potential. Why on earth is the gauge symmetry SU(3)×SU(2)×U(1)? Secondly, there
exists so-called hierarchy problem. The vacuum expectation value of Higgs field gives masses
of particles, quarks,leptons, gauge particles and Higgs particle itself. One-loop corrections to
the Higgs squared mass parameter m2

H include the square of very large energy scale ΛUV , at
which new physics enters to alter the high-energy behavior of the theory, so that masses of
low energy scale directly or indirectly undergo fine tuning from the huge energy scale, for an
example Plank scale[2].

Alain Connes and his co-workers proposed a method to describe the standard model in
terms of noncommutative geometry(NCG)[3][4][5]. It is a full geometric description for in-
teraction of elementary particles. The metric to determine the geometry is given by Dirac
operator that is the denominator of Green function for matter fields and both gauge and
Higgs fields are introduced by internal fluctuations of the operator. They have shown that if
an involutive algebra A satisfies the conditions as follows:
1. A chirality operator γ and an antilinear isometry J exist,
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2. Relations between the above operators are given by

J2 = ε, (1)

JD = ε�DJ, (2)

Jγ = ε��γJ, γD = −Dγ (3)

whrere ε, ε�, ε�� = {±1}3,

[a, b0] = 0, ∀a, b ∈ A, b0 = Jb∗J−1 (order zero condition), (4)

[[D, a], b0] = 0, ∀a, b ∈ 1⊗AF ⊂ A (order one condition), (5)

the only possible gauge symmetry that A realizes is U(3)× SU(2)×U(1)[6]. While the three
coupling constants of gauge symmetries in the usual standard model are independent of each
other and even if they evolve according to renormalization group equations, they do not unify
at any energy scale, they in the NCG model coincide like as SU(5) grand unified theory. On
the top of that, the spectral action principle in curved space-time gives the Lagrangian of
gravity as well as gauge fields coupled to matter[7].

In spite of these advantages, even in the NCG model, the hierarchy problem will not be
solved unless it is extended to incorporate supersymmetry. In the supersymmetric standard
model, there exist two Higgs supermultiplets and Higgs bosons accompany higsinos as their
superpartners. Every loop correction of Higgs boson which contributes to Λ2

UV accompanies
higgsino loop correction with the same size and with an opposite sign so that the leading term
diverges like as logarithm of ΛUV at most and we need not the fine tuning. This merit must
inhabit supersymmetric NCG models, too.

In this paper, we use notations of supersymmetry given by Julius Wess and Jonathan
Bagger[8]. We show the prescription to extend the Connes’s style of construction to that of
supersymmetric particle models, which do not have the hierarchy problem. We apply the NCG
method of supersymmetric version to obtain an example model of minimum supersymmetric
model(MSSM) in flat space. This model was given by S.Ishihara, H.Kataoka, A.Matsukawa,
H.Sato and M.Shimojo. We describe some mathematical problems which make the model not
full geometric but geometry-like. They will be soon overcome by an another model in [9].

2 The prescription for construction NC supersymmetic
model

The local geometry of a manifold is determined by metric gµν or infinitesimal length element
ds. In the NCG construction, the element ds is represented by the Dirac propagator D−1, and
the noncommutative geometry for the standard model consists of ”spectral triple”, (A,H,D),
where A is an involutive algebra and D is a Dirac operator, both of which act on Hilbert space
H. We consider the product of the space-time manifold M by the finite geometry F and we
have A = AM ⊗AF , H = HM ⊗HF . In order to extend the geometry to the supersymmetric
version, we consider that M is the superspace(xµ, θα, θα̇) and that both the algebra AM and
the space HM consist of chiral and antichiral superfields,

A = (A+ ⊗AF )⊕ (A− ⊗AF ), (6)

H = (H+ ⊗HF )⊕ (H− ⊗HF ), (7)
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where

A+ = {a+ ∈ AM |Dα̇a+ = 0}, H+ = {x ∈ H|Dα̇x = 0}, (8)

A− = {a− ∈ AM |Dαa− = 0}, H− = {x ∈ H|Dαx = 0}, (9)

In order for a four component Dirac spinor to correspond to an element of the the space H,
we express a matter superfield as

Ψ =

(
X
Ξ∗

)
, (10)

where the chiral superfield X has χα as a fermionic component which describes the left-handed

spinor and the antichiral superfield Ξ has ξ
α̇
which is the right-handed spinor,

X = ϕ+ iθσµθ∂µϕ+
1

4
θθθθ�ϕ+

√
2θχ− i√

2
θθ∂µχσ

µθ + θθFχ, (11)

Ξ∗ = φ∗ − iθσµθ∂µφ
∗ +

1

4
θθθθ�φ∗ +

√
2θξ +

i√
2
θθσµ∂µξ + θθF ∗

ξ . (12)

The Dirac operator consists of DM given by supersymmetric covariant derivatives Dα, Dα̇

and DF given by mass matrix m. The mass dimension of DM and DF shoud be one, since
ds = D−1. Using operators D0, D1 defined by

D0 = −1
4
(DαDα +Dα̇D

α̇
) = −1

4
(DD +DD), (13)

D1 = −1
4
ηα̇ηα(Dα̇Dα +DαDα̇) = ηα̇ηαDαα̇ =

i

2
(ησµη)∂µ, (14)

these operators of our example are given as follows:

D = DM +DF , (15)

DM = D0 ⊗
(
1 0
0 1

)
+D1 ⊗

(
0 1
1 0

)
, DF = 1⊗

(
0 m∗

mT 0

)
, (16)

where σµ is Pauli matrix, ηα,ηα̇ are elements which obey Clifford algebra:

ηαηβ − ηβηα = 2εαβ , (17)

ηα̇ηβ̇ − ηβ̇ηα̇ = 2εα̇β̇ , (18)

ηαηβ̇ − ηβ̇η
α = 0. (19)

Here, we define a mapping C from chiral superfield X to antichiral superfield X∗ and an
operator J for Ψ as

J =

(
0 C
C 0

)
. (20)

We introduce the real structure J for the basis (Ψ,Ψc)T as follows:

J =

(
0 J
J 0

)
, (21)

This real structure commutes with the Dirac operator D.
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For the basis (Ψ,Ψc)T of H, the Dirac operator is expressed by

D =

(
DM +DF 0

0 DM +Dc
F

)
, (22)

where

Dc
F = JDFJ−1

=

(
0 CmTC−1

Cm∗C−1 0

)
=

(
0 m†

m 0

)
. (23)

In order to obtain the action with gauge symmetry, we consider the internal automorphism
of the algebra A. The left and right action of the automorphism on the superfield of (10) are
elements of unitary group and expressed by

X � = e−iΛL
χX, X � = Xe−iΛRT

χ = e−iΛR
χX = CeiΛ

R∗
χ C−1X, (24)

Ξ�∗ = eiΛ
L∗
ξ Ξ∗, Ξ�∗ = Ξ∗eiΛ

R†
ξ = Ce−iΛR

ξ C−1Ξ∗ = eiΛ
R∗
ξ Ξ∗. (25)

When we denote u as

u =

(
e−iΛL

χ 0

0 eiΛ
R∗
ξ

)
, (26)

the whole automorphism is expressed by

Ψ� = uJ uJ−1Ψ

=

(
e−iΛL

χ e−ΛR
χ 0

0 eiΛ
R∗
ξ eiΛ

L∗
ξ

)
Ψ

=

(
e−iΛχ 0

0 eiΛ
∗
ξ

)
Ψ ≡ UΨ, (27)

where Λχ,Λξ are algebras of the unitary groups, and we put Λχ = Λ
L
χ + Λ

R
χ , Λξ = Λ

L
ξ + Λ

R
ξ .

Under the automorphism, the replacement of the operator D is given by

D̃ = U †DU
= U †DMU + U †DFU

= D̃M + D̃F . (28)

With the fluctuated operator D̃M , the kinematic terms of matter superfields which interact
with gauge field are given by

Lmatter,gauge = Ψ
†D̃MΨ|θθ,θθ,ηη→0

=− 1

4
X†DDeVχX|θθ −

1

4
ΞTDDeV

T
ξ Ξ∗|θθ, (29)

where the both of Vχ and Vξ are vector superfields defined by

eVs = eiΛ
†
se−iΛs (s = χ, ξ). (30)

In the Non-supersymmetric NCG, kinematic terms of gauge bosons and Higgs bosons are
given by Tr(f(D2/m2

0)), where f is a positive function. The calculation for the trace is
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carried out by heat kernel expansion[7]. In our example, the kinematic terms of superfields
which include these bosons are simply given by the trace of squared Dirac operator. The
gauge kinematic term is expressed as follows:

Lgauge =
1

4
f0Tr�(KD̃M )

2�θθθθ,ηη→0, (31)

where

K = (U †U)−1

=

(
e−Vχ 0

0 e−V T
ξ

)
, (32)

and f0 is an overall constant coefficient.

The fluctuation of DF gives rise to superfield H̃ which includes Higgs scalar field as its
bosonic component and is expressed as

D̃F = U †DFU

=

(
0 H̃∗

H̃T 0

)
, (33)

where
H̃ = e−iΛT

χme−iΛξ . (34)

The interaction term between this superfield and the matter superfields are given by

Lmatter,Higgs = Ψ
†D̃FΨ = X†H̃∗Ξ∗ + ΞT H̃TX, (35)

which constitute superpotential of this theory.

While the squared D̃M represents the interaction between gauge field and matter field, the
squared D̃F gives the Higgs kinematic term which includes the interaction with gauge field.
It is expressed by

LHiggs,gauge =
1

2
Tr�(KD̃F )

2�θθθθ = Tr(e−V T
ξ H̃T e−VχH̃∗). (36)

While the fluctuation of Dirac operator(28) has been defined to keep it selfadjoint, KD in (31)
and (36) is determined to respect gauge invariance. In fact, under the gauge transformation
U � = UV , Tr(K �D�K �D�) = Tr(KDKD), since the space-time derivatives in the trace are
covariant derivatives or total derivatives.

3 NC geometry-like MSSM

3.1 Matter kinematic term and Hypercharge

Let us be engaged in the description of minimal supersymmetric standard model of noncom-
mutative geometry-like version. We let the space HF be the space of superfields each of which
contains a matter fermion as spinor component. Each generation of fermions has dimension
(15+15), where 15=12+3. The 12 corresponds to left- and right-handed quarks with gauge
color degrees of freedom. The 3 corresponds to leptons and the other 15 to antiparticles.

5
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In the quark sector, the chiral superfield X in (10) corresponds to one of left-handed quarks
which is expressed as

χqα =

(
uLα
dLα

)
⊗ 3, (37)

where 3 represent the color gauge degrees of freedom. On the other hand, the antichiral
superfield Ξ∗ corresponds to right-handed quarks,

ξ
α̇
= ξ

α̇

uR
⊗ 3, ξα̇dR ⊗ 3. (38)

In the lepton sector, the chiral superfield X corresponds to a weak isospin multiplet (ν, e)L
and Ξ∗ corresponds to right-handed electron-like fields, eR,

χα = χαl =

(
χανL
χαeL

)
, ξ = ξ

α̇

eR . (39)

In order to describe the internal automorphism of A which generates gauge symmetry, we
adopt a notation as follows: for the fundamental and its complex conjugate representation of
U(3) ∼= SU(3)⊗ U(1) gauge symmetry, we take

m+ = e−i
λi
2 βi−iγ�

, m− = e−i
λi
2 β∗

i −iγ�∗
, (40)

as well as

m∗
− ≡ (m+)

∗ = ei
λ∗
i
2 β∗

i +iγ
�∗
,m∗

+ ≡ (m−)
∗ = ei

λ∗
i
2 βi+iγ

�
, (41)

mT
+ = e−i

λT
i
2 βi−iγ�

= (m∗
−)

†, mT
− = e−i

λT
i
2 β∗

i −iγ�∗
= (m∗

+)
†, (42)

where λi are Gell-Mann matrices and βi and γ
� are chiral scalar superfields. For the represen-

tation of SU(2), we let

w+ = e−i
τi
2 αi , w− = e−i

τi
2 α∗

i , w†
− ≡ (w+)

† = ei
τi
2 α∗

i , (43)

and For U(1),

λ+ = e−iγ , λ− = e−iγ∗
, λ∗+ = (λ−)

∗ = eiγ , λ∗
− = (λ+)

∗ = eiγ
∗
= λ−1

− , (44)

where τi are Pauli matrices, αi and γ are also chiral scalar superfields.

In Table 1, We list up the superfields of the Hilbert space and the left and right actions of
internal automorphisms for them. The actions in the Table enable us to calculate the vector
superfields in (30). In the quark sector, they are given by

eVχ = eiΛ
†
χe−iΛχ = ei

λi
2 β∗

i e−i
λi
2 βiei

τi
2 α∗

i e−i
τi
2 αieiγ

�∗−iγ�

≡ e−2V (SU(3))e−2V (SU(2))e−2V (U(1)�) ≡ e−2V (q)

, (45)

eV
T
ξ = ei

λi
2 βie−i

λi
2 β∗

i ⊗
(
e−iγ∗

eiγ

eiγ
∗
e−iγ

)
e−iγ�∗

eiγ
�

= e2V (SU(3)) ⊗
(
e2V (U(1))

e−2V (U(1))

)
e2V (U(1)�) ≡

(
e2V

(uR)

e2V
(dR)

)
, (46)
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Table 1 :The list of superfields and internal automorphisms for them.
particle
quark sector left action right action

X : (qα)L e−iΛL
χ = w+ mT

+ = e−i
λT
i
2 βi−iγ�

= (e−iΛR
χ )T

Ξ†T : uαR eiΛ
L∗
ξ = λ− mT

− = e−i
λT
i
2 β∗

i −iγ�∗
= (eiΛ

R∗
ξ )T

Ξ†T : dαR eiΛ
L∗
ξ = λ∗− mT

−
lepton sector

X : lL e−iΛL
χ = w+ λ∗+

Ξ†T : eR eiΛ
L∗
ξ = λ∗− λ∗−

antiparticle
quark sector

X†T : (qcα)R m∗
− w†

−
Ξ : (ucα)L m∗

+ λ∗+
Ξ : (dcα)L m∗

+ λ+
lepton sector

X†T : (lcR) λ− w†
−

Ξ : (ec)L λ+ λ+

where we have defined vector superfield V (G(n)) which corresponds to gauge group G(n) and
V (s) which corresponds to matter field s. In the lepton sector, they are expressed by

eVχ = ei
τi
2 α∗

i e−i
τi
2 αie−iγ∗+iγ = e−2V (SU(2))e2V (U(1)) ≡ e−2V (l)

, (47)

eVξ = e2iγ
∗
e−2iγ = e−4V (U(1)) = eV

T
ξ ≡ e2V

(eR)

. (48)

The vector superfield V (G(n)) is expanded in the Wess-Zumino gauge by

V (G(n)) = gn(−θσµθA(n)
µ + iθθθλ(n) − iθθθλ(n) + θθθθD(n))

= gn(−θσµθA(n)i
µ + iθθθλ(n)i − iθθθλ(n)i + θθθθD(n)i)Λin, (49)

where G(n) is expressed by

G(n) =





SU(n) n = 2, 3
U(1) n = 1
U(1)� n = 1�

, (50)

and gn is the coupling constant which corresponds to G(n) and Λ
i
n is given by

Λin =





λi

2 n = 3
τ i

2 n = 2
1
2 n = 1, 1�

. (51)

The relation between V (s) and V (G(n)) are similar to that of their components. For example,

V (q) = V (SU(3))+V (SU(2))+V (U(1)�) (see (45)), so that A
(q)
µ = g3A

(3)
µ +g2A

(2)
µ +g�1

1
2A

(1)�
µ ,

λ(q) = g3λ
(3) + g2λ

(2) + g�1
1
2λ

(1)�, and so on.

Now,according to (29), we can calculate the kinematic terms of matter superfields which
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include the interaction with vector superfields. They are expressed by

Lmatter,gauge = −1
4

∑
X

X†DDeVχX|θθ −
1

4

∑
Ξ

ΞTDDeV
T
ξ Ξ∗|θθ

=
∑
s=q,l

ϕ†
sD(s)

µ D(s)µϕs − iχsσ
µD(s)

µ χs + F †
sFs − i

√
2(ϕ†

sλ
(s)χs − χsλ

(s)ϕs)− ϕ†
sD

(s)ϕs

+
∑

s=uR,dR,eR

(
φTs D(s)

µ D(s)µφ∗
s − iξsσ

µD(s)
µ ξs + FT

s F
∗
s − i

√
2(φTs λ

(s)ξs − ξsλ
(s)φ∗

s) + φTs D
(s)ϕ∗

s

)
,

(52)

where the covariant derivative Dµ is given by

D(s)
µ = ∂µ − iA(s)

µ . (53)

In (52), the action of vector superfields Vχ,V
T
ξ for pairs of a component of Ψ† and a

component of Ψ form a matrix which represents the internal fluctuations of DM . Since a
scalar multiple of identity does not affect the metric, i.e. the Dirac operator, we impose that
these matrices are traceless. For example, when we take the part sandwiched between the
spinor (χ,ξ) in Ψ† and the spinor(χ,ξ) in Ψ, it is expressed by


−(ig2A(2)i

µ
τ i

2 + ig�1
A(1)�

µ

2 ⊗ 12)⊗ 13 0 0

0 −i(g�1
A(1)�

µ

2 + g1
A(1)

µ

2 )⊗ 13 0

0 0 −i(g�1
A(1)�

µ

2 − g1
A(1)

µ

2 )⊗ 13




+14 ⊗ (−ig3)A(3)i
µ

λi

2
,

(54)

in the quark sector and
(
−(ig2A(2)i

µ
τi
2 − ig1

A(1)
µ

2 )⊗ 12 0

0 i2g1
A(1)

µ

2

)
, (55)

in the lepton sector, where 12 and 13 corresponds to the color and weak isospin gauge degrees
of freedom. The traceless condition for this matrix is expressed by

g�1A
(1)�
µ =

1

3
g1A

(1)
µ . (56)

Substituting (56), the covariant derivative for each field of (53) is given by

D(q)
µ = ∂µ − i(g3A

(3) + g2A
(2) +

1

3
g1
1

2
A(1))µ,

D(uR)
µ = ∂µ − i(g3A

(3) +
4

3
g1
1

2
A(1))µ, (57)

D(dR)
µ = ∂µ − i(g3A

(3) − 2

3
g1
1

2
A(1))µ,

D(l)
µ = ∂µ − i(g2A

(2) − g1
1

2
A(1))µ,

D(eR)
µ = ∂µ + i2g1

1

2
A(1)
µ . (58)

8
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In the lepton sector, in the same way, me is electron mass and

H̃e = iτ2He, (76)

He = ei
τi
2 αi

(
−me

0

)
e−iγ

= yeHd, (77)

where ye is a parameter which represents the ratio me to md.

The interaction (35) is expanded as follows:

Lmatter,Higgs = yuΞ
T
u H̃

T
uXu + ydΞ

T
d H̃

T
d Xd + yeΞ

T
e H̃

T
d Xe + h.c., (78)

where yu / yd is the ratio of the mass of u-type / d-type quark of the generation to mu/md,
respectively.

Substituting (45),(46),(47),(48) along with (61),(77) to (36) , the whole of super-Higgs
kinematic term is expressed by

LHiggs,gauge = Trquark(e
−V T

ξ H̃T e−VχH̃†T ) + Trlepton(e
−V T

ξ H̃T e−VχH̃†T )

=Tr

((
ei

4
3γ

∗−i 43γyuH̃
T
u

e−i 23γ
∗+i 23γydH̃

T
d

)
τ2e

i
τi
2 αie−i

τi
2 α∗

i e
i
3 (−γ∗+γ)τ2(yuH̃

∗
u,ydH̃

∗
d )

)

+ e2iγ−2iγ∗
yeH̃

T
e τ2e

i
τi
2 αie−i

τi
2 α∗

eiγ
∗−iγτ2yeH̃

∗
e

=yu
2H†

ue
−2V (SU(2))e−2V (U(1))Hu + (yd

2 + ye
2)H†

de
−2V (SU(2))e2V (U(1))Hd. (79)

When we expand the chiral Higgs superfield to

Hs = ϕhs + iθσµθ∂µϕhs +
1

4
θθθθ�ϕhs +

√
2θψhs −

i√
2
θθ∂µψhsσ

µθ + θθFhs , (80)

and define vector superfield V (hu), V (hd) as

V (hu) = V (SU(2)) + V (U(1)), V (hd) = V (SU(2))− V (U(1)), (81)

(79) is written down to

LHiggs,gauge

=yu
2
(
−|D(hu)

µ ϕhu |2 − ϕ†
hu
D(hu)ϕhu + F †

hu
Fhu

−iψhuσ
µD(hu)

µ ψhu +
√
2i(ψhuλ

(hu)ϕhu − ϕ†
hu
λ(hu)ψhu)

)

+ (yd
2 + ye

2)
(
−|D(hd)

µ ϕhd
|2 − ϕ†

hd
D(hd)ϕhd

+ F †
hd
Fhd

−iψhd
σµD(hd)

µ ψhd
+
√
2i(ψhd

λ(hd)ϕhd
− ϕ†

hd
λ(hd)ψhd

)
)
, (82)

where the covariant derivative D(hu),D(hd) are given by gauge bosons of the vector field V (hu),
V (hd), respectively,

D(hu)
µ = ∂µ − i(g2A

(2)
µ + g1

1

2
A(1)
µ ), (83)

D(hd)
µ = ∂µ − i(g2A

(2)
µ − g1

1

2
A(1)
µ ). (84)

At last, we have obtained the all terms of supersymmetric standard model in this section
without soft-breaking terms.
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4 conclusion and problems

We proposed a NC geometry-like construction of MSSM. We define the supersymmetric spec-
tral triple (H,D,A). The space H and the algebra A consist of chiral and antichiral subspaces,
respectively. In addition we defined the real structure which commutes with the Dirac oper-
ator D. The Dirac operator and fluctuations in Table 1 give the kinematic terms of matter
superfield which interact with super-gauge field as well as super-Higgs field. The squared
Dirac operator gives gauge kinematic terms and Higgs kinematic terms which interact with
the super-gauge field. We impose traceless condition on the fluctuation of DM ,i.e.,vector su-
perfields and we obtained the correct weak hyperchares of matter fields. Normalizing the
Yang Mills terms, we obtained the relations between coupling constants of the gauge sym-
metries identical to those of SU(5) grand-unified theory. Altogether, we got the all exactly
supersymmetric terms of MSSM.

So far, we seem to be satisfied physically with the situation. Regrettably, this model has
some mathematically unsettled problems. At first, we must discover a Z2 grading operator γ
which obeys the condition (3). We need the condition to constrain the gauge group of the NCG
model to SU(3) × SU(2) × U(1). Secondly, this model is described by Grassmann variables
and constructed on Minkowskian space so that the Dirac operator dose not have compact
resolvent. When we denote the resolvent of D as T , T = (D−λ)−1, λ /∈ Spectrum(D), T must
be compact,i.e., the norm of T must be infinitesimal up to a finite dimensional subspace of H.
Already on a non-super Minkowskian space, the Dirac operator (iγµ∂µ−m) is not elliptic and
ds = D−1 is not always bounded. In addition to that, this model is based on superspace which
includes Grassmann variables so that the Dirac operator is far from positive definite and the
space H cannot be called ”Hilbert” space, that is, inner product is not well-defined in H. All
calculations of non-supersymmetric NCG theories has always been developed on Euclidean
space and the results are analytically-continued to Minkowskian form by Wick rotation. To
overcome the above problems, we must rewrite our spectral triple from on the Minkowskian
superspace to on the Euclidean space without Grassmann variables[9].

Finally, since there exist no squark, no slepton, no higgsino in our world, whether the
theory is NC geometric or not, supersymmetry must be broken in low energy scale. We also
have to introduce soft breaking terms in the NC geometric framework[2].
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