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Diagnosing Bias in the Inverse Probability of
Treatment Weighted Estimator Resulting from

Violation of Experimental Treatment
Assignment

Yue Wang, Maya L. Petersen, David Bangsberg, and Mark J. van der Laan

Abstract

Inverse probability of treatment weighting (IPTW) is frequently used to estimate
the causal effects of treatments and interventions. The consistency of the IPTW
estimator relies not only on the well-recognized assumption of no unmeasured
confounders (Sequential Randomization Assumption or SRA), but also on the as-
sumption of experimentation in the assignment of treatment (Experimental Treat-
ment Assignment or ETA). In finite samples, violations in the ETA assumption
can occur due simply to chance; certain treatments become rare or non-existent
for certain strata of the population. Such practical violations of the ETA assump-
tion occur frequently in real data, and can result in significant bias in the IPTW
estimator of causal effects. This manuscript presents a diagnostic tool for assess-
ing the bias in the IPTW estimator due to violation of the ETA assumption. The
Diagnostic of ETA Bias (DEB), implemented in a public R routine, relies on para-
metric bootstrap sampling from an estimated data-generating distribution. The
article presents results of simulations to assess the performance and applications
of the diagnostic and to investigate the extent of ETA bias in a range of contexts.
In addition, results are presented from two data examples drawn from the treat-
ment of HIV infection, in which DEB is used to assess the ETA bias of the IPTW
estimator.



1 Introduction.

Estimation of the causal effects of treatments or interventions using observational
data is a major focus of many statistical applications, including much of epidemi-
ology and clinical research. Relying on the counterfactual framework, seminal work
by Robins (Robins et al. (2000),Robins (1999),Robins (2000)) introduced marginal
structural models (MSM) as a powerful tool for the estimation of causal effects. This
work, further developed in van der Laan and Robins (2002), presents three marginal
structural model estimators: the G-computation estimator, the Inverse Probability
of Treatment Weighted (IPTW) estimator, and the Double-Robust (DR) estimator.
Perhaps due in part to its straightforward implementation, the IPTW estimator, in
particular, is rapidly becoming a standard tool in the analysis of clinical and epidemi-
ological data.

The consistency of the IPTW estimator relies heavily on the assumption of exper-
imental treatment assignment (ETA). The ETA assumption states that each possible
treatment or intervention occurs with some positive probability, regardless of a sub-
ject’s past. When the ETA assumption is violated, the IPTW estimator is undefined,
while the G-computation and DR estimators rely on extrapolation. Importantly, re-
cent work by Neugebauer and van der Laan (2005) has shown that even practical
violations of the ETA assumption can lead to substantial bias in the IPTW estima-
tor. Such violations occur commonly in real-life data applications; whenever a given
treatment occurs with very low probability for a given stratum of subjects, whether
because the subjects’ covariates make assignment of the treatment unlikely, or due
simply to chance, substantial bias to the IPTW estimator can result.

Despite the demonstrated potential for practical ETA violations to bias the IPTW
estimator, real data applications rarely investigate this potential source of bias. One
reason for the relative neglect of the ETA assumption in data applications may be the
lack of an accessible diagnostic tool for estimating the extent of ETA bias. In this pa-
per we present a straightforward diagnostic tool that provides quantitative estimates
of the bias in the IPTW estimator due to violations of the ETA assumption. We refer
to this new tool as the “Diagnostic for ETA Bias” (DEB). Under the assumption that
the data-generating distribution and treatment mechanism (i.e. the distribution of
treatment assignment given a subject’s observed past) are correctly specified, DEB
provides an estimate of the extent of relative and absolute bias in the IPTW estimator
due to ETA violations. The diagnostic presented thus provides additional quantita-
tive output to complement a standard IPTW analysis. If DEB suggests that ETA
violations are resulting in major bias in the IPTW estimator, then the investigator
should consider implementing alternative estimators.

In addition to the ETA assumption, and the assumption of no unmeasured con-
founders, or sequential randomization, required by all MSM estimators, the consis-
tency of the IPTW estimator further relies on consistent estimation of the treatment
mechanism. However, even assuming the true treatment mechanism is known or
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estimated correctly, in practice achieving an IPTW estimator with minimal mean
squared error (MSE) can require use of an incorrectly specified treatment mecha-
nism. Consider the following two common examples. 1) The presence in the dataset
of individuals with very low probability of receiving their observed treatments given
their covariates can result extreme values in estimated weights, increasing the vari-
ability of the resulting IPTW estimate. In this setting, truncating extreme values of
the weights provides a means of reducing variability, at a cost to bias stemming from
the resulting misspecification of the treatment mechanism. 2) Treatment assignment
may be heavily influenced by a covariate W that is a very weak confounder of the
causal effect of interest. In this case, while the true treatment mechanism clearly
includes W , inclusion of W in the treatment mechanism used to estimate the weights
can lead to a significant increase in bias due to practical ETA violations, while exclud-
ing W will result in only minimal increase in bias due to uncontrolled confounding.
In addition to providing an assessment of the extent of ETA bias, the diagnostic tool
presented here provides a way of quantifying the effects of choices such as these on
the bias-variance tradeoff of the IPTW estimator.

The paper is structured as follows. In Section 2 we review the counterfactual
framework for inferring the causal effect of a point treatment. The data structure and
model are introduced, including formal definition of the ETA and other underlying as-
sumptions. The three marginal structural model estimators, IPTW, G-computation,
and DR, are reviewed. In Section 3 we review how ETA violations can result in bias
in the IPTW estimator. We then present our diagnostic tool DEB for estimating the
extent of this bias. Briefly, the approach involves drawing parametric bootstrap sam-
ples from the estimated data-generating distribution. The G-computation estimator
for this known data-generating distribution is consistent, thus deviation between the
G-computation estimator and the IPTW estimator applied to the bootstrap samples
reflects the extent of bias due to ETA violations (assuming consistent estimation of
the treatment mechanism). The R-code for this diagnostic is made publicly available
as the routine bias.ETA(). In Section 4 we provide the results of several simula-
tions that demonstrate the validity of the diagnostic tool and its performance under
different conditions. Simulations are further used to demonstrate how the output of
DEB can be used to quantify the effects of choices regarding truncation of weights
and the inclusion of covariates in the treatment mechanism. Section 5 describes the
application of the diagnostic to two real data examples. Both examples focus on inter-
ventions to improve patient adherence to antiretroviral medications. For pedagogical
purposes, the manuscript focuses on causal inference for point treatments; however,
the approach can be readily applied as a diagnostic of ETA bias in the IPTW esti-
mators of longitudinal treatment effects. Finally, we discuss the implications of our
new diagnostic tool, and areas where further research is needed.
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2 Review of Causal Inference in the Point Treat-

ment Setting.

In this section, we review the counterfactual framework for causal inference, focusing
on the point treatment setting. Three estimators of the marginal structural model
parameter of interest are reviewed: IPTW, G-computation, and DR.

2.1 The counterfactual framework for causal inference.

Let X = ((Y (a), a ∈ A),W ) ∼ FX0 be the full data structure of interest on a
randomly sampled subject, where W denotes baseline covariates, Y (a) denotes the
outcome on a subject if the subject would have taken treatment a, and A denotes the
set of possible treatments. Such potential outcomes Y (a) are called counterfactuals
(e.g. Rubin (1978)). Let A be a random variable with conditional probability distri-
bution g0(a | X) ≡ P (A = a | X), a ∈ A, which denotes the treatment the subject
actually took. For each subject, we will only observe the outcome indexed by the
treatment the subject took. Thus we observe n i.i.d. observations O1, . . . , On of the
observed data structure

O = (A, Y ≡ Y (A),W ),

where Y denotes the observed outcome corresponding with the treatment taken by the
subject. Note that the observed data structure is a missing data structure in which
the full data is X, and the missingness variable is A. Consequently, we have that the
observed data distribution P0 = PFX0,g0 is indexed by the full data distribution FX0

and the conditional density g0.
In order to make this full data parameter identifiable, we will assume the ran-

domization assumption (RA) and the experimental treatment assignment assumption
(ETA) on the treatment mechanism g0(A | X). The randomization assumption states
that treatment is randomized within strata of W :

g0(a | X) = g0(a | W ) for all a ∈ A.

The randomization assumption corresponds with assuming coarsening at random or
missing at random in our missing data model (see van der Laan and Robins (2002)).

The experimental treatment assignment assumption states that within each strata
of W , each possible treatment has positive probability:

min
a∈A

g0(a | W ) > 0, F0W -a.e.

When stabilized weights are used (discussed below), it is sufficient to assume a V -
specific weaker version of the experimental treatment assignment assumption stating
that there exists a conditional density g(· | V ) such that

sup
a∈A

g(a | V )

g(a | W )
< ∞, F0W -a.e.
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Under these two assumptions RA and ETA, the density of O factorizes into a
FX-part and a g-part:

p(O) = p(W )p(Y | A,W )g(A | W ) = p(W ) p(Y (a) | W )|a=A g(A | X).

The first two terms correspond with the FX-part of the density of O, and the last
term is the treatment mechanism.

The marginal causal effect of treatment a on the counterfactual outcome Ya ad-
justed for V is defined by EFX0

(Ya|V ); a marginal structural model can be used to
model this effect:

EFX0
(Ya|V ) = m(a, V |β0),

where the parameter of interest is the true causal parameter β0.

2.2 Estimation of the causal parameter.

There are three well-established estimators of the causal parameter β0. The tradi-
tional approach to estimate β0 uses the G-computation formula from Robins (1986)
and Robins (1987). This estimate relies on the association model used for EFX0

(Y |A,W );
if the association model is misspecified, the G-computation estimate of β0 will be
inconsistent. Another widely-used methodology is the Inverse Probability of Treat-
ment Weighted (IPTW) estimator, which relies on the treatment model g(A|W ); if
the treatment model is misspecified, and/or the experimental treatment assignment
(ETA) assumption is violated, the IPTW estimate of β0 will be inconsistent. The
Double Robust estimate is the solution of the Double Robust estimating equation.
The DR estimate requires assuming a treatment model g(A|W ) and a regression
model E(Y |A,W ), but only one of these models needs to be correctly specified in
order to obtain a consistent estimate of β0. The estimation procedures of the three
estimators are briefly reviewed below.

2.2.1 G-computation estimator.

The G-computation estimate of β0 is based on the likelihood function of the data and
the assumption that the association between Y and {A,W} is described correctly by
a regression model E(Y |A,W ) = Q(A,W ). The estimate takes two steps:

1. Fit the association model Q̂(A,W ) by regressing Y on A and W , and for each
subject, calculate Ŷa,W = Q̂(a,W ) for every a ∈ A;

2. Estimate the G-computation estimator by regressing Ŷa,W on a and V for the
MSM.

The association model of E(Y |A,W ) needs to be correctly specified for the G-
computation estimator to be consistent.
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2.2.2 IPTW estimator.

The IPTW estimate of β0 is the solution of the IPTW estimating equation for the
following estimating function:

Dh(O|β, g) =
h(A, V )ε(β)

g(A|W )
,

where ε(β) = Y −m(A, V |β), g(A|W ) is the treatment model, and h is a function of
A and V . This estimating function is unbiased at β0 if the treatment model g(A|W )
is correctly specified and ETA assumption holds, i.e., E0[Dh(O|β, g)] = 0 if g = g0

and ETA holds.
The IPTW estimator can be easily obtained by regressing Y on A and V with

weights using any statistical software routines. Several weighting options are avail-
able. The standard, or non-stabilized weights simply use h(A, V ) = d

dβ
m(A, V |β) and

thus the weights wi = 1/g(Ai|Wi) for each subject. The ”stabilized weights” (Robins
et al. (2000)) use h(A, V ) = g(A|V ) d

dβ
m(A, V |β), where g(A|V ) is a conditional prob-

ability of A on V , and wi = g(Ai|Vi)/g(Ai|Wi). As noted above, use of the stabilized
weights allows a weaker form of the ETA assumption.

2.2.3 Double Robust estimator.

The DR estimate of β0 is the solution of the DR estimating equation for the following
estimating function:

Dh(O|β, g, Q) =
h(A, V )ε(β)

g(A|W )
− h(A, V )

g(A|W )
[Q(A,W )−m(A, V |β)]

+
∑

a∈A
h(a, V )[Q(a,W )−m(a, V |β)].

This estimating function is unbiased as β0 if either Q(A,W ) is correctly specified
or g(A|W ) is correctly specified with no violation of ETA, i.e., E0[Dh(O|β, g, Q)] = 0
if Q = Q0 or g = g0 and ETA holds.

The general solution of the DR estimating equation can be searched with Newton-
Raphson algorithm. That is,

β̂k+1 = β̂k + C−1(β̂k)
1

n

n∑

i=1

Dh(Oi|gn, Qn, β̂k),

where C(β̂k) is a square matrix,

C(β̂k) = − d

dβ

[
1

n

n∑

i=1

h(Ai, Vi)

g(Ai|Wi)
ε(β̂k)

]

=
1

n

n∑

i=1

h(Ai, Vi)

g(Ai|Wi)

d

dβ
m(Ai, Vi|β̂k).
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For continuous outcome Y , the DR estimate has a closed form solution for linear
functions of m(A, V |β). Let the p-dimension linear function m(A, V |β) = Zβ, where
Z is the design matrix of A and V with dimension n×p. The DR estimating equation
can be written as

ZT [(Y −Q(A,W ))
g(A|V )

g(A|W )
] +

∑

a∈A
ZT

a [Q(a,W )g(a|V )]− ∑

a∈A
ZT

a [g(a|V )Za]β = 0.

The DR estimate is β̂ = C−1C0, where

C0 = ZT [(Y −Q(A,W ))
g(A|V )

g(A|W )
] +

∑

a∈A
ZT

a [Q(a,W )g(a|V )],

and
C =

∑

a∈A
ZT

a [g(a|V )Za].

3 Bias of the IPTW Estimator Due to Violation

of ETA Assumption.

Bias in the IPTW estimator can arise due to several causes. The first is misspecifica-
tion of the marginal structural model itself. However, following the lead of Neugebauer
and van der Laan (2006), we simply consider our causal parameter of interest β to
be the projection of the true causal parameter onto our model m(a, V |β). Second,
misspecification of the treatment mechanism (g(A|W )) can lead to bias in the IPTW
estimator. However, throughout this article, we assume that the model of the treat-
ment mechanism is correctly specified. While this may seem counterintuitive, recall
that the goal of our diagnostic tool is not to assess all bias in the IPTW estimator, but
rather to assess the extent to which, given a correctly specified treatment mechanism,
the IPTW estimator remains biased due to ETA violations.

The bias in the IPTW estimator is defined as the difference between the true
causal parameter of interest and the expectation (under the true data generating
distribution) of the IPTW estimator applied to a finite sample. Under the assump-
tion that the treatment mechanism is correctly specified, this bias is predominantly
composed of bias due to ETA violations (with some additional bias due to the finite
sample estimate gPn(A|W ) of the true treatment mechanism (gP0(A|W ))). In this
paper then, we call the bias in the IPTW estimator, under the assumption that the
gPn(A|W ) is correctly specified, ETA.Bias:

ETA.Bias(Ψ̂IPTW , P0, n) = EP0Ψ̂IPTW (Pn)−Ψ(P0),

where Ψ(P0) is the causal parameter of interest, Pn → Ψ̂IPTW (Pn) is the IPTW
estimator, and Pn denotes the empirical distribution of a sample of n i.i.d observations

6
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from the true observed data distribution P0. That is, ETA.Bias is the bias of the
IPTW estimator Ψ̂IPTW applied to a sample of n i.i.d. observations (i.e, Pn) from
P0.

This bias can be decomposed as

ETA.Bias(Ψ̂IPTW , P0, n) = (Ψ̂IPTW (P0)−Ψ(P0))

+(EP0Ψ̂IPTW (Pn)− Ψ̂IPTW (P0)).

The first part of the bias, Ψ̂IPTW (P0) − Ψ(P0), is due to theoretical violation of
the ETA. In other words, this quantity will contribute to the overall bias whenever
certain subjects have zero probability of receiving a given treatment. For example, if
W includes a covariate that is an absolute contraindication for receiving a treatment
of interest (for example, A is a teratogenic drug and thus is never given to pregnant
women), then for some W in the population P0, the treatment probability g(a|W ) will
always equal 0. Such a situation arises frequently in the context of clinical treatments.

The second part of the bias EP0Ψ̂IPTW (Pn) − Ψ̂IPTW (P0) comes from the finite
sample size of the empirical population Pn. Much of the finite sample bias is due to
practical violations of the ETA assumption. Under some circumstances, the treatment
probability g(a|W ) is theoretically positive for any a ∈ A. However, as the sample
size decreases, the probability of receiving a given treatment may approach zero for
certain subjects (strata of W ) and a practical violation of the ETA assumption arise.
This is due to the fact that, while with large sample size each possible treatment
may be represented among every group of patients, as sample size shrinks, by chance
certain treatments may no longer occur in some groups of patients. For example, if
only five Hispanic women are present in the sample, it can easily occur by chance
that none of the five receives a given treatment.

3.1 Estimating bias due to ETA violations using the boot-
strap.

Since the true observed data distribution P0 is unknown in the real world, our ap-
proach to estimating ETA.Bias relies on an estimate P̂0 of P0. To calculate this
estimate, we employ a parametric bootstrap. That is, our diagnostic DEB is defined
as:

EP̂0
Ψ̂IPTW (P#

n )−Ψ(P̂0),

where P#
n is the empirical distribution of the bootstrap sample obtained from sam-

pling P̂0. Implementation of DEB involves a parametric bootstrap in two steps.

Step 1. Estimating P̂0 of P0.

Given the empirical distribution Pn, to estimate P̂0 of P0 is to estimate from the ob-
served dataset an association model QP̂0

(A,W ) for E0(Y |A,W ), a treatment model

7
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gP̂0
(A|W ) for g0(A|W ), and P (W ). If we define QP̂0

(A,W ) = QPn(A,W ) and
gP̂0

(A|W ) = gPn(A|W ), then the true causal parameter of interest for the known

distribution P̂0 is the same as the G-computation estimator of the observed data:

Ψ(P̂0) = Ψ̂Gcomp(Pn).

For the IPTW estimator, the above statement can only be correct when the ETA
assumption holds for gPn(A|W ).

We treat the model of the treatment mechanism as known (in fact it was likely
estimated in the process of implementing the IPTW estimator). P (W ) can be esti-
mated empirically from the observed data. In order for DEB to perform well as a
diagnostic of ETA bias, it remains to do a good job estimating QPn(A,W ). Use of
machine-learning algorithms and cross validation can help to achieve this goal.

Step 2. Generating P#
n by sampling from P̂0.

In the second step, we assume P̂0 is the true data generating distribution. Bootstrap
samples P#

n , each with n i.i.d observations, are generated by sampling from P̂0.
Throughout the bootstrap simulation, we use QP̂0

(A,W ) and gP̂0
(A|W ) as the

data generation models, and calculate the IPTW estimator of each sample based
on an estimate ĝP̂0

(A|W ). The whole sampling distribution of the bootstrap IPTW

estimator Ψ̂IPTW (P#
n ) reflects the behavior of Ψ̂IPTW (P#

n ) under P̂0. The estimate
ETA.Bias is then obtained by comparing the bootstrap IPTW estimator with the
true causal parameter under the same P̂0.

In Figure (1), we illustrate the steps of ETA.Bias estimation with a hypothetical
example based on the data analysis in Section (5).

Of course, in reality the estimate P̂0 of P0 employed in Step 1 may be biased.
However, the bootstrap simulation in the second step does not consider the true
observed data distribution P0. Thus the estimate of ETA.Bias does not reflect the
true bias EP0Ψ̂IPTW (Pn)−Ψ(P0) when P̂0 is misspecified from P0, but it does measure
the bias due to violation of the ETA in the world where P̂0 is the true data generating
distribution.

DEB is a powerful practical diagnostic tool to use in real data analyses. Given an
observed dataset and user-specified models QPn(A,W ) and gPn(A|W ) (estimated in
the course of implementing the G-computation, IPTW and DR estimators), this two
step simulation approach immediately provides an estimate of bias due to both prac-
tical and theoretical ETA violations, under the assumption that the data-generating
distribution is correctly specified. As is demonstrated in the following sections, such
an estimate can readily identify situations where ETA violations occur.

DEB is publicly available as a R routine bias.ETA()

(http://www.stat.berkeley.edu/ laan/Software/index.html). The routine takes the
original data as input and performs bootstrap simulations with the user-specified

8

http://biostats.bepress.com/ucbbiostat/paper211



Figure 1: Step-by-step estimation of ETA.Bias
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information such as the functional forms of the MSM and the nuisance parameter
models. An example of the R routine is provided in the appendix.

4 Simulation Study.

Four simulations were carried out to investigate the behavior of DEB under a range
of conditions. Specifically, the behavior of the estimator under varying intensities of
practical ETA violations, sample sizes, and using both stabilized and non-stabilized
weights, was compared. Simulation was further used to illustrate how the diagnostic
output can be used not only to assess the extent of ETA bias present, but also to
assess the consequences for bias and variance of choices regarding specification of the
treatment mechanism and truncation of the resulting weights. As discussed in the
Introduction, these choices can simultaneously affect bias due to incomplete control
of confounding, bias due to ETA violations, and variance resulting from the use of
extreme weights. Simulations demonstrate how DEB can be used to quantify these
tradeoffs.

4.1 Data generation.

Let W = (W1,W2,W3,W4) be a vector of baseline covariates, A be a binary treatment,
Y be a post-treatment outcome, and V = W1 be the adjustment variable used in
the treatment-specific mean. Given the true treatment mechanism g0(A | W ), and
the function E(Y |A, W ) = Q0(A,W ), we generate O = (W,A, Y ) in the following
manner:

1. Set the baseline covariates W = (W1,W2,W3,W4) and V = W1, where Wi ∼
U(0, 1) for i = 1 to 4;

2. Generate the observed treatment variable A from A | W ∼ g0;

3. Generate the observed outcomes Y (A) as Y (A) = Q0(A,W ) + ε, where ε ∼
N(0, 1);

4. Set O = (W,Y (A), A).

The following data generation models are used, unless otherwise noted:

Q0(A,W ) = −1 + A + W1 + A×W1 + W2 + W1 ×W3,

g0,γ(A|W ) = logit−1(−1 + W1 − γW2 + W1 ×W3),

where γ = {1, 2, 3, 5}. In this model, γ reflects the intensity of practical ETA viola-
tions.

10
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The true Ψ(P0) can be derived from the function E(Y |A,W ). That is,

Ψ(P0|β) = E[Y (a)|V ] = E[E(Y |a,W )|V ]

= E[−1 + a + W1 + AW1 + W2 + W1W3|W1]

= −0.5 + a + 1.5W1 + AW1.

Four simulation studies are reported. In Simulation 1, ETA.Bias as estimated by
DEB is compared with the true bias due to ETA violations. Simulation 2 evaluates
the effects on ETA.Bias and MSE of using stabilized vs. non-stabilized weights,
both in the absence of truncation and at a range of truncation values. Simulation
3 compares estimates of relative ETA.Bias for two sample sizes and for a varying
intensity of practical ETA violations. Finally, Simulation 4 investigates the effect on
ETA.Bias and MSE of employing a treatment mechanism that excludes a covariate
that is highly predictive of treatment, and is thus the source of substantial ETA
violation.

4.2 Simulation 1. True ETA.Bias vs. estimated ETA.Bias.

Data Pn were generated using Q0(A,W ) and g0(A|W ), with the sample size n = 2000
and γ = 3. All IPTW estimators used non-stabilized non-truncated weights.

The true finite sample bias of the IPTW estimator

ETA.Bias = EP0Ψ̂IPTW (Pn)−Ψ(P0)

was calculated as follows: First, EP0Ψ̂IPTW (Pn) was calculated by drawing 3000 para-
metric bootstrap samples using the true data-generating distribution Q0(A,W ) and
g0(A|W ) (i.e. sampling from P0). The IPTW estimator was applied across bootstrap
samples, in each using a correctly specified model for the treatment mechanism, but
with coefficients refit in that sample. This provided an estimate of the expectation
(and of the entire distribution) under P0 of Ψ̂IPTW (Pn). The true causal parameter
Ψ(P0) = (−0.5, 1, 1.5, 1) was known. The true finite sample bias was calculated as
the difference between these two quantities.

The true finite sample bias was compared to the DEB-based estimate of ETA.Bias =
EP̂0

Ψ̂IPTW (P#
n )−Ψ(P̂0) under correctly specified models of QPn(A,W ) and gPn(A|W )

(equivalent to the true data-generating models Q0(A,W ) and g0(A|W ), but with coef-
ficients refit using Pn). QPn(A,W ) and gPn(A|W ) were used to draw 3000 parametric
bootstrap samples (sampling from P̂0). Again, the IPTW estimator was applied across
samples, using the model gPn(A|W ) with coefficients refit for each sample. This pro-
vided an estimate of EP̂0

Ψ̂IPTW (P#
n ). The difference between this estimate and the

true causal parameter for the data-generating distribution P̂0, ΨGcomp(P̂0) formed the

estimate of ETA.Bias, under consistent estimation of P0 using P̂0.
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Result.

The true and estimated ETA.Bias from Simulation 1 are provided in Table (1).
The simulation demonstrates that under correct specification of the data generating
distribution, the estimated ETA.Bias is close to the true finite sample bias. The
results of this simulation suggest that DEB provides a reasonable estimate of the bias
of the IPTW estimator due to the practical violations of the ETA assumption.

Table 1: Simulation 1. Performance of the ETA.Bias estimate.
Estimate Intercept a V aV
True finite sample bias
(sampling from P0) 0.0095 -0.1268 -0.0100 0.1346
Estimated ETA.Bias

(sampling from P̂0) 0.0086 -0.1086 -0.0094 0.1217

4.3 Simulation 2. Truncation of stabilized and non-stabilized
weights.

This simulation explored how DEB can be used to quantify the effects of truncation of
weights on bias and MSE of the IPTW estimator. We estimated the ETA.Bias and
calculated the MSE of the IPTW estimator for non-truncated weights and weights
truncated at fixed points. The effects of truncation were estimated both in the context
of non-stabilized weights 1/g(A|W ) and stabilized weights g(A|V )/g(A|W ).

The treatment model was g(A|W ) = logit−1(4 + W1 − 10W2 + W1W3). Sample
size for all scenarios was n = 2000. In truncating the weights, we used truncation
values 5, 10 and 20 for the stabilized weights, while for non-stabilized weights, we
applied truncation levels 0.05, 0.1 and 0.2 to the predicted probability of treatment
given covariates.

Result.

Table (2) presents the estimated ETA.Bias and MSE of the IPTW estimator using
stabilized vs. non-stabilized weights, each truncated at several different values. The
true and estimated ETA.Bias for various truncation levels are plotted for stabilized
and unstabilized weights in Figure (2). We focus our interest on estimates of the
coefficients for a and aV , which reflect the causal effect of interest.

As anticipated given the weaker version of the ETA assumption required by sta-
bilized weights, in the absence of truncation, stabilized weights were associated with
both lower ETA.Bias, and a smaller MSE. For both stabilized and non-stabilized
weights, increased truncation resulted in a larger estimated bias, reflecting increased

12
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Figure 2: Simulation 2. Estimated and true ETA.Bias for a range of truncation
values, using stabilized and non-stabilized weights
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Table 2: Simulation 2. Estimated ETA.Bias and MSE of IPTW estimator of unsta-
bilized/stabilized treatment weights with no truncation and with different truncation
levels.

Non-stabilized treatment weights
ETA.Bias MSE

Truncation Intercept a V aV Intercept a V aV
0.2 0.0891 -0.2913 0.0530 0.0648 0.0083 0.0857 0.0041 0.0071
0.1 0.0451 -0.2007 0.0614 0.0441 0.0026 0.0417 0.0060 0.0066
0.05 0.0161 -0.1285 0.0575 0.0301 0.0013 0.0190 0.0072 0.0096
0 0.0011 -0.0185 0.0066 0.0123 0.0023 0.0105 0.0123 0.0317

Stabilized treatment weights
ETA.Bias MSE

Truncation Intercept a V aV Intercept a V aV
5 0.0811 -0.2512 0.0258 0.0698 0.0069 0.0639 0.0020 0.0076
10 0.0504 -0.1887 0.0323 0.0494 0.0031 0.0371 0.0034 0.0071
20 0.0157 -0.1224 0.0409 0.0361 0.0011 0.0175 0.0053 0.0099
Inf 0.0016 -0.0149 0.0024 0.0119 0.0016 0.0073 0.0077 0.0209

misspecification of the treatment mechanism. In addition, results from both stabi-
lized and non-stabilized weights show that truncation can provide an improved bias-
variance tradeoff, by decreasing the variability of the weights and thus of the IPTW
estimator. In the case of the stabilized weights, for example, the results suggest that
MSE for the causal coefficients on a is minimized by no truncation, while the MSE
for the coefficient on aV is minimized by truncating weights at 10.

4.4 Simulation 3. Varying sample size and intensity of prac-
tical ETA violations.

This simulation investigated the extent of ETA.Bias under treatment models g(A|W )
that violated the practical ETA assumption at different levels (γ = {1, 2, 3, 5}); as
γ increased, practical ETA violations became more intense. The effect of increasing
practical ETA violations was investigated for two sample sizes n1 = 2000 and n2 =
200, and in the presence and absence of truncation. Non-stabilized weights were used
throughout, and truncation, when employed, was at the level of 0.1. In addition, true
finite sample biases were calculated as described in Simulation 1.
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Result.

The results from Simulation 3 are provided in Table (3) and plotted in Figure (3).
Again, we focus on the estimated coefficients on a and aV , as these reflect the causal
effect of interest. Several points are worth noting. First, as expected, the estimated
ETA.Bias increases as the intensity of practical ETA violation in the treatment
model (γ) increases. Second, in the absence of truncation, a decrease in sample size
results in an increase in estimated ETA.Bias, as expected given that, given the same
treatment model, more practical ETA violations should occur at smaller sample size.
Interestingly, estimated bias does not necessarily decrease with increasing sample
size when truncation is employed. This reflects that fact that truncation of weights
corresponds to misspecification of the treatment mechanism, resulting in an estimator
that is not asymptotically consistent. In this setting, ETA.Bias reflects both bias
due to practical ETA violations, and bias due to misspecification of the treatment
mechanism, which does not necessarily decrease with increasing sample size.

4.5 Simulation 4. Selection of covariates for inclusion in the
treatment mechanism used for estimation of weights.

This simulation explored the use of DEB to investigate the bias-variance tradeoffs
implied by excluding certain covariates from the treatment mechanism used for esti-
mation of the weights. Covariates W were generated Wi ∼ U(−1, 1) for i = 1, 2, 3,
the treatment model used was g0(A|W ) = logit(−1)(1 + W1 + 10W3) and Y was gen-
erated as Q0(A,W ) = −1+A+W1 +W2 +W3. Sample size was 2000, and stabilized
weights with no truncation were used. As a strong predictor of A, W3 was thus a
major source of practical ETA violation, as well as having a moderate effect on Y .
ETA.Bias and MSE were estimated for three IPTW estimators relying on three al-
ternative treatment mechanisms to generate weights: 1) a correctly specified model;
2) an incorrectly specified model, including W3; and 3) an incorrectly specified model,
excluding W3.

Result.

The results of Simulation 4 are shown in Table (4). ETA.Bias under the the cor-
rectly specified model, including W3, consisted of bias due to ETA violations, while
ETA.Bias under the incorrectly specified treatment models also included bias due to
misspecification of the treatment mechanism. Interestingly, inclusion of W3 in either a
correct or misspecified treatment model resulted in a larger estimates ETA.Bias than
use of a misspecified treatment model excluding W3, suggesting that in this example,
bias due to uncontrolled confounding by W3 is less important that bias resulting from
ETA violations due to W3. Similarly, the MSE in this simulation was minimized by
using a misspecified treatment mechanism excluding W3.
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Figure 3: Simulation 3. Estimated and true ETA.Bias given intensity of practical
ETA violation (gamma).
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Table 3: Simulation 3. Estimated ETA.Bias for varying intensity of practical ETA
violations (γ). True finite sample biases are inside the parentheses.

Truncation level=0, N=2000
γ Intercept a V aV

1.00 -0.0005(0.0194) 0.0003(-0.0002) 0.0005(-0.0161) -0.0006(0.0003)
2.00 0.0005(0.0205) -0.0022(-0.0008) -0.0010(-0.0171) 0.0029(0.0009)
3.00 0.0000(0.0205) -0.0044(-0.0051) -0.0001(-0.0168) 0.0053(0.0075)
5.00 0.0002(0.0198) -0.0317(-0.0264) -0.0004(-0.0166) 0.0328(0.0317)

Truncation level=0.1, N=2000
γ Intercept a V aV

1.00 0.0005(0.0198) 0.0000(-0.0001) -0.0003(-0.0155) -0.0002(0.0000)
2.00 0.0024(0.0232) -0.0269(-0.0365) -0.0036(-0.0204) 0.0362(0.0485)
3.00 0.0103(0.0299) -0.1388(-0.1398) -0.0104(-0.0267) 0.1469(0.1532)
5.00 0.0127(0.0323) -0.2852(-0.2750) -0.0038(-0.0214) 0.1763(0.1859)

Truncation level=0, N=200
γ Intercept a V aV

1.00 -0.0001(-0.0632) -0.0050(-0.0023) 0.0013(0.0384) 0.0088(0.0018)
2.00 -0.0011(-0.0631) -0.0066(-0.0111) 0.0044(0.0381) 0.0090(0.0122)
3.00 -0.0011(-0.0646) -0.0232(-0.0285) 0.0020(0.0380) 0.0262(0.0290)
5.00 -0.0013(-0.0631) -0.0950(-0.0953) 0.0020(0.0352) 0.0360(0.0342)

Truncation level=0.1, N=200
γ Intercept a V aV

1.00 0.0005(-0.0617) -0.0237(-0.0041) 0.0008(0.0356) 0.0289(0.0041)
2.00 0.0028(-0.0567) -0.0262(-0.0471) -0.0040(0.0270) 0.0353(0.0584)
3.00 0.0038(-0.0543) -0.0699(-0.1070) 0.0003(0.0282) 0.0359(0.0900)
5.00 0.0122(-0.0520) -0.2576(-0.2062) 0.0028(0.0356) 0.0316(0.0519)

5 Data analysis.

We applied our diagnostic tool to two data examples drawn from the treatment of
patients infected with HIV. Antiretroviral drugs greatly reduce morbidity and mor-
tality due to HIV infection. However, this efficacy requires that complex regimens
be taken as prescribed over a patient’s lifetime. Less than perfect adherence risks
a loss of viral suppression, which can lead both to increased morbidity and to the
emergence of resistant virus. Thus interventions capable of improving adherence to
antiretroviral drugs are needed. We investigated two interventions hypothesized to
affect patient adherence: 1) the use of a pill box organizer, and; 2) the use of a once
daily antiretroviral therapy regimen (as compared to a regimen with more frequent
dosing). Marginal structural models were used to estimate the effect of these two in-
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Table 4: Simulation 4. Estimated ETA.Bias and MSE of IPTW estimator using
different treatment models.

ETA.Bias MSE
g1(A|W ) Intercept a V Intercept a V
W1 + W3 0.1904 -0.2760 0.0427 0.0971 0.1680 0.0510

W1 + W2 + W3 0.1801 -0.2675 0.0621 0.0900 0.1573 0.0517
W1 + W2 0.0003 0.0001 -0.0008 0.0006 0.0007 0.0010

terventions based on the IPTW, G-computation and Double Robust estimators. DEB
was used as a diagnostic of the IPTW estimator for both causal effects of interest.

5.1 Data Structure and Methods.

Data were drawn from the Research on Access to Care in the Homeless (REACH)
cohort, an observational cohort of HIV-infected patients in San Francisco, California.
Patients in REACH are followed longitudinally, and data collected on current and past
treatment with antiretroviral drugs, lab values including CD4 T cell count and plasma
HIV RNA level (viral load), homelessness, and recreational drug use. Adherence to
antiretroviral therapy is assessed monthly using unannounced pill counts (Bangsberg
et al. (2000)). In the current analyses, we estimated the effect of pill box organizer
use/once daily therapy for a given month on adherence the same month; thus a single
subject could contribute multiple observations.

The data for a single observation consisted of binary treatment status for a given
month (A=I(pill box use) in analysis 1; A=I(once daily therapy) in analysis 2), a
continuous outcome Y defined as adherence for the same month; and a list of 29
covariates W from the previous month (including baseline covariates such as age
and sex, and time-varying covariates such as recent homelessness and recreational
drug use). The chronological data for a given observation thus consisted of O =
(W,A, Y ). In total, 237 individuals contributed a total of 2504 observations to analysis
1. Because once daily therapy was not available when follow-up was initiated (a
theoretical ETA violation), data for analysis 2 were restricted to dates after once
daily therapy first became available, resulting in a slightly smaller sample of 1445
observations among 196 individuals.

For both analyses, the following MSM was assumed: m(a|β) = β0 + β1a. The
causal parameter of interest was E(Y1−Y0) = β1. G-computation, IPTW and DR es-
timators were calculated, with standard errors estimated based on 200 non-parametric
bootstrap samples. The IPTW estimator used stabilized weights g(A)/g(A|W ); the
weights were truncated by 10 from above.

Models of both nuisance parameters, g(A|W ) and Q(A,W ), were fit using the
Deletion/Substitution/Addition algorithm, with 5 fold cross validation (Sinisi and
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van der Laan (2004)). The algorithm was used to search aggressively among all
models with a maximum of 10 terms and two-way interactions. We present estimates
of the causal effect of each intervention based on the IPTW, DR, and G-computation
estimators, and discuss the results of DEB-based ETA.Bias estimation.

5.2 Results: The effect of pill box use and once daily therapy
on adherence.

All three marginal structural model estimators suggested that pill box use improves
adherence by about four percent; the effect was significant for the G-computation and
DR estimators, and of borderline significance for the IPTW estimator (Table (5)).
Estimation of ETA.Bias using DEB suggested that the bias due to ETA.violations
in estimates of both β0 and β1 was minimal, about one percent relative bias in the
estimate of the causal parameter of interest, β1 (Table (6)).

Table 5: Estimates of the effect of pill box use on adherence.

Estimator β̂0(standard error) β̂1(standard error)
G-computation 0.701 (0.019) 0.045 (0.013)
Double Robust 0.702 (0.019) 0.041 (0.015)
IPTW (stabilized) 0.698 (0.021) 0.041 (0.021)

Table 6: Bias and relative bias of the IPTW estimator of the effect of pill box use
due to violation of the ETA assumption. Relative ETA.Bias = ETA.Bias/βGcomp.

β#
IPTW denotes the IPTW estimator of β applied to the bootstrap samples.

Estimate β̂0 β̂1

Mean of β#
IPTW 0.693 0.041

ETA.Bias -0.000173 0.000452
Relative ETA.Bias -0.000246 0.0101

The estimated causal effect of once daily therapy on adherence is presented in
Table (7). In contrast to the positive effect estimated for pill box use, none of the MSM
estimators supported the hypothesis that use of once daily therapy affects adherence.
The standard errors for all three estimators were large, and the point estimates of β1

based on the G-computation and DR estimators were close to zero (a point estimate of
0.1 percent improvement in adherence for both estimators). Interestingly, the IPTW
estimate in this analysis diverged from the other two estimators (a point estimate of
a 2.9 percent improvement in adherence due to once daily therapy). Violation of the
ETA assumption provides a plausible explanation for this divergence; DEB suggested
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a relative bias of nearly 850 percent in the IPTW estimator due to ETA violations
(Table (8)).

Table 7: Estimates of the effect of once daily therapy on adherence.

Estimator β̂0(standard error) β̂1(standard error)
G-computation 0.735 (0.021) 0.001 (0.025)
Double Robust 0.736 (0.022) 0.001 (0.030)
IPTW (stabilized) 0.729 (0.029) 0.029 (0.065)

Table 8: Bias and relative bias of the IPTW estimator of the effect of once
daily therapy due to violation of the ETA assumption. Relative ETA.Bias =
ETA.Bias/βGcomp. β#

IPTW denotes the IPTW estimator of β applied to the boot-
strap samples.

Estimate β̂0 β̂1

Mean of β#
IPTW 0.735 0.0094

ETA.Bias 0.000117 -0.00965
Relative ETA.Bias 0.000159 -8.493

6 Discussion.

The Diagnostic for ETA Bias (DEB) introduced in this article represents a straight-
forward method for assessing the extent of bias in the IPTW estimator arising from
violations of the ETA assumption, under the assumption that the data-generating
distribution is correctly specified. The consistency of the IPTW estimator relies on
correct specification of the treatment mechanism; when the treatment mechanism
is misspecified, the IPTW estimator will be biased regardless of the extent of ETA
violation. Thus when presenting DEB, we have treated the treatment mechanism as
a given. In reality of course, it can rarely be assumed that the treatment mecha-
nism is correctly specified; in this case sensitivity analysis using alternative models
of g(A|W ) is warranted. While DEB can serve as a complementary diagnostic to
such analyses, alone it does not help to identifying bias due to misspecification of
the treatment mechanism; this must be identified using background knowledge and
alternative tools. Misspecification of the FX part of the likelihood, on which the
G-computation estimator depends, can also affect performance of DEB. Thus, when
estimating Qn(A,W ) one should ideally employ a range of model-fitting algorithms
and cross-validation. Such effort will benefit the analyst dually by improving both
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the performance of the ETA diagnostic and the consistency of the G-computation
estimator.

We have further illustrated how DEB can be used to quantify the bias-variance ef-
fects of practical choices in the implementation of the IPTW estimator. Such choices
include whether and at what level to truncate the weights, and whether or not to
deliberately exclude from the treatment mechanism a covariate known to be a major
ETA violator. We feel the resulting output is helpful as an additional diagnostic tool
in implementing an IPTW data analysis. However, it should be stressed that the
estimates of bias and MSE provided by the diagnostic again depend on correct spec-
ification of the treatment mechanism and data-generating distribution. In settings
where there are a small number of very unlikely treatment assignments, standard
methods of estimating the treatment mechanism are unlikely to capture these out-
liers. As a result, the MSE estimates based on DEB may not reflect, for example,
the true gains in variance achieved by truncation. Thus we view DEB as a source of
additional diagnostic information under a specified treatment mechanism, rather than
as a formal method for data-adaptive selection of truncation level or of covariates for
inclusion. Further work is needed to examine the best way to integrate the additional
information provided by DEB into the practical choices of IPTW implementation.
It is worth noting, however, that currently these choices are made in the absence of
any quantitative information. Thus DEB represents a useful addition to the tools
currently available.

The current article has focused on the estimation of the causal effects of point
treatment. However, the same diagnostic approach can be readily applied to the lon-
gitudinal data setting. Indeed, potential for ETA violations becomes of even greater
concern as the number of time points, and thus a subject’s covariate and treatment
history, increases. In addition, the approach readily generalizes to situations in which
the aim is not to estimate a causal effect, but simply a specific parameter of the data-
generating distribution, such as a treatment-specific mean adjusted for covariates W.

It is increasingly apparent that ETA violations, both practical and theoretical,
represent a common source of significant bias when estimating causal parameters
from real data. We have provided a simple diagnostic to evaluate the extent of bias
in the IPTW estimator due to ETA violations. DEB can be be used not only to
evaluate the validity of the IPTW estimate, but also to help identify situations in
which the G-computation and DR estimates rely on extrapolation to areas of the
data with little support. In addition, when the G-computation and IPTW estimators
provide discrepant results, an estimate of the finite sample ETA bias can help to
guide decisions regarding the reliability of the IPTW estimate. The approach pre-
sented is available as a public R routine, is easily implemented, and provides readily
interpretable results about the extent of bias due to ETA assumptions. As such, it is
a valuable addition to the statistical toolbox for causal inference.
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Appendix.

R routine bias.ETA().

The following is an example of the R routine bias.ETA(),
available at http://www.stat.berkeley.edu/ laan/Software/index.html:

bias.ETA(y=y, a=a, v=w1, w=w, data=obs.data,

yfamily=’gaussian’, afamily=’binomial’,

model.msm = list(Model="a+w1+a:w1"),

model.aw = list(Model="w1+w2+w1:w3"),

model.yaw = list(Model="a+w1+a:w1+w2+w1:w3"),

model.av = NULL, stabilized.wt=F,

n.sim = 3000, index.v.inW = c(1))
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