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The Construction and Analysis of Adaptive
Group Sequential Designs

Mark J. van der Laan

Abstract

In order to answer scientific questions of interest one often carries out an or-
dered sequence of experiments generating the appropriate data over time. The
design of each experiment involves making various decisions such as 1) What
variables to measure on the randomly sampled experimental unit?, 2) How reg-
ularly to monitor the unit, and for how long?, 3) How to randomly assign a
treatment or drug-dose to the unit?, among others. That is, the design of each
experiment involves selecting a so called treatment mechanism/monitoring mech-
anism/ missingness/censoring mechanism, where these mechanisms represent a
formally defined conditional distribution of one of these actions (i.e., assignment
of treatment/monitoring indicator/missingness indicators/ right censoring indica-
tors), given observed data characteristics on the unit. The choice of these de-
sign mechanisms are typically made a priori, and, it is common that during the
course of the ordered sequence of experiments the observed data suggests that
the chosen design is ineffective in answering the scientific question of interest,
or is dissatisfying from other perspectives, and that a much better design (i.e.,
choice of mechanisms) should have been selected. This naturally raises the ques-
tion: Why not learn a user supplied optimal unknown choice of the controlled
components of the design based on the data collected in the previously initiated
experiments, and thereby adjust/adapt these controlled components of the design
for future experiments during the course of the study? Although, certain basic
types of so called ‘’response adaptive designs” in clinical trials have been pro-
posed and studied from a frequentist perspective (Hu and Rosenberger (2006)),
allowing treatment randomization probabilities to be a function of outcomes col-
lected in previous experiments, by far most designs in practice are static and most
of the adaptive design literature has focussed on adaptive stopping times based
on sequential testing or other adaptive stopping rules. In spite of the results on



response adaptive clinical trial design as presented in Hu and Rosenberger (2006),
among most practitioners there seems to be a widely accepted consensus that for
formal frequentist statistical inference changing the design based on a look at the
data in a clinical trial should be avoided even if it is not used for testing.

We present a general statistical framework which allows us to study adaptive de-
signs and estimators based on data generated by these adaptive designs from a
frequentist perspective in great generality. For each experimental unit we define
a full data random variable and it is assumed that they are identically and inde-
pendently distributed. For example, we can define the full data as the collection
of setting-specific data structures which represents the data one would have ob-
served on the unit if one had applied these particular settings in the design of this
experiment, across all settings. In addition, one defines the observed data struc-
ture on an experimental unit as a specified many to one mapping of a choice of
design setting and the full data random variable: this defines the observed data
structure as a censored/missing data structure. The design settings (i.e., censoring
variables) for experiment i are drawn from a conditional distribution, given the full
data for the i-th unit, which satisfies the coarsening at random assumption (van der
Laan and Robins (2003)) for the i-th censored data experiment. The choice of the
conditional distribution of the design settings for the i-th experiment can be fully
informed by the observed data collected in the previous i ? 1 experiments, and any
external data sources. We refer to the collection of these i-specific design mecha-
nisms as the adaptive design. In particular, we define and provide a template for
constructing targeted adaptive designs, which aim to learn a particular unknown
optimal fixed design from the incoming data during the trial. In particular, we
propose easy to implement influence curve based targeted adaptive designs. We
provide a variety of examples of such targeted adaptive designs targeting an opti-
mal fixed design such as the fixed design maximizing asymptotic efficiency for a
treatment effect in a clinical trial among all fixed designs.

Within this statistical framework we prove consistency and asymptotic linearity
and corresponding normality results for the maximum likelihood estimator ac-
cording to a correctly specified parametric model. We present new double robust
targeted maximum likelihood estimators for semi-parametric models which are
consistent if one either correctly specified a lower dimensional model for the com-
mon distribution or if one correctly specifies the design mechanisms, where the
latter is always true in a controlled adaptive designs in which the selected design
mechanisms are known. These targeted maximum likelihood estimators for adap-



tive designs generalize the targeted maximum likelihood estimator for indepen-
dent experiments introduced and developed in (van der Laan and Rubin (2006)).
We also propose a new class of relatively easy to implement (double robust) iter-
ative inverse probability of censoring weighted reduced data targeted maximum
likelihood estimators. Finally, we present estimators based on Martingale estimat-
ing functions generalizing estimating equation methodology for i.i.d. censored
data structures as fully presented in (van der Laan and Robins (2003)). Our gener-
alization martingale estimating function methodology includes Inverse Probabil-
ity of Censoring Weighted Reduced Data martingale estimating functions, which
represents a new approach (also for i.i.d. data) in which estimating functions are
decomposed as an orthogonal sum and the inverse probability of censoring (IPC)
weighting is applied to each component, thereby achieving additional robustness
not obtained with standard IPC-weighting.

Our results show that one can learn an unknown user supplied definition of an op-
timal target fixed design during the course of the study, and thereby adapt/improve
the design at any point in time based on the available data, and that statistical in-
ference based on a normal limit distribution is still readily available. We illustrate
the theory and resulting methods with various examples of practical interest.

In addition, we present a targeted empirical Bayesian learning methodology which
allows one to specify a prior on the target parameter of interest, and it maps it into
a posterior distribution, where the center and spread corresponds with the frequen-
tist targeted maximum likelihood estimator. We also show how adaptive designs
and sequential testing procedures can be combined.

The general contributions of this article can be listed as 1) general definition and
practical constructions of adaptive, and, in particular, targeted adaptive group se-
quential designs targeting a particular user supplied definition of optimal fixed
design, 2) presentation of a variety of possible design adaptations of great practi-
cal interest for which our theory applies, 3) presentation of maximum likelihood
estimators, new robust (iterative) targeted maximum likelihood estimators, new
(iterative) inverse probability of censoring weighted reduced data targeted maxi-
mum likelihood estimators, and estimators defined as solutions of Martingale es-
timating equations, based on the data collected in these general targeted adaptive
designs, 4) establishing that the targeted adaptive designs asymptotically converge
to the wished optimal unknown design (i.e., we can learn the optimal design), 5)
presentation of formal statistical inference for the scientific parameter of interest



under general adaptive designs based on the above mentioned estimation method-
ologies, which shows, in particular, that the asymptotic efficiency of the targeted
maximum likelihood estimator under targeted adaptive designs equals the asymp-
totic efficiency of the estimator under i.i.d. sampling from the unknown targeted
optimal unknown fixed design, as learned during the study, 6) a new targeted em-
pirical Bayesian learning methodology mapping a prior on parameter of interest
into its posterior while enjoying the frequentist robust and efficiency properties
of the targeted MLE in large semi-parametric models, and 7) sequential testing
methods in general adaptive designs controlling the Type-I error at level alpha. In
addition, we illustrate the results for a variety of examples of interest.
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Abstract

In order to answer scientific questions of interest one often carries
out an ordered sequence of experiments generating the appropriate data
over time. The design of each experiment involves making various de-
cisions such as 1) What variables to measure on the randomly sam-
pled experimental unit?, 2) How regularly to monitor the unit, and
for how long?, 3) How to randomly assign a treatment or drug-dose
to the unit?, among others. That is, the design of each experiment
involves selecting a so called treatment mechanism/monitoring mecha-
nism/missingness/censoring mechanism, where these mechanisms rep-
resent a formally defined conditional distribution of one of these actions
(i.e., assignment of treatment/monitoring indicator/missingness indica-
tors/right censoring indicators), given observed data characteristics on
the unit. The choice of these design mechanisms are typically made
a priori, and, it is common that during the course of the ordered se-
quence of experiments the observed data suggests that the chosen design
is ineffective in answering the scientific question of interest, or is dis-
satisfying from other perspectives, and that a much better design (i.e.,
choice of mechanisms) should have been selected. This naturally raises
the question: Why not learn a user supplied optimal unknown choice
of the controlled components of the design based on the data collected
in the previously initiated experiments, and thereby adjust/adapt these
controlled components of the design for future experiments during the
course of the study? Although, certain basic types of so called ”response
adaptive designs” in clinical trials have been proposed and studied from
a frequentist perspective (Hu and Rosenberger (2006)), allowing treat-
ment randomization probabilities to be a function of outcomes collected
in previous experiments, by far most designs in practice are static and
most of the adaptive design literature has focussed on adaptive stopping
times based on sequential testing or other adaptive stopping rules. In
spite of the results on response adaptive clinical trial design as presented
in Hu and Rosenberger (2006), among most practitioners there seems
to be a widely accepted consensus that for formal frequentist statistical
inference changing the design based on a look at the data in a clinical
trial should be avoided even if it is not used for testing.

We present a general statistical framework which allows us to study
adaptive designs and estimators based on data generated by these adap-
tive designs from a frequentist perspective in great generality. For each
experimental unit we define a full data random variable and it is as-
sumed that they are identically and independently distributed. For
example, we can define the full data as the collection of setting-specific
data structures which represents the data one would have observed on
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the unit if one had applied these particular settings in the design of this
experiment, across all settings. In addition, one defines the observed
data structure on an experimental unit as a specified many to one map-
ping of a choice of design setting and the full data random variable: this
defines the observed data structure as a censored/missing data struc-
ture. The design settings (i.e., censoring variables) for experiment i
are drawn from a conditional distribution, given the full data for the
i-th unit, which satisfies the coarsening at random assumption (van der
Laan and Robins (2003)) for the i-th censored data experiment. The
choice of the conditional distribution of the design settings for the i-th
experiment can be fully informed by the observed data collected in the
previous i − 1 experiments, and any external data sources. We refer
to the collection of these i-specific design mechanisms as the adaptive
design. In particular, we define and provide a template for construct-
ing targeted adaptive designs, which aim to learn a particular unknown
optimal fixed design from the incoming data during the trial. In par-
ticular, we propose easy to implement influence curve based targeted
adaptive designs. We provide a variety of examples of such targeted
adaptive designs targeting an optimal fixed design such as the fixed de-
sign maximizing asymptotic efficiency for a treatment effect in a clinical
trial among all fixed designs.

Within this statistical framework we prove consistency and asymp-
totic linearity and corresponding normality results for the maximum
likelihood estimator according to a correctly specified parametric model.
We present new double robust targeted maximum likelihood estimators
for semi-parametric models which are consistent if one either correctly
specified a lower dimensional model for the common distribution or if
one correctly specifies the design mechanisms, where the latter is always
true in a controlled adaptive designs in which the selected design mech-
anisms are known. These targeted maximum likelihood estimators for
adaptive designs generalize the targeted maximum likelihood estima-
tor for independent experiments introduced and developed in (van der
Laan and Rubin (2006)). We also propose a new class of relatively easy
to implement (double robust) iterative inverse probability of censoring
weighted reduced data targeted maximum likelihood estimators. Fi-
nally, we present estimators based on Martingale estimating functions
generalizing estimating equation methodology for i.i.d. censored data
structures as fully presented in (van der Laan and Robins (2003)). Our
generalization martingale estimating function methodology includes In-
verse Probability of Censoring Weighted Reduced Data martingale esti-
mating functions, which represents a new approach (also for i.i.d. data)
in which estimating functions are decomposed as an orthogonal sum
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and the inverse probability of censoring (IPC) weighting is applied to
each component, thereby achieving additional robustness not obtained
with standard IPC-weighting.

Our results show that one can learn an unknown user supplied defi-
nition of an optimal target fixed design during the course of the study,
and thereby adapt/improve the design at any point in time based on the
available data, and that statistical inference based on a normal limit dis-
tribution is still readily available. We illustrate the theory and resulting
methods with various examples of practical interest.

In addition, we present a targeted empirical Bayesian learning method-
ology which allows one to specify a prior on the target parameter of in-
terest, and it maps it into a posterior distribution, where the center and
spread corresponds with the frequentist targeted maximum likelihood
estimator. We also show how adaptive designs and sequential testing
procedures can be combined.

The general contributions of this article can be listed as 1) general
definition and practical constructions of adaptive, and, in particular,
targeted adaptive group sequential designs targeting a particular user
supplied definition of optimal fixed design, 2) presentation of a vari-
ety of possible design adaptations of great practical interest for which
our theory applies, 3) presentation of maximum likelihood estimators,
new robust (iterative) targeted maximum likelihood estimators, new
(iterative) inverse probability of censoring weighted reduced data tar-
geted maximum likelihood estimators, and estimators defined as solu-
tions of Martingale estimating equations, based on the data collected
in these general targeted adaptive designs, 4) establishing that the tar-
geted adaptive designs asymptotically converge to the wished optimal
unknown design (i.e., we can learn the optimal design), 5) presentation
of formal statistical inference for the scientific parameter of interest
under general adaptive designs based on the above mentioned estima-
tion methodologies, which shows, in particular, that the asymptotic
efficiency of the targeted maximum likelihood estimator under targeted
adaptive designs equals the asymptotic efficiency of the estimator under
i.i.d. sampling from the unknown targeted optimal unknown fixed de-
sign, as learned during the study, 6) a new targeted empirical Bayesian
learning methodology mapping a prior on parameter of interest into its
posterior while enjoying the frequentist robust and efficiency properties
of the targeted MLE in large semi-parametric models, and 7) sequential
testing methods in general adaptive designs controlling the Type-I error
at level α. In addition, we illustrate the results for a variety of examples
of interest.
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Key words: Adaptive design of sequence of experiments, causal inference,
clinical trial, design of experiments, efficient influence curve/canonical gra-
dient, efficiency theory, group sequential designs, influence curve/gradient,
inverse probability of censoring weighting, local asymptotic normality of mod-
els, longitudinal studies, martingale central limit theorem, martingale estimat-
ing functions, maximum likelihood estimation, observational studies, pathwise
differentiability, sequential testing, statistical inference for non independent
and identically distributed data, targeted adaptive designs, targeted empirical
Bayes learning, targeted maximum likelihood estimation.

1 The statistical framework for adaptive de-

signs

This paper concerns statistical frequentist methods for designing and analyzing
a series (e.g., ordered over time) of n experiments, in which each experiment
provides information about the scientific parameter of interest, and the ran-
domization probabilities for the settings in a particular experiment in this
series of experiments are allowed to be a function of the data collected in the
previous experiments. That is, one is allowed to adapt/adjust (i.e., set the
design probabilities in) the next experiment based upon what one has learned
from previous experiments. In spite of the fact that this adaptation results in
dependence between the experiments, we will be able to provide robust and ef-
ficient estimation procedures, and statistical inference based on the martingale
Central Limit Theorem under appropriate regularity conditions.

Data, Model, and Parameter.

Consider a series of n underlying independent experiments with common prob-
ability distribution P0 resulting in X1, . . . , Xn independent and identically
distributed random variables, i.e., copies of a random variable X. Let MF

represent a model for P0 in the sense that it is known that P0 ∈ MF . Here
X represents the wished full data structure, but our observed data will be a
censored version of X. For example, X might represent the wished full data
structure on a randomly sampled subject (e.g., cancer patient) from a partic-
ular population of interest defined by a set of baseline characteristics W , and
a collection of treatment specific clinical outcomes (Y (a) : a ∈ A) under a
specified set A of drugs or dose-levels: X = (W, (Y (a) : a ∈ A)). Typically,
our interest lies in a Euclidean parameter Ψ : MF → IRd defined on the model
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MF for the distribution of X, where ψ0 = Ψ(P0) denotes the true parame-
ter value. For example, if X = (W, (Y (a) : a)) as above, then the scientific
parameter might be the marginal causal effect, E(Y (a)− Y (0)), of treatment
choice a relative to control 0.

For the i-th experiment we observe Oi = (Ai, Li = Xi(Ai)), whereXi(Ai) =
Φ(Ai, Xi) for a specified many to one mapping Φ on Xi and a variable Ai,
i = 1, . . . , n. In this article we will often refer to Ai as the design settings used
in experiment i, i = 1, . . . , n, and Ai is a random draw from a set of possible
settings A. However, we note that the design settings Ai can also be viewed
as a censoring variable which determines what part of Xi is observed. In many
applications, as in the clinical trial example above, the full data structure can
be represented as X = (X(a) : a ∈ A), and denotes a collection of random
variables indexed by certain design settings a ranging over a set A of possible
design settings, so that L = Φ(A,X) = X(A) corresponds with a missing data
structure in which one only observes the component of X as indicated by the
actually assigned design settings A.

We assume that the ordering of the experiments i = 1, . . . , n is meaning-full
since the adaptive designs proposed and studied in this article will allow that
the assignment of Ai in experiment i is based on all available data O1, . . . , Oi−1

as collected in the first i−1 experiments, i = 1, . . . , n. One application to keep
in mind is that subjects are ordered by the entry time Ei of the subjects in
the study, and one wishes to adapt the design for subject/experimental unit
i to what one can learn from the data available at the time Ei of entry of
subject i. In the case of a delayed response, the data available at the time
Ei will correspond with right censored (by Ei) versions of longitudinal data
structures O1, . . . , Oi−1 (see Chapter 3, van der Laan and Robins (2003)).

We note that this data structure Oi = (Ai, Li = Xi(Ai)) is completely
general, and includes any of the censored data structures analyzed in the liter-
ature (see van der Laan and Robins (2003)). As a consequence, our statistical
framework, targeted adaptive designs, estimators and theorems are general and
cover general longitudinal data structures and general adaptation schemes. For
example, this includes the general longitudinal causal inference data structure
as studied in the causal inference literature for the purpose of statistical infer-
ence regarding causal effects of time-dependent treatment (see e.g., Chapter 6
in van der Laan and Robins (2003)). In this case, X = (L(a) : a ∈ A), where
L(a) = (L(a)(0), . . . , L(a)(K + 1)) is the counterfactual time dependent data
structure one would observe if the subject would have been assigned treatment
regimen a = (a(0), . . . , a(K)), and A is the set of possible treatment regimens.
The temporal ordering assumptions states that this treatment specific process
L(a) at time j only depends on a through the previously assigned treatments
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ā(j − 1) ≡ (a(1), . . . , a(j − 1)): L(a)(j) = L(ā(j − 1))(j). In this setting

Oi = (Ai, Li(Ai))

= (Li(0), Ai(0), . . . , Li(Āi(k − 1))(K), Ai(K), Li(Āi(K))(K + 1),

where Ai(j) is the treatment assignment at time j taking place right after the
the collection of Li(j) = L(Āi(j−1))(j). We refer to chapter 6 in van der Laan
and Robins (2003), where this representation of the observed data is also used
to treat censoring/missingness/monitoring and treatment assignment in a uni-
fied manner: i.e., Ai(j) now also includes missingness indicators, monitoring
indicators, and right-censoring indicators, beyond a treatment assignment. In
this longitudinal setting in which Ai is a time dependent process, adaptive
designs as defined below allow that j-th treatment assignment Ai(j) does not
only depend on the observed past within the subject i (which is commonly
referred to as the sequential randomization assumption in causal inference),
but it can also depend on the observed data O1, . . . , Oi−1 on the previous i−1
subjects. In Section 18 we present an example of an adaptive design for se-
quentially randomized clinical trials in which treatment is time-dependent. In
Section 19 we study adaptive designs for sequentially randomized clinical trials
in which both treatment and right-censoring are controlled by the design.

For the sake of presentation, in this article most of our initial examples
focus on the simplest case in which Ai simply denotes treatment assignment
at a single point in time for subject i.

Adaptive Coarsening at Random (CAR) Assumption: Let A =
(A1, . . . , An) and X = (X1, . . . , Xn) denote the n design settings and n full
data random variables, respectively. We will use the short-hand notation,
X̄(i) = (X1, . . . , Xi) for the full data random variables for the first i subjects,
and we use the same notation for other random variables such as Ā(i) =
(A1, . . . , Ai) and Ō(i) = (O1, . . . , Oi). Let g(· | X) denote the conditional
probability distribution/density of the design settings A, given the full data
X. In order to avoid technical details, we assume throughout this article
that random variables have either discrete support or can be described by
continuous Lebesgue densities. We have

g(A | X) =
n∏
i=1

gi(Ai | Ā(i− 1),X).

We assume

gi(a | Ā(i− 1),X) = gi(a | Xi, Ō(i− 1)) = gi(a | Xi(a), Ō(i− 1)), (1)

7
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which we refer to as the adaptive CAR-assumption. In words, this states that
Ai is conditionally independent of the full data X for all n experimental units,
given the observed data Ō(i− 1) for the first i-1 experimental units, and the
full data Xi for the i-th experimental unit, and, in addition, the probability
of Ai = a, given the full data on unit i, Xi, and the observed data on the
previous i − 1 subjects, Ō(i − 1), only depends on the observed part Xi(a)
of the i-th unit, and Ō(i − 1). This assumption implies that the conditional
probability g(A | X) at A, given X, is only a function of the observed data O,
which proves that g satisfies the coarsening at random assumption (Heitjan
and Rubin (1991), Jacobsen and Keiding (1995), Gill et al. (1997), van der
Laan and Robins (2003)) w.r.t. to the full data X for all n units, and observed
data O = (O1, . . . , On) for all n units. Since the design g is identified by the
conditional distributions gi of Ai, given Ō(i− 1), Xi, i = 1, . . . , n, we will also
use the notation g = (g1, . . . , gn).

Definition of adaptive design: We will refer to g = (g1, . . . , gn) as the
design of the study. In this article we will first consider the case that the design
g is known in the sense that, given O1, . . . , On, the realized designs gi ∈ G as
used in experiment i are known (but, there is no need to know the actual map-
ping (O1, . . . , Oi−1) → gi ∈ G which resulted in this choice) for all i = 1, . . . , n.
In the case that the i-specific design choices gi are unknown, given a model
{gi,η : η} for gi, i = 1, . . . , n, one could estimate the unknown uncontrolled
components of the adaptive design g with the maximum likelihood estimator

ηn = arg max
η

n∏
i=1

gi,η(Ai | Xi, Ō(i− 1)),

or regularized versions thereof, possibly using likelihood based cross-validation
to select fine-tuning parameters or the model. In Section 26, we generalize
our results for the known design case to the case in which the design gi has
a mixture of known and controlled components and unknown uncontrolled
components modelled with a correctly specified model. If one or more of the
conditional distributions gi(· | Xi, Ō(i− 1)) is a function of O1, . . . , Oi−1, then
we refer to g as an adaptive design. On the other hand, if gi(a | Xi, Ō(i −
1)) = gi(a | Xi) for all i = 1, . . . , n, then O1, . . . , On are independent (but
not necessarily identical), in which case we will refer to g as a fixed design:
note that this still allows that Ai is selected in response to observed baseline
characteristics and time-dependent covariates of the i-th unit: i.e., in this case
gi is a conditional distribution of Ai, given Xi, satisfying the coarsening at
random assumption so that Oi implies a coarsening at random for Xi (Chapter
1, van der Laan and Robins (2003)). We will denote the set of such CAR
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conditional distributions of A, given X, with G, and we will refer to G as the
set of fixed designs:

G ≡ {g(· | X) : g(A | X) = h(A,X(A)) for some measurable function h} .

Bound on adaptivity of adaptive designs: Our formal asymptotic
normality results will restrict gi to depend on Ō(i − 1) through a finite di-
mensional (common dimension in i) summary measure Zi which, for i → ∞,
converges to a vector of fixed quantities. Therefore, gi should be based on sum-
mary measures of Ō(i− 1) which should become stable/degenerate as i→∞.
For example, as our results show, Zi could include as components maximum
likelihood estimators of parameters of the full data distribution P0 of X based
on Ō(i−1), and the standard errors (or covariance matrix) of these maximum
likelihood estimators.

Remark. Our results for adaptive designs include the fixed designs (possibly
different across the experiments) as a special case, but, if one assumes a fixed
design, then O1, . . . , On are independent so that the analysis of estimators
can be based on applications of Bernstein’s inequality for sums of indepen-
dent random variables and corresponding empirical process results in van der
Vaart and Wellner (1996) for sums of independent random variables, and, as
a consequence, it will be possible to obtain stronger uniform consistency and
uniform CLT results than presented here based on the martingale CLT.

For notational convenience, we will from now on often use the notation
gi(· | Xi) = gi(· | Xi, Ō(i − 1)), thereby suppressing the dependence of gi on
Ō(i− 1), or, equivalently, suppressing that gi is a random (through Ō(i− 1))
conditional distribution of Ai, given Xi.

Factorization of the likelihood/density of observed data.

As a consequence of the coarsening at random assumption on the design g,
the density of O is given by (see Gill et al. (1997)):

PQ0,g(o1 = (a1, l1), . . . , on = (an, ln)) = Q0((ai, li), i = 1, . . . , n)g(a | x), (2)

where, for a given a = (a1, . . . , an), Q0((ai, li) : i = 1, . . . , n) denotes the
joint probability distribution/density of (X1(a1), . . . , Xn(an)) at (l1, . . . , ln),
which thus only depends on the common full data distribution P0 of X. By
independence of X1, . . . , Xn, we can conclude that the density factorizes in a
Q0-factor and the design g as follows:

PQ0,g(o1 = (a1, l1), . . . , on = (an, ln)) =
n∏
i=1

Q0(ai, li)
n∏
i=1

gi(ai | xi, ō(i−1)), (3)
9
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where Q0(ai, li) = Pr(X(ai) = li) denotes the probability distribution of X(ai)
at li, which is a parameter of the full data distribution P0 of X. Thus a model
for the density of the observed data O1, . . . , On can be denoted as {PQ,g :
Q ∈ Q}, where Q is the model for the true full data distribution parameter
Q0. Since Q0 is the only identifiable part of the full data distribution of X
this is typically the favorable modelling strategy (since it avoids modelling
non-identifiable parameters of the distribution of X).

The model Q for Q0 is allowed to be a semiparametric and thereby infinite
dimensional model, but the parameter of interest ψ0 = Ψ(Q0) will be assumed
to be finite dimensional.

Description of data generating mechanism for adaptive design:
Given the available data on O1, . . . , Oi−1 at the starting time for experiment
i, one can calculate the conditional distribution gi(· | Xi, O1, . . . , Oi−1) of
Ai, given Xi, and thereby carry out the i-th experiment Oi = (Ai, Li) ∼
PQ0,gi

, which involves drawing Xi ∼ P0, drawing Ai, given Xi, from gi, and
constructing Oi = (Ai, Li = Xi(Ai)), i = 1, . . . , n. Thus, the generation of
O in an adaptive design only differs from generating Oi ∼ PQ0,gi

for a fixed
conditional distribution gi(· | Xi) of Ai, given Xi, i = 1, . . . , n (i.e., a fixed
design), by the fact that one needs to order the experiments, and use the
data generated in the previous i− 1 experiments to define the CAR-censoring
mechanism gi used in the i-th experiment to generate Ai, given Xi.

The Maximum Likelihood Estimator for a correctly spec-
ified model.

At this stage, it is already of interest to note that the Q0-factor in this density
PQ0,g of the observed data O is identical to what it would have been for a fixed
design in which O1, . . . , On are independent. This means that for the sake of
estimation one can proceed as if the design-mechanisms gi, i = 1, . . . , n were a
priori known, and thus ignore that gi is adaptive. In particular, the maximum
likelihood estimator Qn of Q0 according to a model Q is the same function
of the data O1, . . . , On as the maximum likelihood estimator of Q0 for a fixed
design:

Qn = arg max
Q∈Q

n∑
i=1

logQ(Ai, Li),

assuming that this maximum exists and can be uniquely defined.
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The martingale scores/estimating functions:

In order to provide the reader with a basic understanding of how statistical
inference for the maximum likelihood estimator based on a correctly specified
model can be derived, we consider the case that Q = {Qθ : θ} with θ finite
dimensional. The score equation for the MLE θn is now given by

0 =
n∑
i=1

S(θn)(Oi),

where S(θ)(Oi) = d
dθ

logQθ(Ai, Li). As shown above and apparent from (3),
conditional on the data O1, . . . , Oi−1 of the previous i − 1 experiments, the
density of Oi is given by

Qθ0(Ai, Li)gi(Ai | Xi, Ō(i− 1)).

As a consequence, under the usual regularity conditions required to show that
a score has mean zero at the true parameter value, it follows that

Eθ0,gi
(S(θ0)(Oi) | O1, . . . , Oi−1) = 0, i = 1, . . . , n. (4)

This also implies that

E0(S(θ0)(Oi) | S(θ0)(Oj), j = 1, . . . , i− 1)) = 0.

In general, we define Martingale estimating functions as follows.

Definition 1 Consider a function θ → D(θ)(Ō(i)) from a parameter space
{Θ(Q) : Q ∈ Q} for a Euclidean parameter Θ : Q → IRd to functions of
O1, . . . , Oi. Suppose that at the true parameter value θ0 = Θ(Q0) of Q0

PQ0,gi
D(θ0) ≡ E(D(θ0)(Ō(i)) | O1, . . . , Oi−1) = 0 for all i = 1, . . ..

Then, we refer to θ → D(θ) as a Martingale estimating function for the pa-
rameter θ0.

If we denote M(n) =
∑n
i=1 S(θ0)(Oi), then for integer m < n

E(M(n) |M(m)) = E

 m∑
i=1

S(θ0)(Oi) +
n∑

i=m+1

S(θ0)(Oi) |
m∑
i=1

S(θ0)(Oi)


= M(m) +

n∑
i=m+1

E(E(S(θ0)(Oi) | O1, . . . , Oi−1) |M(m))

= M(m).
11
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That is, the empirical mean of the scores at θ0 over O1, . . . , On is a dis-
crete Martingale in n. This provides us with a framework for proving that
the empirical mean of the scores, M(n), converges to zero for n → ∞ (as
needed for consistency of the MLE) and for proving that the standardized
mean of the score,

√
nM(n), converges to a normal distribution (as needed to

establish convergence in distribution of the standardized maximum likelihood
estimator). This martingale structure is the essential building block for show-
ing that, for all practical purposes, not only maximum likelihood estimation,
but also statistical inference can be carried out as if the design mechanisms gi
were fixed and known a priori and all observations O1, . . . , On are independent.
This finding was established for a certain class of response adaptive designs in
basic clinical trials (Chapters 2, 5, and 9 in Hu and Rosenberger (2006)).

We will also show how to compute fully efficient so called targeted Maxi-
mum Likelihood estimators based on Martingale estimating equations in gen-
eral semiparametric models Q for the Q0 factor. We show that the efficient
influence curve based estimating functions for fixed designs, as in general pre-
sented in van der Laan and Robins (2003), have an analogue Martingale es-
timating function for the adaptive design, so that we can generalize targeted
estimation methodology for semi-parametric models Q (i.e., targeted MLE
and estimating function based estimation) to adaptive group sequential de-
signs, while borrowing the closed form representations of efficient influence
curves in i.i.d. censored data models from van der Laan and Robins (2003).
In the targeted MLE methodology presented in this article, a parametric work-
ing model is used to obtain an initial (inconsistent) MLE for Q0 which is then
mapped through a targeted MLE procedure, analogue to van der Laan and
Rubin (2006) for fixed designs, into a consistent and asymptotically normally
distributed estimator of the Euclidean parameter of interest defined on the
true (large) semi-parametric model.

1.1 Examples of adaptations of the design.

Above we provided the formal statistical framework for adaptive group se-
quential designs, involving defining the observed data structure as a missing
data structure, the adaptive coarsening at random assumption on the adap-
tive design, the resulting factorization of the density of the data generating
mechanism, corresponding parametric or semi-parametric models on the full
data distribution factor Q0 of the likelihood, and the martingale properties of
scores of correctly specified parametric models. In this subsection, we hope to
provide the reader with an illustration of the kind of adaptations of practical
interest this statistical framework and our corresponding formal results pre-
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sented later allow. For the sake of illustration, consider a clinical trial in which
one wishes to study the effect of a few candidate drugs on the suppression of
the HIV virus in a population of HIV infected subjects. The design of this
trial involves various settings which can affect the success of the trial.

Adaptation of right-censoring mechanism/clinical outcome: Firstly,
it involves setting the clinical outcome of interest. For example, one might de-
fine the clinical outcome as change in viral load over an eight week follow up
period. Suppose now that after having observed a first group of subjects, it
follows that some of the treatments are resulting in side effects towards the
end of the eight week period, and one suddenly wonders if the presence of
these toxicity effects will persist, start to occur more frequently, or worsen
over longer follow up periods. For that purpose, one might wish to adapt the
design by changing the follow up time from 8 to 12 weeks for the new recruits.
This is an example of an adaptation of the right-censoring mechanism (one fac-
tor in gi(Ai | Xi)). In order to also consider this 12 week clinical outcome as
outcome of interest for approval of drugs one must have specified this potential
alternative clinical outcome a priori (for sound statistical inference the choice
of parameters of interest cannot be data adaptive, except if the introduction
of an additional or new parameter is purely caused by external factors), and
a multiple testing adjustment will need to be carried out to deal with the fact
that 2 parameters are potentially considered. It should be noted that the test
statistics for these two clinical outcomes will be heavily correlated so that a
multiple testing adjustment based on the joint distribution of the two test
statistics can be expected to be minor.

Adaptation of Missingness mechanism: During the trial, a new tech-
nique for genotyping the virus and or measuring the phenotype of the virus
might become available which is shown to outperform the technology used in
the current trial. Since reliable genotyping might advance the causal under-
standing of resistance of the virus to particular drugs, might improve the causal
effect estimates of the treatments, and might result in detection of subgroups
for which the treatment is particularly effective or ineffective, one might wish
to apply these new techniques to the newly recruited subjects. This would be
an example of an adaptation of the missingness mechanism on covariates: one
starts out with collecting one particular set of covariates, but later on in the
trial one starts replacing or augmenting a subset of these covariates by or with
a new subset of covariates, where this new subset is purely defined by external
factors (the occurrence of a new technology). As a consequence of the fact
that the choice of new covariates are a product of external factors, one can
redefine the full data X as including these different subsets of covariates, as
if these potential covariate vectors were known before the trial, and define a
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missingness mechanism on top of them. To summarize, the decision to change
the missingness (i.e., to start using the new technology for genotyping) can be
informed by the actual data collected on previously recruited subjects, but the
choice of the alternative covariate needs to be a priori listed or be a product
of pure external data sources. In general, during the trial one might decide to
start collecting a new set of biomarkers of interest, where the potential sets of
biomarkers were listed a priori or is a product of external factors such as the
occurrence of an improved technology or scientific discoveries by other external
scientists.

An example of this kind of adaptation is the following. A priori one listed
two biomarkers. One starts the trial with biomarker number 1. During the trial
one learns from the collected data that this biomarker is hardly predictive of
the clinical outcome, and therefore is of no help for improving the efficiency of
the treatment effect estimates. Therefore, based on these findings, it is decided
to start using biomarker number 2. This is an example of an adaptation
of the missingness mechanism on the two biomarkers. Since the parameter
of interest is defined in terms of the full data (including the full data on
both biomarkers) and does thus not change (as a distribution of the full data
parameter) by adjusting the missingness mechanism, the adaptation of the
missingness mechanism does not require a multiple testing adjustment.

Adaptations of monitoring and treatment mechanisms: Similarly,
during the trial one might feel the need to change the monitoring intensity, the
choice of time-dependent covariates collected at the monitoring times among
a set of choices a priori specified or only influenced by external factors, and
one might wish to change the randomization probabilities for the treatment as-
signment in response to the fact that certain treatment arms are more variable
(w.r.t. outcome) than others, or because some treatments are obviously infe-
rior and can be dropped. These adaptations would be examples of an adapta-
tion of the monitoring mechanism, the treatment mechanism, and missingness
mechanism (on a set of possible time-dependent covariates).

Introduction of additional ”a priori listed” or ”external factor
based” intervention: During the trial one might note that the drop out
rate needs to be improved by additional counselling and/or the administration
of drugs which help the subject to deal with the toxicity symptoms while
these drugs are known to have no effect on the counterfactual viral load and
or CD4 counts. The administration of this additional intervention to newly
incoming subjects would be an example of an adaptation of the assignment
of compliance interventions: the original assignment was set at 0 (meaning no
intervention is applied), and during the trial it was set at 1 for newly recruited
subjects (meaning an a priori specified/external factor based intervention is
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applied). Formally, the setting specific full data (counterfactual) process can
be represented as X(a1a2), where a2 denotes the intervention indicator and a1

denotes the other settings, and one assumes that X(a1a2) = X(a1) does not
depend on the intervention level a2. In general, one can introduce interventions
which are known to not affect the counterfactual outcomes of interest defining
the parameter of interest.

Introduction of improved questionnaire: During the trial it might
become clear that subjects drop out time could be well predicted by a self-
reported health measure, but it is noted that the currently used self-reported
health questionnaire results in confusion and thereby measurement errors.
Since informative drop out caused by unmeasured factors can result in bias
for the effect estimates of interest, it is important to measure time-dependent
covariates which are predictive of the drop out time. As a consequence, one
might wish to make changes to the currently used questionnaire, by hiring an
external consultant with the request to improve the current questionnaire, and
use the new one for the newly recruited subjects. This adaptation in the de-
sign corresponds with an adaptation of the missingness mechanism, where the
missingness indicator drawn from this mechanism indicates which of the two
questionnaires is applied (the one a priori listed as the initial questionnaire or
the one resulting from an external consultant).

Adaptation of entry intensity: During the trial one might determine
that, based on the available data, the intensity at which new subjects should
be recruited should be increased in order to keep the duration of the trial
short enough. The entry time for experiment i is denoted with Ei and can be
included as a component of Ai. An increased intensity would correspond with
a denser pattern of entry times. This is an example of an adaptation of the
entry intensity mechanism.

Issue to keep in mind when changing variables during design:
Formally, one needs to a priori specify the definition of the full data X =
(X(a) : a ∈ A), and thereby the possible design settings A for the experimen-
tal units such as the monitoring times, treatments, potential additional inter-
ventions, potential additional covariates, and missingness indicators. However,
there is an important exception to this which allows to adapt the set A and
thereby the full data X, as long as this change is purely based on external
data/information. In the previous paragraphs we hinted to some of such al-
lowed adaptations such as the introduction of a new covariate to measure
during the trial, which had not been a priori specified, but was only informed
by a pure external source of data such as the occurrence of a new technology.
In general, if a change during the trial of full data definition (e.g., including
the set of possible baseline and time-dependent covariates which are poten-
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tially measured on the unit), the possible settings A, and even the choice of
parameters of interest for which statistical inference is requested, is based on
external factors (e.g., the request of a director who had zero access to the
data collected in the trial), then one can make these changes and treat the
statistical problem as if these definitions had been made a priori before the
trial started. Off course, this could result in very dangerous practice if these
choices are made by people who have also been informed by the data observed
in the trial: this could result in target parameters which itself are a function
of the internal data O1, . . . , On and thereby are random (even after condition-
ing on external data sources) so that statistical inference about such random
parameters will fail to be accurate.

1.2 The choice of design for experiment i can be fully
informed by external factors.

In this article we will propose particular explicitly formulated so called targeted
adaptive designs gi which are defined a priori as a function of a maximum
likelihood estimator based on O1, . . . , Oi−1 into an element of the set G of fixed
designs. However, such a priori specified adaptive designs are not required for
an application of our asymptotic results. We find this important to point
out since in practice it is not hard to imagine that the preferred manner of
adaptation might only become apparent during the trial and might be different
for each experiment.

The choice of design gi ∈ G for the i-th experiment can be an arbi-
trary function of external factors (i.e., factors independent of O1, . . . , On) and
O1, . . . , Oi−1, and this function does not need to be specified a priori and, in
fact, does not need to be specified at all. That is, to calculate the estimators
and for formal asymptotic statistical inference we just need to know gi as an
element in the set of fixed designs G, but it is not necessary to know the ex-
plicit mapping from O1, . . . , Oi−1 and external factors (say) Fi to this element
gi ∈ G: i.e., we need to know the realization of gi but not the explicit definition
of gi as random variable. For example, the following mechanism for generating
gi is allowed: at the i-th experiment, one has a group of experts sitting in a
room, having access to O1, . . . , Oi−1 and the rest of the world, and this group’s
output is a choice of design gi ∈ G1 which will be used to draw the settings Ai
for experiment i.

The reason that the design gi for the i-th experiment can be a random
variable in G defined as some function on O1, . . . , Oi−1 and external data Fi
is that we can apply our formal results for the estimators of the parameter
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of interest conditional on F1, . . . , Fn. The conditional distribution of O, given
these external factors F1, . . . , Fn, equals the distribution of O in the case that
F1, . . . , Fn had been set by design a priori. As a consequence, the obtained
results are the wished results of interest. That also means that our asymp-
totic stability condition for gi in our CLT theorems (as required to obtain
asymptotic normality of the estimators) only needs to hold conditional on
F1, . . . , Fn, which thus only requires that for i converging to infinity gi is ap-
proximately only random through external random factors (but will depend
on asymptotically consistent/degenerate finite dimensional summary measures
of of O1, . . . , Oi−1).

1.3 Adaptive designs targeting an optimal fixed design

In this subsection we provide a general example of so called targeted adap-
tive designs, which provides a particular class of targeted adaptive designs of
interest we can handle with the theory presented in this article.

Hu and Rosenberger (2006) (Chapter 5) provide a presentation of a theory
for response adaptive designs targeting a target allocation of treatment in
clinical trials in which one only observes on each subject a treatment and
outcome. This corresponds with our definition of adaptive designs in which
gi is just a marginal probability distribution on a set of possible treatments
(chosen in response to the outcomes and treatments of the previous i − 1
subjects). This excludes the case of targeted adaptive designs in clinical trials
in which the randomization probabilities can depend on covariates. These
authors state (page 158) ”Chapter 9 presents an overview of covariate-adaptive
and CARA randomization procedures. Little is known about these procedures,
and there are few papers regarding their theoretical properties in the literature.”
and they proceed mentioning that this represents an important area of future
research. They also state ”We have discussed heterogeneity (i.e., the use of
covariates in adaptive designs) very briefly in this book, and that is principally
because there has been very little work in this area. Yet it is critical if these
designs are to be used in clinical trials.” Our article concerns this development
of a theory for general targeted adaptive designs, and in this subsection we
start out with providing a general definition and then discuss the implications
of our general results for these targeted adaptive designs.

Suppose that, given the true probability distribution P0 of X, we would
know the optimal fixed design gi(· | X) (i.e., the conditional distribution of A,
given X) for experiment i in a user supplied subset of all allowed CAR fixed
designs G, where optimality is defined w.r.t. a particular criteria. That is, we
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can define a mapping
θ → gi,θ,

which maps a choice Qθ of the identifiable part Q0 of the distribution of X
according to a (possibly misspecified) model Qw = {Qθ : θ} for Q0 into the
wished fixed design gi,θ for Ai, given Xi, i = 1, . . . , n. Let θ0 denote the true
parameter of Q0 so that Qθ0 either equals Q0 or equals a specified known well
defined (e.g., Kullback-Leibler projection) parameter of Q0 defined onto the
true (possibly semi-parametric) model Q. For example, gi,θ = gθ might be the
fixed design minimizing the asymptotic variance of the maximum likelihood
estimator of a real valued parameter ψ0 (defined on the semiparametric model
Q) over all fixed designs g ∈ G based on sampling n i.i.d. observations from
Pθ,g = PQθ,g .

We can now define an adaptive design g = (g1, . . . , gn) which learns this
optimal fixed (unknown) design gθ0 as n→∞, as shown by our general results
under appropriate conditions. That is, our goal is to adapt the design (i.e.,
construct a g = (g1, . . . , gn)) in such a way that gn or equivalently ḡn =
1
n

∑n
i=1 gi converges to the fixed conditional probability distribution gθ0 (of A,

given X) in probability as n → ∞. This can be achieved in the following
manner.

Let θi−1 be an estimator of the parameter θ0 of Q0 based on observations
O1, . . . , Oi−1 Typically, one might make θi constant in i across blocks of exper-
iments as in group sequential trials. Let θi, i = 1, . . . , n, be such a sequence
of estimators of θ0. There are two strategies for selecting the adaptive design
based on this sequence of estimators θi, i = 1, . . .. Firstly, one could simply
set gi = gθi−1

, i = 1, . . . , n. Alternatively, one iteratively selects g1, . . . , gi so
that gi = arg ming∈G ‖ 1

i
(
∑i−1
j=1 gj + g) − gθi−1

‖, starting with an initial g1,
i = 1, . . . , n. Here ‖ g1− g2 ‖ denotes some norm or dissimilarity between two
fixed CAR-designs. The latter approach aims to chose gn so that the average
design ḡn = 1/n

∑
i gi is as close as possible to the wished gθn .

The above two general forms of adaptive designs are just an example of
adaptive design as analyzed in this article. Therefore, in particular, we can
apply our results to analyze the estimator θn, where θn can either be a max-
imum likelihood estimator according to a correctly specified model (in case
Qw = Q), a targeted maximum likelihood estimator of θ0 defined on the true
semi-parametric model Q ⊃ Qw, or a Martingale estimating equation based
estimator of θ0 of θ0 defined on the true semi-parametric model Q ⊃ Qw.

Firstly, we wish to establish that θn is consistent for the θ0 parameter of Q0.
Our consistency theorems for adaptive designs indeed show that this typically
holds for finite dimensional parameters without any need for convergence of
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the design gn to a fixed design. Therefore, without getting into a circular
reasoning, we can establish that θn is consistent for a Euclidean parameter θ0.

As a consequence of this consistency of θn we will have that the above
adaptive design satisfies that gn = gθn−1 → gθ0 in probability as n → ∞,
or equivalently, that ḡn → gθ0 , as n → ∞. Given that the adaptive design
gn converges to a fixed design as the sample size converges to infinity, and
thereby satisfies the asymptotic stability condition defined in our Central Limit
Theorems, we are now in the situation that we can apply our central limit
theorem for the maximum likelihood estimator, targeted maximum likelihood
estimator or martingale estimating equation based estimator of the parameter
of interest ψ0 (e.g. including θ0) based on data generated by adaptive group
sequential designs. Application of these theorems shows, under regularity
conditions, that

√
n(ψn−ψ0) converges in distribution to a normal distribution

as n→∞, where the covariance matrix in this normal distribution is identical
to what it would have been under i.i.d (i.e., fixed design) sampling from PQ0,gθ0

(and if Qθ0 = Q0, then this is the true wished optimal design). That is, under
regularity conditions, we will have that the estimator ψn of the parameter of
interest ψ0 of Q0 in the adaptive design is asymptotically equivalent with the
estimator based on i.i.d. sampling using the optimal fixed CAR-design gθ0
in case Qθ0 = Q0 and ”sub-optimal” fixed CAR design if the working model
Qw used to learn the optima fixed design was misspecified. Our examples
will show a few rigorous illustrations of this result. In general, our theorems
provide templates and conditions for establishing these results for general (e.g.,
targeted) adaptive designs.

Dealing with delayed response. Note that in the case that Oj = (Oj(s) :
s ≥ 0), j = 1, . . . , n, are longitudinal time dependent data structure collected
over time, at the time Ei at which Ai needs to be drawn the data O1, . . . , Oi−1

for the first i − 1 experiments might not have been observed yet. Thus the
estimator θi in the targeted adaptive design gi = gθi−1

will need to be based
on the data available at time Ei at which Ai needs to be drawn in experiment
i. In this case the estimator θi−1 would be based on i − 1 right censored
versions Ō1(Ei), . . . , Ōi−1(Ei) of these i − 1 observations O1, . . . , Oi−1, where
Ō(t) ≡ (O(s) : s ≤ t). If the entry times Ei satisfy the coarsening at random
assumption again (just make Ei part of Ai and apply our definition of the
adaptive coarsening at random assumption), then one could define θi−1 as the
(e.g.) maximum likelihood estimator based on Ōj(Ei), j = 1, . . . , i−1, treating
Ei as given, where the likelihood can be derived as if these i−1 observations are
independent, as above in (3): see Chapter 3 van der Laan and Robins (2003)
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for the Q0-factor of the general likelihood of right censored data longitudinal
data structures. If Ai = Ai(0), . . . , Ai(K) has K time dependent components
drawn at subsequent times Ei(0), . . . , Ei(K), then the choice of mechanism
for Ai(j) can be based on the available data on O1, . . . , Oi−1 at time Ei(j) at
which Ai(j) needs to be drawn in experiment i.

1.4 Sequential testing.

In Section 25 we will show that the sequential testing methods as typically used
in clinical fixed design trials can be equally well applied on top of adaptive
designs, as analyzed in this article. According to Hu and Rosenberger (2006):
”The basic statistical formulation of a sequential testing procedure requires de-
termining the joint distribution of the sequentially computed test statistics.
Under response-adaptive randomization, this is a difficult task. There has
been little theoretical work done to this point, nor has there been any evalua-
tion of sequential monitoring in the context of sequential estimation procedures
(i.e., targeted adaptive designs) such as the double adaptive biased coin de-
sign.” These authors end their book with the quote from Rosenberger (2002):
”Surprisingly, the link between response adaptive randomization and sequential
analysis has been tenuous at best, and this is perhaps the logical place to search
for open research topics.” Indeed, in Section 25 we will determine the joint
distribution of the sequentially computed test statistics based on our results,
and provide a large class of sequential testing procedures whose asymptotic
validity only relies on this joint distribution result.

1.5 Implications for FDA critical path initiative.

An important topic for the FDA critical path initiative is the streamlining
of clinical trials. Specifically, we will list some of the items raised in their
publications on the FDA critical path initiative as can be downloaded from
the internet, and comment how the methods in this article affect some of these
items.

Innovative and Efficient Clinical Trials: One item is the creation of inno-
vative and efficient clinical trials. Our article provides targeted adaptive
designs which target the design to optimize information in the data for
a particular parameter of interest such as a causal effect of a treatment
relative to control or the optimal dose of a drug. In general, our general
framework allows statistical inference on a very general class of adaptive
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designs, and therefore creates ample room for innovative and creative
choices of adaptive designs.

Improved Clinical Endpoints: We show that if one lists a number of can-
didate clinical end points a priori, then one can adapt and target the
design towards the best clinical end point by adjusting the design of fu-
ture experiments based on data generated in previous experiments. In
particular, one can decide to stop measuring certain clinical end points
for next groups of experiments, or one can adjust the randomization
probabilities to optimize the trial towards estimation of the causal effect
of treatment on one of the clinical end points. The multiple testing ad-
justment should be based on the joint distribution of the test statistics
for the different clinical end-points, in which case one can expect a rela-
tively minor multiplicity adjustment due to the high correlation between
the test statistics.

Enrichments Designs: Enrichment designs involve enrolling patients which
are at higher risk or known to respond well to treatment. One can use
initial groups to determine the higher risk patients and good responders,
and subsequently only sample such patients, but, for the purpose of solid
statistical inference w.r.t. to an a priori defined parameter of interest,
estimators and inference cannot be based on these initial groups. Such
kind of adaptations change the target parameter of interest and thus the
corresponding null hypothesis of interest, and thereby make the param-
eter of interest and null hypothesis data driven. Nevertheless, in spite of
the resulting loss of data (or more optimistically stated, that the data
on these initial groups cannot be used for both parameter selection and
estimation), such adaptations are very important and crucial to improve
the success rate of clinical trials. It is an interesting statistical challenge
to rationalize the use of the initial groups as well in the calculation of
an estimator and test for a null hypothesis, under certain scenarios.

Data Driven Subgroups: Another similar issue raised in the Critical Path
Initiative is ”What types of retrospective subset analyses are valid. i.e.
what can be reliably learned from subgroup analysis that were not pre-
specified in the original trial design?”” Again, if sub-group are a function
of the data, then formal statistical inference for such a data adaptively
selected sub-group cannot include the data which was used to select the
subgroup.

Modification of Randomization Probabilities: In addition, the FDA Crit-
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ical Path Initiative raises the question: ”When is it valid to modify
randomization probabilities based on results for example in phase 2/3
trial?”. Clearly, our methods teach us that we can modify randomiza-
tion probabilities in response to data generated in previous experiments,
and, in fact, we should be doing this to obtain more efficient designs in
answering the questions of interest.

Dose Response Curves and Optimal Dose: Most cancer trials identify
and test the maximum tolerated dose to maximize efficacy. Such tri-
als cannot answer key questions about dose response relationships such
as ”Do blood levels of drug relate to outcomes?” and ”At what dose does
the response plateau?” Therefore, it is necessary that we design trials
which can find dose response curves. In Section 16 we provide such trials
and, in particular, we provide a targeted adaptive design for finding the
optimal dose, while still providing the whole dose response curve.

1.6 Organization of article.

In Section 2 we present and discuss a general class of targeted adaptive designs
of the type presented in Subsection 1.3 to which our results can be applied. In
particular, we present specific classes of targeted adaptive designs maximizing
the information for a particular parameter of interest or number of significant
findings for treatment effects in clinical trials. In Section 3 we highlight a
class of particularly easy to implement empirical influence curve based targeted
adaptive designs, and we illustrate it in the context of a clinical trial with
baseline covariates.

In Section 4 we establish consistency and asymptotic normality of the max-
imum likelihood estimator based for the treatment effect in a clinical trial in
which covariates are not exploited, based on our general asymptotic central
limit theorem results established in later sections. The obtained results for
the marginal unadjusted treatment effect estimate correspond with the results
presented in Chapter 5 of Hu and Rosenberger (2006). In Section 5 we provide
a general template for proving consistency of maximum likelihood estimators
according to correctly specified parametric models.

Section 6 shows that, if one restricts the adaptive design for the i-th exper-
iment to only respond to baseline covariates conditioned upon in the definition
of the parameter of interest, but one still allows the settings of experiment i
to depend in an arbitrary manner on the data generated in the previous i− 1
experiments, then one can typically construct Martingale estimating functions
which do not depend on the adaptive design (i.e., the gi’s). Although these

22

http://biostats.bepress.com/ucbbiostat/paper232



estimating functions are typically inefficient, they are attractive because of
its simplicity and robustness w.r.t. the finite sample variability due to the
variability of the adaptive design, which might out-weight their inefficiency.
In Section 7 we present equally simple to implement Inverse Probability of
Censoring Weighted estimators based on Martingale IPCW estimating func-
tions, which can be inferred from the IPCW estimating functions for fixed
designs as presented in van der Laan and Robins (2003), in general. These
two sections 6 and 7 present ad hoc martingale estimating functions and cor-
responding easy to implement estimators, while in later sections we present
the general methodology for deriving optimal (and non-optimal) martingale
estimating functions based on the efficient influence curves for the correspond-
ing fixed design models, and thereby corresponding estimating equation based
estimators and targeted maximum likelihood estimators for adaptive group
sequential designs.

In Section 8 we present methods for constructing Martingale estimating
functions and corresponding estimating equations. Section 9 establishes con-
sistency for estimators defined as solutions of Martingale estimating equations.
Section 10 establishes the consistency for the adaptive design showing that
adaptive designs will learn the targeted fixed design. In Section 11 we present
and prove the asymptotic normality of the standardized maximum likelihood
estimator and, in general, estimators defined as solutions of Martingale esti-
mating equations.

Sections 12 and 13 presents 2 versions of the locally ”efficient” robust
targeted maximum likelihood estimator for adaptive designs. This generalizes
the double robust locally efficient targeted maximum likelihood estimator for
i.i.d. CAR censored data (i.e., fixed designs) as introduced and analyzed in
van der Laan and Rubin (2006). In Section 14 we also establish the general
consistency and asymptotic normality results for this (double) robust targeted
maximum likelihood estimator.

Sections 15, and 16 are devoted to the application of our general consis-
tency and asymptotic normality theorems for the maximum likelihood and
targeted maximum likelihood estimator to targeted adaptive designs in clini-
cal trials. In Section 15 we study targeted adaptive designs for clinical trials
including covariates to improve efficiency of the estimate of the treatment ef-
fect, and to allow for adaptation of how treatment is assigned in response to
covariates/subgroup-membership. In Section 16 we present targeted adaptive
designs targeting the optimal dose level of a drug (and corresponding targeted
maximum likelihood estimators), while still providing the causal dose response
curve, where we show, in particular, that this targeted adaptive design exists
in closed form.
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In Section 17 we illustrate adaptive designs to adapt the covariate distri-
bution for the purpose of estimating a regression function of these covariates.
In Section 18 we present a number of examples of censored data structures
and corresponding targeted adaptive designs, in order to provide some illus-
trations of the scope of our statistical framework and results, going beyond
the basic data structure of a typical clinical trial. In particular, in Section 19
we illustrate the application of adaptive designs and our targeted MLE in the
general context of a longitudinal study with time-dependent treatment and
right-censoring.

In Sections 20 and 21 we provide an easy to implement and practically
appealing Inverse Probability of Censoring Weighted Reduced Data Iterative
Targeted MLE methodology and illustrate it by applying it to fitting causal ef-
fect models for time dependent treatments as represented by so called marginal
structural models. Subsequently, in Section 22 we illustrate that this same
methodology actually covers a whole range of double robust IPCW iterative
targeted maximum likelihood estimation methodologies by allowing different
degrees for the reduction of the data, where ”no reduction” corresponds with
the actual iterative targeted MLE as presented in Section 13. In these meth-
ods the estimators involve inverse probability of censoring weighting of each
time-specific factor of the log-likelihood in such a manner that double robust-
ness w.r.t. miss-specification of the design mechanism or the actual model for
the likelihood is achieved.

In Sections 23 and 24 we present a targeted empirical Bayesian methodol-
ogy which allows us to incorporate a prior distribution on the scientific parame-
ter of interest and map it into a valid robust and targeted posterior distribution
for the parameter of interest, by preserving the frequentist properties of the
(iterative) targeted MLE.

In Section 25 we present sequential testing methods which can be applied in
combination with the general adaptive group sequential designs. In Section 26
we generalize our results to adaptive design in which some of the components
are unknown but modelled. Finally, in Section 27 we present our most general
formulation of iterative targeted estimation, thereby including the iterative
targeted likelihood based estimators as presented in this article as a special
case, but also pointing to various generalizations of interest. We end this
article with a discussion in Section 28. A number of technical results, required
as building blocks for the consistency and CLT theorems, are deferred and
proved in the two appendices.
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1.7 Some relevant literature on adaptive designs for
clinical trials

The literature on adaptive designs is vast (in particular, since it represents
various statistical goals) and we apologize for not including all of it. To start
with it is important to note that the word adaptive designs has also been used
in the literature for sequential testing and, in general, on designs which allow
data adaptive stopping times for the whole study or for treatment arms in
the study, which achieve the wished control of the Type-I error for a test of
a null hypothesis of interest. In this article, we have decided to completely
separate the sequential testing problem and adaptive sample size formulas from
the data adaptive determination of experimental settings in response to data
collected in previous experiments. In a sense, stopping the trial corresponds
with the extreme decision to not collect any data at all at the next experiment,
which is not considered part of our definition of an adaptive design (stopping a
treatment arm is). Instead, stopping and sequential testing will be considered a
separate adaptation for which methods can be developed on top of the adaptive
designs, as we do in Section 25. We believe that the separation of sequential
testing and adaptive designs makes sense from a methodological point of view
since valid sequential testing procedures typically rely on the determination of
the asymptotic joint distribution of the sequentially computed test statistics
in a trial which does not stop (but possibly still adapts) as in our definition of
adaptive designs. The main literature on adaptive designs which corresponds
with our general definition of an adaptive design has been called ”response-
adaptive randomization” (Hu and Rosenberger (2006)). Since we feel strongly
that the conditional distribution g of the design settings A, given X, truly
represents the design for the data generating experiment, we decided to refer
to it as the adaptive design (instead of response adaptive randomization), and
reserve names such as adaptive sample size formulas, adaptive stopping rules,
and sequential testing for the additional adaptations one can put on top of the
adaptive design, whose asymptotic theory cannot be developed without first
developing the asymptotic theory for adaptive designs as sample size converges
to infinity.

In order to illustrate the need for adaptive designs in clinical trials, we
cite the following quote from a Pharmaceutical Executive Derek Lowe July
1, 2006, taken from an internet article: A widely noted survey by Accenture
provided some alarming figures a few years ago: Eighty-nine percent of all
drug candidates from the initiation of Phase I through FDA approval failed
in the clinic. Clearly, any techniques that could give an earlier read on these
issues would be valuable. In too many cases , the chief result of a trial is to
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show that the trial itself was set up wrong, in ways that only became clear
after the data were un-blinded. Did the numbers show that your dosage was
suboptimal partway into a two year trial? Too bad- you probably weren’t allowed
to know that. Were several arms of your study obviously pointless from the
start? Even if you know, what could you do about it without harming the
validity of the whole effort? Over the last years, such concerns have stimulated
an unprecedented amount of work on new approaches. Ideas have come from
industry, academia, and regulatory agencies such as the FDA’s critical path
initiative. A common theme in these efforts has been to move toward adaptive
clinical trials.

More of such quotes are easy to find reflecting the general feeling among
many practitioners that drastic improvements in running trials should be pos-
sible and that adaptive designs hold the key to this.

The most familiar example of a simplistic adaptive trial is the phase I trial
design for finding a maximum tolerated dose (MTD). In this case, patients
are enrolled stage-wise. At the first stage a group of patients are enrolled in
the lowest dose arm, and at subsequent stages patients are also enrolled to
higher dose groups. This process of stage wise sampling and enrolling patients
in higher dose groups proceeds till the dose results in toxicity effects. At that
point, the next lower dose is declared to be the maximum tolerated dose.

Group sequential designs are typically used to monitor a study that unfolds
over time at interim analysis times to assess whether there is enough evidence
in support of the research hypothesis to warrant early termination of the study
(Scharfstein et al. (1997)). In general, we refer to such a design as a group
sequential testing study. In this setting a test statistic is computed at each
analysis time and compared to a stopping boundary. Due to the repeated looks
at the data, this boundary is adjusted to maintain some predetermined overall
significance level. To determine this boundary, the joint distribution of the
sequentially computed test statistics must be derived. We refer (Scharfstein
et al. (1997)) for a general methodology for sequential testing and an overview
of literature, and to (Scharfstein and Tsiatis (1998)) Tsiatis (2006) for infor-
mation based group sequential testing studies. There is a rich literature on
different ways to control the Type I error in group sequential trials involving
sequential testing of the null hypothesis of interest (see e.g., Pampallona et al.
(2001)).

A good reference for an overview of research on adaptive sample size de-
terminations in clinical trials is the FDA/MIT workshop, October 19, 2004,
”New Adaptive Trial Design: The evolution from group sequential trials to
adaptive designs” which deals with the questions ”How to preserve the Type-I
error in an adaptive trial?” and ”How much to increase the sample size issues
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of trial management?”
In this case the adaptive designs considered are concerned with strategies

for determining when to stop a trial, including the setting of the times at
which one tests the null hypothesis of interest. In this FDA/MIT workshop
of October 19, 2004, one distinguished between two approaches. Firstly, the
group sequential design which starts out with a large up-front commitment of
sample size, but uses sequential testing to allow early stopping. The second
approach is (inconveniently) referred to as the adaptive design method, which
starts out with a small commitment of sample size and extends it if necessary.
We note that adaptivity of the design refers here only to the adaptive manner
in which the sample size is determined (Tsiatis and Mehta (2003), Jennison
and Turnbull (2003)).

In this workshop it is noted that some disadvantages of group sequential
trials are that the sample size calculation requires a priori specification of a
unique clinically meaningful alternative. It is noted that the theory does not
support, changing your mind about this alternative after the trial is underway.
On the other hand, the adaptive sample size formulas allows one to update
the alternative and thereby the sample size calculation. It is noted in articles
(e.g. Tsiatis and Mehta (2003)) that ”Adaptive designs are theoretically less
efficient than classical group sequential designs”, but it is stated that ”this
loss of efficiency is compensated by the increased flexibility to change course
of design”. These statements for adaptive sample size determinations are due
to multiple testing adjustments. They do not apply at all to our definition of
adaptive designs in which adaptation can be used to heavily increase asymp-
totic efficiency of the estimator of the scientific parameter of interest relative
to a fixed design (see also Hu and Rosenberger (2006)). It is also noted that
the adaptive sample size formulas result in logistic problems: ”Who in the
organization will be permitted to view the un-blinded interim data and deter-
mine the sample size change” ”What signal does a sample size increase send
to the investigators!”.

We provide the following references for work on adaptive sample size de-
termination involving the sequential testing and thereby proper adjustment
of the critical values: Tsiatis and Mehta (2003), Banerjee and Tsiatis (2006),
Lokhnygina and Tsiatis (2006), Bauer and Kohne (1994), Cui et al. (1999),
Jennison and Turnbull (2003), Koyama et al. (2004), Lan and Trost (1997),
Li et al. (2002), Mehta and Tsiatis (2001), Mulle and Shafer (2001), Proschan
and Hunsberger (1995), Shen and Fisher (1999), Wittes and Brittain (1999),
L.M.Friedman et al. (1998).

We also provide the following references for adaptive treatment allocation
in clinical trials: Bai et al. (2002); Andersen et al. (1994); Flournoy and Rosen-

27

Hosted by The Berkeley Electronic Press



berger (1995); Hu and Rosenberger (2000); Rosenberger (1996); Rosenberger
et al. (1997); Rosenberger and Grill (1997); Rosenberger and Shiram (1997);
Tamura et al. (1994); Wei (1979); Wei and Durham (1978); Wei et al. (1990);
Zelen (1969); Cheng and Shen (2005).

The book Hu and Rosenberger (2006) is may be the most relevant reference
for our article since it concerns asymptotical theory for maximum likelihood
estimators based on adaptive designs in clinical trials, focussing on adaptation
of the treatment randomization probabilities in response to observed responses
in the previous experiments. One well known technique of response adaptive
patient randomizations is the ”Random play the winner”, one of the ”urn”
methods- so called because they can be modelled after different ways of pulling
various colored balls from an urn. Play the winner mathematically weight the
treatment arms that have produced the fewest adverse events and/or the most
positive data so that more patients are assigned to them. A similar ”drop the
loser” rule can be used, allowing for entire dosage groups or efficacy arms to
be added or dropped as the data develop. These types of adaptive designs and
targeted designs are studied in detail in the simple clinical trial setting in Hu
and Rosenberger (2006).

We refer to this recent book Hu and Rosenberger (2006) for a representation
of the literature on response adaptive randomization in clinical trials.

There is also a rich literature on the Bayesian approach to adaptive de-
signs. Certain book references in this direction are Berry and Stangl (1996)
and Spiegelalter et al. (2004). A basic overview of Bayesian adaptive designs
is provided in Berry (2006). In the Bayesian approach, at certain time points,
posterior probabilities are calculated given the observed history in the trial,
where these calculations are, as usual, based on certain specified (e.g., para-
metric) models. Whatever decision rules based on these iteratively updated
posterior probability distributions are implemented, the frequentist properties
of the corresponding testing procedure are often simulated in extensive simula-
tions. In this manner, these Bayesian adaptive designs aim to provide adaptive
designs which still control the type I error as defined in the frequentist world.
A concern is that these simulations are model based and that model misspec-
ification can result in tests which fail to control the type I error. On the
contrary, the asymptotic validity of our methods presented in this article (e.g.
targeted maximum likelihood estimation) only relies on knowing (or being able
to consistently estimate) the randomization probabilities for the various de-
sign settings such as treatment assignment probabilities, and mechanisms of
other design settings. As a consequence, contrary to the standard Bayesian
approach to adaptive designs, our method is able to use the knowledge about
the design mechanism, and thereby obtain valid and locally efficient estima-
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tors in large semi-parametric models. Our targeted empirical Bayesian still
enjoys the same properties as our targeted robust estimators, but it now also
allows the incorporation of a prior distribution on the parameter of interest,
and maps it into a valid posterior distribution.

1.8 Notation.

Let G denote the set of conditional distributions of A, given X, satisfying
CAR w.r.t. to the full data X for a single experimental unit and observed
data O = (A,L = X(A)), which we will also refer to as the set of fixed
designs. Thus G is the set of all conditional distributions of A, given X, sat-
isfying g(A | X) = h(A,X(A)) for some measurable function h (Chapter 1,
van der Laan and Robins (2003)). Let θ → gθ represent a mapping from
a Euclidean parameter space Θ into G, which will often be referred to as a
design function. Let gi be the conditional distribution of Ai, given Xi and
O1, . . . , Oi−1, i = 1, . . . , n, but we find it useful to consider it as a conditional
distribution of Ai, given Xi, depending on the random O1, . . . , Oi−1. That is,
we will consider gi as a random (through Ō(i− 1)) element of the set of fixed
CAR-designs G. A particular kind of adaptive design is the targeted adaptive
design gi = gθi−1

, where θi is a sequence of estimators based on Ō(i − 1),
i = 1, . . .. Throughout this article, it will be assumed that gi depends on
O1, . . . , Oi−1 through a finite dimensional vector Zi of fixed (in i) dimension.
For convenience, we will also assume that gi only depends on i through Zi
(but this is not necessary for our results): that is, gi = gZi

∈ G with prob-
ability 1, i = 1, . . . , n. For a fixed or random conditional distribution gi of
Ai, given Xi, let PQ0,gi

denote the conditional probability distribution of Oi,
given O1, . . . , Oi−1, which can be described as Oi = (Ai, Xi(Ai) = Φ(Xi, Ai)),
Xi ∼ P0, and Ai | Xi ∼ gi(· | Xi), as if gi is a given conditional distribu-
tion of Ai, given Xi. For a function D(Oi, Zi) we define the corresponding
conditional expectation operator PQ0,gi

D = EQ0,gi
(D(Oi, Zi) | O1, . . . , Oi−1),

which is thus still a random variable as a function of Zi. For notational con-
venience, given a vector valued random variable D(O,Z), we use the notation
PQ0,gi

D2 ≡ PQ0,gi
DD>, which is thus a matrix of conditional expectations

w.r.t. Oi, given O1, . . . , Oi−1. In this article Qw = {Qθ : θ ∈ Θ} denotes
a parametric working model, while Q is the true (possibly semi-parametric)
model for the Q0-factor of the likelihood of the data. For the sake of defin-
ing the targeted MLE, given a Qθ ∈ Qw ⊂ Q, {Qθ(ε) : ε} ⊂ Q denotes a
submodel of Q through Q at ε = 0 and indexed by a finite dimensional pa-
rameter ε. If this submodel is also indexed a choice of g ∈ G, then we also
denote it with Qθ,g(ε), and, typically, we set g = gθ so that we obtain submodel
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{Qθ,gθ
(ε) : ε}. Let Ψ : Q → IRd denote the Euclidean parameter of interest,

which is assumed to be path-wise differentiable at a fixed design distribution
PQ,g ∈ M(g) ≡ {PQ1,g : Q1 ∈ Q} in model M(g) for a single experimental
unit O with efficient influence curve D∗(Q, g), for all Q ∈ Q and g ∈ G. For
a function f , let ‖ f ‖∞= supx | f(x) | denote the supremum norm, and,
for a p ≥ 1, let ‖ f ‖p,P0≡ (EP0 | f(X) |p)1/p denote the Lp-norm w.r.t. the
distribution of X.

2 A general class of targeted adaptive designs

In this section we consider a general strategy for the formulation of a tar-
geted adaptive design. Firstly, one specifies an optimal fixed design gi,θ0 =
arg maxg∈G1 fi(θ0, g) as a maximum over a user supplied class (e.g., finite set)
of fixed designs G1 ⊂ G of some real valued criteria fi applied to the parameters
specifying the probability distribution Pθ0,g = PQθ0

,g of a single experimental
unit O = (A,X(A)), given a working model Qw = {Qθ : θ} for Q0. We will
refer to gi,θ0 as the design function. We note that instead of taking a maximum
of the stated criterion in the definition of gi,θ0 one might make other more ad
hoc choices based on this criterion which do not necessarily correspond with
a true maximum.

Given such a specified design function a corresponding targeted adaptive
design is obtained by setting gi = gi,θi−1

, with θi−1 an estimator of θ0 based
on O1, . . . , Oi−1, such as the MLE, i = 1, . . . , n. Therefore, in this section we
focus on proposing a number of interesting candidate criteria g → fi(θ0, g).
The criteria fi is allowed to be indexed by i and O1, . . . , Oi−1. In many cases,
such as the targeted adaptive designs considered in Section 1, the criteria fi
can be selected to not depend on O1, . . . , Oi−1 so that it is a fixed function fi of
θ0, g. However, it is often more practical and convenient to define the wished
criteria fi for gi in response to the observed Ō(i− 1). Adaptive designs which
aim to respond to statistical significance against a null hypothesis H0(j) based
on O1, . . . , Oi−1 will typically depend on a scaling factor

√
i.

We start out with some specific targeted adaptive designs for estimation
of treatment effects in clinical trials. Subsequently, we discuss a variety of
general targeted adaptive designs.
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2.1 Targeted adaptive design in clinical trials with sev-
eral treatment arms.

Let Y (a) represent a treatment specific outcome one would observe if the ran-
domly sampled patient would be assigned treatment a ∈ {0, 1, . . . , d} (e.g., rep-
resenting different drugs or different doses), and letX = (Y (0), Y (1), . . . , Y (d)) ∼
PX0 represent the collection of treatment specific outcomes on a randomly
sampled patient. We will leave the probability distribution PX0 of X unspec-
ified. Let X1, . . . , Xn be n i.i.d. draws of X. The scientific parameter of
interest is the causal effect of treatment j relative to treatment 0 defined as
ψ0(j) = E0(Y (j)− Y (0)).

Let Ai be a treatment assignment for patient i, and let the observed data for
patient i be Oi = (Ai, Yi(Ai)), i = 1, . . . , n. That is, for patient i, we observe
the treatment and the corresponding clinical outcome. Let g = (g1, . . . , gn) be
an adaptive design satisfying CAR:

gi(j | Xi, O1, . . . , Oi−1) = P (Ai = j | O1, . . . , Oi−1), i = 1 . . . , n.

This CAR-assumption on the design requires Ai to be independent of the coun-
terfactual outcomesXi = (Yi(0), . . . , Yi(d)), but, it is allowsAi to be dependent
on the data collected on the previously recruited patients, O1, . . . , Oi−1. On
the other hand, a fixed design gi would not depend on Ō(i − 1), and would
thus reduce to a simple marginal distribution on {0, 1 . . . , d}.

Consider a model for the conditional distribution of Y , given A, indexed by
parameter θ0. Before we proceed, we provide a short ”overview” of efficiency
theory based on i.i.d. sampling. A regular estimator ψn(j) of ψ0(j) based
on i.i.d. sampling from PQ0,g, g ∈ G, is asymptotically linear at PQ0,g with
influence curve ICj(Q0, g)(O) if

ψn(j)− ψ0(j) =
1

n

n∑
i=1

ICj(Q0, g)(Oi) + oP (1/
√
n).

A regular asymptotically linear estimator is asymptotically efficient at PQ0,g if
and only if it is asymptotically linear with influence curve equal to the so called
efficient influence curve, where the latter is identified as the canonical gradient
of the path-wise derivative at PQ0,g of the parameter ψ0. Under a common
fixed design g (i.e., gi = g) it is well known that the efficient influence curve
of the parameter ψ0(j) at PQ0,g is given by (e.g., van der Laan and Robins
(2003)):

Sj(Q0, g)(A, Y ) = (Y − EQ0(Y | A))

(
I(A = j)

g(j)
− I(A = 0)

g(0)
)

)
.
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The variance of this efficient influence curve is given by:

VARQ0,gSj(Q0, g)(A, Y ) =
σ2(Q0)(j)

g(j)
+
σ2(Q0)(0)

g(0)
,

where σ2(Q0)(j) = VARQ0(Y | A = j) are the conditional variances of Y ,
given A = j, j ∈ {0, . . . , d}. We define the covariance matrix of the vector
efficient influence curve S(Q0, g) of the vector parameter ψ0 as Σ(Q0, g) ≡
EQ0,gS(Q0, g)(A, Y )S(Q0, g)(A, Y )>.

Thus, an estimator of ψ0 is efficient if and only if it is asymptotically linear
with influence curve equal to the efficient influence curve S(Q0, g). By the
CLT, it follows that Σ(Q0, g) denotes the asymptotic covariance matrix of an
efficient estimator. Therefore, the covariance matrix of the efficient influence
curve of the scientific parameter of interest suggests important design functions
such as:

gi,Q0 = arg min
g

d∑
j=1

wi(Q0)(j)
2

(
σ2(Q0)(j)

g(j)
+
σ2(Q0)(0)

g(0)

)
, (5)

where wi(Q0) is a specified weight vector possibly depending onQ0 andO1, . . . , Oi−1.
Thus, gi,Q0 is the fixed design which minimizes a weighted average over j of the
variance of the efficient influence curve of treatment effect ψ0(j) under PQ0,g

over all fixed designs g, where it is allowed that the weights are updated in
response to the observed data Ō(i− 1) and possibly depend on Q0.

Writing g(0) = 1 − ∑d
j=1 g(j), and setting the derivatives w.r.t. g(j),

j = 1, . . . , d, equal to zero provides us with the following closed form solution
for these design functions:

gi,Q0(0) =
σ(Q0)(0)

σ(Q0)(0) +
∑d
j=1wi(Q0)(j)σ(Q0)(j)

gQ0(j) = wi(Q0)(j)
σ(Q0)(j)

σ(Q0)(0)
g(0).

If wi = 1 and d = 2, then this design equals the so called Neyman Allocation:
see Chapter 1 Hu and Rosenberger (2006).

If one sets wi(Q0)(j) = 1 for all j, then this design gi,Q0 = gQ0 corresponds
with minimizing the sum over j of the variances of the efficient influence curve
of the treatment effect ψ0(j). One could set wi(Q0)(j) = w(Q0)(j) equal to the
probability under Q0 that a patient exposed to treatment j has a successful
clinical outcome, so that the resulting adaptive design gi (based on an estimate
Qθi−1

ofQ0 according to working modelQw) gives preference to treatment arms
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which have been successful based on the previously collected data O1, . . . , Oi−1.
Other possible interesting choices of wi(Q0)(j) = wi(j) are functions of p-
values, and test-statistics for H0 : ψ0(j) = 0 based on O1, . . . , Oi−1.

Remark. We also wish to note that the criteria in (5) can be derived as a
derivative of a general criteria based on the diagonal elements of the covariance
matrix Σ(Q0, g). For example, consider the criteria

f : g →
d∑
j=1

Φ̄

 ψ0(j)√
σ2(Q0)(j)/g(j) + σ2(Q0)(0)/g(0)

 ,
where Φ is the standard normal cumulative distribution, and Φ̄ = 1−Φ. The
corresponding adaptive design gi aims to adapt the design in order to maximize
the average of transformed test-statistics based on O1, . . . , Oi−1 for the tests
H0(j) : ψ0(j) = 0 of no-treatment effect. Firstly, consider this criteria as a
function of Σ(Q0, g)(j, j) = σ2(Q0)(j)/g(j) + σ2(Q0)(0)/g(0). Now, the first
order linear approximation of this function of Σ(Q0, g)(j, j) at Σ(Q0, g

0) is
given by

1

2

d∑
j=1

w(Q0)(j){Σ(Q0, g)(j, j)− Σ(Q0, g
0)(j, j)},

where

w(Q0)(j) =
1

2
φ

 ψ0(j)√
Σ(Q0, g0)(j, j)

 ψ0(j)

(Σ(Q0, g0)(j, j))1.5
.

As a consequence, minimizing g → f(g) can be approximated by minimizing
this first order Taylor expansion at an initial choice g0, which is equivalent
with minimizing

g → 1

2

d∑
j=1

w(Q0)(j)Σ(Q0, g)(j, j)

for which we derived a closed form solution above. This allows us to formulate
fast minimization algorithms for minimizing f based on iteratively minimizing
the derivative of the f .

2.2 Targeted design in clinical trials with various treat-
ment arms and covariates.

Consider now the more general case that the full dataXi = (Wi, Yi(0), . . . , Yi(d))
on a randomly sampled patient i consists of the treatment specific outcomes
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and a vector of baseline covariates Wi, i = 1, . . . , n. The observed data on the
i-th patient is Oi = (Wi, Ai, Yi = Yi(Ai)) with Ai ∈ {0, . . . , d}. For example,
Wi might include an indicator of a subgroup where the subgroup membership
is expected to be an important effect modifier for the effect of treatment. One
common purpose of a clinical trial is to fully understand the effect of treatment
for each of these subgroups. The CAR adaptive design gi now represents a
conditional distribution of Ai, given Wi and O1, . . . , Oi−1. In this case the set
G of fixed designs consists of conditional distributions of A, given W .

Let ψ0(j) = E(Y (j) − Y (0)), j = 1, . . . , d denote the causal effect of
treatment j relative to the control 0. Let Qw = {Qθ : θ} be a working model
for Q0. The efficient influence curve of ψ0 at Pθ0,g = PQθ0

,g, g ∈ G, under i.i.d.
sampling is given by (see e.g., van der Laan and Robins (2003), van der Laan
(2006a)):

Sj(θ0, g) = (Y − Eθ0(Y | A,W ))

(
I(A = j)

g(j | W )
− I(A = 0)

g(0 | W )

)
+Eθ0(Y | A = j,W )− Eθ0(Y | A = 0,W ).

The variance of Sj(θ0, g) under Pθ0,g is given by:

σ2(θ0)(j | W )

g(j)
+
σ2(θ0)(0 | W )

g(0)
,

up till a term not depending on g. As in the previous subsection it follows
that the optimal fixed design for estimation of treatment effect ψ0(j) among
all conditional distributions of A, given W , (i.e., G) minimizing the variance
of the efficient influence curve Sj(θ0, g) is given by:

gθ0(j | W ) =
σ(θ0)(j | W )

σ(θ0)(0 | W ) + σ(θ0)(j | W )
(6)

gθ0(0 | W ) = 1− gθ0(j | W ). (7)

That is, one would assign only treatments j and 0 and it would follow the so
called Neyman Allocation conditional on W : see Chapter 1 Hu and Rosen-
berger (2006).

In order to generalize this optimal design-function, and thereby adaptive
design, for the single treatment effect for a two arm trial to a multi-arm trial,
analogue to the design function (5) for the marginal data structure, we now
propose the design function

gi,θ0(· |W ) ≡ arg min
g(0),...,g(d)

d∑
j=1

wi(θ0,W )(j)2

(
σ2(θ0)(j | W )

g(j)
+
σ2(θ0)(0 | W )

g(0)

)
,
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where σ2(θ0)(j | W ) = VARθ0(Y | A = j,W ). Writing g(0) = 1 −∑d
j=1 g(j),

and setting the derivatives w.r.t. g(j), j = 1, . . . , d, equal to zero provides us
with the following closed form for gi,θ0 :

gi,θ0(0 | W ) =
σ(θ0)(0 | W )

σ(θ0)(0 | W ) +
∑d
j=1wi(θ0,W )(j)σ(θ0)(j | W )

gi,θ0(j | W ) = wi(θ0,W )(j)
σ(θ0)(j | W )

σ(θ0)(0 | W )
gi,θ0(0 | W ). (8)

In order to interpret this design function, let’s consider the case that treat-
ment is binary and that the weights are set equal to 1. If A ∈ {0, 1} is binary,
and O = (W,A, Y ) ∼ Pθ0,g, then the optimal fixed design g for estimation
of the marginal treatment effect E(Y (1) − Y (0)) is given by gθ0(1 | W ) =

σ(θ0)(0|W )
σ(θ0)(0|W )+σ(θ0)(1|W )

, which equals gθ0 (8). If A ∈ {0, 1} is binary, W is dis-

crete (e.g. indicating different subgroups of interest), and O = (W,A, Y ),
then the optimal fixed design for estimation of the subgroup-specific effect
Eθ0(Y (1) − Y (0) | W = w) is also given by gθ0(1 | W = w): the correspond-
ing adaptive design gi = gθi−1

based on the MLE θi−1 will thus be optimal
for the purpose of simultaneous efficient estimation of all subgroup specific
treatment effects. As a consequence, this design function gi,θ0 has optimal-
ity properties for the two arm trial and aims to do an optimal job across all
d treatment effects in a multi-arm trial with possibly preferences for certain
effects as indicated by the weights Wi(θ0,W ).

2.3 Adaptive designs in clinical trials simultaneously
targeting efficacy and safety.

In the definition of the design function (8) one can select the weight function
wi(θ,W ) so that, if the value θ tells us that treatment j is harmful for patients
with covariate W = w, then wi(θ, w)(j) = 0. Such a choice of weight function
implies that the design function satisfies gi,θ∗(j | W = w) = 0 for such critical
values θ∗ so that in the corresponding adaptive design gi = gi,θi

patients with
W = w will not be assigned the harmful treatment j anymore if θi is close
enough to such a critical value θ∗ so that wi(θi, w)(j) = 0. Thus, the weight
function can be used to respond to safety concerns based on O1, . . . , Oi−1

regarding the treatment for certain sub-groups.
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2.4 Influence curve based targeted adaptive designs

The adaptive designs defined above are examples of adaptive designs that are
targeted towards a Euclidean parameter ψ0 of θ0. We will now present and
discuss such information based adaptive designs in general.

Let D(θ0, g) be a d-dimensional efficient influence curve of a certain d-
dimensional parameter Ψ(θ0) of θ0 at Pθ0,g, g ∈ G, based on i.i.d. sampling
from Pθ0,g = PQθ0

,g. Consider the d × d covariance matrix of this efficient
influence curve:

Σ(θ0, g) ≡ Pθ0,gD
2(θ0, g).

An interesting class of targeted adaptive designs are defined by a design func-
tion

gi,θ0 = arg min
g∈G1

fi (Σ(θ0, g)) ,

for some real valued criteria fi applied to d× d covariance matrices, and for a
user supplied set of fixed CAR-designs G1 ⊂ G.

The variance component Σ(θ0, g)(j, j) represents the Cramer-Rao infor-
mation bound for parameter ψ0(j) based on i.i.d sampling from Pθ0,g in the
sense that an estimator ψ0n(j) is efficient if and only if its standardized version√
n(ψ0n(j)−ψ0(j)) is asymptotically normal with variance equal to Σ(θ0, g)(j, j).

Thus, a fixed design minimizing the j-th diagonal element g → Σ(θ0, g)(j, j)
would be optimal for the purpose of estimation of ψ0(j), but it would typically
be a very poor design for any of the other parameters ψ0(j

′) for j′ 6= j. For
example, if ψ0 denotes a vector of differences between the mean of a treatment
arm and control arm indexed by the d treatment arms, then the optimal design
for one comparison is to only assign patients to the corresponding two arms
in a manner identified in the previous subsection (i.e., the Neyman allocation
conditional on baseline covariates), which would not even allow identification
of the other comparisons between treatment arms.

One approach would be to set as goal to maximize the information bound
for a particular real valued parameter of ψ0 or a real valued parameter directly
related to ψ0 : For example, in a clinical trial this parameter could be defined
as a weighted average of the treatment specific effects over the treatment arms,
or the weighted average of the treatment specific means. Consider a weighted
average λ0(c) = c>ψ0 of the components of ψ0 indexed by a weight vector
c. The Cramer-Rao lower bound for the asymptotic variance of any regular
estimator is now given by c>Σ(θ0, g)a. The corresponding criteria is thus

g → fi(Σ(θ0, g)) ≡ c>i Σ(θ0, g)ai,

where the weight vector ci can depend on i and Ō(i− 1).
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Another possible interesting class of criteria are weighted averages of the
diagonal elements of the covariance matrix:

gi,θ0 = arg min
g∈G1

d∑
j=1

ai(j)Σ(θ0, g)(j, j),

where the weight vector ai is a function of O1, . . . , Oi−1. If one uses constant
equal weights, then this design would minimize the sum of the parameter spe-
cific information bounds/variances with no preference for particular parame-
ters. However, one could imagine that there are situations in which one would
prefer to invest more of the data into parameters with large (absolute) values
(say representing treatment arms which are doing well). For that purpose, we
could consider the following weight choices:

ai(j) = ψi−1(j)

ai(j) =
ψi−1(j)√

Σ(θi−1, gi−1)(j, j)

ai(j) = Φ

[
√
i− 1]

ψi−1(j)√
Σ(θi−1, gi−1)(j, j)

 ,
where Φ is the standard normal cumulative distribution function, and we put
the scaling factor between brackets to indicate that one could consider adding it
to the weight or delete it. In these design functions one weights the information
bound for each parameter by the estimated parameter or a monotonically
transformed coefficient of variation of the estimated parameter so that the
resulting adaptive design will aim to invest more into parameters with large
estimated values or large t-statistics, respectively.

Our asymptotic normality results immediately apply to the design func-
tions without the scaling factor inside the normal cumulative distribution func-
tion. However, the design function gi,θ0 with the scaling factor is not a con-
tinuous function in θ0 uniformly in i so that gi,θi

will not be asymptotically
equivalent with a fixed design, which is one of the fundamental conditions in
our asymptotic normality results. Therefore, it remains to be seen how adap-
tive designs based on gi,θ0 with the scaling factor behave in practice and how
one would determine the corresponding asymptotic limit distribution of the
maximum likelihood estimator.

For example, the last choice results in the following design function:

gi,θ0 = arg min
g∈G1

d∑
j=1

Φ

[
√
i− 1]

ψi−1(j)√
Σ(θi−1, gi−1)(j, j)

Σ(θ0, g)(j, j).
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Let λ(g, θ0) be the vector of eigenvalues of Σ(g, θ0). A very sensible, but
typically ambitious, approach is to define the design function as

gθ0 = arg min
g∈G1

d∑
j=1

| λ(g, θ0)(j) | .

This corresponds with minimizing the sum of Cramer-Rao lower bounds for a
vector of d orthogonal parameters. Even though it might be computationally
challenging to carry out this minimization problem over a continuous family G1

for high dimensional d, it will be easy to use this criteria to compare a finite
set of candidate designs: that is, one might use other approaches to define
candidate adaptations based on O1, . . . , Oi−1, and select the one which results
in the smallest sum of absolute eigenvalues.

Another interesting design function focussing on maximizing the informa-
tion is given by

gθ0 = arg min
g∈G1

d∑
j=1

Φ̄

 ψ0(j)√
Σ(θ0, g)(j, j)

 ,
where Φ̄ denotes the standard normal survivor function. This design function
is inspired by the design function presented in the next subsection.

2.5 Targeted adaptive designs maximizing number of
significant findings.

Suppose now that we are interested in developing targeted adaptive designs
which result in maximal number of rejections of the null hypotheses of interest
H0(j) : ψ0(j) = 0, j = 1, . . . , d, given a multiple testing procedure controlling
the family wise error rate. In this case, if during the trial there is already
plenty of statistical evidence that a particular parameter of interest is larger
than the null value, then one should not invest more data into that parameter,
but instead one should invest data in parameters which are borderline, but
promising.

Important remark regarding scaling factors in design functions:
Various possible adaptive designs aiming to maximize the number of correct
rejections (i.e., a generalized definition of power) can be considered. However,
all will be using a scaling factor

√
i− 1 within a normal cumulative distribu-

tion function. Although, our consistency results for the MLE apply to such
adaptive designs, the asymptotic stability condition of the adaptive design in
our theorems for the asymptotic normality of maximum likelihood estimators
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will now typically fail to hold. It remains to be investigated how robust our
normal limiting distribution result are to such asymptotically random designs,
so that this should be a future area of research. Because of this, we will state
these adaptive designs with and without the scaling factor, and note that
our asymptotic normality results immediately apply to the design functions
without the scaling factor, or with the scaling factor replaced by a uniformly
bounded sequence of scaling factors. That is, if one replaces

√
i− 1 by a scal-

ing factor ci with lim sup ci < ∞, then our asymptotic normality results for
the maximum likelihood estimators will apply to these design functions.

The adaptive designs gi we consider below are all concerned with maximiz-
ing a criteria involving the standardized quantity [

√
i− 1] ψi−1(j)√

Σ(θi−1,g)(j,j)
over

fixed designs g, simultaneously for all j. Note that this standardized quantity
imitates the t-statistic for testing the null hypothesis H0(j) : ψ0(j) = 0 based
on O1, . . . , Oi−1 assuming a fixed design g under i.i.d sampling from Pθ0,g.
Minimizing average p-value: Firstly, if one aims to minimize the average
of p-values, then the following design function

gi,θ0 = arg min
g∈G1

d∑
j=1

Φ̄

[
√
i− 1]

ψ0(j)√
Σ(θ0, g)(j, j)


is appropriate, and results in an adaptive design

gi = arg min
g∈G1

d∑
j=1

Φ̄

[
√
i− 1]

ψi−1(j)√
Σ(θi−1, g)(j, j)

 .
Maximizing number of rejections:

Under a fixed design Pθ0,g, we have that the expected number of rejec-

tions based on test statistics Tni(j) =
√
iψi(j)/

√
Σ(θ0, g)(j, j) at cut-off c is

approximately (for i large enough) given by

Eθ0,g
d∑
j=1

I

√i ψi(j)√
Σ(θ0, g)(j, j)

> c

 =
d∑
j=1

Φ̄

c−√i ψ0(j)√
Σ(θ0, g)(j, j)

 ,
where Φ̄(t) = P (Z > t), with Z ∼ N(0, 1). This suggests the following design
function

gi,θ0 = arg max
g∈G1

d∑
j=1

Φ̄

Z1−α/d − [
√
i− 1]

ψ0(j)√
Σ(θ0, g)(j, j)

 ,
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where Z1−α/d is the 1−α/d quantile of the standard normal distribution. The
corresponding adaptive design is given by

gi = arg max
g∈G1

d∑
j=1

Φ̄

Z1−α/d − [
√
i− 1]

ψi−1(j)√
Σ(θi−1, g)

 ,
which aims to maximize the number of significant findings in a Bonferoni
multiple testing procedure controlling the family wise error rate.

2.6 Adaptive design maximizing probability on finding
significant treatment effect.

Let ψ0(j) denote a treatment effect relative to a control for treatment j, j =
1, . . . , d. In the previous subsection we defined adaptive designs aiming to
maximize the number of significant findings. In clinical trials one typically
wishes to find a best treatment among the set of treatments. One might wish
to maximize over all fixed designs g the probability under Pθ0,g that the best
performing treatment effect is significantly better than the control. For this
purpose, we note that under i.i.d sampling from Pθ0,g and for n large

Prθ0,g

(
maxj

√
n ψn(j)√

Σ(θ0,g)(j,j)
> z

)
≈ 1− Prθ0,g

(
maxj

{
Z(j) +

√
n ψ0(j)√

Σ(θ0,g)(j,j)

}
≤ z

)
= 1− Prθ0,g

(
Z(j) ≤ z −

√
n ψ0(j)√

Σ(θ0,g)(j,j)
, j = 1, . . . , d

)
,

where Z ∼ N(0,Σ∗(θ0, g)), and Σ∗ denotes the correlation matrix correspond-
ing with Σ.

This suggests the following design function

gi,θ0 = arg max
g∈G1

1−Prθ0,g

Z(j) ≤ z1−α/d −
√
i− 1

ψ0(j)√
Σ(θ0, g)(j, j)

, j = 1, . . . , d

 ,
where Z ∼ N(0,Σ∗(θ0, g)), and z1−α/d is the 1− α/d quantile of the standard
normal distribution. This results in an adaptive design

gi = arg max
g∈G1

1−Prθ0,g

Z(j) ≤ z1−α/d −
√
i− 1

ψi−1(j)√
Σ(θi−1, g)(j, j)

, j = 1, . . . , d

 ,
where θi−1 and ψi−1 are treated as given within the probability.

As noted above our consistency results apply to these adaptive designs,
but our asymptotic normality results only apply if the scaling factor

√
i− 1 is

replaced by a uniformly bounded sequence ci.40
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2.7 Combining targeted adaptive designs for real valued
parameters into an adaptive design simultaneously
targeting all parameters.

Let gj,θ0 be a design function targeted at a particular real valued parameter
ψ0(j), j = 1, . . . , d. Let W denote the set of baseline co-variates we observe
on an experimental unit, and let (Πθ0(j | W ) : j = 1, . . . , d) be a conditional
probability distribution possibly indexed by the unknown θ0. An adaptive
design gi could now be defined by a choice Πi = Πθi−1

and gj,i = gj,θi−1
in

the sense that for the i-th experiment, one first draws a ∆ from Πi = Πθi−1
,

and one applies the targeted adaptive design g∆,θi−1
, corresponding with this

choice ∆ for j, to the i-th experiment. In words, one first randomly decides
which of the d designs gj,i, j = 1, . . . , d to use for the i-th experiment, and
then one applies the selected design. For example, in a clinical trial one might
have formulated a targeted adaptive treatment mechanism which is targeted
towards the effect of treatment on a clinical outcome for three different clinical
outcomes, and for each newly recruited subject one randomly assigns one of
these three treatment mechanisms.

3 Empirical Influence curve based targeted adap-

tive designs.

Above, in Subsection 2.4 we showed that an influence curve based targeted
adaptive design involves computing the covariance matrix Σ(Qθ0 , g) of a spec-
ified influence curve D(θ0, g)(O) (at Pθ0,g) of the parameter of interest ψ0, with
O ∼ Pθ0,g. Subsequently, one defines the design choice gi as a minimizer over
g of some real valued functional of this covariance matrix with Qθ0 replaced
by an estimate Qi−1 based on O1, . . . , Oi−1, and this real valued function can
be indexed by O1, . . . , Oi−1 as well.

Although, in many applications the efficient influence curve, or at least,
an inefficient influence curve, exists in closed form, obtaining a closed form
formula for its variance and covariance elements is often challenging, and even
if one succeeds it often involves numerically challenging integrals. Therefore,
in this section we propose a modification of this previous definition of influence
curve based targeted adaptive designs, in which we estimate Σ(Q0, g) based on
O1, . . . , Oi−1 with an empirical variance estimate using inverse probability of
censoring/design weighting to adjust for the fact that the data was generated
by adaptive designs gj, j = 1, . . . , i− 1. In this manner, we obtain an always
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easy to implement and thereby very practical targeted adaptive design, which
still satisfies the wished properties (namely that we learn the optimal fixed
design when sample size increases).

For that purpose, we note that

Σ(θ0, g) ≡ Pθ0,gD
2(θ0, g)

= Pθ0,gi
D2(θ0, g)

g

gi
.

Thus, if Pθ0,gi
= PQ0,gi

for all i (i.e., the working model {Qθ : θ} is correctly
specified), a natural estimate of Σ(θ0, g) based on O1, . . . , Oi−1 is given by

Σi−1(g) =
1

i− 1

i−1∑
j=1

D(θi−1, g)(Oj)
2 g

gj
−

 1

i− 1

i−1∑
j=1

D(θi−1, g)(Oj)
g

gj

2

.

Here we note that the inverse probability of censoring (IPC) weighting is used
to correct for fact that Oj | O1, . . . , Oj−1 ∼ PQ0,gj

, and thus that Oj was not
sampled from PQ0,g. Clearly, this estimate Σi−1(g) of Σ(θ0, g) only requires
having a closed form expression for D(θ0, g) and is thus relatively easy to
obtain.

The IPC-weighting we used can be refined as follows by applying it sepa-
rately to each component of the influence curve D(θ0, g), given an orthogonal
decomposition D =

∑
kDk in the Hilbert space L2

0(PQθ0
,g). Such an orthogonal

decomposition is often a natural consequence of factorization of the density
dPQ0,g =

∏
kQ0kg so that tangent spaces of Q0k and g are all pairwise orthog-

onal, giving an orthogonal decomposition of the tangent space at PQ0,g, and
thereby also giving a corresponding orthogonal decomposition of the efficient
influence curve D∗(Q0, g). In particular, one can apply this decomposition
in the case that no models are assumed on Q0 and g, giving an orthogonal
decomposition of the whole L2

0(PQ0,g), and thus, in particular, an orthogo-
nal decomposition of any influence curve D(Q0, g). For example, many data
generating densities can be represented as a product of conditional probabil-
ity distributions, thereby giving a corresponding orthogonal decomposition of
L2

0(PQ0,g).
Given such an orthogonal composition, we know that

PQ0,gD(Q0, g)
2 =

∑
k

PQ0,gDk(Q0, g)
2.

As a consequence, we can apply the IPC-weighting to each Dk:

PQ0,gD(Q0, g)
2 =

∑
k

PQ0,gi
Dk(Q0, g)

2 g

gi
.
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Here it is important to note that if Dk(Oi) only depends on Ai through some
of its components, say Āi(j) = (Ai(0), . . . , Ai(j)), then one only needs to use
the weights g(Āi(j) | Xi)/gi(Āi(j) | Xi) for these components Āi(j). As a
consequence, one obtains in this manner a more stable estimate of the wished
covariance Σ(θ0, g). The resulting estimate is now given by:

Σi−1(g) =
1

i− 1

i−1∑
j=1

∑
k

Dk(θi−1, g)(Oj)
2 g

gj
−
∑
k

 1

i− 1

i−1∑
j=1

Dk(θi−1, g)(Oj)
g

gj

2

.

Recall, that in the previous Subsection 2.4 we defined Σ(θ0, g) ≡ Pθ0,gD
2(θ0, g),

and we then defined the adaptive design

gi = arg min
g∈G1

fi (Σ(θi−1, g)) ,

for some set G1 of fixed designs (possibly indexed by O1, . . . , Oi−1) and some
real valued mapping fi possibly depending on O1, . . . , Oi−1. Our proposed
modification replaces Σ(θi−1, g) by the empirical covariance estimate Σi−1(g)
and we define

gi = arg min
g∈G1

fi (Σi−1(g)) .

However, by selecting G1 too large the resulting choice gi−1 would represent
an over-fit based on O1, . . . , Oi−1 (which might represent a price to pay for
using an empirical estimate of the variance instead of an expectation w.r.t. to
the modeled Qθ0). Therefore, we wish to indicate natural variations one might
employ. For example, one might let the set G1 be indexed by i and define it
as a family of fluctuations through the previous choice gi−1:

Gi = {gi−1,ε : ε}.

Alternatively, one fluctuates an average ḡi−1 = 1/(i− 1)
∑i−1
j=1 gj.

In this way, at each next experiment one adjusts the previous choice by
selecting the fluctuation parameter ε based on the criterion ε → Σi−1(gi−1,ε)
in ε.

In addition, one might put an upper bound on the allowed fluctuations (by
bounding the parameter space for ε) thereby only allowing for minor or con-
trolled modifications of the design at each step. The latter is also important for
obtaining more stable estimators since, although our estimators (e.g. targeted
MLE and martingale estimating equation based estimators) are double robust,
the finite sample variability of these double robust estimators will depend on
the stability of the weights g/gi for a carefully selected stabilizing fixed de-
sign g, in particular, if the working model for Q0 is heavily misspecified. In
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addition, even for establishing the CLT we need that the design gi stabilizes
as i converges to infinity, so that an adaptive design which is still fluctuating
at a high rate at the time of analysis might result in too variable estimators
if these estimators are not able to extrapolate according to an approximately
correctly specified model for Q0.

3.1 Application to construction of targeted adaptive de-
sign in clinical trial with covariates.

We will now illustrate this approach for construction of a targeted adaptive
design with a clinical trial example with covariates. Thus, consider a clinical
trial in which one samples a subject from a specified population and one col-
lects (W,A, Y ), where W denotes covariates, A denotes a binary treatment,
and Y a clinical outcome. One wishes to construct an adaptive design gi,
i = 1, . . ., where each gi is a conditional distribution of Ai, given Wi, which
itself is selected based on the previously collected data O1, . . . , Oi−1.

Firstly, we recall that the efficient influence curve for the additive causal
effect Ψ(Q) = EQ(Y1 − Y0) is given by

D∗(Q0, g) = D∗
1(Q0, g) +D∗

2(Q0, g),

where

D∗
1(Q0, g)(O) = (Y −Q0(A,W ))

{
I(A = 1)

g(1 | W )
− I(A = 0)

g(0 | W )

}
D∗

2(Q0)(W ) = Q0(1,W )−Q0(0,W )−Ψ(Q0),

and PQ0,gD
∗
1(Q0, g)D

∗
2(Q0) = 0 (i.e., the two components are orthogonal in

L2
0(PQ0,g).

Given the realization of the first i − 1 experiments, O1, . . . , Oi−1 based
on design choices g1, . . . , gi−1, given an estimate Qi−1 of Q0(A,W ) = E(Y |
A,W ), we estimate the variance Σ(Q0, g) = PQ0,gD

∗(Q0, g)
2 as above:

Σi−1(g) =
1

i− 1

i−1∑
j=1

{
D∗

1(Qi−1, g)(Oj)
2 g(Aj | Wj)

gj(Aj | Wj)
+D∗

2(Qi−1)(Wj)
2

}
,

where we, for simplicity, did not carry out the mean centering in this covariance
estimate. Note that we did not need to IPC-weight the second component since
it is not a function of treatment.

We could now define the adaptive design gi as the minimizer of this variance
over all fixed designs G or over a specified subset G1 of fixed designs:

gi = arg min
g∈G1

Σi−1(g).
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Since the D∗
2-term in Σi−1(g) does not depend on g, there is no need to include

this term. So we can simplify this adaptive design as

gi = arg min
g∈G1

1

i− 1

i−1∑
j=1

D∗
1(Qi−1, g)(Oj)

2 g(Aj | Wj)

gj(Aj | Wj)
,

or equivalently,

gi = arg min
g∈G1

1

i− 1

i−1∑
j=1

(Yj−Q(Aj,Wj))
2

{
I(Aj = 1)

g(Aj | Wj)
+
I(Aj = 0)

g(Aj | Wj)

}
1

gj(Aj | Wj)
.

As we showed earlier, closed form solutions of this minimization problem can
be straightforwardly derived if G1 is class of all distributions of A, given V , for
some discrete V . So this variational calculus is not repeated here.

4 Statistical analysis of treatment effect in tar-

geted adaptive clinical trial, no covariates.

Let Y (a) represent a treatment specific outcome one would observe if the
randomly sampled patient would be assigned treatment a ∈ {0, 1}, and let
X = (Y (0), Y (1)) ∼ PX0 represent the two treatment specific outcomes on a
randomly sampled patient. We will leave PX0 unspecified. Let X1, . . . , Xn be
n i.i.d. draws of X. The scientific parameter is the causal effect of treatment
defined as ψ0 = E0(Y (1)− Y (0)) = E0Y (1)− E0Y (0).

Let Ai be a binary treatment assignment for patient i, i = 1, . . . , n, and let
the observed data on the n patients be Oi = (Ai, Yi = Yi(Ai)), i = 1, . . . , n.
Let g = (g1, . . . , gn) be an adaptive design satisfying CAR:

gi(1 | Xi, O1, . . . , Oi−1) = P (Ai = 1 | O1, . . . , Oi−1), i = 1 . . . , n.

The CAR-assumption on the design requires Ai to be independent of the coun-
terfactual outcomes Yi(0), Yi(1), but, it is allowed that the probability distri-
bution of Ai is a function of the data O1, . . . , Oi−1 collected on the previously
recruited patients.

Firstly, we note that the likelihood of O1, . . . , On for a model Q = {Qθ : θ}
factorizes as:

Pθ0,g(O1, . . . , On) =
n∏
i=1

Qθ0(Yi | Ai)
n∏
i=1

gi(Ai | Ō(i− 1)),
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where the conditional density of Yi, given Ai = a, Qθ0(· | a), equals the
marginal density of Yi(a), Pθ0(Y (a) = ·). In particular, it follows that for any
CAR-adaptive design we have for each i ∈ {1, . . . , n}

ψ0 = E0(Yi | Ai = 1)− E0(Yi | Ai = 0).

Thus, ψ0 is identifiable from the data and the nonparametric (or assuming a
regression model for Yi on Ai with (e.g.) normal errors) maximum likelihood
estimator yields the following estimator

ψn =

∑n
i=1 I(Ai = 1)Yi∑n
i=1 I(Ai = 1)

−
∑n
i=1 I(Ai = 0)Yi∑n
i=1 I(Ai = 0)

. (9)

Let’s now aim to construct a particular targeted adaptive design gn. For
that purpose we consider a fixed design in which (Ai, Xi) are i.i.d and gi(1 |
Xi) = P (Ai = 1 | Xi) = Π ∈ (0, 1). The fixed design of this study is defined
by the choice of Π. Under this fixed design it follows that ψn is consistent and
asymptotically linear with efficient with influence curve given by:

S(θ0,Π)(A, Y ) = (Y − Eθ0(Y | A))

(
I(A = 1)

Π
− I(A = 0)

1− Π
)

)
.

The variance of this efficient influence curve is given by:

VARθ0,ΠS(θ0,Π)(A, Y ) =
σ2(θ0)(1)

Π
+
σ2(θ0)(0)

1− Π
,

where σ2(θ0)(a) = VARθ0(Y | A = a) are the conditional variances of Y , given
A = a, a ∈ {0, 1}.

Let Π(θ0) = arg minΠ VARθ0,ΠS(θ0,Π)(A, Y ) be the design which mini-
mizes the asymptotic variance of the estimator ψn under i.i.d. sampling from
Pθ0,Π. We have

Π(θ0) =
σ(θ0)(1)

σ(θ0)(0) + σ(θ0)(1)
∈ (0, 1), (10)

which is known as the Neyman allocation (Hu and Rosenberger (2006)).
Thus the optimal fixed design requires knowing the variances of Y (0) and

Y (1), or equivalently, the conditional variances of Y , given A = 0, and given
A = 1, respectively. These variances are typically not known a priori. One
might start out with an equal balance design, Π = 0.5, but during the course of
the study it might become apparent that one of the treatment arms has much
higher variance of the outcomes than the other. Based on that observation
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one might wish to adapt the design by assigning more patients to the high
variance treatment arm according to the mapping (10).

Let Π∗
i = σi−1(1)

σi−1(0)+σi−1(1)
be the estimator of Πθ0 based on substitution of a

maximum likelihood estimator θi−1 based on O1, . . . , Oi−1. For i ≥ 3, σ2
i−1(a)

can be defined as the sample variance of Yj among the observations with
Aj = a, j = 1, . . . , i − 1. In particular, if Y (a) is binary indicating a failure
(0) or successful (1) response to treatment a, a ∈ {0, 1}, then we can set
σ2
i−1(a) = pi−1(a)(1 − pi−1(a)), where pi−1(a) is the proportion of successes

among the observations (Aj, Yj) with Aj = a, j = 1, . . . , i− 1.
Now, one could simply set gi(1) = Π∗

i , or one could use the adaptive design
Πi = gi(1 | Ō(i− 1)) defined iteratively (starting at i = 1) by

Πi = arg min
Π∈[0,1]

1

i

i−1∑
j=1

gj(1 | Ō(j − 1)) + Π

− Π∗
i

2

, i = 1, . . . , n. (11)

Thus, at experiment i, one would set the next randomization probability Πi

so that the average of the previously used i − 1 randomization probabilities
Πj, j = 1, . . . , i−1, equals or approximates the estimated target balance Π∗

i =
σi−1(1)/(σi−1(0)+σi−1(1)). Note also that in this manner, at experiment i, one
obtains a balance between the two treatment arms which closely approximates
the estimated target balance:∑i

j=1 I(Aj = 1)

i
≈ Π∗

i .

In order to identify the treatment effect ψ0 it is necessary that Π∗
i stays away

from 0 and 1. Therefore, we propose to specify a priori a δ > 0 so that if
Π∗
i < δ or Π∗

i > 1 − δ, then we set it equal to δ or 1 − δ, respectively. In
this manner, one does never allow the adaptive design to stop a particular
treatment arm due to a chance situation: e.g. σi−1(1) one be equal to zero for
small values of i.

It is also important to note (see also Chapter 2, Hu and Rosenberger (2006))
that a so called ”favor the winner” design in which one selects with higher
probability the currently most successful treatment arm might result in a very
poor design w.r.t. to efficiency by not assigning enough observations to the
highly variable arm. To look at this in more detail, let’s consider the binary
outcome case and assume that Y = 1 denotes a success. Suppose that the
probability on a successful outcome is smaller than 0.5 in both treatment
arms, and consider the case that P (Y = 1 | A = 0) < P (Y = 1 | A = 1) < 0.5
so that, in theory, the treatment arm is better than the control arm. This
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implies that P (Y = 1 | A = 1)(1 − P (Y = 1 | A = 1)) > P (Y = 1 |
A = 0)(1 − P (Y = 1 | A = 0)). Thus, if, as expected, during the trial
indeed the treatment arm shows more successes than the control arm, then the
targeted adaptive design will start assigning more patients to the successful
treatment arm than to the control arm. However, if, for example, we are
in the situation that a successful outcome is more likely than a failure, i.e.,
0.5 < P (Y = 1 | A = 0) < P (Y = 1 | A = 1) < 1, then the variance in
the treatment arm is smaller than the variance in the control arm, so that
the targeted adaptive designs will assign relatively more patients to the less
performing control arm. This touches on an essential debate trading off the
overall benefit for a population versus the individual benefit for each individual.
Even from an ethical point of view following these fully efficient adaptive
designs might not be a bad strategy since such a targeted design will be able
to stop the trial earlier due to obtaining statistical significant evidence (that
the treatment is better or worse than the control arm) at an earlier stage,
thereby minimizing the total amount of time and subjects exposed to the
inferior treatment while still obtaining a statistically significant result.

Maximum Likelihood Estimation: Consider a regression model Yi =
β0(0) + β0(1)Ai + N(0, σ2

0(Ai)), i = 1, . . . , n, or equivalently, Yi(a) = β0(0) +
β0(1)a+Zi, where Zi ∼ N(0, σ2

0(a)). Define θ0 = (µ0(0), µ0(1), µ20(0), µ20(1)),
where µ0(a) = E0Y (a), and µ20(a) = E0Y

2(a). The MLE of θ0 solves the
empirical mean of the following estimating functions

D1(θ)(Oi) = (Yi − µ(0))I(Ai = 0)

D2(θ)(Oi) = (Yi − µ(1))I(Ai = 1)

D3(θ)(Oi) = (Y 2
i − µ2(0))I(Ai = 0)

D4(θ)(Oi) = (Y 2
i − µ2(1))I(Ai = 1).

This defines a four dimensional estimating equation for the maximum like-
lihood estimator θn ∈ IR4 (according to a correctly specified model)

0 =
1

n

n∑
i=1

D(θn)(Oi),

where the solution exists in closed form and is given by the standard empirical
means.

Definition of targeted adaptive design: Let δ > 0 be a small number.
Consider the adaptive design gi(1) = Π∗

i , where Π∗
i = σi−1(1)

σi−1(0)+σi−1(1)
if this last

number is between (δ, 1 − δ), and else it is truncated at δ or 1 − δ whichever
bound it exceeds. Let Π(θ0) be defined by (10), and let gθ0 be the Bernoulli
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probability distribution with gθ0(1) = Π(θ0). Let P0(| Y |< M) = 1 for some
M <∞.

Application of our consistency Theorem 5 yields the following result.

Result 1 (Consistent estimation of treatment effect in randomized trial based
on targeted adaptive design) Assume that P (| Y |< M) = 1 for some M <∞.
Consider the adaptive design defined above. Let θn be the MLE. We have that
‖ θn − θ0 ‖→ 0 in probability as n→∞. As a consequence, we also have that
the adaptive design converges to the optimal fixed design gθ0 in the sense that

gn → gθ0 and ḡn =
1

n

n∑
i=1

gi → gθ0 ,

in probability, as n→∞.

Proof. We note that Pθ0,gi
D(θ) equals the 4-dimensional vector

(µ0(0)−µ(0))gi(0), (µ0(1)−µ(1))(1−gi(0)), (µ20(0)−µ2(0))gi(0), (µ20(1)−µ2(1))(1−gi(0))).

Thus, if we can establish that 1
n

∑n
i=1 Pθ0,gi

D(θn) → 0 in probability as n →
∞, then that proves that θn − θ0 → 0 in probability as n → ∞, under the
assumption that there exists a δ > 0 so that Pr(δ < 1/n

∑n
i=1 gi(0) < 1−δ) →

1 as n → ∞. On the other hand, if the adaptive design stops a treatment
arm with probability tending to 1, then naturally consistent estimation of the
mean outcome in that arm cannot be achieved.

In order to establish this consistency result, we will apply Theorem 5. For
that purpose, define fθ,1(Oi, gi(0)) = D1(θ)(Oi) − Pθ0,gi

D1(θ) = D1(θ)(Oi) −
(µ0(0) − µ(0))gi(0), and, similarly, we define fθ,2(Oi, gi(0)) = D2(θ)(Oi) −
(µ0(1)−µ(1))(1−gi(0)), and fθ,j, j = 3, 4. This defines now the 4-dimensional
function fθ = (fθ,j : j = 1, . . . , 4). Consider now the 4-dimensional mar-
tingale sum Mn(f) = 1

n

∑n
i=1 f(Oi, gi(0)) with f ∈ F = {(a, y, g(0)) →

fθ(a, y, g(0)) : θ} with a ∈ {0, 1}, and g(0) ∈ (0, 1). We assumed that
P (| Y = Y (A) |≤ M) = 1 for some M < ∞ (and thereby that the pa-
rameters are within a bounded parameter set) so that the supremum norm
of f ∈ F (in a, y, g(0), θ) is bounded by a universal constant. Since the class
of functions of (a, y, z) are parameterized by a four dimensional parameter θ,
it follows that the covering number N(ε,F , ‖ · ‖∞) of F w.r.t. to the supre-
mum norm is bounded by a polynomial power ε−q for some q < ∞ (van der
Vaart and Wellner (1996)). Application of Theorem 5 now proves the consis-
tency stating that the components (µ0(0)− µn(0))ḡn(0), (µ0(1)− µn(1))ḡn(1),
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(µ20(0) − µ2n(0))ḡn(0), and (µ20(1) − µ2n(1))ḡn(1) converge to zero in proba-
bility, as n → ∞, where ḡn(0) = 1

n

∑n
i=1 gi(0). Finally, by selecting the ran-

domization probabilities gi(0) to be between (δ, 1 − δ) for some δ > 0, which
is guaranteed by our assumption that Π∗

i is bounded away from 0 and 1 with
probability 1, it follows that for any such adaptive design we have consistency
of θn to θ0. This completes the proof. 2

Central Limit Theorem for MLE: Application of our Theorem 7 yields
the wished asymptotic normality for the MLE.

Theorem 1 (Statistical Inference for Causal Effect in Targeted Adaptive
Clinical Trial)

Assume P (| Y |< M) = 1 for some M < ∞. Consider the adaptive trial
gn = gθn−1 defined above, where θn is the maximum likelihood estimator of θ0.
We have

√
n(θn − θ0) =

1√
n

n∑
i=1

D(θ0, gθ0)(Oi) + oP (1),

where

D1(θ, g)(Oi) = (Yi − µ(0))
I(Ai = 0)

g(0)

D2(θ, g)(Oi) = (Yi − µ(1)
I(Ai = 1)

g(1)

D3(θ, g)(Oi) = (Y 2
i − µ2(0))

I(Ai = 0)

g(0)

D4(θ, g)(Oi) = (Y 2
i − µ2(1))

I(Ai = 1)

g(1)
.

In addition, 1/
√
n
∑n
i=1D(θ0, gθ0)(Oi) is a discrete Martingale which converges

to a normal distribution with mean zero and covariance matrix Σ0 = PQ0,gθ0
D(θ0, gθ0)D(θ0, gθ0)

>,
where the latter covariance matrix can be consistently estimated with

Σn ≡
1

n

n∑
i=1

D(θn, gθn)D(θn, gθn)>(Oi).

By the delta-method, if θ → f(θ) is a Euclidean valued differentiable function,
this also teaches us that

√
n(f(θn)− f(θ0)) =

1√
n

n∑
i=1

d

dθ0

f(θ0)D(θ0, gθ0)(Oi) + oP (1),

with its corresponding normal limit distribution result.
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This result is obtained as an application of Theorem 7. Since this is a simple
example used to illustrate our results, we actually give the proof (following the
general proof of Theorem 7) with some references to our building blocks.
Proof. We already proved that θn consistently estimates θ0. In particular, this
proves that gθn (and ḡn) consistently estimates gθ0 . For notational convenience,
let D(θ) = D(θ, gθ). We have

∑
iD(θn)(Oi) = 0 and Pθ0,gi

D(θ0) = 0 for all i.
As a consequence, we have that

1

n

∑
i

{D(θn)(Oi)−D(θ0)(Oi)} = − 1

n

∑
i

{D(θ0)(Oi)− Pθ0,gi
D(θ0)}.

Consider the left hand side. Firstly, note that D(θn)(Oi)−D(θ0)(Oi) equals

(µ0(0)−µn(0))(1−Ai), (µ0(1)−µn(1))Ai, (µ20(0)−µ2n(0))(1−Ai), (µ20(1)−µ2n(1))Ai).

Thus, 1
n

∑n
i=1D(θn)(Oi)−D(θ0)(Oi) equals

(µ0(0)−µn(0))ḡen(0), (µ0(1)−µn(1))ḡen(1), (µ20(0)−µ2n(0))ḡ
e
n(0), (µ20(1)−µ2n(1))ḡ

e
n(1)),

where

ḡen(0) =
1

n

n∑
i=1

I(Ai = 0).

This shows that

1

n

n∑
i=1

D(θn)(Oi)−D(θ0)(Oi) = An(θn − θ0),

where An is a 4 by 4 diagonal matrix: An = −diag(ḡen(0), ḡen(1), ḡen(0), ḡen(1)).
Thus, we have

(θn − θ0) = −A−1
n

1

n

n∑
i=1

{D(θ0)(Oi)− Pθ0,gi
D(θ0)} ,

where −A−1
n = diag(1/ḡen(0), 1/ḡ

e
n(1), 1/ḡ

e
n(0), 1/ḡ

e
n(1))).

We now need to prove that A−1
n converges to a fixed matrix A−1

0 . For this
it suffices to prove that ḡen(0) → gθ0(0). We have

ḡen(0) =
1

n

n∑
i=1

(I(Ai = 0)− gi(0)) +
1

n

n∑
i=1

gi(0).

Recall that gi(0) = P (Ai = 0 | O1, . . . , Oi−1) = P (Ai = 0 | θ̂i−1) depends
on O1, . . . , Oi−1 through the MLE θ̂i−1, By consistency of θ̂n to θ0, we have
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ḡn = 1/n
∑
i gi → gθ0 in probability as n → ∞. This shows that ḡen(0) =

Mn(f) + op(1), where Mn(f) = 1
n

∑n
i=1 f(Oi) − E(f(Oi) | O1, . . . , Oi−1), and

f(Oi) ≡ I(Ai = 0). By the Law of Large numbers for martingales it follows
that Mn(f) → 0 in probability as n→∞. This proves that

−A−1
n → diag(1/gθ0(0), 1/gθ0(1), 1/g(θ0)(0), 1/g(θ0)(1)) in probability, as n→∞.

The stated asymptotic normality theorem now follows from the Martingale
central limit Theorem 17 applied to 1/

√
n
∑n
i=1D(θ0)(Oi)−Pθ0,gi

D(θ0). Since
we already showed that ḡn → gθ0 the conditions of this theorem holds trivially.
In particular, Pθ0,gi

D(θ0)
2 converges to Pθ0,gθ0

D(θ0)
2 as i→∞ thereby giving

the claimed covariance matrix Σ0. Finally, the consistency of the estimate Σn

as an estimate of Σ0 follows from the consistency of θn and the martingale
LLN applied to the estimate using θ0 instead of θn: see Theorem 18. 2

5 Consistency of MLE for correctly specified

parametric model.

The uniform consistency result presented in Theorem 14 in the Appendix for
the discrete martingale sum Mn(f) = 1/n

∑n
i=1 f(Ō(i)), uniformly in a class of

functions F with polynomial covering number, allows us to prove consistency
results for estimators based on O1, . . . , On. For example, we can establish
the following consistency result for the MLE based on a correctly specified
parametric model.

Theorem 2 Consider the experiment generating O = (O1, . . . , On) ∼ PQ0,gn

as defined by (3). Let θn be the MLE over a parameter space Θ according to a
correctly specified model Q = {Qθ : θ ∈ Θ} (i.e., Q0 ∈ Q) based on O1, . . . , On:

θn = arg max
θ∈Θ

n∑
i=1

logQθ(Oi).

Let

θ0 = arg max
θ∈Θ

n∑
i=1

PQ0,gi
logQθ,

where we assume that these argmax can be uniquely defined. We note that θ0

is a fixed element in Θ satisfying Qθ0 = Q0.
Define the class of functions

F ≡ {(a, l, z) → logQθ0(a, l)/Qθ(a, l)− PQ0,gz logQθ0/Qθ : θ ∈ Θ}.
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Recall that PQ0,gz denotes the conditional expectation operator of Oi, given
O1, . . . , Oi−1 with Zi = Zi(O1, . . . , Oi−1) = z, and that gi depends on O1, . . . , Oi−1

only through this finite dimensional Zi ∈ Z ⊂ IRd for some fixed d, i =
1, . . . , n. Define the (random) Kullback-Leibler divergence

dKL,n(θ, θ0) ≡
1

n

n∑
i=1

PQ0,gi
logQθ0/Qθ = PQ0,ḡnD(θ0, θ),

where ḡn = 1
n

∑n
i=1 gi. Assume that N(ε,F , ‖ · ‖∞) = O(ε−q) for some q > 0,

where N(ε,F , ‖ · ‖∞ denotes the covering number of F for balls of size ε w.r.t.
to the supremum norm (van der Vaart and Wellner (1996)). Then, for all
p ≥ 1

E (dKL,n(θn, θ0))
p → 0,

as n → ∞. In particular, dKL,n(θn, θ0) converges to zero in probability as
n→∞.

Discussion of conditions. If 1) the model Q is finite dimensional with
bounded parameter space Θ, 2) the adaptive design gi only depends onO1, . . . , Oi−1

through a finite dimensional summary measure Zi of common and fixed dimen-
sion d, and 3) the data lives on a bounded set so that the likelihood ratios
Qθ/Qθ0 are uniformly bounded, then this theorem provides the wished consis-
tency of the maximum likelihood estimator according to a correctly specified
parametric model Q.

This consistency theorem puts hardly restrictions on the design gn except
that it can only depend on the past O1, . . . , Oi−1 through a finite (fixed in
i) dimensional summary measure Zi. For example, it is not required that gn
converges as n→∞ to some fixed design in G.

The consistency result is in terms of a Kullback-Leibler divergence w.r.t.
PQ0,ḡn . So if an adaptive design does not generate the data needed to identify
a particular parameter of θ0, then the consistency result will not result in
consistency for that parameter. For example, if the design allows a particular
treatment arm to be stopped, then consistent estimation of counterfactual
mean outcome for that treatment arm is obviously not possible and that will
be reflected by the resulting Kullback-Leibler divergence.

Proof of Theorem 2. For notational convenience, let D(θ0, θ) = logQθ0/Qθ.
The two fundamental building blocks of this proof are that 1

n

∑n
i=1D(θ0, θn)(Oi) ≤

0, and that, by definition of θ0, for all θ ∈ Θ,

1

n

n∑
i=1

PQ0,gi
D(θ0, θ) = PQ0,ḡnD(θ0, θ) ≥ 0.
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For each θ we have

0 ≤ 1

n

n∑
i=1

PQ0,gi
D(θ0, θ)

= − 1

n

n∑
i=1

(D(θ0, θ)(Oi)− PQ0,gi
D(θ0, θ))

+
1

n

n∑
i=1

D(θ0, θ)(Oi)

≡ Mn(D(θ0, θ)) +
1

n

n∑
i=1

D(θ0, θ)(Oi),

where −Mn(f) ≡ 1
n

∑n
i=1 f(Oi, Zi) with f(Oi, Zi) = f(Oi) − PQ0,gZi

f(Oi) is a
martingale sum for each f .

Now, we use that 1
n

∑n
i=1D(θ0, θn)(Oi) ≤ 0 and

Mn(D(θ0, θ))|θ=θn
≤ sup

θ
|Mn(D(θ0, θ)) |= sup

f∈F
|Mn(f) | .

By Theorem 14, the latter random variable converges in p-th expectation to
zero as n→∞ for all integers p. Thus, it follows that

0 ≤ 1

n

n∑
i=1

Pθ0,gi
D(θ0, θn) ≤ R(n),

where E | R(n) |p→ 0 as n → ∞ for all integers p. This proves that for all
p ≥ 1

E

(
1

n

n∑
i=1

PQ0,gi
D(θ0, θn)

)p
→ 0,

as n→∞. In particular,

E
1

n

n∑
i=1

PQ0,gi
D(θ0, θn) → 0,

as n → ∞. Since 1/n
∑
i PQ0,gi

D(θ0, θn) is a positive random variable, this
implies that 1/n

∑
i PQ0,gi

D(θ0, θn) converges to zero in probability. This com-
pletes the proof of Theorem 2. 2

6 Martingale estimating functions independent

of adaptive design.

The following Theorem 3 shows that a class of estimating functions for fixed
design data generating distributions PQ0,g with g known to be an element of
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a subset G1 ⊂ G of the set G of all CAR-fixed designs, where these estimat-
ing functions do not depend on the censoring/design mechanism, can also be
used as Martingale estimating functions for adaptive designs gi which fall with
probability one in G1.

Theorem 3 Suppose that there exist an estimating function D(Q0)(O), with
O = (A,L = X(A)) a missing data structure on X = (X(a) : a ∈ A),
satisfying

PQ0,gD(Q0)(O) = 0 for any g ∈ G1 ∈ G.

If gi is an adaptive design so that, gi ∈ G1 for almost every O1, . . . , Oi−1, then
PQ0,gi

D(Q0) = 0 for all i.

Proof: Note

PQ0,gD(Q0)(A,X(A)) = EQ0

∑
a

D(Q0)(a,X(a))g(a | X)

=
∑
a

∫
D(Q0)(a,X(a))g(a | X)dQ0(X), (12)

which equals zero for all g ∈ G1. Now, we note that

PQ0,gi
D(Q0)(Ai, Xi(Ai)) = E(D(Q0)(Ai, Xi(Ai)) | Ō(i− 1))

= E(
∑
a

D(Q0)(a,Xi(a))gi(a | Xi) | Ō(i− 1))

=
∑
a

∫
D(Q0)(a,X(a))gZi

(a | X)dQ0(X)

where we use thatXi is independent of Ō(i−1). Since gZi
∈ G1 with probability

1, (12) implies that the latter random variable in Zi is zero with probability
1. 2

The following theorem is a special application of this result.

Theorem 4 Suppose that there exist an estimating function D(Q0)(O), O =
(W,A,L = X(A)), where W represents a set of baseline covariates, satisfying

E(D(Q0)(W, a,X(a)) | W ) = 0 for all a ∈ A.

Then
PQ0,gD(Q0)(O) = 0,

for any g ∈ G1 = {g ∈ G : g(a | X) = g(a | W )}. As a consequence of Theorem
3, if gi is an adaptive design so that, gi ∈ G1 for almost every O1, . . . , Oi−1,
then PQ0,gi

D(Q0) = 0 for all i.
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Proof: We have for g ∈ G1

PQ0,gD(Q0)(W,A,X(A)) = EQ0

∑
a

D(Q0)(W, a,X(a))g(a | W ).

Conditioning on W shows that this expectation equals zero so that the appli-
cation of Theorem 3 completes the proof. 2

We will now show the application of these general theorems to some cen-
sored data structures. In Section 17 we show, by applying the above theo-
rem, that in the (e.g., clinical trial) context of O = (W,A, Y = Y (A)), X =
(W, (Y (a) : a)), the estimating functions Dh(β0) = h(A)(Y (A) −m(A | β0)),
indexed by arbitrary functions h, for a regression model EY (a) = E(Y (A) |
A = a) = m(a | β0) are also Martingale estimating functions for adaptive
designs gi(a | Xi) = gi(a) which allow that Ai depends on O1, . . . , Oi−1.

A more general class of examples in which we can obtain such martin-
gale estimating functions which do not depend on gi are causal effect models
for a possibly time-dependent treatment, conditional on a baseline covari-
ate. Let X = (X(a) : a ∈ A) ∼ PX0 be a collection of treatment regi-
men specific counterfactuals, and assume the temporal ordering assumption
X(a)(t) = X(ā(t−1))(t) which states that the counterfactual process at time t
only depends on past treatment regimen ā(t−1). Consider a so called marginal
structural model E(Y (a) | V ) = m(a, V | β0) for a user supplied finite dimen-
sional model {m(· | β) : β}, where V is a subset of the baseline covariates
X(0), and Y (a) is a treatment specific outcome of interest which is a compo-
nent of X(a). Let O = (A,L = X(A)). A CAR-fixed design is a conditional
distribution g(A | X) (the so called treatment mechanism) satisfying:

g(A | X) =
∏
t

g(A(t) | Ā(t− 1), X) =
∏
t

g(A(t) | Ā(t− 1), L̄(t)),

where L̄(t) = X̄(A)(t). Consider the subset G1 of this set of all CAR fixed
designs G defined as

G1 = {g(A | X) ∈ G : g(A | X) = g(A | V )}.

That is, g ∈ G1 implies that g(A(t) | Ā(t − 1), L̄(t)) = g(A(t) | Ā(t − 1), V ),
which corresponds with A being randomized conditional on the baseline co-
variates V .

We can now consider the following class of estimating functions for β0

indexed by a vector function h (such as d
dβ0
m(a, V | β0)):

Dh(β0)(O) = h(A, V )(Y −m(A, V | β0)).
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It follows that PQ0,gDh(β0) = 0 for all g ∈ G1. As a consequence of Theorem
3, for any adaptive design gi(Ai | Xi) = gi(Ai | Vi) so that gi ∈ G1 with
probability 1 (as a random variable of Ō(i−1), so that we allow that treatment
assignment probabilities for subject i are a function of the data collected on
first i− 1 subjects), we have

PQ0,gi
Dh(β0) = 0, i = 1, . . . , n.

So, for example, we can estimate β0 in an adaptive group sequential design
gi(Ai | Xi) = gi(Ai | Vi) with the least squares estimator which corresponds
with the Martingale estimating function d

dβ
m(A, V | β)(Y −m(A, V | β)):

βn = arg min
β

n∑
i=1

(Yi −m(Ai, Vi | β))2.

Although these simple least squares estimators are inefficient by not using the
additional covariate (including time-dependent covariate) information, they
are attractive because of its simplicity and their independence of gi.

One can also construct estimating function based estimators based on the
corresponding double robust and efficient estimating functions, but now these
estimating functions will depend on the adaptive design gi: the general ap-
proach for constructing optimal (and non-optimal) martingale estimating func-
tions is considered in detail in Section 8. As an illustration of this general
methodology for construction of optimal martingale estimating functions and
to contrast it to the above remarkably simple martingale estimation functions
(independent of gi), we now consider the point treatment case in which A
represents treatment at a single time point after the collection of baseline
covariates W . In this point treatment example the class of double robust
estimating functions indexed by h are given by:

Dh(β0, Q0, g)(O) = h(A, V )(Y −m(A, V | β0))

−h(A, V )(Q0(A,W )−m(A, V | β0))

+
∑
a

h(a, V )(Q0(a,W )−m(a, V | β0))g(a | V ),

and the optimal estimating function is defined by a particular choice hopt (see
van der Laan and Robins (2003)). Since g is considered known, one can treat
Q as an index, i.e., Dh,Q(β, g) = Dh(β,Q, g), since for all choices Q, h, we
have PQ0,gDh,Q(β0, g) = 0. A corresponding class of Martingale estimating
functions indexed by Q, g is given by Dh,Q(β, gi). Given a parametric model
Qθ, a corresponding index hθ, a martingale estimating function D(θ) so that
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θn solves 0 =
∑
iD(θn)(Oi, Zi) = 0, we can estimate β with the solution of the

corresponding double robust estimating equation

0 =
∑
i

Dhθn ,Qθn
(βn, gi)(Oi) = 0.

Our theorem 7 can now be applied to the joint solution (θn, βn) of the Martin-
gale estimating function D(θ, β)(Oi, Zi) = (D(θ), Dhθ,Qθ

(β, gi)), resulting in
asymptotic normality of

√
n(βn − β0) to a normal limit distribution equal to

what it is under i.i.d sampling from PQ0,g0 where g0 is the limit of the adaptive
design gi as i → ∞. If components of the adaptive design gi are unknown,
then they can be modelled with models, and their parameters are then also
solutions of martingale estimating equations, so that, again, our general the-
orem 7 can be applied. This estimating approach is the generalization of the
estimating function approach presented in van der Laan and Robins (2003)
for fixed designs to adaptive sequential designs. As an alternative of this es-
timating function based estimator (based on the efficient influence curve), in
our article we consider in detail the targeted MLE of β0, which is based on
these double robust estimation functions, but differs by being a substitution
estimator based on a maximum likelihood based estimator Qn of Q0.

We now consider an example in which X = (W, (Y (a) : a ∈ A)), A =
(R,∆) represents a treatmentR and missing indicator ∆, andO = (W,R,∆,∆Y (R)).
Thus, this causal inference data structure allows now also missingness on the
outcome Y = Y (R). Suppose one assumes the causal (marginal structural)
model E(Y (r) | V ) = m(r, V | β0). Consider the fixed designs G1 = {g ∈ G :
g(A | X) = g(A | V )} for which the conditional probability of treatment R and
missingness indicator ∆ only depend on X through V , while CAR allows that
this conditional probability depends on W . Consider the class of estimating
functions indexed by h:

Dh(β)(O) = h(R, V )(Y (R)−m(R, V | β0))∆.

We have
PQ0,gDh(β0) = 0 for all g ∈ G1.

As a consequence of Theorem 3, for any adaptive design gi so that gi ∈ G1

with probability 1, we have

PQ0,gi
Dh(β0) = 0.

Thus, for example, in an adaptive design gi(Ai | Xi) = gi(Ai | Vi), we can
estimate β0 with a least squares estimator

βn = arg max
β

n∑
i=1

(Yi −m(Ri, Vi | β))2∆i.
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The adaptive design gi allows that the treatment assignment probabilities and
the missing indicators are set in response to the data measured on the previous
i− 1 subjects.

The above examples are representative of general censored data structures.
To understand the general derivation of martingale estimating functions inde-
pendent of gi, we need to note the following. In general, for many of the
censored data structures and full data models treated in van der Laan and
Robins (2003), there exists Inverse Probability of Censoring Weighted Esti-
mating functions DIPCW,h(ψ0, g), indexed by a class of indices h ∈ H, for
a full data parameter ψ0, which have the property that there exists a sub-
set G1 ⊂ G of conditional censoring distributions so that for any g ∈ G1,
there exists a set H(g) ⊂ H of indices so that for each choice h ∈ H(g)
DIPCW,h(ψ0, g) is constant in g (i.e. the choice h cancels out g). As a con-
sequence, in all these cases we can define a class of Martingale estimating
functions as {DIPCW,h(ψ0, g) : h ∈ H(g)}, which does not depend on g by the
above property, under the assumption that gi falls with probability 1 in the
set G1. This general statement is best illustrated with one of the above exam-
ples. For example, the class of Inverse Probability of Treatment (IPTW) (i.e.,
IPCW) weigthed estimating functions for a MSM E(Y (a) | V ) = m(a, V | β0)
is given by

DIPCW,h(β0, g) =
h(A, V )

g(A | X)
(Y −m(A, V | β0)),

where h can vary over all functions H of A, V . Suppose that G1 consists of g
with g(a | X) = g(a | V ). Then, for each h ∈ H(g) = {g(A | V )h1 : h1 ∈
H} we have DIPCW,h(β0, g) = h1(A, V )(Y − m(A, V | β0) so that it follows
that h1(A, V )(Y − m(A, V | β0) indexed by h1 ∈ H is a class of Martingale
estimating functions under the assumption that gi(· | Xi) = gi(· | Vi).

To summarize, if one is willing to work with adaptive designs gi, which still
allow full dependence on Ō(i− 1), but which allow limited dependence on Xi

(i.e., less than CAR), as in clinical trials in which treatment is typically ran-
domized conditional on some baseline covariates, then it is typically possible
to define a class of Martingale estimating functions which do not depend on gi.
We expect that such Martingale estimating functions are quite robust against
finite sample variability of the adaptive design gi: i.e., we expect that such
estimating functions are more robust w.r.t. the asymptotic stability condition
for the adaptive design as stated in our central limit theorems, than estimators
based on estimating equations depending on gi (e.g., through inverse weight-
ing), so that the resulting estimators will achieve the normal limit distribution
for smaller sample sizes.
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7 Inverse probability of censoring weighted mar-

tingale estimating functions.

In this section we present Inverse Probability of Censoring Weighted (IPCW)
martingale estimating functions, as another alternative of generating ad hoc
simple to implement Martingale estimating functions and corresponding IPCW
estimators, where the IPCW estimating functions are immediately implied by
the IPCW estimating functions for fixed designs as in general presented in
van der Laan and Robins (2003).

The IPCW estimating functions for fixed designs (see e.g., van der Laan
and Robins (2003)) have an immediate analogue to adaptive designs. As a first
example, we consider the case that X = (Y (0), Y (1),W ) ∼ PX0 consists of
treatment specific outcomes (Y (0), Y (1)) of interest, and a vector of baseline
covariates. Let ψ0 = E(Y (1) − Y (0)) be the effect of treatment on the mean
outcome. Let X1, . . . , Xn be n i.i.d. copies of X. Let Ai = (∆i, Ri) and
Oi = (Wi, Ri,∆i,∆iYi(Ri)), i = 1, . . . , n. Thus, we observe on the i-th subject,
the vector of baseline covariates Wi, the treatment Ri the subject received, a
missing indicator ∆i indicating if we observe the outcome of interest, and
if ∆i = 1, then we observe the outcome Yi(Ri) under treatment Ri. In an
adaptive design we have that Ai is drawn from a CAR-conditional distribution
gi(· | Xi) of Ai, given Xi and O1, . . . , Oi−1, i = 1, . . . , n. The adaptive design
mechanism gi can be factorized as

gi(Ai | Xi) = P (∆i, Ri | Xi, O1, . . . , Oi−1)

= g1(Ri | Xi, Ō(i− 1))g2(∆i | Ri, Xi, Ō(i− 1))

= P (Ri | Wi, Ō(i− 1))

×P (∆i | Ri,Wi, Ō(i− 1)),

where the first factor denotes a treatment mechanism, and the second factor
a missingness mechanism.

A full data estimating function for ψ0 is given by D(ψ)(X) = Y (1)−Y (0)−
ψ. The IPCW-version of this full data estimating function is given by:

DIPCW (ψ, gi)(Oi) = Yi

{
I(Ri = 1)

g1i(Ri | Xi)
− I(Ri = 0)

g1i(Ri | Xi)

}
∆i

g2i(∆i | Ri, Xi)
− ψ.

We note that indeed, under the assumption that g1i has positive support on
Ri ∈ {0, 1} a.e., and that g2i(1 | Ri, Xi) > 0 a.e., DIPCW is a martingale
estimating function

PQ0,gi
DIPCW (ψ0, gi) = 0, i = 1, . . . , n.
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Such an estimating function can be used to construct an estimator given
by the solution ψn,IPCW of

∑
iDIPCW (ψ, gi)(Oi) = 0. This solution is given

by:

ψn,IPCW =
1

n

n∑
i=1

Yi

{
I(Ri = 1)

g1i(Ri | Xi)
− I(Ri = 0)

g1i(Ri | Xi)

}
∆i

g2i(∆i | Ri, Xi)
.

It might be the case that the randomization probabilities of Ri are known,
but that the missingness probabilities are not controlled by the experiment.
It will typically be reasonable to assume that the conditional probability dis-
tribution of ∆i only depends on Ri, and Wi, and is thus a fixed design. One
can now estimate this conditional distribution with maximum likelihood esti-
mation according to (say) a logistic regression model {g2η : η}:

ηn = arg min
η

n∏
i=1

g2η(∆i | Ri,Wi).

As another example, we will consider right-censoring of a survival outcome
instead of missingness of the outcome. Suppose that X = (X0, X1) ∼ PX0

consists of two treatment specific stochastic processes X0 = (X0(t) : t ≥ 0)
and X1 = (X1(t) : t ≥ 0), where Xj(0) = W is a vector of baseline covariates
and Xj(t) includes as component an indicator I(Tj ≤ t) of a treatment specific
survival time Tj, j = 1, 2. The treatment specific processes are assumed
to be truncated at Tj: Xj(t) = Xj(min(t, Tj)), j = 1, 2. For example, if
Xj(t) = I(Tj ≤ t), then X is equivalent with X = (W,T0, T1). Let the
survival risk difference ψ0 = PX0(T1 > t0) − PX0(T0 > t0) be the parameter
of interest. Let Ai(0) = Ri be the treatment indicator, and Ai(t) = I(Ci ≤ t)
for t > 0 is the censoring process defined by a right-censoring time Ci. On the
i-th unit we observe

Oi = (Wi, Ai = (Ri, (I(Ci ≤ t) : t > 0)), X̄Ri
(Ci) = (XRi

(t) : t ≤ Ci)), i = 1, . . . , n.

We define Ci = ∞ if the failure time Ti = Ti,Ri
is observed. An adaptive design

is defined by the conditional distribution of Ai, given Xi and O1, . . . , Oi−1. We
have

gi(Ai | Xi) = gi1(Ri | Xi)
∏

0<t≤min(Ci,TRi
))

gi2(Ai(t) | Āi(t−), Ri, Xi)

= P (Ri | Wi, Ō(i− 1))

×
∏

t≤min(Ci,TRi
)

P (Ai(t) | Ri, Āi(t−), X̄Ri
(t), Ō(i− 1)),
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where the first factor denotes the treatment mechanism, and the second prod-
uct integral denotes the censoring mechanism. Thus, the adaptive design al-
lows that the treatment is assigned in response to the baseline covariates of
subject i, and the observed data on the first i− 1 recruited subjects. In addi-
tion, it allows that the probability of being censored at time t is a function of
the treatment arm Ri, the baseline covariates Wi, the observed history X̄i,Ri

(t)
up till time t (e.g., including time-dependent covariates), and the data on the
previously recruited subjects Ō(i − 1). It might be typical that the treat-
ment mechanism is under control of the designer, but that the right-censoring
mechanism cannot be fully controlled. In that case one would model (e.g., Cox
proportional hazards model or logistic regression model) the right-censoring
mechanism and estimate it with maximum likelihood estimation:

ηn = arg max
η

n∏
i=1

∏
t≤min(Ci,TRi

)

Pη(Ai(t) | Ri, Āi(t−), X̄Ri
(t), Ō(i− 1)),

where one typically will be able to assume a model which assumes that the
censoring probabilities are independent of Ō(i− 1).

We will now construct the IPCW-martingale estimating function for ψ0.
An IPCW-estimating function is given by

DIPCW (ψ, gi)(Oi) ≡ I(TRi
> t0)

{
I(Ri = 1, Ci > t0)

gi(Ri, Āi(t0) = 0 | Xi)
− I(Ri = 0, Ci > t0)

gi(Ri, Āi(t0) = 0 | Xi)

}
−ψ,

where

gi(Ri, Āi(t0) = 0 | Xi) = gi1(Ri | Xi)
∏

0<t≤min(t0,TRi
)

gi2(Ai(t) = 0 | Āi(t−) = 0, Ri, Xi).

The corresponding IPCW-estimator of ψ0 is the solution of 0 =
∑
iDIPCW (ψ, gi)(Oi)

given by

ψnIPCW =
1

n

n∑
i=1

I(TRi
> t0)

{
I(Ri = 1, Ci > t)

gi(Ri, Āi(t0) = 0 | Xi)
− I(Ri = 0, Ci > t0)

gi(Ri, Āi(t0) = 0 | Xi)

}
.

If the treatment probabilities or censoring probabilities are unknown, then
they can be replaced by maximum likelihood estimators according to (correctly
specified) models.

Our theorems for solutions of Martingale estimating equations provide the
corresponding statistical inference for these IPCW-estimators, where one of
the fundamental conditions is the stability condition for the adaptive design
gi (i.e., gi should depend on asymptotically consistent summary measures of
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Ō(i − 1) as i → ∞), and if gi has unknown components which need to be
estimated, then these components are correctly modelled.

A general type of IPCW martingale estimating function corresponding with
a full data estimating function D(Xi) is obtained as follows:

DIPCW (gi) = D(Xi)
I(∆i = 1)

Pgi
(∆i = 1 | Xi, Ō(i− 1))

,

where ∆i = I(D(Xi) is observed) is the indicator of D(Xi) being a function
of Oi, and it is noted that the denominator probability is indeed determined
by the conditional distribution of Ai, given Xi and Ō(i− 1).

To summarize, we note that any of the IPCW estimating functions for
fixed CAR designs (i.e., CAR censoring mechanisms) as presented in general
in van der Laan and Robins (2003) have an analogue for adaptive designs by
simply replacing the fixed CAR design g by the adaptive CAR-design gi.

8 Constructing Martingale estimating equa-

tions and corresponding estimators

Our consistency and central limit theorems apply to solutions of a Martin-
gale estimating equations, assuming that the estimating equation identifies the
true parameter. Below, we consider general approaches for constructing such
martingale estimating equations and corresponding estimators of a particular
parameter of Q0, the PX0-factor in the density of O1, . . . , On. In Sections 6 and
7 we showed how one can construct Inverse Probability of Censoring Weighted
Martingale estimating functions and, under restrictions on the adaptive de-
sign, Martingale estimating functions which do not depend on the adaptive
design. These are examples of ad hoc Martingale estimating functions. In this
section we present the generalization of the fixed design estimating function
methodology in van der Laan and Robins (2003) towards Martingale estimat-
ing functions for general adaptive designs. In the next subsection we first
consider scores of correctly specified parametric models. Subsequently, we
present the two estimating strategies for pathwise differentiable parameters in
semiparametric models: estimating function based estimation and a targeted
MLE. As we indicate, both rely on a nice behaving (i.e., Martingale based)
estimator of a parameter in a possibly misspecified parametric working model
for Q0 and we show in the subsequent sections how such an estimator can be
constructed.
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8.1 MLE for correctly specified parametric model.

Consider a MLE according to a correctly specified parametric model Q =
{Qθ : θ}

θn = arg max
θ∈Θ

n∑
i=1

logQθ(Oi).

Under weak regularity conditions, this MLE solves the score equation:

0 =
n∑
i=1

D(θn)(Oi),

where D(θ) ≡ d
dθ

logQθ. In addition, under similar regularity conditions, the
target parameter

θ0 = arg max
θ∈Θ

n∑
i=1

PQ0,gi
logQθ

should solve 0 =
∑n
i=1 PQ0,gi

D(θ0), and, in fact, satisfies PQ0,gi
D(θ0) = 0 for

all i = 1, . . . , n. Thus, D(θ0)(Oi) denotes a Martingale estimating function,
and the MLE θn solves the corresponding Martingale estimating equation 0 =∑n
i=1D(θn)(Oi). The score of a correctly specified parametric model is a special

Martingale estimating function since it is only a function of Oi and thus does
not depend on the adaptive design gi.

8.2 Martingale Estimating function based estimator of
path-wise differentiable parameter.

Suppose that the parameter of interest is a path-wise Euclidean parameter Ψ :
Q → IRm for a semi-parametric model Q for Q0. Let D∗(Q, g) be the efficient
influence curve of this parameter at a fixed design distribution PQ,g ∈M(g) =
{PQ,g : Q ∈ Q}. Consider a parametric working model Qw = {Qθ : θ ∈ Θ},
which is allowed to be misspecified. Suppose that the efficient influence curve
D∗ can be represented as an estimating function for ψ0 in the sense that
D∗(Q, g) = D∗(Ψ(Q), Q, g) for some mapping (ψ,Q, g) → D∗(ψ,Q, g). The
efficient influence curve based Martingale estimating function is now given by

D∗(ψ, θ)(Oi, Zi) ≡ D∗(ψ,Qθ, gZi
)(Oi),

or
D∗(ψ,Qθ, gθ)(Oi)gθ/gZi

,

where gθ is a design function supposed to approximate the actual adaptive
design in the sense that gn ≈ gθn−1 . 64

http://biostats.bepress.com/ucbbiostat/paper232



IPCW-weighting of efficient influence curve estimating function:
We view D∗(ψ,Qθ, gθ)gθ/gi as IPCW-weighting of D∗(ψ,Qθ, gθ). If D∗ can
be represented as a sum D∗ =

∑
j D

∗
j , and each D∗

j (Oi) only depends on Ai
through Ā(j∗(j)− 1) for some integer mapping j∗(j), then it is good practice
(in line with our IPCW-R-TMLE introduced later) to weight each D∗

j with
gθ(Āi(j

∗(j)− 1) | Xi)/gi(Āi(j
∗(j)− 1) | Xi) instead of using a common weight

gθ(Ai | Xi)/gi(Ai | Xi). We can always determine such a decomposition of D∗.
For example, if Q0 =

∏
j Q0j, where each Q0j(O) only depends on O through

Ā(j∗(j)), then we can decompose the efficient influence curve as an orthogonal
sum

∑
j D

∗
j , where each D∗

j is in the element of the tangent space generated
by Q0j. For example, if Q0j denotes the conditional distribution of L(j), given
Ā(j − 1), L̄(j − 1), then one defines D∗

j = E(D∗ | L̄(j), Ā(j − 1)) − E(D∗ |
L̄(j − 1), Ā(j − 1)). In the latter case, D∗

j has conditional mean zero, given
Ā(j∗(j)− 1), L̄(j∗(j)), which implies in particular a wished double robustness.
For more details on the latter we refer to our IPCW-Reduced Data-TMLE
section. This same IPCW weighting scheme applies to general estimating
functions.

We need to augment this efficient influence curve based martingale esti-
mating function for ψ0 with a Martingale estimating function D(θ)(Oi, Zi)
for a finite dimensional parameter θ0, defined by a nonparametric exten-
sion of the parametric working model Qw. That is, PQ0,gi

D(θ0) = 0 and
PQ0,gi

D∗(ψ0, Qθ0 , gi) = 0. This results in a joint Martingale estimating func-
tion D(ψ, θ) = (D(θ), D∗(ψ, θ)) for the joint parameter (ψ0, θ0) satisfying
PQ0,gi

D(ψ0, θ0) = 0. The estimator (ψn, θn) is now defined as a solution of
0 =

∑
iD(ψn, θn)(Oi, Zi). Our consistency results and CLT theorems can now

be applied. The efficient influence curve based martingale estimating function
can be replaced by inefficient gradient based martingale estimating functions
(as in van der Laan and Robins (2003)) while still preserving the consistency
and asymptotic normality, by application of our theorems.

If PQ0,gD
∗(ψ,Q, g) implies ψ = ψ0 for allQ ∈ Qw, which holds in many cen-

sored data applications (see van der Laan and Robins (2003)), then it follows
that ψn is consistent for ψ0, even if the working model is incorrectly specified.
Below, in Subsection 8.4 we present methods for constructing martingale es-
timating functions for the unknown parameter θ0 of a possibly misspecified
working model Qw.

65

Hosted by The Berkeley Electronic Press



8.3 Targeted MLE of path-wise differentiable parame-
ter based on working model.

Suppose that the parameter of interest is a path-wise Euclidean parameter
Ψ : Q → IRm for a semi-parametric model Q for Q0. Let D∗(Q, g) be the
efficient influence curve of this parameter at a fixed design distribution PQ,g ∈
M(g) = {PQ,g : Q ∈ Q}. In Section 12 we define a targeted MLE of ψ0 =
Ψ(Q0) based on adaptive group sequential designs, which involves updating
an initial estimator Qθn of Q0 according to a possibly misspecified parametric
working model Qw = {Qθ : θ ∈ Θ}, so that the update maps into a consistent
and asymptotically linear estimator of ψ0.

We will show that our proposed one-step targeted ML procedure involves
augmenting a Martingale estimating functionD(θ)(Oi, Zi) for the finite dimen-
sional parameter θ0, defined by a nonparametric extension of the parametric
working model Qw, with the efficient influence curve based martingale esti-
mating function D∗(θ, ε)(Oi, Zi) ≡ D∗(Qθ(ε), gZi

)(Oi), or D∗(Qθ(ε), gθ)gθ/gi
for a design function gθ, where Qθ(ε) ⊂ Q is a particular ε-fluctuation of Qθ

with Qθ(0) = Qθ. Given the estimator θn satisfying
∑
iD(θn)(Oi, Zi) = 0, the

targeted MLE procedure defines εn as the solution of
∑
iD

∗(θn, εn)(Oi, Zi) = 0
and Qθn(εn) as the updated Qθn . Multiple solutions for εn (and similarly selec-
tion among initial estimators Qθn) is naturally handled by using the (minus)
log likelihood of Qθn(εn) as loss function: so selection is either based on the log-
likelihood or cross-validated log likelihood, in the case that one is comparing
initial estimators based on different size working models. The target ε0 of εn is
the solution of PQ0,gi

D∗(θ0, ε0) = E0D
F (Qθ0(ε0)) = 0, whereDF is the full data

estimating function associated with the efficient influence curve, which is ob-
tained by applying the conditional expectation operator, given X (see van der
Laan and Robins (2003)). To establish consistency and asymptotic linear-
ity of (θn, εn) for (θ0, ε0), and thereby consistency and asymptotic linearity of
Ψ(Qθn(εn)) as an estimator of Ψ(Qθ0(ε0)), we then apply the consistency and
CLT theorems to these estimators defined by the augmented/stacked estimat-
ing function D(θ, ε) = (D(θ), D∗(θ, ε)). If PQ0,gD

∗(Q, g) = EQ0D
∗F (Q) = 0

implies Ψ(Q) = ψ0 (which holds in many applications, by van der Laan and
Robins (2003)), it then follows that Ψ(Qθn(εn)) is consistent (and asymptot-
ically linear) for ψ0, even if the working model is incorrectly specified. For
a detailed presentation of this one-step targeted MLE procedure, we refer to
Section 12, which generalizes the targeted MLE for fixed designs as presented
in van der Laan and Rubin (2006).

Below, we present methods for constructing martingale estimating func-
tions for the unknown parameter of a possibly misspecified working model
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Qw.

8.4 Weighted MLE and Martingale estimating functions
for misspecified parametric working model.

Suppose that Q is a semi-parametric model so that, by the curse of dimension-
ality, a maximum likelihood estimator will require regularization. Consider a
parametric sub-model/working model Qw = {Qθ : θ ∈ Θ} ⊂ Q of Q.

Firstly, we wish to explain why the actual MLE for a misspecified work-
ing model targets a parameter of both Q0 and the adaptive design, which
therefore is harder to analyze, and might not necessarily be asymptotically
normally distributed due to the dependencies and lack of martingale struc-
ture of the score under a misspecified model. Let θwn be the MLE accord-
ing to the working model Qw = {Qθ : θ}, which solves the score equa-

tion 0 =
∑n
i=1D(θwn )(Oi), where D(θwn ) = d

dθ
logQθ

∣∣∣
θ=θw

n

. We note that

this MLE targets the ”parameter” arg maxθ∈Θ
∑n
i=1 PQ0,gi

logQθ, which equals
Θḡn(Q0) ≡ arg maxθ∈Θ PQ0,ḡn logQθ, where ḡn = 1/n

∑n
i=1 gi. Thus, asymptot-

ically it targets the parameter θ0 = Θg0(Q0), under the assumption that the
design gn converges to a fixed design g0 ∈ G, as n → ∞. As a consequence,
since g0 itself can be a function of Q0 and represents an unknown target fixed
design, this is a more complex parameter to interpret and to analyze. In par-
ticular, the fundamental assumption that PQ0,gi

D(θ0) = 0 does not follow, so
that the empirical mean of D(θ0) does not represent a martingale sum (so that
a CLT is not applicable). In addition, consistency of θwn as an estimator of θ0

now also requires consistency of gn to g0, and asymptotic normality will now
also require that gn converges at an appropriate rate to g0. In other words,
the target of a MLE for a misspecified parametric model represents a complex
parameter whose statistical inference will rely on strong assumptions about
the adaptive design. Therefore, we propose to not use maximum likelihood
estimators according to misspecified parametric models.

Instead, firstly, we wish to target the parameter Θg∗ for a fixed design
g∗ ∈ G for which we can define Martingale estimating functions so that we
can analyze the resulting estimators with our theorems. Subsequently, we will
also present a method allowing to estimate/update g∗ sequentially during the
course of the trial, while still obtaining an estimator which solves a Martingale
estimating equation.

Firstly, we carefully define nonparametric extensions of θ0 as defined under
a correctly specified working model, and then consider efficient estimation of
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that parameter. Define

θ0 = Θg∗(Q0) ≡ arg max
θ∈Θ

PQ0,g∗ logQθ for a fixed design g∗ ∈ G.

Note that this defines Θg∗ as a (smooth) parameter on the large (e.g., nonpara-
metric) model Q, and Θg∗(Q0) would not depend on the choice g∗ if Q0 ∈ Qw.
Thus Θg∗ defines an extension of the true parameter for a model Qw to a
parameter defined on the true model Q containing Qw.

Let D(Q, g) be the efficient influence curve of this parameter Θg∗ : Q → IRd

at a fixed design PQ,g ∈ M. The results in van der Laan and Robins (2003)
can be immediately applied to find and characterize this efficient influence
curve, since O is a fixed design CAR censored data structure on a full data
random variable X, and θ0 is a path-wise differentiable parameter of the full
data distribution. By the fact that D is an influence curve/gradient for a
parameter of the full data distribution PX0 in a CAR censored data model, it
follows (by Theorem 1.3, van der Laan and Robins (2003)) that PQ0,gD(Q, g) =
EQ0D

F (Q)(X) for a full data gradient DF of the path-wise derivative of the
parameter Θg∗ : Q → IRd at Q0. A common property of a gradient applied to
DF (Q) is that EQ0D

F (Q) = 0 for Q ∈ Qw implies Θg∗(Q) = Θg∗(Q0). This
teaches us that we can define θ0 = Θg∗(Q0) as the solution in θ of

E0D
F (Qθ) = 0.

This implies that D(Qθ, gi) is a martingale estimating function for the param-
eter Θg∗(Q0):

PQ0,gi
D(Qθ0 , gi) = 0 for i = 1, . . . , n. (13)

Let θn be the solution in Θ of

1

n

n∑
i=1

D(Qθ, gi)(Oi) = 0 or oP (1/
√
n).

(As a side note, application of theorems in van der Laan and Robins (2003)
and our CLT Theorem 7 shows, in particular, that this estimator θn of θ0 is
an asymptotically locally efficient estimator of θ0 at fixed designs in the sense
that it is always consistent and asymptotically linear and that it is efficient if
Q0 ∈ Qw.)

We can now define the estimating function D(θ)(Oi, Zi) ≡ D(Qθ, gZi
)(Oi)

(orD(Qθ, gθ)gθ/gi), which now indeed satisfies the Martingale property PQ0,gi
D(θ0) =

0, and θn solves the corresponding Martingale estimating equation
∑n
i=1D(θn)(Oi, Zi) =

0, so that our consistency and CLT theorems can be applied to establish con-
sistency of θn and asymptotic normality as an estimator of Θg∗(Q0).68
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Above, we used the efficient influence curve of Θg∗(Q0) as basis, but this can
be replaced by any gradient of this parameter. In general, one can construct a
Martingale estimating function and corresponding estimator θn of θ0 as follows.
Let D(Q, g) be an influence curve/gradient of the parameter Θg∗ : Q → IRd

at fixed design data generating distribution PQ,g in the model M(g) = {PQ,g :
Q ∈ Q} with g known. For example, D(Qθ, g) = S(θ)g∗/g, where S(θ) =
d
dθ

logQθ, or D(Q, g) is the efficient influence curve of Θg∗ as above. By the
fact that D is an influence curve/gradient for a parameter of the full data
distribution PX0 in a CAR censored data model, it follows (by Theorem 1.3,
van der Laan and Robins (2003)) that PQ0,gD(Q, g) = EQ0D

F (Q)(X) for a
full data gradient DF . Analogue to the derivation of (13)under the above
mentioned natural property of a gradient, it follows that for θ0 = Θg∗(Q0)

PQ0,gi
D(Qθ0 , g) = E0D

F (Qθ0) = 0.

Now, let θn be the solution in θ of

1

n

n∑
i=1

D(Qθ, gi)(Oi) = 0 or oP (1/
√
n).

8.5 A sequentially data adaptively weighted MLE based
on misspecified working model.

Above we defined an estimator θn of an extended parameter θ0 = Θg∗(Q0)
based on a working model Qw and a user supplied choice of fixed design g∗.
The targeted MLE or the estimating function based estimator ψn of ψ0 based
on this initial estimator Qθn of Q0 will thus also be indexed by this choice g∗.
Although the choice g∗ will not affect the consistency and asymptotic linearity
of the targeted MLE ψn, and the convergence of the adaptive design gn = gθn−1

to gθ0 = gQθ0
(which is a working model based approximation of gQ0), it can

affect the first order efficiency of ψn and it can also affect the limit design
gθ0 . That is, the first order efficiency is affected by the performance of Qθn

as an estimator of Q0, and this estimator Qθn depends on g∗. Therefore, it is
worthwhile to investigate if we can also construct an estimator θn which is not
indexed by such a user supplied arbitrary choice g∗.

Consider sample sizes n1 = p1n < n2 = p2n < . . . < nk = pkn for user
supplied proportions 0 < p1 < . . . < pk = 1. We now propose the following
sequential procedure for obtaining an estimatorQ0

n based on the working model
Qw. Let θ0

n = θ0 ∈ Θ be a given parameter value so that g∗ = gθ0 . Let
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θ1
n = arg maxθ

∑n1
i=1 logQθ(Oi)gθ0n(Ai | Xi)/gi(Ai | Xi), and, in general,

θjn = arg max
θ

nj∑
i=1

logQθ(Oi)
gθj−1

n
(Ai | Xi)

gi(Ai | Xi)
, j = 1, 2, . . . , k.

We now propose θkn and corresponding estimator Qθk
n

of Q0 as starting point
for the targeted MLE estimator or estimating function based estimator. In
order to apply our general theorems we will need to show that θkn is a solution
of a martingale estimating equation. Firstly, we note that θ1

n corresponds with
Martingale estimating function D1(θ, θ0)(Oi, Zi) = I(i ≤ n1)S(θ)(Oi)gθ0(Ai |
Xi)/gZi

(Ai | Xi) for the parameter θ1
0 = arg maxθ PQ0,gθ0 logQθ. Secondly, we

note that θ2
n corresponds with Martingale estimating functionD2(θ, θ1)(Oi, Zi) =

I(i ≤ n2)S(θ)(Oi)gθ1(Ai | Xi)/gi(Ai | Xi) for parameter θ2
0 = arg maxθ PQ0,gθ1 logQθ.

In general, we note that θjn corresponds with martingale estimating function
Dj(θ, θj−1)(Oi, Zi) = I(i ≤ nj)S(θ)(Oi)gθj−1(Ai | Xi)/gi(Ai | Xi) for param-
eter θj = arg maxθ PQ0,gθj−1

logQθ, j = 1, . . . , k. Thus, θ0(k) = ((θ1
0, . . . , θ

k
0)

corresponds with the stacked Martingale estimating function

D(θ(k)) = D(θ1, . . . , θk) = (D1(θ1, θ0), . . . , Dk(θk, θk−1)).

This estimating function indeed satisfies the Martingale property PQ0,gi
D(θ0(k)) =

0 for all i. Let θn(k) be the estimator of θ(k) solving the corresponding stacked
Martingale estimating equation

∑n
i=1D(θn(k))(Oi, Zi) = 0. In this way we suc-

ceeded to construct a martingale estimating function D(θ(k)) for parameter
θ(k) and corresponding estimator θn(k), while the MLE of interest will be the
final estimator Qθk

n
, which thus further ignores θjn, j = 1, . . . , k − 1.

In this method we can replace the weighted scores Sθgθj−1
n
/gi byD(Qθ, gθj−1

n
)gθj−1

n
/gi,

where D(Q, g) is a gradient of Ψ at PQ,g ∈M(g) = {PQ,g : Q ∈ Q}.

9 Consistency of solutions of Martingale esti-

mating equations.

The following result establishes consistency of a solution of a Martingale es-
timating equation, assuming that the estimating equation identifies the true
parameter.

Theorem 5 Consider adaptive design experiment O1, . . . , On ∼ PQ0,g as de-
fined by (3). Given an estimating function θ → D(θ) on a parameter space Θ,
suppose that θn is a Euclidean parameter estimate solving

1

n

n∑
i=1

D(θn)(Oi, Zi) = 0.
70
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Let θ0 ∈ Θ satisfy PQ0,gi
D(θ0) = 0, i = 1, . . . , n, where gi(a | Xi) = g(a |

O1, . . . , Oi−1, Xi) depends on O1, . . . , Oi−1 only through a d-dimensional vector
Zi = Zi(O1, . . . , Oi−1) ∈ Z ⊂ IRd for some d, i = 1, . . . , n. Let F be a class
of functions (a, l, z) → f(a, l, z) defined as F ≡ {(a, l, z) → D(θ)(a, l, z) −
PQ0,gzD(θ) : θ ∈ Θ} (recall Oi = (Ai, Li))

Assume that the covering number w.r.t. to supremum norm satisfies N(ε,F , ‖
· ‖∞) = O(ε−q) for a q > 0. Then, for all p ≥ 1

E

(
1

n

n∑
i=1

PQ0,gi
D(θn)

)p
→ 0,

as n→∞.

This consistency result for θn typically translates into a consistency result for
θn, assuming that the data generating experiment allows identifiability of θ0.
For example, if ΦQ0,gi

: θ → PQ0,gi
D(θ) is differentiable at θ0 with derivative

Φ̈Q0,gi
(θ0),

1

n

n∑
i=1

PQ0,gi
D(θn) =

1

n

n∑
i=1

Φ̈Q0,gi
(θ0)(θn − θ0) + oP (‖ θn − θ0 ‖),

and the linear mapping (i.e., matrix) 1
n

∑n
i=1 Φ̈Q0,gi

(θ0) is invertible with an
inverse which has a bounded norm uniformly in n, then this theorem provides
the wished result ‖ θn − θ0 ‖→ 0 in probability as n→∞.

Proof of Theorem 5. Since θn solves the estimating equation 0 =
∑
iD(θn)(Oi, Zi)

it follows that

1

n

n∑
i=1

PQ0,gi
D(θn) = − 1

n

n∑
i=1

(D(θn)(Oi, Zi)− PQ0,gi
D(θn))

≡ −Mn(D(θn)),

where Mn(f) ≡ 1
n

∑n
i=1

(
f(Oi, Zi)− PQ0,gZi

f
)

is a martingale sum for each f .
Now, we use that

Mn(D(θn)) ≤ sup
θ
|Mn(D(θ)) |= sup

f∈F
|Mn(f) | .

By Theorem 14, the latter random variable converges in p-th expectation to
zero for all p ≥ 1.

Thus, it follows that for all p ≥ 1

E

(
1

n

n∑
i=1

PQ0,gi
D(θn)

)p
→ 0,

as n→∞. This completes the proof of Theorem 5. 2
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10 Consistency of targeted adaptive design.

Consider a targeted adaptive design defined as gi = gθi−1
, with θi ∈ Θ be a

sequence of estimators of a Euclidean parameter θ0 of Q0 based on O1, . . . , Oi,
where, for each θ ∈ Θ, gθ ∈ G is a CAR fixed design (i.e., a conditional
distribution of A, given X, with g(A | X) only a function A,LA). Obviously, a
consistency result of θn to θ0, as one can obtain with the previously presented
consistency theorems, implies asymptotic convergence of the adaptive design
gi to the fixed design gθ0 , for i → ∞, under a continuity condition on the
mapping θ → gθ. We will state this useful result as a theorem.

Theorem 6 Assume that θ → gθ is continuous w.r.t to norms ‖ · ‖ on a space
containing Θ, and ‖ · ‖1 on a space containing the conditional distributions
G = {g(· | X) : g(A | X) = h(A,X(A)) for some h} in the sense that for any
deterministic sequence θ′n ∈ Θ for which ‖ θ′n − θ0 ‖→ 0, as n → ∞, we have
‖ gθn − gθ0 ‖1→ 0, as n→∞.

If ‖ θn − θ0 ‖→ 0 in probability as n → ∞, then ‖ gθn − gθ0 ‖1→ 0 in
probability as n→∞.

This is an immediate consequence of the continuous mapping theorem (van der
Vaart and Wellner (1996)).

11 Asymptotic normality for solutions of Mar-

tingale estimating equations.

The previous Theorems 2 and 5 provide general tools for establishing consis-
tency of an estimator θn of a parameter θ0 of Q0, which solve a Martingale
estimating equation 0 =

∑
iD(θn)(Oi, Zi). Given such a consistency result,

the following theorem provides a template and conditions for establishing the
wished asymptotic normality of the standardized estimator

√
n(θn − θ0).

Theorem 7 (CLT) Consider the adaptive design experiment generating (O1, . . . , On) ∼
PQ0,gn ∈ {PQ,g : Q ∈ Q} as defined in (3). Let θn ∈ Θ be a sequence of es-
timators of a Euclidean parameter θ0 = Θ(Q0) ∈ Θ of Q0 for a parameter
Θ : Q → IRd solving the estimating equation

0 =
1

n

n∑
i=1

D(θn)(Oi, Zi) = 0,

where Zi = Zi(O1, . . . , Oi−1) ∈ Z ⊂ IRk is a k-dimensional summary measure
for some fixed k. Assume
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Martingale unbiased estimating function: Let θ0 ∈ Θ be so that PQ0,gi
D(θ0) =

0 for all i, and thus, in particular,
∑n
i=1 PQ0,gi

D(θ0) ≡
∑n
i=1EQ0,gi

D(θ0)(Oi, Zi) |
O1, . . . , Oi−1) = 0, i = 1, . . . , n.

Bounded estimating function: maxj supθ∈Θ ‖ Dj(θ) ‖∞<∞.

Consistency: Assume ‖ θn − θ0 ‖ converges to zero in probability as n→∞
w.r.t. to some norm.

By Theorem 5 it suffices to assume that 1) F ≡ {(a, l, z) → D(θ)(a, l, z)−
PQ0,gzD(θ) : θ ∈ Θ} has a covering number N(ε,F , ‖ · ‖∞) w.r.t. to
supremum norm bounded by O(ε−q) for a q > 0, and 2) that,

E

(
1

n

n∑
i=1

PQ0,gi
D(θn)

)2

→ 0,

as n→∞, implies ‖ θn − θ0 ‖→ 0 in probability, as n→∞.

Asymptotic stable design: Component wise,

1

n

n∑
i=1

PQ0,gi
{D(θ0)}2 − E

1

n

n∑
i=1

PQ0,gi
{D(θ0)}2 → 0, (14)

and
1

n

n∑
i=1

PQ0,gi

d

dθ0

D(θ0)− E
1

n

n∑
i=1

PQ0,gi

d

dθ0

D(θ0) → 0, (15)

as n→∞ a.s.

If D(θ0)(Oi, Zi) is only a function of Oi (e.g., D(θ0) is score at θ0 of
correctly specified parametric model {Qθ : θ} for Q0 or a martingale
estimating function as presented in Section 6), then (14) becomes

PQ0,ḡn−EḡnD(θ0)
2 → 0 (16)

in probability as n→∞, where ḡn = 1
n

∑n
i=1 gi. Similarly, for d

dθ0
D(θ0).

If the design is a targeted design, gi = gθi−1
, then this ”asymptotic stable

design” condition can be concluded from the asymptotic convergence of
θn to θ0 as n→∞, and continuity of θ → gθ, by Theorem 6.

Differentiability: Assume

1

n

n∑
i=1

{D(θn)(Oi, Zi)−D(θ0)(Oi, Zi)} =
1

n

n∑
i=1

d

dθ0

D(θ0)(Oi, Zi)(θn − θ0)
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up till (i.e., plus) a term oP (‖ θn − θ0 ‖), where ‖ d
dθ0
D(θ0) ‖∞<∞.

By the Kolmogorov Law of Large numbers for martingale sums, and by
assumption (15), we have

1

n

n∑
i=1

d

dθ0

D(θ0)(Oi, Zi)− An → 0

as n→∞ a.s, where

An ≡ E
1

n

n∑
i=1

PQ0,gi

d

dθ0

D(θ0).

Invertibility of An: Assume A−1
n exists, and lim supn→∞ ‖ A−1

n ‖< ∞. If
An → A0 for some fixed matrix A0, as n→∞, then it suffices to assume
A−1

0 exists.

Positive Definite Covariance Matrix: Let

Σ(n) ≡ E
1

n

n∑
i=1

PQ0,gi
{D(θ0)}2 .

If D(θ0)(Oi, Zi) = D(θ0)(Oi), then this reduces to Σ(n) ≡= EPQ0,ḡnD(θ0)
2 =

PQ0,EḡnD(θ0)
2.

Assume that for each λ ∈ IRd lim infn→∞ λΣ(n)λ > 0 for all λ, or that
Σ = limn→∞ Σ(n) exists and is a positive definite covariance matrix.

Then
√
n(θn − θ0) =

1√
n

n∑
i=1

A−1
n D(θ0)(Oi, Zi) + oP (1),

where PQ0,gi
D(θ0) = 0, so that the sum is a multivariate Martingale satisfying

the conditions of the Martingale central limit theorem. In particular,

Σ(n)−1/2An(
√
n(θn − θ0)) ⇒d N(0, I), as n→∞.

If Σ(n) → Σ for some positive definite matrix Σ and An → A0 for an invertible
matrix A0, as n→∞, then this implies

√
n(θn − θ0) ⇒d N(0, A−1

0 ΣA−1>
0 ).

A consistent estimate of the covariance matrix Σ(n) is given by

Σ̂(n) =
1

n

n∑
i=1

(
D(θn)(Oi, Zi)−

1

n

n∑
i=1

D(θn)(Oi, Zi)

)2

satisfying
Σ̂(n)− Σ(n) → 0 in probability, as n→∞.
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Discussion of conditions. We already discussed the conditions needed for
consistency of θn. Since θ is finite dimensional the covering number bound
will hold in essentially each practical application, assuming that the estimat-
ing functions are uniformly bounded. As a consequence, the consistency of θn
will hold whenever the design gn allows identification of θ0 as n → ∞. The
differentiability condition holds, for example, if D(θ)(O,Z) is differentiable in
θ with a bounded derivative uniformly in (O,Z), and is therefore also a very
mild regularity condition. The invertibility of A0 and the positive definite ma-
trix assumption correspond closely with simply assuming that the estimating
function D identifies θ0:

∑
i PQ0,gi

D(θ) = 0 implies θ = θ0. We conclude that,
for most practical purposes, the important conditions are that the estimat-
ing function is uniformly bounded, and that the adaptive design gn (gn being
a random conditional distribution of Ai, given Xi, in G) is asymptotically
non-random in the sense that gn − Egn converges, as a difference of random
elements in G, to the zero function in probability as n → ∞. For example,
this will hold if gi = gi,θi−1

is a (possibly) i-specific deterministic function of
an estimator θi−1 based on O1, . . . , Oi−1. Thus, even if one keeps switching
from one asymptotically stable targeted design to another asymptotically sta-
ble targeted design, this asymptotic stability assumption will still hold. For
example, if half-way during the trial one suddenly decides that the adaptive
design should be focussing on another target, then that will not violate the as-
sumptions needed for honest asymptotic statistical inference. The important
property of the adaptive design asymptotic statistical inference relies upon is
that it responds to a finite number of summary measures which are asymptot-
ically consistent, but switching between different ways of responding to these
same summary measures is allowed.

Proof of Theorem 7. Because
∑
iD(θn)(Oi, Zi) =

∑
i PQ0,gi

D(θ0) = 0,
we have

1

n

n∑
i=1

(D(θn)(Oi, Zi)−D(θ0)(Oi, Zi)) = − 1

n

n∑
i=1

{D(θ0)(Oi)− PQ0,gi
D(θ0)}.

By the consistency and differentiability assumption,

1

n

n∑
i=1

(D(θn)(Oi)−D(θ0)(Oi)) = An(θn − θ0) + oP (‖ θn − θ0 ‖)

for a uniformly (in n) invertible matrix An. Thus,

(θn − θ0) = −A−1
n

1

n

n∑
i=1

{D(θ0)(Oi, Zi)− PQ0,gi
D(θ0)}+ oP (‖ θn − θ0 ‖). (17)
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The first term on the right hand side is a martingale sum. Because of the
bounded estimating function, asymptotically stable design, and positive defi-
nite covariance matrix assumptions, we can apply Theorem 17 to 1/

√
n
∑
i{D(θ0)(Oi, Zi)−

PQ0,gi
D(θ0)}, which gives us that the standardized version of this martingale

sum converges to a standard multivariate normal distribution:

Σ(n)−0.5 1√
n

n∑
i=1

{D(θ0)(Oi, Zi)− PQ0,gi
D(θ0)} ⇒d N(0, I). (18)

Substitution of this result in (17) shows that ‖ θn−θ0 ‖= OP (1/
√
n)+oP (‖ θn−

θ0 ‖), which proves that ‖ θn−θ0 ‖= OP (1/
√
n). Therefore, the oP (‖ θn−θ0 ‖)

in (17) can be replaced by oP (1/
√
n), giving us

An(
√
n(θn − θ0)) = − 1√

n

n∑
i=1

{D(θ0)(Oi, Zi)− PQ0,gi
D(θ0)}+ oP (1).

By (18), this gives us the wished result:

Σ(n)−0.5An(
√
n(θn − θ0)) ⇒d N(0, I).

The fact that Σ̂(n) consistently estimates Σ(n) is a consequence of Theorem
18, the consistency of θn to θ0, and the assumption that PQ0,gnD(θ0) → 0 in
probability as n→∞. This completes the proof of Theorem 7. 2

12 The One Step Targeted MLE.

Consider the Q0-factor of the likelihood (3) of (O1, . . . , On) ∼ PQ0,g with
Oi = (Ai, Li = Xi(Ai)) for an adaptive design g = (g1, . . . , gn):

Ln(Q0) =
n∏
i=1

Q0(Oi).

Let ψ0 = Ψ(Q0) ∈ IRd be the Euclidean parameter of interest for a parameter
mapping Q → Ψ(Q) on a model Q for Q0. It is assumed that Ψ is path-wise
differentiable at any fixed design PQ0,g0 ∈ M(g0) ≡ {PQ,g : Q ∈ Q}, g0 ∈ G,
in the fixed design CAR-model M(g0), and let D∗(Q, g) denote the efficient
influence curve/canonical gradient of the path-wise derivative at a fixed design
distribution PQ,g ∈ M(g). Recall that each density pQ,g in this fixed design
model M(g) factorizes, by CAR: pQ,g(A,L) = Q(A,L)g(A | X). The goal
is to construct a likelihood based estimator of ψ0 under sampling O1, . . . , On

from an adaptive design data generating distribution PQ0,g (3) in the model
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{PQ,g : Q ∈ Q}. However, it is assumed that Q is a semi-parametric and high
dimensional (e.g., nonparametric) model for Q0 so that a standard MLE is not
possible due to the curse of dimensionality.

Consider a parametric sub-model/working model Qw = {Qθ : θ ∈ Θ} ⊂ Q
of Q.

The standard MLE for the working model Qw targets the ”parameter”
arg maxθ∈Θ

∑n
i=1 PQ0,gi

logQθ, which equals Θḡn(Q0) ≡ arg maxθ∈Θ PQ0,ḡn logQθ,
where ḡn = 1/n

∑n
i=1 gi. Thus, a standard working model MLE does corre-

spond with a data adaptive choice ḡn for g∗ in the Q0-parameter Θg∗(Q0) =
arg maxθ∈Θ PQ0,g∗ logQθ, which heavily complicates the analysis of this esti-
mator: in particular, it will become important how fast ḡn converges to its
unknown limit fixed design. Therefore we focussed in Section 8 on an estima-
tor of Θg∗(Q0) for a known fixed design g∗ or sequentially estimated g∗ so that
the resulting estimator θn solves a martingale based estimating equation.

Specifically, in Subsection 8.4 we proposed estimators of Θg∗(Q0) for a
fixed known g∗. We showed that one can estimate Θg∗ with a weighted MLE
by assigning weights wi = g∗/gi, i = 1, . . . , n, to the standard MLE. This
weighted MLE corresponds with solving the Martingale estimating function
D(θ)(Oi, Zi) = S(θ)g∗/gZi

for θ0 = Θg∗(Q0), where S(θ) is the score at θ.
In addition, we also showed in Subsection 8.5 that one can empirically

adjust the weighting g∗/gi sequentially, based on a design function gθ, so that
the final and only used weighting will be gθn/gi, (e.g., gi = gθi−1

), which will
likely result in more stable weights, and therefore represents our method of
choice in practice. We also showed in Subsection 8.5 that this data adaptively
weighted MLE θn can be viewed as a solution of a Martingale equation (along
with other parameters not further used).

In general, in the following presentation of the one-step targeted MLE, θn
can represent any estimator solving

1

n

n∑
i=1

D(θn)(Oi, Zi) = 0,

for some Martingale estimating function D(θ), and θ0 ∈ Θ represents a fixed
(non-random) solution of PQ0,gi

D(θ0) = 0 for all i. The estimator Qθn repre-
sents the initial estimator in the one-step targeted MLE update.

The (e.g., weighted ML) estimator Qθn of Q0 for a misspecified working
model Qw = {Qθ : θ ∈ Θ} (i.e., Q0 6∈ Qw) will typically map into a biased
estimator Ψ(Qθn) of ψ0 = Ψ(Q0): i.e., Ψ(Qθ0) 6= Ψ(Q0). However, as shown in
van der Laan and Rubin (2006) for fixed designs, one can select an ε-fluctuation
{Qθn(ε) : ε} of this estimatorQθn with parameter ε so that maximum likelihood
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estimation of ε results in a drastic reduction in asymptotic bias of Ψ(Qθn(εn))
w.r.t. ψ0: in fact, as shown in van der Laan and Rubin (2006) this one-step
update or an iteration of this update maps an inconsistent estimator Ψ(Qθn)
into a consistent and asymptotically normally distributed estimator of ψ0. In
this section we are concerned with constructing such a targeted MLE update of
Qθn and corresponding targeted MLE of ψ0, as originally presented in van der
Laan and Rubin (2006) for fixed CAR designs (i.e., O1, . . . , On i.i.d. PQ0,g),
for general adaptive CAR designs for (O1, . . . , On) ∼ PQ0,g at Q0 ∈ Q.

For any Q ∈ Q and fixed design g ∈ G, let D∗(Q, g) be the efficient
influence curve of Ψ at corresponding density pQ,g = Qg in the model M(g) =
{pQ,g : Q ∈ Q}. Before we proceed to provide the definition of the targeted
MLE for adaptive designs, we wish to explain in general terms that D∗ is an
estimating function for densities targeted towards the parameter of interest ψ0,
since this will provide the fundamental motivation and robustness property of
the targeted MLE w.r.t. misspecification of the working model Qw.

The (efficient) influence curve estimating function targets the pa-
rameter of interest: If the parameter Ψ is linear and the model is convex,
then one will typically have for any g ∈ G, and thus also for the random fixed
design gZi

∈ G, PQ0,gD
∗(Q, g) = Ψ(Q0) − Ψ(Q) for all Q ∈ Q (van der Laan

(1998)), which makes D∗ an estimating function fully targeted towards the
parameter ψ0: that is, PQ0,gD

∗(Q, g) = 0 implies Ψ(Q) = ψ0. In general, by
the general representation theorem for the efficient influence curve as a Dou-
ble robust Inverse Probability of Censoring Weighted mapping on a full data
estimating function/gradient (Theorem 1.3, van der Laan and Robins (2003)),
we have for any influence curve D(Q, g) PQ0,gD(Q, g) = E0D

F (Q)(X) for a
full data estimating function/gradient DF of the path-wise derivative of Ψ
in the full data model for ψ0. Thus, if PQ0,gD(Q, g) = 0, then this implies
E0D

F (Q)(X) = 0. As a consequence, if E0D
F (Q)(X) = 0 implies Ψ(Q) = ψ0,

then again the estimating function D, and, in particular, D∗, is fully targeted
at ψ0.

Even if Ψ is not linear or the model is not convex, and the latter identi-
fiability property of the full data gradient does not fully (not for all Q ∈ Q)
apply, by the fact that D (or DF ) is a gradient of the path-wise derivative of Ψ
(Chapter 1, van der Laan and Robins (2003)), the estimating function D will
typically satisfy this relation up till a second order term, and therefore it is still
an estimating function targeting ψ0: E0D

F (Q) will behave like Ψ(Q0)−Ψ(Q)
plus a second order difference between Q and Q0. In particular, Q will at most
need to correctly specify a nuisance parameter required to evaluate DF (Q).
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In this section we present two one-step Targeted MLE’s. These targeted
MLE’s generalize the one-step targeted MLE in van der Laan and Rubin (2006)
for fixed designs. Our central limit theorem presented in Section 14 below
applies to each of these targeted MLE’s.

12.1 One step targeted MLE for adaptive designs.

In this subsection we will present two simple one step targeted MLE of ψ0

based on the initial (e.g., ML) estimator Qθn of Q0 according to a working
model Qw = {Qθ : θ ∈ Θ}.

For a given Q ∈ Q, let {Qg(ε) : ε} ⊂ Q be a path crossing Q at ε = 0 (i.e.,
Q(0) = Q) indexed by a choice of fixed design g ∈ G. It is recommended to
satisfy

d

dε
logQg(ε)(O)

∣∣∣∣∣
ε=0

= D∗(Q, g)(O), (19)

where D∗(Q, g) is the efficient influence curve of Ψ at PQ,g ∈M(g) = {PQ1,g :
Q1 ∈ Q}. In this manner Qg(ε) represents an optimal stretching strategy in
which a small stretch of Q as measured by ε maximizes the change in the
parameter of interest Ψ. This latter statement follows from the fact that for
a path Q(ε) with score s = d

dε
logQ(ε)

∣∣∣
ε=0

we have

d

dε
Ψ(Q(ε))

∣∣∣∣∣
ε=0

= EQ,gD
∗(Q, g)(O)s(O),

and the Cauchy-Schwarz inequality (so that among all scores s with variance
1 the optimal score is D∗(Q, g)). (This latter property (19) is not required to
establish consistency and asymptotic normality of the resulting estimator of
ψ0.) If the choice g is a targeted design choice gQ corresponding with Q itself,
then the latter condition gives:

d

dε
logQ(ε)(O)

∣∣∣∣∣
ε=0

= D∗(Q, gQ)(O). (20)

We will apply this path to Qθn so that for a choice g such as g = gθn condition
(19) yields

d

dε
logQθn,gθn

(ε)(O)

∣∣∣∣∣
ε=0

= D∗(Qθn , gθn)(O).

If the adaptive design gn is itself a targeted design, gn = gθn−1 , then we rec-
ommend to set g = gθ equal to the design function the actual adaptive design
is based upon.
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Although, the score condition (19) on this path {Q(ε) : ε} is not necessary
for the asymptotic normality and robustness of the targeted MLE of ψ0, as is
evident from our next CLT theorem, it does typically imply that our definition
of one-step targeted-MLE update of the initial Qθn , as defined in the next
paragraph below, corresponds with maximizing or increasing the likelihood
over ε, which is a nice property to have for finite sample performance. At
the end of this subsection we present valid approaches in the context that the
efficient influence curve D∗(Q, g) is too complex to calculate, but ad hoc (and
reasonably efficient) influence curves D(Q, g) are available.

Let εn be a value, preferably so that the likelihood ofO1, . . . , On atQθn(εn) =
Qθn,gθn

(εn) (i.e.,
∏
iQθn(εn)(Oi)) is larger than the likelihood at Qθn (i.e.,

ε = 0), either solving the equation

1

n

n∑
i=1

D∗(Qθn(εn), gZi
)(Oi) = 0 or oP (1/

√
n),

or solving the equation

1

n

n∑
i=1

D∗(Qθn(εn), gθn)(Oi)
gθn(Ai | xi)
gZi

(Ai | Xi)
= 0 or oP (1/

√
n).

Given the resemblance of the one-step targeted MLE with the iterative tar-
geted MLE in Section 13, it can be argued that this solution εn will typically
correspond with increase in likelihood relative to ε = 0, and in various of our
examples εn happens to be equal to an actual weighted maximum likelihood
estimator over ε.

If multiple solutions exist, then one selects the one which maximizes the
likelihood of O1, . . . , On. If no solutions exists, one finds first an ε1n increasing
the likelihood, update the estimate of Q0 with Q1

n = Qθn(ε1n), create the path
Q1
n(ε) as above, and one defines εn as the solution of one of these equations

above with Qθn replaced by the updated Q1
n. If still no solution can be found,

one iterates this process till a solution is found or till convergence. If the score
condition (19) holds, then, under weak conditions, the sequence Qk

n converges
in k to a solution of the efficient influence curve equation (even if for each k
no solution exists), as shown in van der Laan and Rubin (2006). We will not
further repeat this modification, but proceed as if a solution εn can be found
at the first try.

Let ε0 be the asymptotic target of εn satisfying:

PQ0,gi
D∗(Qθ0(ε0), gi) = 0, i = 1, . . . , n,
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or
PQ0,gi

D∗(Qθ0(ε0), gθ0)
gθ0
gi

= 0, i = 1, . . . , n,

where Qθ0(ε0) = Qθ0,gθ0
(ε0) corresponds with a choice g0 = gθ0 ∈ G fully

identified by θ0. Since, by the fact that D∗ is an influence curve/gradient,
PQ0,gD

∗(Q, g) = EQ0D
F (Q), as explained above, PQ0,gi

D∗(Qθ0(ε0), gi) = EQ0D
F (Qθ0(ε0))

does not depend on i so that this condition follows if ε0 is defined as solution
of EQ0D

F (Qθ0(ε0)) = 0. If gθ0/gi <∞, then by the same argument

PQ0,gi
D∗(Qθ0(ε0), gθ0)

gθ0
gi

= PQ0,gθ0
D∗(Qθ0(ε0), gθ0)

= EQ0D
F (Qθ0(ε0)),

so that also for this choice of estimating function ε0 is defined as the solution
of EQ0D

F (Qθ0(ε)) = 0.
Given εn, our one step targeted (towards ψ0) MLE (update of) Qθn is

defined as Qθn(εn) = Qθn,gθn
(εn), and our resulting one step targeted ML

estimator of ψ0 is given by the substitution estimator Ψ(Qθn(εn)). The theorem
below is concerned with the analysis of this estimator.

In our CLT Theorem 8 for this one-step targeted MLE presented in a later
section, we assume the path Qθ,gθ

(ε) for a choice gθ. Then, we can define the
Martingale estimating function

D(θ, ε)(Oi, Zi) ≡ (D(θ)(Oi, Zi), D
∗(Qθ,gθ

(ε), gZi
)(Oi)),

or

D(θ, ε)(Oi, Zi) ≡
(
D(θ)(Oi, Zi), D

∗(Qθ,gθ
(ε), gθ)(Oi)

gθ(Ai | Xi)

gi(Ai | Xi)

)
.

Thus, D(θ, ε) is the vector estimating function obtained by stacking the Mar-
tingale estimating function D(θ) for θ0 onto the efficient influence curve based
martingale estimating function D∗(Qθ(ε), gi) or D∗(Qθ(ε), gθ)gθ/gi for ε0. We
have

0 =
1

n

n∑
i=1

D(θn, εn)(Oi, Zi)

0 = PQ0,gi
D(θ0, ε0), i = 1, . . . , n.

As a consequence, we can apply Theorem 7 to this augmented Martingale esti-
mating function D(θ, ε), or equivalently, we can apply Theorem 8 to establish

81

Hosted by The Berkeley Electronic Press



consistency and asymptotic normality of ψn = Ψ(Qθn(εn)) at
√
n-rate as an es-

timator of the parameter Ψ(Qθ0(ε0)). It remains to show that Ψ(Qθ0(ε0)) = ψ0:
i.e., that the ε0-target is indeed providing the wished robustness.

Consider the second choice of Martingale estimating function for ε0, given
θ0: the same argument applies to the first. Under the assumption that
gθ0/gi < ∞, and that ε0, θ0 solve the expectation under PQ0,gi

of the mar-
tingale estimating function, we have

0 = PQ0,gi
D∗(Qθ0(ε0), gθ0)

gθ0
gi

= PQ0,gθ0
D∗(Qθ0(ε0), gθ0)

= E0D
F (Qθ0(ε0)).

Thus, if E0D
F (Q) = 0 implies Ψ(Q) = ψ0, then it follows that Ψ(Qθ0(ε0)) =

ψ0. In this case, our CLT theorem proves that ψn = Ψ(Qθn(εn)) is a consistent
and asymptotically normally distributed estimator of ψ0. Specifically, one can
argue that it satisfies the Martingale asymptotic linearity result:

ψn − ψ0 =
1

n

n∑
i=1

D∗(Qθ0(ε0), gθ0)
gθ0
gi

+ oP (1/
√
n).

As a consequence, if gi = gθi−1
is a targeted design based on design function

θ → gθ, then ψn is asymptotically normally distributed with covariance matrix
equal to the covariance matrix of the fixed design efficient influence curve
D∗(Qθ0(ε0), gθ0) at Qθ0(ε0) and gθ0 under sampling from fixed design PQ0,gθ0

.
Thus, by using the adaptive design, the targeted ML estimator is able to
achieve the performance one would have had with the unknown wished fixed
design gθ0 .

Remark: Generalization of one-step Targeted MLE of fixed designs.
If O1, . . . , On are actually i.i.d. PQ0,g0 for some fixed CAR design g0, then
gi = g0 and one would set gθ = g0 so that wi = 1. Indeed, in this case the two
one-step targeted MLE’s presented above are identical to the one-step targeted
MLE as presented in van der Laan and Rubin (2006) for fixed designs.

Remark: Generalization to the use of any gradient instead of efficient
influence curve in the ε-update. We can also define εn as solution of

0 =
n∑
i=1

D(Qθn,gθn
(εn), gi)(Oi), (21)

or

0 =
n∑
i=1

D(Qθn,gθn
(εn), gθn)

gθn(Ai | Xi)

gi(Ai | Xi)
, (22)
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where D(Q, g) is a gradient of the path-wise derivative of Ψ : M → IRd at
PQ,g in the fixed design model M(g) = {PQ1,g : Q1 ∈ Q}. That is, if the
efficient influence curve D∗ is not available in closed form, then one could
decide to replace it by another influence curve/gradient which does exist in
closed form. An example of this kind of targeted estimator is the Inverse
Probability of Censoring Weighted Reduced Data Targeted MLE as presented
in a later section.

In this case, application of Theorem 8 yields, under the stated regularity
conditions, that the resulting estimator one-step targeted MLE ψn satisfies

ψn − ψ0 =
1

n

n∑
i=1

D(Qθ0(ε0), gθ0)(Oi)
gθ0(Ai | Xi)

gi(Ai | Xi)
+ oP (1/

√
n).

As a consequence, if gi → gθ0 as i→∞, then the asymptotic limit distribution
of
√
n(ψn−ψ0) is now equivalent with the multivariate normal distribution of

an asymptotically linear estimator of ψ0 with influence curve D(Qθ0(ε0), gθ0)
under a fixed design PQ0,gθ0

. Although, replacing the efficient influence curve
by another influence curve negatively affects the efficiency of ψn, these kind
of estimators will be practically appealing in models in which the efficient
influence curve does not exist in closed form.

In this context in which the efficient influence curve is too complex, one
will also need to decide what kind of paths Qθ,g(ε) ∈ Q through Qθ to use. A
path with score D(Q, g) at ε = 0 will typically not be a valid submodel of Q
since D(Q, g) is not a score at PQ,g: recall, that the efficient influence curve
is the only influence curve which can be approximated by linear combinations
of scores. We wish to select a path Qθ,g(ε) through Qθ at ε = 0, and which
increases the likelihood at a solution εn of (22) (or, if one uses the first equation,
then (21)). Natural extensions supported by the data might be available (e.g.,
adding a related covariate to the current regression model fit Qθn), so that
εn (which is targeted to obtain an unbiased improved fit for ψ0) will typically
result in an increased likelihood relative to ε = 0. One could also define a
user supplied class of extensions and maximize the information bound for ψ0

at ε = 0 for each of these extensions, so that the resulting proposed extension
(identifies a good stretching strategy and) generalizes the efficient influence
curve based extension (maximizing over all allowed extensions) provided above.

Targeted log-likelihood loss function for selection. As in van der Laan
and Rubin (2006), we can view − logQ(ε0) as a new so called targeted log like-
lihood loss function for Q (compare with standard − logQ log likelihood loss),
indexed by the nuisance parameter ε0, where EQ0D

F (Q(ε0)) = 0 by definition
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of ε0. The corresponding targeted log likelihood and cross-validated targeted
log-likelihood can now be used to select among different initial estimators Qθn

(i.e., working models) or to make other selections of fine tuning parameters.

Why not use a path indexed by adaptive design itself? The simplest
generalization of the targeted MLE for fixed designs would be to replace the
path Qθ,g(ε) describing the fluctuation of an initial Qθ indexed by fixed design
g, by a path Qθ,gi

(ε) and let ε0 be solution of
∑
i PQ0,gi

D∗(Qθ0,gi
(ε), gi) = 0.

However, this latter equation reduces now to EQ0D
F (Qθ0,gi

(ε)) = 0 for the
corresponding full data gradient DF , which makes ε0 a function of the gi’s
and thereby random. This is the reason for using a path at g = gθ as in our
presentation of the one-step targeted MLE’s above: either use D(Qθ,gθ

(ε), gi)
or D(Qgθ

(ε), gθ)gθ/gi.

13 An iterative targeted MLE.

As in the previous section, for a given Q ∈ Q and g ∈ G, consider a path
{Qg(ε) : ε} with Qg(0) = Q and

d

dε
logQg(ε)

∣∣∣∣∣
ε=0

= D∗(Q, g), (23)

where D∗(Q, g) is the canonical gradient (i.e., efficient influence curve) of Ψ :
M → IRk at a fixed design PQ,g ∈ M = {PQ,g : Q ∈ Q, g ∈ G}. Let θn be a
solution of a Martingale estimating equation 0 =

∑
iD(θ)(Oi, Zi) = 0 based

on a working model {Qθ : θ ∈ Θ}, where we recall that such estimators are
discussed above, and presented in previous Section 8. The iterative targeted
MLE represents takes an initial estimator Qθn and maps it into an update.

The iterative Targeted MLE (update of Qθn): Consider a map-
ping/design function θ → gθ ∈ G. To maximize stability of the weighting
in the targeted MLE presented below, one should try to select this mapping
so that the actual adaptive design gn is well approximated by gθn : i.e., if gn
equals a targeted adaptive design gθn−1 based on design function θ → gθ, then
we recommend this choice. Given this choice of θ → gθ, consider the MLE of
ε

ε1n = arg max
ε

n∑
i=1

logQθn,gθn
(ε)(Oi)wi,

where wi =
gθn (Ai|Xi)

gi(Ai|Xi)
, i = 1, . . . , n. For notational convenience, let Q0

n ≡ Qθn .

The MLE ε1n defines an update Q1
n = Q0

n(ε
1
n) of Q0

n. Note that Q1
n = Qθn(ε1n) is
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defined by (θn, ε
1
n). We also note that under a standard regularity condition,

ε1n solves its score equation and is thus a solution of the estimating equation
0 =

∑
iD

0(θn, ε
1
n)(Oi, Zi) = 0, where

D0(θ0, ε
1
0) ≡

d

dε10
logQθ0gθ0

(ε10)
gθ0
gi
.

We now iterate this ML-step to define a sequence of updates Qk+1
n = Qk

n(ε
k+1
n ),

starting withQ0
n = Qθn , whereQk

n(ε) = Qk
ngθn

(ε) is the pathQg(ε) withQ = Qk
n

and g = gθn as defined above. Thus

εkn = arg max
ε

n∑
i=1

logQk−1
ngθn

(ε)(Oi)wi, k = 1, . . .,

where wi = gθn/gi as above. We iterate this till εkn ≈ 0, and the iterative
targeted MLE update of Qθn is defined as Qk

n for this large enough k, and the
corresponding targeted MLE of ψ0 is defined as ψn = Ψ(Qk

n).
In the following subsection we show that one can still view this iterative

targeted MLE update as a solution of a martingale estimating equation so
that our CLT-theorem 8 can be applied. In particular, under the appropriate
regularity conditions, it will satisfy the Martingale asymptotic linearity result:

ψn − ψ0 =
1

n

n∑
i=1

D∗(Qk+1
0 , gθ0)

gθ0
gi

+ oP (1/
√
n),

where Qk+1
0 represents the target/limit of the k+ 1-th step targeted MLE up-

date Qk+1
n = Qk

n(ε
k+1
n ). Statistical inference can now be based on this asymp-

totic linearity result. As a consequence, if gi = gθi−1
is a targeted design based

on design function θ → gθ, then ψn is asymptotically normally distributed
with covariance matrix equal to the covariance matrix of the fixed design ef-
ficient influence curve D∗(Qk

0(ε
k+1
0 ), gθ0) at Qk

0(ε
k+1
0 ) and gθ0 under sampling

from fixed design PQ0,gθ0
. Thus, by using the adaptive design, the iterative

targeted ML estimator is able to achieve the performance one would have had
with the unknown wished fixed design gθ0 .

13.1 Martingale Estimating Function for the Iterative
Targeted MLE:

We will now show that our Theorem 8 can indeed be applied to analyze this
iterative targeted MLE.
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The true value ε10 is given by

ε10 = ε1gθ0
(Q0) ≡ arg min

ε
PQ0,gθ0

logQθ0(ε).

Thus, the joint parameter (θ0
n, ε

1
n) is a solution of a joint martingale esti-

mating equation defined by the martingale estimating function D1(θ0, ε
1
0) ≡

(D(θ0), D
0(θ0, ε

1
0)) for (θ0, ε

1
0): PQ0,gi

D1(θ0, ε
1
0) = 0 for all i, and

∑
iD

1(θn, ε
1
n)(Oi, Zi) =

0.
Similarly, since εkn is a MLE, under a mild regularity condition it will solve

its score equation

0 =
∑
i

d

dεkn
logQk−1

ngθn
(εkn)(Oi)wi.

Thus, εkn solves the estimating equation
∑
iD

k(θn, ε
1
n, . . . , ε

k−1
n , ε) = 0 in ε,

where Dk(·, ε)(Oi, Zi) = d
dε

logQ·(ε)wi, · represents (θn, ε
0
n, . . . , ε

k−1
n ) and we

index Qk
n = Qθn(ε1n, . . . , ε

k
n) by a vector θkn = (θn, ε

0
n, . . . , ε

k
n). The joint estimate

θkn = (θn, ε
0
n, . . . , ε

k
n) is a solution of a Martingale estimating equation implied

by a stacked Martingale estimating function

Dk(θkn) = Dk(θn, ε
1
n, . . . , ε

k
n) = (D(θn), D

1(θn, ε
1
n), . . . , D

k(θn, ε
1
n, . . . , ε

k
n)).

We have that Dk is the martingale estimating function for θkn obtained by
stacking the estimating functions for εjn, given θn, ε

1
n, . . . , ε

j−1
n , j = 0, . . . , k −

1, on top of the estimating function for θn, as above. To summarize, we
have

∑
iD

k(θkn)(Oi, Zi) = 0 and at the true values we have PQ0,gi
Dk(θk0) = 0,

completely analogue as above for k = 1.
In addition, since the log-likelihood increases at each step, under a mild

regularity condition (see also van der Laan and Rubin (2006)), we have εkn → 0
as k →∞. By (23) and εkn → 0 as k →∞, it is also a mild condition to assume
that for k large enough εk+1

n solves approximately the score equation at 0

n∑
i=1

D∗(Qk
n(ε

k+1
n ), gθn)(Oi)

gθn

gi
= oP (1/

√
n). (24)

That is, this iterative algorithm will converge to a solution of
∑
iD

∗(Q, gθn)gθn/gi =
0 in Q as k converges to infinity. For this large enough k, we define θkn =
(θn, ε

1
n, . . . , ε

k
n) and denote Qk

n with Qθk
n
.

We have
∑n
i=1 Dk(Qθk

n
) = 0 and

∑
iD

∗(Qθk
n
(εk+1
n ), gθn)gθn/gi = oP (1/

√
n).

In addition, we can define the true parameter values θk0 and εk+1
0 as above,

where θk0 solves
∑
i PQ0,gi

Dk(θk0) = 0 and, given θk0 , ε
k+1
0 solves

∑
iD

∗(Qθk
0
(εk+1

0 ), gθ0)gθ0/gi =

0. To summarize, we have
∑
iD

k(θkn)(Oi, Zi) = 0,
∑
iD

∗(Qθk
n
(εk+1
n ), gθ0)(Oi)gθ0(Ai |
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Xi)/gi(Ai | Xi) = 0, PQ0,gi
Dk(θk0) = 0, and PQ0,gi

D∗(Qθk
0
(εk+1

0 ), gθ0)gθ0/gi for
all i. Thus, we can apply Theorem 8 to establish consistency and asymptotic
normality of ψn = Ψ(Qθk

n
(εk+1
n )) at

√
n-rate as an estimator of Ψ(Qθk

0
(εk+1

0 ).
Under the assumption that gθ0/gi <∞, we also have

0 = PQ0,gi
D∗(Qθk

0
(εk+1

0 ), gθ0)
gθ0
gi

= PQ0,gθ0
D∗(Qθk

0
(εk+1

0 ), gθ0)

= E0D
F (Qθk

0
(εk+1

0 )) = 0.

Thus, if E0D
F (Q) = 0 implies Ψ(Q) = ψ0, then it follows that ψn is a consis-

tent and asymptotically normally distributed estimator of ψ0.

Remark I: First step Targeted MLE. Based on the results in van der
Laan and Rubin (2006) and simulations for the targeted MLE in fixed designs,
we suggest that most of the bias reduction of this iterative targeted MLE occurs
in the first step, and that the crucial equation (24) might already hold for the
first step targeted MLE, so that Theorem 8 is also applicable to this first step
targeted MLE.

Remark II: Generalization of k-th step Targeted MLE of fixed de-
signs. If O1, . . . , On are actually i.i.d. PQ0,g0 for some fixed CAR design g0,
gi = g0 and one would set gθ = g0 so that wi = 1, then the k-th step targeted
MLE is exactly the k-th step targeted MLE as presented in van der Laan and
Rubin (2006) for fixed designs. This proves that this iterative targeted MLE
generalizes the iterative targeted MLE for fixed designs in van der Laan and
Rubin (2006).

14 Central Limit Theorem for Targeted MLE.

The theorem below can be used to prove asymptotic normality for an estimator
ψn = Ψ(Qθn(εn)), given an estimator Qθn of Q0 according to a working model
Qw, where the path Qθ0(ε) through Qθ0 at ε = 0, and the target parameter
ε0 for εn are chosen so that Ψ(Qθ0(ε0)) = ψ0. A possible choice for θn is the
weighted MLE corresponding with the Martingale estimating function D(θ) =
S(θ)g∗/gi for some fixed design g∗ ∈ G, where S(θ) = d

dθ
logQθ. Other choices

are obtained by letting D(Q, g) be the efficient influence curve at PQ,g of an
extended parameter Θ : Q → IRd: Θ(Q0) = arg maxθ∈Θ PQ0,g∗ logQθ indexed
by a fixed design choice g∗, and to set D(θ)(Oi, Zi) = D(Qθ, gZi

)(Oi), or
D(θ)(Oi, Zi) = D(Qθ, g

∗)(Oi)g
∗/gZi

. We also showed how to construct such
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estimators based on an adaptively estimated g∗ (with gθn) corresponding with
a stacked martingale estimating function: see Subsections 8.4 and 8.5. Above,
in Section 13 we also showed how θ could play the role of an augmented
parameter θk = (θ, ε1, . . . , εk) solving a Martingale estimating function Dk(θk)
corresponding with the k-th step iterative targeted MLE.

Theorem 8 Consider the adaptive design experiment generating (O1, . . . , On) ∼
PQ0,gn ∈ {PQ,gn : Q ∈ Q}, as defined in (3). Here gn = (g1, . . . , gn),
gi = gZi

∈ G with probability 1, where Zi = Zi(O1, . . . , Oi−1) ∈ Z ⊂ IRk

is a k-dimensional summary measure for some fixed k, i = 1, . . . , n. Let Ψ :
M→ IRm be path-wise differentiable at each PQ,g ∈ M(g) = {PQ,g : Q ∈ Q}
for any g ∈ G, with efficient influence curve/canonical gradient D∗(Q, g).

A working model and initial estimator: Let Qw = {Qθ : θ ∈ Θ ⊂
IRd} ⊂ Q be a working model. Let θn be a solution in θ of a Martingale
estimating equation

1

n

n∑
i=1

D(θn)(Oi, Zi) = 0 or oP (1/
√
n),

so that for a fixed element θ0 of Θ

PQ0,gi
D(θ0) = 0 for i = 1, . . . , n. (25)

Let θ → gθ ∈ G be a mapping from Θ into the set of fixed designs. [It is rec-
ommended to chose this function θ → gθ so that gθn−1 equals or approximately
equals the design gn as n→∞.]

A targeted bias reduction path, and estimator: Consider a set
E ⊂ IRm containing 0. For each θ ∈ Θ, let {Qθ,g(ε) : ε ∈ E} ⊂ Q be a path so
that Qθ,g(0) = Qθ ∈ Q for all g ∈ G. Although not necessary for the conclu-

sions of this theorem, we recommend it to also satisfy d
dε

logQθ,g(ε)(O)
∣∣∣
ε=0

=

D∗(Qθ, g)(O). Given the function θ → gθ, let εn be a solution of

n∑
i=1

D∗(Qθn,gθn
(εn), gi)(Oi) = 0 or oP (1/

√
n).

or
n∑
i=1

D∗(Qθn,gθn
(εn), gθn)(Oi)

gθn(Ai | Xi)

gi(Ai | Xi)
= 0 or oP (1/

√
n).

Comment: In the context that the efficient influence curve/canonical gradient
D∗(Q, g) is too complex too calculate, then one can replace D∗(Q, g) by any
gradient D(Q, g) instead, and the results below apply with D∗(Q, g) replaced
by D(Q, g).
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Given θ0, let ε0 ∈ E be a fixed value satisfying

PQ0,gi
D∗(Qθ0,gθ0

(ε0), gi) = 0, i=1,. . . ,n.

Let D∗(θ, ε)(Oi, Zi) ≡ D∗(Qθ(ε), gZi
)(Oi), or D∗(θ, ε)(Oi, Zi) ≡ D∗(Qθ(ε), gθ)gθ(Ai |

Xi)/gZi
(Ai | Xi), i = 1, . . . , n.

An Augmented Martingale Estimating function: For each (θ, ε) ∈
Θ× E, we define the m+ d dimensional estimating function

D(θ, ε)(Oi, Zi) = (D(θ)(Oi, Zi), D
∗(θ, ε)(Oi, Zi)).

By the above conditions, we have that (θn, εn) ∈ Θ× E solves

0 =
1

n

n∑
i=1

D(θn, εn)(Oi, Zi) = 0,

and (θ0, ε0) ∈ Θ× E solves

0 = PQ0,gi
D(θ0, ε0) for all i.

Assume

Bounded estimating function: maxj supθ∈Θ,ε∈E ‖ Dj(θ, ε) ‖∞<∞.

Consistency: Assume ‖ (θn, εn) − (θ0, ε0) ‖ converges to zero in probability
as n→∞.

By Theorem 5 it suffices to assume that 1) F ≡ {(o, z) → D(θ, ε)(o, z)−
PQ0,gzD(θ, ε) : θ ∈ Θ, ε ∈ E} has a covering number N(δ,F , ‖ · ‖∞)
w.r.t. to supremum norm bounded by O(δ−q) for a q > 0, and 2) that,

E

(
1

n

n∑
i=1

PQ0,gi
D(θn, εn)

)2

→ 0,

as n→∞, implies ‖ (θn, εn)− (θ0, ε0) ‖→ 0 in probability, as n→∞.

Asymptotic stable design: Component wise

1

n

n∑
i=1

PQ0,gi
D − E

1

n

n∑
i=1

PQ0,gi
D → 0, in probability, as n→∞, (26)

for the following choices of matrix functions D of (Oi, Zi):

D = {D(θ0, ε0)}2

D =
d

d(θ0, ε0)
D(θ0, ε0).
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Comment: If the design is a targeted design, gi = gθi−1,εi−1
, then this

can be inferred from the asymptotic convergence of (θn, εn) to (θ0, ε0), as
n→∞.

Differentiability: Assume

1
n

∑n
i=1 (D(θn, εn))(Oi, Zi)−D(θ0, ε0)(Oi, Zi))

= 1
n

∑n
i=1

d
d(θ0,ε0)

D(θ0, ε0)(Oi, Zi)((θn, εn)− (θ0, ε0)) + oP (‖ (θn, ε0)− (θ0, ε0) ‖),

By the Kolmogorov LLN for martingale sums and the asymptotic stability
(26) of the design, we have

1

n

n∑
i=1

d

d(θ0, ε0)
D(θ0, ε0)(Oi, Zi)− An → 0 a.s., (27)

as n→∞, where An ≡ 1
n

∑n
i=1E0

d
d(θ0,ε0)

D(θ0, ε0)(Oi, Zi).

Invertibility of An: A
−1
n exists, and lim supn ‖ A−1

n ‖<∞.

Positive Definite Covariance Matrix: Let

Σ(n) ≡ E

(
1

n

n∑
i=1

PQ0,gi
{D(θ0, ε0)}2

)
.

Assume that for each vector λ ∈ IRd+m, we have lim infn→∞ λΣ(n)λ > 0,
or that Σ = limn→∞ Σ(n) exists and is a positive definite covariance
matrix.

Then

√
n((θn, εn)− (θ0, ε0)) =

1√
n

n∑
i=1

A−1
n D(θ0, ε0)(Oi, Zi) + oP (1),

where PQ0,gi
D(θ0, ε0) = 0 for all i, and the sum on the right hand side is a

Martingale satisfying the conditions of the Martingale central limit theorem.
In particular,

Σ(n)−1/2An(
√
n((θn, εn)− (θ0, ε0)) ⇒d N(0, I), as n→∞.

If Σ(n) → Σ for some positive definite matrix Σ, and An → A0, then this
implies √

n((θn, εn)− (θ0, ε0)) ⇒d N(0, A−1
0 ΣA−1>

0 ).

90

http://biostats.bepress.com/ucbbiostat/paper232



We also have that Σ(n) can be consistently estimated with

Σ̂(n) =
1

n

n∑
i=1

{
D(θn, εn)(Oi, Zi)−

1

n

n∑
i=1

D(θn, εn)

}2

.

Asymptotic equivalence with optimal fixed design: If 1) D(θ0, ε0)(Oi, Zi) =
D1(θ0, ε0, gZi

)(Oi) for some mapping (θ, ε, g) → D1(θ, ε, g), 2) gZi
= gθi−1

con-
verges to gθ0 for i → ∞ so that An → A0 = PQ0,gθ0

d
d(θ0,ε0)

D(θ0, ε0, gθ0) and

Σ(n) → Σ0 ≡ PQ0,gθ0
D(θ0, ε0, gθ0)

2 as n→∞, then the normal limit distribu-

tion of
√
n((θn, εn)−(θ0, ε0)) given N(0, A−1

0 Σ0A0) equals the limit distribution
under i.i.d. sampling from PQ0,gθ0

.
Robustness w.r.t. ψ0: Suppose, PQ0,gi

D∗(Qθ0(ε0), gi) = 0 implies Ψ(Qθ0(ε0))−
Ψ(Q0) = 0, i = 1, . . . , n. Then, by the delta-method applied to f(θ, ε) =
Ψ(Qθ(ε)), the above result implies that the

√
n(Ψ(Qθn(εn))−Ψ(Q0)) converges

in distribution to a multivariate normal distribution with mean zero, and spec-
ified covariance matrix in terms of the gradient of f and Σ.

In particular, if gn = gθn,εn is a targeted design so that gn → gθ0,ε0 and
An,Σn converge to the corresponding (with gθ0,ε0) fixed limits A0,Σ0 specified
above, then

√
n(Ψ(Qθn(εn)−ψ0) converges to a multivariate normal N(0,Σ0),

where Σ0 is the covariance matrix of the efficient influence curve D∗(Qθ0(ε0), gθ0,ε0)
under PQ0,gθ0,ε0

.

Remark. We also wish to present an alternative approach for analyzing
the targeted MLE, which also explains the last statement. For the sake of
illustration, let’s consider the case that −PQ0,gi

D∗(Q, gi) = Ψ(Q) − ψ0 (in
general, by the definition of pathwise differentiability, this holds up till a second
order term). Combining the latter identity with 1/n

∑
iD

∗(Qθn(εn), gi) = 0
yields immediately

Ψ(Qθn(εn))− ψ0 =
1

n

n∑
i=1

{D∗(Qθn(εn), gi)(Oi)− PQ0,gi
D∗(Qθn(εn), gi)}.

If one can now show that

oP (1/
√
n) =

1

n

n∑
i=1

{D∗(Qθn(εn), gi)(Oi)−D∗(Qθ0(ε0), gi)}

− 1

n

n∑
i=1

PQ0,gi
{D∗(Qθn(εn), gi)−D∗(Qθ0(ε0), gi)},

then one can conclude

√
n(Ψ(Qθn(εn))− ψ0) =

1√
n

n∑
i=1

D∗(Qθ0(ε0), gi)(Oi) + oP (1),
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where the right-hand side is a multivariate martingale converging to a multi-
variate normal distribution as n → ∞. Although this approach immediately
conjectures the asymptotic limit distribution of Ψ(Qθn(εn)), showing that the
empirical difference is oP (1/

√
n) is not any easier than our proof of the theo-

rem.

15 Statistical analysis of treatment effect in

targeted adaptive clinical trial, including

covariates.

We now generalize section 4 to the case that one also collects baseline covari-
ates on each subject, and the outcome (e.g., including primary and secondary
outcomes relevant for safety analysis) is allowed to be a vector.
Data and Parameter of Interest: Let Y (a) represent a treatment specific
outcome vector one would observe if the randomly sampled subject would be
assigned treatment or dose-level a ∈ A = {0, 1, . . . , k}, and letX = (W, (Y (a) :
a ∈ A)) ∼ PX0 represent the full data structure of interest consisting of the
treatment specific outcomes, and baseline covariates W . We will leave PX0

unspecified. Let X1, . . . , Xn be n i.i.d. draws of X. The scientific param-
eter is the causal effect of treatment on one particular outcome Y ∗ defined
as ψ0(a) = E0(Y

∗(a) − Y ∗(0)) = E0(Y
∗(a)) − E0(Y

∗(0)), where Y ∗(a) is a
component of Y (a). Let V ⊂ W ∈ {1, . . . , K} be a discrete component of
W indicating sub-group membership for a finite collection of subgroups of
interest, and let

ψ0(a, v) = E0(Y
∗(a)− Y ∗(0) | V = v)

denote the causal effect of treatment a relative to treatment a = 0 for sub-
group V = v, which represents another set of scientific questions of interest
corresponding with sub-group analysis.

Adaptive Designs: Let Ai be the treatment assignment for subject i,
i = 1, . . . , n, and let the observed data on the n subjects be Oi = (Wi, Ai, Yi =
Yi(Ai)), i = 1, . . . , n. Let g = (g1, . . . , gn) be a CAR adaptive design:

gi(a | Xi, O1, . . . , Oi−1) = P (Ai = a | Wi, O1, . . . , Oi−1), i = 1 . . . , n.

The CAR-assumption on the design requires Ai to be independent of the coun-
terfactual outcomes (Yi(a) : a ∈ A), conditional on Wi, and the data on the
previously recruited patients O1, . . . , Oi−1.
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Likelihood and Identifiability: Firstly, we note that the likelihood of
(O1, . . . , On) factorizes as:

PQ0,g(O1, . . . , On) =
n∏
i=1

Q10(Wi)Q20(Yi | Ai,Wi)
n∏
i=1

gi(Ai | Wi, Ō(i− 1)),

where the conditional density of Yi, given Ai = a, Wi, Q20(· | a,Wi), equals the
conditional density of Yi(a), given Wi, and Q10 denotes the marginal density
of W . In particular, it follows that for any CAR-adaptive design for which
lim infi→∞ gi(a | Wi)gi(0 | Wi) > 0, we have that the marginal causal effect
ψ0(a) is identified by the Q0-factor of the likelihood by the following relation:
for each i ∈ {1, . . . , n}

ψ0(a) = E0{E0(Y
∗
i | Ai = a,Wi)− E0(Y

∗
i | Ai = 0,Wi)}.

In general, under this same condition,

ψ0(a, v) = E0{E0(Y
∗
i | Ai = a,Wi)− E0(Y

∗
i | Ai = 0,Wi) | Vi = v}.

Maximum Likelihood Estimation: Consider a model Q2θ for the distribu-
tion of Y (a), given W , and the corresponding maximum likelihood estimator
θn:

θn = arg max
θ

n∑
i=1

logQ2θ(Yi | Ai,Wi).

We will leave the marginal distribution of W unspecified, so that this is es-
timated with the empirical probability distribution of W1, . . . ,Wn. We will
assume a separate model for each v for the conditional distribution of Y (a),
given W with V = v, so that θ = (θ(v) : v), and the maximum likelihood
estimator of θ0(v) is

θn(v) = arg max
θ

n∑
i=1

I(Vi = v) logQ2θ(Yi | Ai, Vi = v,Wi).

For example, for each v value, Q2vθ(v) might be a multivariate normal regression
model with parameters θ(v) for the vector outcome Y , conditional on A, W
with V = v, so that the maximum likelihood estimator will be a standard
multivariate regression estimator.

Targeted adaptive designs for efficient estimation of subgroup spe-
cific causal effects: A variety of adaptive designs are of interest in this set-
ting which includes covariates. In order to motivate a proposal we will present
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here, we first note the following. Let ψ0(j) = E0(Y
∗(j)− Y ∗(0)), j = 1, . . . , d

denote the marginal causal effect of treatment j relative to the control 0. The
efficient influence curve of ψ0 at Pθ0,g, g ∈ G, under i.i.d. sampling is given by
(see e.g., van der Laan and Robins (2003), van der Laan (2006a)):

Sj(θ0, g) = (Y − Eθ0(Y | A,W ))

(
I(A = j)

g(j | W )
− I(A = 0)

g(0 | W )

)
+Eθ0(Y | A = j,W )− Eθ0(Y | A = 0,W ).

The variance of Sj(θ0, g) under Pθ0,g is given by:

σ2(θ0)(j | W )

g(j | W )
+
σ2(θ0)(0 | W )

g(0 | W )
,

up till a term not depending on g. As in Section 2, it follows that the optimal
fixed design among all conditional distributions of A, given V , minimizing the
variance of the efficient influence curve Sj(θ0, g) is given by:

gθ0(j | V ) =
σ(θ0)(j | V )

σ(θ0)(0 | V ) + σ(θ0)(j | V )
(28)

gθ0(0 | V ) = 1− gθ0(j | V ), (29)

where σ2(θ0)(j | V ) = E0(σ
2(θ0)(j | W ) | V ) is the conditional expectation,

given V , of the conditional variance of Y , given A = j, W . This defines an
optimal targeted adaptive design for estimation of ψ0(j) only.

This motivates us to consider the general design function which allows
treatment Ai to be informed by the subgroup indicator Vi and the maximum
likelihood estimator of θ0 based on the previously i− 1 recruited subjects:

gi,θ0(· | v) ≡ arg min
g(0),...,g(k)

k∑
a=1

wi(θ0, v)(a)
2

(
σ2(θ0)(a | v)

g(a)
+
σ2(θ0)(0 | v)

g(0)

)
,

where
σ2(θ0)(a | v) ≡ Eθ0 [VARθ0(Y

∗ | a = a,W ) | V = v].

Writing g(0 | v) = 1−∑d
j=1 g(j | v), and setting the derivatives w.r.t. g(j | v),

j = 1, . . . , k, equal to zero provides us with the following closed form expression
for gi,θ0 :

gi,θ0(0 | v) =
σ(θ0)(0 | v)

σ(θ0)(0 | v) +
∑k
a=1wi(θ0, v)(a)σ(θ0)(a | v)

gθ0(a | v) = wi(θ0, v)(a)
σ(θ0)(a | v)
σ(θ0)(0 | v)

gi,θ0(0 | v).
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In order to provide some interpretation of this design function, consider
the case that treatment is binary and that the weights are set equal to 1. If
A ∈ {0, 1} is binary, and O = (W,A, Y ∗), then, for each subgroup V = v, the
optimal fixed design, among fixed designs depending on W through V only,
for estimation of the marginal treatment effect E(Y ∗(1) − Y ∗(0) | V = v) is

given by gθ0(1 | v) = σ(θ0)(0|v)
σ(θ0)(0|v)+σ(θ0)(1|v) , which agrees with the above formula

gθ0 . The corresponding adaptive design gi = gθi−1
, based on an estimator θi−1,

will thus be asymptotically optimal for the purpose of simultaneous efficient
estimation of all subgroup specific treatment effects ψ0(1, v), v = 1, . . . , K.

The corresponding adaptive design is thus defined as

gi(0 | v) =
σi−1(0 | v)

σi−1(0 | v) +
∑k
a=1wi(v)(a)σi−1(a | v)

gi(a | v) = wi(v)(a)
σi−1(a | v)
σi−1(0 | v)

gi(0 | v),

where σi−1(a | v) is an estimator of σ0(a | v) based on O1, . . . , Oi−1. For
example, if one assumes that the variance σ2

0(a,W ) does only depend on V ,
then a natural estimator of σ2(a, v) is the standard sample variance for the
subgroup indexed by v:

σ2
n(a, v) =

∑n
i=1 I(Vi = v, Ai = a)(Yi −mn(a, v))

2∑n
i=1 I(Vi = v, Ai = a)

,

where mn(a, v) =
∑n

i=1
I(Vi=v,Ai=a)Yi∑n

i=1
I(Vi=v,Ai=a)

.

Choosing the weights: The weights wi(v)(a) could be a function of
ψi−1(a, v) and corresponding standard error estimates. In addition, these
weights could be chosen to indicate safety issues with treatment a for sub-
group V = v, based on other asymptotically stable summary measures of
Ō(i− 1). Such an example of interest is to make the weights wi(v)(a) a func-
tion of regression estimators of other (than Y ∗) adverse clinical outcomes Yj
(j > 1) on treatment and covariates, stratified by V = v. In particular, if the
history Ō(i − 1) suggests that treatment a is not safe for subgroup v, then
this might result in setting wi(a, v) = 0 and thereby stopping the assignment
of treatment a for subgroup v for future subjects: gi(a | v) = 0.

15.1 MLE for correctly specified model.

Let’s now discuss the MLE in more detail. Consider a model assumingE0(Y (a) |
V = v,W ) = mv(a,W | β0(v)) for some parametrization mv(· | β), which thus
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also implies the same model for E(Yi | Ai = a, Vi = v,Wi), i = 1, . . . , n.
For example, if Y is univariate and continuous, then we assume that this
model specifies that Yi, given Ai = a, Vi = v,Wi, is normally distributed with
mean m(a, v,Wi | β0(v)) and variance σ2(a, v | γ(v)) for some parametrization
γ → σ2(a, v | γ(v)). If Y univariate and binary, then the modelm(a, v,Wi | β0)
already specifies the conditional distribution of Yi, given Ai = a,Vi = v, Wi.
If Y is univariate one typically either assumes a linear regression model or
a linear logistic regression model: i.e., m(a, v,W | β(v)) = β(v)(a,W ) or
m(a,W | β(v)) = 1/(1 + exp(−β(v)(a, w)). Let {Q2θ : θ} denote this model
for the conditional distribution of Yi, given Ai, Vi,Wi. Note that, if Y is uni-
variate, then either θ = (β(v), γ(v) : v) (linear) or θ = (β(v); v) (logistic).

We also wish to note that, if Y is multivariate, one could still only assume
a model for the univariate Y ∗, and work with the log-likelihood of the reduced
data (Wi, Ai, Y

∗
i ), since our theorems for consistency and asymptotic normal-

ity will still apply to the MLE’s for the reduced data or equivalently to the
solutions of the corresponding Martingale score/estimating equations. These
estimating equations derived from the log-likelihood of the reduced data will
still be Martingale estimating equations (assuming the models are correctly
specified), which ignore the information on the other outcomes, and thereby
will be inefficient (but possibly more robust due to less modelling). These
Martingale estimating equations result in consistent and asymptotically linear
estimators, by application of our theorems.

The maximum likelihood estimator of θ according to this model is com-
puted as in the standard i.i.d. case. For example, for the logistic regression
model for a univariate outcome Y ∗, the maximum likelihood estimator of β is
given by

βn(v) = arg max
β

n∑
i=1

I(Vi = v) log
{
m(Ai, v,Wi | β)Y

∗
i (1−m(Ai, v,Wi | β))1−Y ∗i

}
.

Given the maximum likelihood estimator γn of γ0, the maximum likelihood
estimator of β0 for the linear regression model is the weighted least squares
estimator defined as

βn(v) = arg min
β

n∑
i=1

I(Vi = v)
1

σ2(Ai, v | γn)
(Y ∗

i −m(Ai, v,Wi | β))2.

A particular estimator of σ2(a, v) is the standard sample variance σ2
n(a, v) for

the subgroup indexed by v.
The MLE of parameter of interest: Given the MLE θn, the corre-

sponding estimator of ψ0(a, v) is thus given by:

ψn(a, v) = En[Eθn(Y ∗ | A = a,W ) | V = v],
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where En(· | V = v) denotes the conditional expectation over W , given V = v
w.r.t. to the empirical probability distribution of W1, . . . ,Wn.

If the model Q = {Qθ : θ} for Q20 is correctly specified, then application of
our Theorems 5 and 7 for solutions of Martingale estimating equations (e.g.,
MLE) provides us with asymptotic consistency and asymptotic normality of
ψn(a, v), under the assumption that Y is uniformly bounded, lim infi→∞ gi(a |
v)gi(0 | v) > 0 (in other words, one needs to assume that the adaptive design
keeps assigning subjects to treatment arm a and 0 in subgroup v), and some
standard regularity/identifiability conditions on the regression model m as one
would need in the i.i.d case.

15.2 The targeted MLE for a semi-parametric model.

We will now show that we can also construct a targeted maximum likelihood
estimator ψn(a, v) which is still consistent for ψ0(a, v) and asymptotically nor-
mally distributed in the nonparametric model Q for Q0, even if the working
model Qw for Q0 is misspecified. For this we apply our Theorem 8 for the
targeted MLE as presented in Section 12 in general. The principle of targeted
maximum likelihood estimation is to map an initial estimator Qθn (repre-
senting the initial fit of the Q-factor of the likelihood representing both the
marginal distribution of W and the conditional distribution of Y , given A,W )
of a Qθ0 , indexed by a parameter θ0 of Q0, into an asymptotically unbiased
estimator of the parameter ψ0(a, v) in the actual (e.g.) nonparametric model
Q for Q0. Following the iterative targeted MLE as presented in Section 13,
this can be done by maximizing a weighted log-likelihood over a fluctuation
through this initial Q0

n = Qθn with parameter ε which has score at ε = 0 equal
to the (double robust!) efficient influence curve of ψ0 at fixed design PQ0

n,gθn
.

This type of targeted maximum likelihood estimation methodology was de-
veloped for i.i.d data structures in (van der Laan and Rubin (2006)) and it
is extended to adaptive designs in Sections 12 and 13. We refer to this new
update Q0

n(εn) of an initial fit Q0
n as the targeted maximum likelihood esti-

mator or update, and by our results, the corresponding substitution estimator
ψn(a, v) is now consistent and asymptotically linear in the large nonparametric
model Q under appropriate regularity conditions, even if the original working
model Qw = {Qθ : θ ∈ Θ} is misspecified. The strategy presented here will
compute the targeted maximum likelihood estimator for ψ0(a, v) separately
for each choice (a, v), instead of targeting the maximum likelihood estimator
for the vector parameter ψ0 with one update, though both strategies result
in the same asymptotic robustness against miss-specification of the working
model, and asymptotic consistency and CLT results.
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The true model Q for Q0 is now the nonparametric model. Firstly, we
note that, in the nonparametric model the efficient influence curve S∗av(Q, g)
of ψ0(a, v) under i.i.d. sampling PQ,g(= Qg) (where the FX-part of likelihood
is denoted with Q), with g ∈ G1 ⊂ G being a fixed design only depending on
W through V , is given by

S∗av(Q, g)(Oi) = I(Vi = v)(Y ∗
i −Q2(Ai,Wi))

{
I(Ai = a)

g(a | v)
− I(Ai = 0)

g(0 | v)

}
+I(Vi = v) {Q2(a,Wi)−Q2(0,Wi)− ψ(Q)(a, v)} ,

divided by the constant Q1(v) = PQ(V = v). Here Q includes both the
marginal distribution Q1 of W as well as the conditional distribution of Y ∗,
given A,W , while Q2(a,W ) denotes the conditional mean of Y ∗, given A,W ,
under Q (and Q1(v) = PQ(V = v)). In addition, Q0 denotes the true FX-factor
of the density PQ0,gi

of Oi, given Ō(i−1). In particular, ψ0(a, v) = Ψ(Q0)(a, v).
We denote the two components of S∗av as presented in the two lines with S∗1av
and S∗2av, respectively.

The important property of this efficient influence curve, our robustness
result for the targeted MLE is based upon, is that for all Q

1

n

∑
i

PQ0,gi
S∗av(Q, gi) =

Q0(v)

Q(v)
(Ψ(Q0)(a, v)−Ψ(Q)(a, v)) .

In particular, ifQ correctly specifies the marginal distribution of V (i.e, Q(v) =
Q0(v)), then the right-hand side equals ψ0(a, v)−Ψ(Q)(a, v).

To be specific, let’s consider the case that Y ∗ is binary, and let (a, v) be
given. The targeted MLE will be formulated separately for each combination
(a, v) of treatment arm a and subgroup v. Consider the following v-specific lo-
gistic regression model for P (Y ∗ = 1 | A,W, V = v) with additional coefficient
ε1:

Q2θ(ε1)(Y
∗
i = 1 | Ai,Wi, Vi = v) =

1

1 + exp
(
−β(Ai,Wi)− ε1

{
I(Ai=a)
gθ(a|v) −

I(Ai=0)
gθ(0|v)

}) ,
where the design function gθ is chosen so that gθn−1 equals the actual adaptive
design gn or approximates this adaptive design gn as n → ∞, and β(Ai,Wi)
denotes a particular linear combination of variables extracted from (Ai,Wi)
indexed by regression vector β.

Let βn be an weighted MLE corresponding with this model {Q2β(0) : β}
for P (Y ∗ = 1 | A,W, V = v), which corresponds with setting ε1 = 0, where
the weights are

wi =
g∗(Ai | Wi)

gi(Ai | Wi)
, i = 1, . . . , n
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for a user supplied fixed design g∗ (where in this caseWi can be replaced by Vi).
This inverse weighting makes sure that, if the working model is misspecified,
the asymptotic target of βn corresponds with a parameter β0 of Q0 indexed
by a known g∗, while without the weights the MLE targets a parameter of
Q0 indexed by a random ḡn for which the theory is unclear (see Section 11).
In particular, the weighting guarantees that the estimator solves a martingale
estimating equation so that our theory can be applied. In Section 11 we also
provide a method allowing sequential data adaptive estimation of g∗ with gθn

and show that our theory also applies to this method. It remains to be seen if
this fixed g∗ weighting or sequential data adaptive weighting is also important
in practice. In particular, we suggest that using g∗ = gn or g∗ = ḡn might still
result in appropriate estimators and statistical inference.

Let Q2θn = Q2θn(0) be the fit of P (Y ∗ = 1 | A,W, V = v) correspond-
ing with this estimator βn (and setting ε1 = 0). Here we suppressed the
dependence on v of this model, the parameters, and the estimators of these
parameters. We note that the score of ε1 at ε1 = 0 at the maximum likeli-
hood estimator βn, i.e. d

dε1
logQθn(ε1)(Y

∗
i | Ai,Wi) at ε1 = 0, equals the first

component S∗1av(Q2θn , gθn) of the efficient influence curve

S∗1av(Q2θn , gθn) = (Yi −Q2θn(Ai,Wi))I(Vi = v)

{
I(Ai = a)

gθn(a | v)
− I(Ai = 0)

gθn(0 | v)

}
.

Let the marginal distribution of W be estimated with the empirical distri-
bution. By also augmenting this MLE for the marginal distribution of W with
a parameter ε2 with score I(Vi = v) {Q2θn(a,Wi)−Q2θn(0,Wi)−Ψ(Qθn)(a, v)}
at ε2 = 0, we now obtain an extension Qθn(ε) of the original fit Qθn of Q0 with
parameter ε = (ε1, ε2) so that the score of the likelihood of the Oi-factor at
ε = 0 equals S∗av(Qθn , gθn)(Oi) = S∗1av(Qθn , gθn)(Oi) + S∗2av(Qθn)(Oi), where
Qθn = Qθn(0) includes the original fits of both the marginal distribution of W
as well as the conditional distribution of Y ∗, given A,W .

The one-step targeted MLE corresponds now with either setting εn be so
that for both components

0 =
n∑
i=1

S∗jav(Qθn(εn), gi)(Oi), j = 1, 2. (30)

or setting εn so that

0 =
n∑
i=1

S∗jav(Qθn(εn), gθn)(Oi)
gθn(Ai | Vi)
gi(Ai | Vi)

, j = 1, 2. (31)

If there are multiple solutions, then one can use the log-likelihood of Qθn(ε) as
criteria to select the solution with the highest likelihood.

99

Hosted by The Berkeley Electronic Press



If no solution exists? If no solution εn of the equation exists, then we
first determine a choice ε1n which increases the log-likelihood relative to ε = 0
(i.e. we increase the likelihood relative to Qθn), update Q1

n = Qθn(ε1n), create
the path Q1

n(ε) through Q1
n as above, and find the solution of one of the above

equations (30) or (31) with Qθn(ε) replaced by Q1
n(ε), and, if still no solution

can be found, then iterate this process till a solution can be found or till
convergence. Below, we proceed as if a solution εn exists at the first try.

Since the MLE for the marginal distribution of W equals the empirical dis-
tribution of W1, . . . ,Wn, it follows that ε2n = 0 gives 0 = 1/n

∑
i S

∗
2av(Qθn(εn))

for each choice of ε1n: i.e., the empirical distribution of W is not updated in
this targeted MLE step. If we use (31), we have that ε1n is chosen so that
0 =

∑
i S

∗
1av(Qθn(εn), gθn)wi = 0 with wi = wi(θn) = gθn(Ai | Vi)/gi(Ai | Vi), or

equivalently

0 =
∑n
i=1wiI(Vi = v)

{
I(Ai=a)
gθn (a|v) −

I(Ai=0)
gθn (0|v)

}
×
(
Y ∗
i − 1

exp(−βn(Ai,Wi)−ε1nRi(a,v))

)
,

where

Ri(a, v) =

{
I(Ai = a)

gθn(a | v)
− I(Ai = 0)

gθn(0 | v)

}
.

(Similarly, for the case that εn is a solution of (30).) We note that the weighted
MLE over ε1 of the log likelihood for the model {Q2βn(ε1) : ε1} at fixed βn using
weights wi, i = 1, . . . , n, solves this same score equation. This means that for
this choice of targeted MLE, ε1n is simply the MLE over ε1 defined as

ε1n = arg max
ε1

∑
i

wi logQ2βn(ε1)(Y
∗
i | Ai,Wi). (32)

This shows that we can compute ε1n with standard logistic linear regression
software by adding this additional covariate Ri(a, v) to a logistic regression fit
Q2θn of P (Y ∗|A,W, V = v) and using weights wi.

Statistical Inference: In order to formally understand the consistency
and asymptotic linearity and normality of the targeted maximum likelihood
estimator Ψ(Qθn(εn))(a, v) of ψ0(a, v), based on substitution of Qθn,gθn

(ε), we
will apply our general Theorem 8 for the analysis of the targeted MLE. For
that purpose, we first define the stacked estimating equation:

D(θn, εn)(Oi, Zi) ≡ (D(θn)(Oi, Zi), S
∗
1av(Qθn(εn), gZi

), S∗2av(Qθn(εn))),

or

D(θn, εn)(Oi, Zi) ≡ (D(θn)(Oi, Zi), S
∗
1av(Qθn(εn), gθn)wi(θn), S

∗
2av(Qθn(εn))),
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where D(θ) is the Martingale estimating function θn is based upon, iden-
tifying the asymptotic target θ0 of θn. Consider the case that θn is the
weighted MLE defined above, then D(θ)(Oi, Zi) = d

dθ
logQθ

g∗(Ai|Wi)
gi(Ai|Wi)

. By

definition of θn and εn we have that 1
n

∑
iD(θn, εn)(Oi, Zi) = 0. We have

θ0 = arg maxθ PQ0,g∗ logQθ so that indeed PQ0,gi
D(θ0) = 0 for all i as required

for a Martingale estimating function: that is, θ0 denotes the limit of the MLE
θn under the possibly misspecified working model Qw = {Qθ : θ} for the true
Q0 (i.e., marginal distribution of W and conditional distribution of Y , given
A,W ). Let ε0 = (ε10, 0) be the limit of εn: that is, it is the solution of

0 = PQ0,gi
S∗jav(Qθ0(ε0), gi) = ψ0 −Ψ(Qθ0(ε0)), j = 1, 2.

In particular, we have 0 = 1/n
∑
i PQ0,gi

S∗1av(Qθ0(ε10), gi) and
0 = 1/n

∑
i PQ0,gi

S∗1av(Qθ0(ε10), gθ0)gθ0/gi. We are now in the situation to apply
the consistency Theorem 5, and the central limit Theorem 7, or apply Theorem
8 (which is in essence not much more than an application of Theorem 7) for
the solution of the stacked estimating equation

∑
iD(θn, εn)(Oi, Zi) = 0 based

on the Martingale property PQ0,gi
D(θ0, ε0) = 0 for all i.

These theorems establish consistency of (θn, εn) as an estimator of (θ0, ε0),
and establish asymptotic linearity and normality of

√
n((θn, εn)− (θ0, ε0)), un-

der appropriate regularity conditions similar as required for the analysis of the
MLE θn w.r.t to θ0 based on the estimating equation 0 =

∑
iD(θn)(Oi, Zi). In

particular, by the δ-method this implies that
√
n(Ψ(Qθn(εn))(a, v)−Ψ(Qθ0(ε0)(a, v))

is asymptotically linear and converges weakly to a normal distribution. Now,
we use that Ψ(Qθ0(ε0))(a, v) = ψ0(a, v) (!) due to 1) 0 = PQ0,gi

S∗av(Qθ0(ε0), gi),
and 2) PQ0,gi

S∗av(Q, gi) = ψ0(a, v) − Ψ(Q)(a, v) as noted above. As a conse-
quence of Theorem 8, we have the following asymptotic linearity result for the
targeted MLE Ψ(Qθn(εn))(a, v) of ψ0(a, v):

Ψ(Qθn(εn))(a, v)− ψ0(a, v) ≈
1

n

∑
i

S∗av(Qθ0(ε0), gi)− PQ0,gi
S∗av(Qθ0(ε0), gi),

or, if εn is based on (31), then S∗av(Qθ0(ε0), gi) is replaced by S∗av(Qθ0(ε0), gθ0)w(θ0).
The combination of these (a, v)-specific asymptotic linearity results across all
(a, v)-combinations provides us also with the asymptotic linearity of the esti-
mator Ψ(Qθn(εn)) as a vector estimator of ψ0 = (ψ0(a, v) : a, v):

Ψ(Qθn(εn))− ψ0 ≈
1

n

n∑
i=1

S∗(Qθ0(ε0), gθ0)wi(θ0)− PQ0,gi
S∗(Qθ0(ε0), gθ0)wi(θ0),

where S∗ now denotes a vector function (S∗av : a, v), and similarly for εn based
on equation (30). Since, for each (a, v),

∑
i PQ0,gi

S∗av(Qθ0(ε0), gi) = 0, this
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teaches us that, regarding statistical inference, we can consistently estimate
the covariance matrix of the asymptotic multivariate normal distribution of
the targeted MLE ψn = (Ψ(Qθn(εn))(a, v) : a, v) with

Σn =
1

n

n∑
i=1

S∗(Qθn(εn), gθn)S∗>v (Qθn(εn), gθn)wi(θn)
2,

or, if εn is based on (30)

Σn =
1

n

n∑
i=1

S∗(Qθn(εn), gi)S
∗>
v (Qθn(εn), gi),

We note that this estimate is analogue of the estimate one would obtain in the
fixed design case in which case gi does not depend on a summary measure Zi
of Ō(i− 1), but is treated as a fixed ( a priori set) design.

So, statistical confidence intervals for ψ0 = (ψ0(a, v) : a, v) based on the
targeted MLE ψn = (ψn(a, v) : a, v) can be based on the multivariate normal
distribution:

ψn ∼ N(ψ0,Σn).

For example, ψn(a, v)±Z1−α/2

√
Σn((a,v),(a,v))√

n
is an asymptotic 1−α confidence

interval for ψ0(a, v), where Σn((a, v), (a, v)) denotes the diagonal element of
the covariance matrix Σn corresponding with the component (a, v) of ψn.

15.3 Formal theorem for consistency and asymptotic
normality of causal effect sub-group specific tar-
geted ML estimates in targeted adaptive clinical
trial with covariates.

The previous subsection corresponds with the following formal theorem.

Theorem 9 Let Y (a) represent a treatment specific outcome vector one would
observe if the randomly sampled subject would be assigned treatment or dose-
level a ∈ A = {0, 1, . . . , k}, and let X = (W, (Y (a) : a ∈ A)) ∼ PX0

represent the full data structure of interest consisting of the treatment spe-
cific outcomes, and baseline covariates W . Our model leaves PX0 unspeci-
fied. Let X1, . . . , Xn be n i.i.d. draws of X. The scientific parameter is the
causal effect of treatment on one particular outcome Y ∗ defined as ψ0(a) =
E0(Y

∗(a) − Y ∗(0)) = E0(Y
∗(a)) − E0(Y

∗(0)), where Y ∗(a) is a component
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of Y (a). Let V ⊂ W ∈ {1, . . . , K} be a discrete component of W indicating
sub-group membership for a finite collection of subgroups of interest, and let

ψ0(a, v) = E0(Y
∗(a)− Y ∗(0) | V = v)

denote this causal effect of treatment a relative to treatment a = 0 for subgroup
V = v.

Let Ai be the treatment assignment for subject i, i = 1, . . . , n, and let the
observed data on the n subjects be Oi = (Wi, Ai, Yi = Yi(Ai)), i = 1, . . . , n. Let
g = (g1, . . . , gn) be an adaptive design satisfying CAR:

gi(a | Xi, O1, . . . , Oi−1) = P (Ai = a | Wi, O1, . . . , Oi−1), i = 1 . . . , n.

The CAR-assumption on the design requires Ai to be independent of the coun-
terfactual outcomes (Yi(a) : a ∈ A), conditional on Wi, and the data on the
previously recruited patients O1, . . . , Oi−1.

Maximum Likelihood Estimation: Consider a working model {Q2θ : θ}
for the true distribution Q20 of Y (a), given W , or, equivalently, the conditional
distribution Q20 of Y , given A and W . We will assume a separate model for
each v for the conditional distribution of Y (a), given W with V = v, so that
θ = (θ(v) : v), and the weighted maximum likelihood estimator of θ0(v) is

θn(v) = arg max
θ

n∑
i=1

I(Vi = v) logQ2vθ(Yi | Ai, Vi = v,Wi)wi,

where wi = g∗(Ai | Wi)/gi(Ai | Wi) for a user supplied g∗. We will leave the
marginal distribution of W unspecified, and it is estimated with the empirical
probability distribution of W1, . . . ,Wn. For example, for each v value, Q2vθ(v)

might be a multivariate normal regression model with parameters θ(v) for the
vector outcome Y , conditional on A, W with V = v, so that the maximum
likelihood estimator will be a standard multivariate regression estimator.

Component Specific Maximum Likelihood Estimation: Alterna-
tively, for each component Yj of Y , we consider a working model {Q2jθj

: θj}
for the true distribution Q20j of Yj(a), given W , or, equivalently, the condi-
tional distribution Q20j of Yj, given A and W . For each v, we will assume a
separate model for the conditional distribution of Yj(a), given W with V = v,
so that θj = (θj(v) : v), and the weighted maximum likelihood estimator of
θj0(v) is

θjn(v) = arg max
θj

n∑
i=1

I(Vi = v) logQ2vjθj
(Yji | Ai, Vi = v,Wi)wi,
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where the weights wi are defined as wi = g∗(Ai | Wi)/gi(Ai | Wi), i = 1, . . . , n,
and g∗ is a user supplied fixed design. We will leave the marginal distribution
of W unspecified, so that this is estimated with the empirical probability distri-
bution of W1, . . . ,Wn. For example, for each j and v value, if Yj is continuous,
Q2vjθj(v) is a univariate normal regression model with parameters θj(v), and if
Yj is binary, Q2vjθj(v) is a logistic regression model with parameters θj(v). Let
Q∗

2vθ∗(v) denote the a regression model for the conditional distribution of Y ∗,
given A,W and V = v.

In both cases, we define θ as the finite dimensional vector containing all
these parameters as estimated with the weighted maximum likelihood estima-
tor(s) θn using weights wi = g∗/gi. Let D(θ)(Oi, Zi) be the stacked estimat-
ing function so that

∑
iD(θn)(Oi, Zi) = 0, and let θ0 be its target satisfying

PQ0,gi
D(θ0) = 0 for all i.

To be specific, let Y ∗ be binary and

Q∗
2θ(ε)(Y

∗
i = 1 | Ai,Wi, Vi = v) =

1

1 + exp
(
−β(a,Wi)− ε

{
I(Ai=a)
gθ(a|v) −

I(Ai=0)
gθ(0|v)

}) .
Let βn be the weighted MLE corresponding with this model {Q2β(0) : β} for
P (Y ∗ = 1 | A,W, V = v) which corresponds with setting ε = 0. Let Q2βn =
Q2βn(0) be the fit of P (Y ∗ = 1 | A,W, V = v) corresponding with this estimator
βn (and setting ε1 = 0). For notational convenience, here we suppressed the
dependence on v of this model, the parameters, and the estimators of these
parameters.

Given θn, let εn be the solution of

0 =
n∑
i=1

wiI(Vi = v)

{
I(Ai = a)

gθn(a | v)
− I(Ai = 0)

gθn(0 | v)

}(
Y ∗
i −

1

exp (−βn(Ai,Wi)− εnRi(a, v))

)
,

≡
n∑
i=1

S∗1av(Q2βn(εn), gθn)wi,

where

Ri(a, v) =

{
I(Ai = a)

gθn(a | v)
− I(Ai = 0)

gθn(0 | v)

}
,

and wi = gθn(Ai | Xi)/gi(Ai | Xi). We have that εn is simply the weighted
MLE over ε defined as

εn = arg max
ε

∑
i

wiI(Vi = v) logQ2βn(ε)(Y ∗
i | Ai,Wi, Vi = v).

We define the stacked estimating equation:

D(θn, εn)(Oi, Zi) ≡ (D(θn)(Oi, Zi), S
∗
1(Qθn(εn), gθn)gθn/gi),104
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where S∗1 = (S∗1av : a, v) and εn = (εn(a, v) : a, v) denotes the stacked estimator
whose components εn(a, v) are defined above for each a, v. By definition, we
have that 1

n

∑
iD(θn, εn)(Oi, Zi) = 0. Let θ0 be so that PQ0,gi

D(θ0) = 0: that
is, θ0 denotes a parameter of Q0 (indexed by known g∗ and it is the limit of
θn under the possibly misspecified models {Qvθ(v) : θ} for the true Q0 (i.e.,
marginal distribution of W and conditional distribution of Y , given A,W ).
Let ε0 be the solution of

0 = PQ0,gi
S∗1av(Qθ0(ε0), gθ0)gθ0/gi = ψ0 −Ψ(Qθ0(ε0)).

In particular, we have 0 = 1/n
∑
i PQ0,gi

S∗1av(Qθ0(ε0), gθ0)gθ0/gi.
Assume the following regularity conditions:

Bounded estimating function: Let Θ and E be bounded sets and
maxj supθ∈Θ,ε∈E ‖ Dj(θ, ε) ‖∞< M < ∞. It is assumed that (θn, εn) ∈
Θ× E with probability 1, and (θ0, ε0) ∈ Θ× E.

Consistency: Assume ‖ (θn, εn) − (θ0, ε0) ‖ converges to zero in probability
as n→∞.

A sufficient condition for this consistency is that

E

(
1

n

n∑
i=1

PQ0,gi
D(θn, εn)

)2

→ 0,

as n→∞, implies ‖ (θn, εn)− (θ0, ε0) ‖→ 0 in probability, as n→∞.

Asymptotic stable design: Component wise

1

n

n∑
i=1

PQ0,gi
D − E

1

n

n∑
i=1

PQ0,gi
D → 0, in probability, as n→∞, (33)

for the following choices of matrix functions of (Oi, Zi):

D = D(θ0, ε0)
2

D =
d

d(θ0, ε0)
D(θ0, ε0).

If the design is a targeted design, gi = gθi,εi, then this can be immediately
inferred from the asymptotic consistency of (θn, εn) to (θ0, ε0) for n→∞.
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Differentiability: Assume

1
n

∑n
i=1 (D(θn, εn))(Oi, Zi)−D(θ0, ε0)(Oi, Zi))

= 1
n

∑n
i=1

d
d(θ0,ε0)

D(θ0, ε0)(Oi, Zi)((θn, εn)− (θ0, ε0)) + oP (‖ (θn, ε0)− (θ0, ε0) ‖),

where by the Kolmogorov LLN and (33)

1

n

n∑
i=1

d

d(θ0, ε0)
D(θ0, ε0)(Oi, Zi)− An → 0

as n→∞ a.s, where An ≡ 1
n

∑n
i=1E

d
d(θ0,ε0)

D(θ0, ε0)(Oi, Zi).

Invertibility of An: A
−1
n exists, and lim supn ‖ A−1

n ‖<∞.

Positive Definite Covariance Matrix: Let

Σ(n) ≡ E

(
1

n

n∑
i=1

PQ0,gi
{D(θ0, ε0)}2

)
.

Assume that for each vector λ ∈ IRd+m, we have lim infn→∞ λΣ(n)λ > 0,
or that Σ = limn→∞ Σ(n) exists and is a positive definite covariance
matrix.

If gi → gθ0 ∈ G as i → ∞, then this limit would be given by Σ =
PQ0,gθ0

D(θ0, ε0, gθ0)
2, where D(θ, ε, gZi

)(Oi) ≡ D(θ, ε)(Oi, Zi) so that D(θ0, ε0, gθ0)
is a function of Oi only obtained by replacing gi in D(θ0, ε0) by gθ0.

Then

√
n((θn, εn)−(θ0, ε0)) =

1√
n

n∑
i=1

A−1
n {D(θ0, ε0)(Oi, Zi)−PQ0,gi

D(θ0, ε0)}+oP (1),

where the sum on the right hand side is a Martingale satisfying the conditions
of the Martingale central limit theorem. In particular,

Σ(n)−1/2An(
√
n((θn, εn)− (θ0, ε0)) ⇒d N(0, I), as n→∞.

If Σ(n) → Σ for some positive definite matrix Σ, and An → A0, as n → ∞,
then this implies

√
n((θn, εn)− (θ0, ε0)) ⇒d N(0,Σ0 ≡ A−1

0 ΣA−1>
0 ).
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If gi → gθ0 so that

Σ = PQ0,gθ0
D(θ0, ε0, gθ0)

2 (34)

A0 = PQ0,gθ0

d

d(θ0, ε0)
D(θ0, ε0, g)

∣∣∣∣∣
g=gθ0

, (35)

then Σ0 = A−1
0 ΣA−1

0 equals the limit covariance matrix under i.i.d. sampling
O1, . . . , On of fixed design distribution PQ0,gθ0

. Σ(n) can be consistently esti-
mated with

Σ̂(n) =
1

n

n∑
i=1

{
D(θn, εn)(Oi, Zi)−

1

n

n∑
i=1

D(θn, εn)(Oi, Zi)

}2

.

Robustness w.r.t. ψ0: Since, PQ0,gS
∗(Q, g) = Ψ(Q) − Ψ(Q0) for all

g ∈ G, it follows that Ψ(Qθ0(ε0)) = Ψ(Q0), so that the above result implies
that

√
n(Ψ(Qθn(εn))−Ψ(Q0)) =

1√
n

n∑
i=1

S∗(Qθ0,gθ0
(ε0), gθ0)(Oi)

gθ0(Ai | Vi)
gi(Ai | Vi)

+oP (1/
√
n),

so that it converges, by the Martingale Central Limit Theorem, in distribution
to a multivariate normal distribution with mean zero and specified covariance
matrix. In particular, if gn → gθ0, Σ(n) → Σ and An → A0 with limits given
by (34) and (35), then

√
n(Ψ(Qθn(εn)−ψ0) converges to a multivariate normal

N(0,Σ0), where Σ0 = PQ0,gθ0
{S∗(Qθ0(ε0), gθ0)}2 is the covariance matrix of the

fixed design efficient influence curve S∗(Qθ0(ε0), gθ0) under PQ0,gθ0
.

16 A targeted adaptive design for finding the

dose response curve and optimal dose

We cite from the Critical Path Opportunities list of the FDA: ”Most can-
cer trials identify and test the maximum tolerated dose, to maximize efficacy.
Such trials cannot answer key questions about dose/response relationships:
Do blood levels of drug relate to outcomes? At what dose does the response
plateau?”. In this section we describe a targeted adaptive design allowing effi-
cient estimation of the dose response curve and, in particular, the optimal dose.

Dose response curve: Let Y (a) represent a treatment specific outcome one
would observe if the randomly sampled subject would be assigned a dose-level
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a ∈ A, and let X = (W, (Y (a) : a ∈ A)) ∼ PX0 represent the full data struc-
ture of interest on the randomly sampled subject consisting of the treatment
specific outcomes, and baseline covariates W . Let A denote the set of dose
levels, which could be an ordered discrete set of dose levels, or an interval.
We will leave the full data distribution PX0 unspecified. Let X1, . . . , Xn be n
i.i.d. draws of X. A scientific parameter of interest is the causal dose response
curve defined as ψ0(a) = E0Y (a). In addition, we are also concerned with the
V -adjusted causal response curve for a V ⊂ W defined as

ψ0(a, v) = E0(Y (a) | V = v),

where V represents a baseline characteristic which might potentially strongly
affect the dose response curve, and, in particular, its optimal dose. Since the
dose represents an ordered and many valued variable, we consider a working
model m(a, v | β) for ψ0(a, v), and define the target parameter as

β0 = arg min
β
E0V

∫
a∈A

(m(a, v | β)− ψ0(a, v))
2h(a, v)dµ∗(a),

where h is a user supplied weight function, and dµ∗ is either the counting mea-
sure on the finite set of dose levels or, if dose is continuous, it is the Lebesgue
measure. The summary measure ψ̃0(a, v) = m(a, v | β0) of ψ0 implied by the
working model {m(· | β) : β} provides now a model based approximation of
the true dose response curve ψ0. Note that β0 is a parameter of ψ0 and the
marginal distribution P0V of V . Although, we will consider the model for the
full data distribution PX0 to be nonparametric and the working model as an
approximation of the true causal response curve, our proposed estimators are
valid if one actually assumes the working model to be correctly specified.
Optimal dose: We are also concerned with statistical inference for the opti-
mal dose parameter for subgroup v

a∗(β0)(v) = arg max
a∈A

m(a, v | β0),

and, in case V is chosen to be the empty set, then this reduces to the marginal
optimal dose

a∗(β0) = arg max
a∈A

m(a | β0).

For the sake of illustration, we will focus on a particular working model of
interest given by a quadratic dose response model

m(a, v | β0) = β0(0)(v) + β0(1)(v)a+ β0(2)(v)a
2,
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where, for example, β0(j)(v) = β0(j)(0)+β0(j)(1)v, j = 0, 1, 2. For this choice
of working model we have that the optimal dose for subgroup V = v is given
by:

a∗(β0)(v) =
−β0(1)(v)

2β0(2)(v)
.

In particular, the optimal marginal dose is given by

a∗(β0) =
−β0(1)

2β0(2)
.

Below, we will formulate targeted adaptive designs which learn the design
which is optimal for estimation of these optimal dose parameters.
Observed data: Let Ai be the treatment assignment for subject i, i =
1, . . . , n, and let the observed data on the n subjects be Oi = (Wi, Ai, Yi =
Yi(Ai)), i = 1, . . . , n.
Adaptive Designs: Let g = (g1, . . . , gn) be a CAR adaptive design:

gi(a | Xi, O1, . . . , Oi−1) = P (Ai = a | Wi, O1, . . . , Oi−1), i = 1 . . . , n.

The CAR-assumption on the design requires Ai to be independent of the coun-
terfactual outcomes (Yi(a) : a ∈ A), conditional on Wi, and the data on the
previously recruited subjects given by O1, . . . , Oi−1.
Likelihood and Identifiability: Firstly, we note that the likelihood of
(O1, . . . , On) factorizes as:

PQ0,g(O1, . . . , On) =
n∏
i=1

Q10(Wi)Q20(Yi | Ai,Wi)
n∏
i=1

gi(Ai | Wi, Ō(i− 1)),

where the conditional density of Yi, given Ai = a, Wi, Q20(· | a,Wi), equals the
conditional density of Yi(a), given Wi, and Q10 denotes the marginal density
of W . In particular, it follows that for any CAR-adaptive design for which
lim infi→∞ gi(a | Wi) > 0, we have that the marginal causal dose response
curve ψ0(a) is identified by the Q0-factor of the likelihood by the following
relation: for each i ∈ {1, . . . , n}

ψ0(a) = E0E0(Yi | Ai = a,Wi).

In general, under this same condition,

ψ0(a, v) = E0{E0(Yi | Ai = a,Wi) | Vi = v}.
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Weighted Maximum Likelihood Estimation: Consider a model Q2θ

for the distribution of Y (a), given W , and the corresponding weighted (or
iteratively empirically weighted) maximum likelihood estimator θn:

θn = arg max
θ

n∑
i=1

logQ2θ(Yi | Ai,Wi)wi,

indexed by weight vector (e.g.) wi = g∗(Ai | Wi)/gi(Ai | Wi) for a user
supplied choice g∗. We will leave the marginal distribution of W unspecified,
so that this is estimated with the empirical probability distribution Q1n of
W1, . . . ,Wn. This defines a working model Qw for Q0 = (Q10, Q20). Given
an estimator θn, we will use the short-hand notation Qθn = (Q1n, Q2θn). We
wish to compute the targeted MLE for the nonparametric model targeting
β0, based on an initial maximum likelihood estimator based on this working
model. For this purpose, we first need to know the efficient influence curve of
β0 in the nonparametric model and we will first define the targeted MLE for
fixed designs, before generalizing it to adaptive designs.

Efficient influence curve for fixed design sampling: The efficient
influence curve for β0 at PQ0,g0 is, up till a normalizing matrix, given by

D∗(Q0, g0) =
h(A, V ) d

dβ0
m(A, V | β0)

g0(A | X)
(Y −Q02(A,W ))

+
∫
a
h(a, V )

d

dβ0

m(a, V | β0)(Q02(a,W )−m(a, V | β0))dµ
∗(a)

≡ D∗
1(Q0, g0)(W,A, Y ) +D∗

2(Q0)(W ),

where we defined Q02(a,W ) = EQ0(Y | A = a,W ), and we note that β0 =
β(Q0) is a parameter of Q0 = (Q01, Q02). Let

c(PQ0,g0 , g0, β0) = PQ0,g0

h(A, V )

g0(A | X)

d

dβ0

m(A, V | β0)
d

dβ0

m(A, V | β0)
>

= EQ0

∫
a
h(a, V )

d

dβ0

m(a, V | β0)
d

dβ0

m(a, V | β0)
>dµ∗(a).

The efficient influence curve for β0 is given by c(PQ0,g0 , g0, β0)
−1D∗(Q0, g0). If Y

is binary, then we would choose h(a, V ) = g0(a | V )/m(a, V | β0)(1−m(a, V |
β0)).

Targeted MLE for fixed design: Let {Q2θ(ε) : ε} be a path through Q2θ

at ε = 0 and satisfy the score condition d
dε

logQ2θ(ε)
∣∣∣
ε=0

= D∗
1(Q2θ, g0). For

example, if Q2θ is a regression model of Y on A,W with normal errors, then
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we can simply add the extension ε
h(A,V ) d

dβ0
m(A,V |β0)

g0(A|X)
to the regression model.

Similarly, if Q2θ is a logistic regression of a binary Y on A,W , then we simply

add ε
h(A,V ) d

dβ0
m(A,V |β0)

g0(A|X)
to the logit of Q2θ(1 | A,W ). In both cases, these ε

extensions have a score at ε = 0 equal to D∗
1(Q2θ, g0). It is also important to

note that by choosing h(a, V ) = g(a | V )/m(1 −m)(A, V | β0), in both cases
the ε-fluctuation does not depend on β0, but only on g0, which is the reason
that our one-step targeted MLE will also be the iterative targeted MLE (which
converges in a single step). Let εn be the solution of

0 =
∑
i

D∗
1(Q2θn(εn), g0)(Oi).

Identity: We note that for β0 = β(Q0)

0 = E0V

∫
a
h(a, V )

d

dβ0

m(a, V | β0)(m(a, V | β0)− E0(Y (a) | V ))dµ∗(a)

= E0W

∫
a
h(a, V )

d

dβ0

m(a, V | β0)(m(a, V | β0)−Q02(a,W )))dµ∗(a).

Let βn = β(Q1n, Q2θn), where Q1n is the empirical probability distribution for
the marginal distribution of W . Application of the above identity to Qn =
(Q1n, Q2θn) implies

0 =
1

n

n∑
i=1

h(a, Vi)
d

dβn
m(a, Vi | βn)(m(a, V | βn)−Q2θn(a,Wi)))dµ

∗(a).

Application of this latter identity teaches us that for any Q = (Q1, Q2)
with Q1n being the empirical probability distribution of W1, . . . ,Wn, we have

0 =
n∑
i=1

D∗
2(Q)(Oi).

Thus, for all ε we have

0 =
n∑
i=1

D∗
2(Qθn(ε)) = 0,

and, in particular,
0 =

∑
i

D∗(Qθn(εn), g0)(Oi).

Targeted MLE Update as MLE over ε: In the case thatQ2θ is a normal
error regression model, Q2θ(ε) is defined by adding the covariate extension
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ε
h(A,V ) d

dβ0
m(A,V |β0)

g0(A|X)
, and d/dβm(A, V | β) does not depend on β (i.e., m is

linear in β), one can show that

εn = arg max
ε

n∑
i=1

logQ2θn(ε)(Yi | Ai,Wi)

is the MLE for ε for the parametric working model {Q2θn(ε) : ε}. Similarly,
this applies to the logistic regression model under the modified choice of h.

The one-step targeted MLE is now defined asQθn(ε−n) and the correspond-
ing one-step targeted MLE of β0 is defined as β(Qθn(εn)) = β(Q1n, Q2θn(εn)).
The iterative targeted MLE is defined similarly as outlined in Section 13, and
in the above two linear and logistic regression model cases, so that εn is an
MLE, these two targeted MLE procedures are identical.

Statistical Inference for targeted MLE in fixed design: Under reg-
ularity conditions, we have that the targeted MLE βn is consistent and asymp-
totically linear with influence curve c−1

0 D∗(Q0, g0), where c0 = c(PQ0,g0 , g0, β0)
is the derivative matrix defined above:

βn − β0 =
1

n

n∑
i=1

c−1
0 D∗(Q0, g0)(Oi) + oP (1/

√
n).

Statistical inference can now be based on the central limit theorem and an
estimate of the covariance matrix of the influence curve.

Targeted MLE in adaptive design: Let θn be a weighted MLE using
weights g∗(Ai | Xi)/gi(Ai | Xi) for a user supplied choice g∗, i = 1, . . . , n,
or the sequentially adaptive weighted ML estimator as presented in detail in
Section 8.

As above, let Q2θ,g(ε) be a path through Q2θ at ε = 0 satisfying the

score condition d
dε

logQ2θ,g(ε)
∣∣∣
ε=0

= D∗
1(Q2θ, g). For example, if Q2θ is a re-

gression model of Y on A,W with normal errors, then we can simply add

ε
h(A,V ) d

dβ0
m(A,V |β0)

g(A|X)
to the regression model. Similarly, if Q2θ is a logistic regres-

sion of a binary Y on A,W , then we simply add ε
h(A,V ) d

dβ0
m(A,V |β0)

g(A|X)
to the logit

of Q2θ(1 | A,W ). In both cases, these ε extensions have a score at ε = 0 equal
to D∗

1(Q2θ, g).
Let θ → gθ be a given design function supposed to approximate the actual

adaptive design in the sense that gi ≈ gθi
: For example, if gi is a targeted

adaptive design gi = gθi−1
based on design function θ → gθ, then we would

select this particular choice of design function.
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Let εn be a solution (if there are multiple solutions one selects the one with
the maximum value of the likelihood of the data) of

0 =
n∑
i=1

D∗
1(Qθn,gθn

(εn), gθn)(Oi)
gθn(Ai | Xi)

gi(Ai | Xi)
.

An alternative is to define εn as solution of

0 =
n∑
i=1

D∗
1(Qθn,gθn

(εn), gi)(Oi).

By the argument above, we also have (because the marginal of Qθn(εn) is
the empirical Q1n)

0 =
∑
i

D∗
2(Qθn,gθn

(εn))(Oi) = 0.

There is no need to weight this D∗
2-component with gθn(Ai | Xi)/gi(Ai | Xi),

since D∗
2(Q)(Oi) is only a function of Q and Wi so that D∗

1(Qθ0(ε0), gθ0)gθ0/gi+
D∗

2(Qθ0(ε0)) is a martingale estimating function.
In the case that Q2θ is a normal error regression model, Q2θ(ε) is defined by

adding the covariate extension ε
h(A,V ) d

dβ0
m(A,V |β0)

gθn (A|X)
, and d/dβm(A, V | β) does

not depend on β (i.e., m is linear in β), one can show that

εn = arg max
ε

n∑
i=1

logQ2θn(ε)(Yi | Ai,Wi)wi

is the weighted MLE for ε for the parametric model {Q2θn(ε) : ε}, where the
weights are given by wi = gθn(Ai | Xi)/gi(Ai | Xi), i = 1, . . . , n. The same
statement applies to the logistic regression model assuming the modification
of h(a, V ) = g∗(a | V )/m(1−m)(a, V | βn) so that the ε-fluctuation does not
depend on βn again.

The targeted MLE of β0 is now defined as β(Qθn(εn)) = β(Q1n, Q2θn,gθn
(εn)).

The iterative targeted MLE is defined similarly as outlined in Section 13 and
the two procedures are identical in the the above mentioned cases in which εn
happens to be a weighted MLE.

Statistical Inference for targeted MLE: Application of Theorem 8
shows that, under regularity conditions, the targeted MLE of β0 is consis-
tent, and asymptotically normally distributed, and if gi = gθi−1

is a targeted
adaptive design, then the limit covariance matrix is given by the covariance
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matrix PQ0,g0

{
D∗(Qθ0,gθ0

(ε0), gθ0)
}2

of the locally efficient targeted MLE un-
der fixed design sampling from PQ0,gθ0

. In addition, this covariance matrix can
be estimated as

Σn =
1

n

n∑
i=1

{
D∗(Qθn,gθn

(εn), gθn)(Oi)wi
}2
,

or one could only weight the D∗
1 component of D∗ as mentioned above.

Targeted adaptive design for determining optimal dose: Above we
have not specified particular choices of adaptive designs gi which target the
optimal dose parameter, which we will do now. The optimal dose parameter
represents a particular real valued parameter f(β0) of β0. In this case the
efficient influence curve of f(β0) at a fixed design data generating distribution
PQ0,g0 is given by ḟ(β0)c

−1
0 D∗(Q0, g0), where ḟ(β0) = d

dβ0
f is the derivative

(vector) of f . The corresponding variance is given by

ḟ(β0)
>c−1

0 PQ0,g0D
∗(Q0, g0)D

∗(Q0, g0)
>c−>0 ḟ(β0).

Thus, for any selected parameter of interest f(β0), such as the optimal treat-
ment dose a∗(β0) or the v-adjusted optimal treatment doses a∗(β0)(v), we can
represent the variance of the efficient influence curve as

b(Q0)
>Σ(Q0, g0)b(Q0),

for some specified vector b(Q0) ≡ c−>0 ḟ(β0) where Σ(Q0, g0) ≡ PQ0,g0D
∗(Q0, g0)

2.
For a 1×m vector b(Q0) we have

b(Q0)Σ(Q0, g0)b(Q0)
> =

m∑
j=1

m∑
k=1

b(Q0)(j)b(Q0)(k)Σ(Q0, g0)(j, k). (36)

Let σ2(Q0, g0)(v) be the variance of the efficient influence curve of the v-

adjusted optimal dose defined by fv(β0) = − β0(1)(v)
2β0(2)(v)

, and let σ2(Q0, g0) be the
variance of the efficient influence curve of the marginal optimal dose defined
by f(β0) = − β0(1)

2β0(2)
. These choices correspond with 1 × m vectors bv(Q0) ≡

c−>0 ḟv(β0) and b(Q0) ≡ c−>0 ḟ(β0)), respectively, in the above representation
(36) of the variance of the efficient influence curve.

Let G1 = {g ∈ G : g(· | W ) = g(· | V )} be the set of fixed designs in which
the treatment decision is only based on V ⊂ W . We can now define the design
function for the marginal optimal dose:

gQ0 = arg min
g∈G1

σ2(Q0, g).
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Similarly, we can define the design function for the v-adjusted optimal dose:

gQ0 = arg min
g∈G1

∫
v
σ2(Q0, g)(v)dR(v),

for a user supplied probability distribution R.
This defines now corresponding targeted adaptive designs gi = gQi−1

, where
Qi−1 is the estimator of Q0 (i.e., empirical for marginal of W , and Q2θi−1

for the conditional distribution of Y , given A,W ) based on O1, . . . , Oi−1).
This adaptive design will learn the optimal design gQθ0

for the purpose of
estimation of the marginal optimal dose, or v-adjusted optimal dose for all v
simultaneously.

We will now be concerned with the closed form implementation of this
minimization problem required to calculate the targeted adaptive design gi =
gQi−1

. To start with, in order to implement this targeted adaptive design it is
helpful to obtain an analytical expression for Σ(Q0, g0) = PQ0,g0D

∗(Q0, g0)
2.

We note that the j, k-th element Σ(Q0, g0)(j, k) of this covariance matrix is
given by

EQ0

∫
a

h(a, V )

g0(a | V )

d

dβ0j

m(a, V | β0j)
d

dβ0k

m(a, V | β0k)σ
2
0(a, V )dµ∗(a),

plus an expectation of a function of W independent of g0, where σ2
0(a, V ) ≡

E((Y (a)−Q02(a,W ))2 | V ) = E(E((Y −Q02(A,W ))2 | A = a,W ) | V ).
For the purpose of marginal optimal dose, we have to be able to minimize

the following linear combination of these covariance elements over g0:∑
j,k b(Q0)(j)b(Q0)(k)EQ0

∫
a
h(a,V )
g0(a|V )

d
dβ0j

m(a, V | β0)
d

dβ0k
m(a, V | β0)σ

2
0(a, V )dµ∗(a)

= EQ0

∫
a
h(a,V )
g0(a|V )

σ2
0(a, V )

{∑
j,k b(Q0)(j)b(Q0)(k)

d
dβ0j

m(a, V | β0)
d

dβ0k
m(a, V | β0)

}
dµ∗(a)

≡ EQ0

∫
a
h(a,V )
g0(a|V )

σ2
0(a, V )fmarginal(Q0)(a, V )dµ∗(a).

For the purpose of v-adjusted optimal dose, we have to be able to minimize
over g0∫

v dR(v)
∑
j,k bv(Q0)(j)bv(Q0)(k)

×
{
EQ0

∫
a
h(a,V )
g0(a|V )

d
dβ0j

m(a, V | β0)
d

dβ0k
m(a, V | β0)σ

2
0(a, V )dµ∗(a)

}
= EQ0

∫
a
h(a,V )
g0(a|V )

σ2
0(a, V ){∫

v dR(v)
∑
j,k bv(Q0)(j)bv(Q0)(k)

d
dβ0j

m(a, V | β0)
d

dβ0k
m(a, V | β0)

}
dµ∗(a)

≡ EQ0

∫
a
h(a,V )
g0(a|V )

σ2
0(a, V )fadjusted(Q0)(a, V )dµ∗(a).

115

Hosted by The Berkeley Electronic Press



So we can conclude that determining the design function gQ0 will require
minimizing a function

g0 → EQ0

∫
a∈A

h(a, V )

g0(a | V )
σ2

0(a, V )f(Q0)(a, V )dµ∗(a)

for some specified f(Q0) defined as either fmarginal or fadjusted. By approxi-
mating the possibly continuous valued set A by finite approximating subsets,
we can arbitrarily well approximate the last expression with

g0 →
J∑
j=0

EQ0

h(aj, V )σ2(Q0)(aj, V )f(Q0)(aj, V )dµ∗(aj)

g0(aj | V )
.

So we can conclude that we need to be able to minimize expressions

g0 →
J∑
j=0

EQ0

m(Q0)(aj, V )

g0(aj | V )

for some specified positive valued function
m(Q0)(aj, v) ≡ h(aj, V )σ2(Q0)(aj, V )f(Q0)(aj, V )dµ∗(aj).

Setting g0(a0 | V ) = 1 −∑J
j=1 g0(aj | V ) and setting the derivatives w.r.t.

g0(j | V ) equal to zero, j = 1, . . . , J , yields the solution

gQ0(aj | v) =

√
m(Q0)(aj ,v)

m(Q0)(a0,v)

1 +
∑J
j=1

√
m(Q0)(aj ,v)

m(Q0)(a0,v)

j = 1, . . . , J

gQ0(a0 | v) =
1

1 +
∑J
j=1

√
m(Q0)(aj ,v)

m(Q0)(a0,v)

.

So we can conclude that the design functions gQ0 for a targeted adaptive design
targeting the optimal dose exist in closed form.

We will state this result as a useful theorem.

Theorem 10 (Optimal fixed design for determining optimal dose:)
Dose response curve: Let Y (a) represent a treatment specific outcome one
would observe if the randomly sampled subject would be assigned a dose-level
a ∈ A, and let X = (W, (Y (a) : a ∈ A)) ∼ PX0 represent the full data structure
of interest on the randomly sampled subject consisting of the treatment specific
outcomes, and baseline covariates W . Let A denote the set of dose levels,
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which is assumed to be an ordered discrete set of dose levels. We will leave the
full data distribution PX0 unspecified. Let X1, . . . , Xn be n i.i.d. draws of X.
The marginal causal dose response curve is defined as ψ0(a) = E0Y (a). The
V -adjusted causal response curve for a V ⊂ W is defined as

ψ0(a, v) = E0(Y (a) | V = v),

where V represents a baseline characteristic which might potentially strongly
affect the dose response curve, and, in particular, its optimal dose. We con-
sider a working model m(a, v | β) for ψ0(a, v), and define the target parameter
as

β0 = arg min
β
E0V

∫
a∈A

(m(a, v | β)− ψ0(a, v))
2h(a, v)dµ∗(a),

where h is a user supplied weight function, and dµ∗ is the counting measure
on the finite set of dose levels. We are also concerned with targeted adaptive
designs (and statistical inference) for the optimal dose parameter for subgroup
v

a∗(β0)(v) = arg max
a∈A

m(a, v | β0),

and, in case V is chosen to be the empty set, then this reduces to the marginal
optimal dose

a∗(β0) = arg max
a∈A

m(a | β0).

For the sake of illustration, we will focus on a particular working model of
interest given by a quadratic dose response model

m(a, v | β0) = β0(0)(v) + β0(1)(v)a+ β0(2)(v)a
2,

where, for example, β0(j)(v) = β0(j)(0)+β0(j)(1)v, j = 0, 1, 2. For this choice
of working model we have that the optimal dose for subgroup V = v is given
by:

a∗(β0)(v) =
−β0(1)(v)

2β0(2)(v)
.

In particular, the optimal marginal dose is given by

a∗(β0) =
−β0(1)

2β0(2)
.

The observed data is O = (W,A, Y = Y (A)) ∼ PQ0,g0, where g0(a | X) =
P (A = a | X) = P (A = a | W ). The efficient influence curve for β0 at PQ0,g0
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is given by c−1
0 D∗(Q0, g0), where

D∗(Q0, g0) =
h(A, V ) d

dβ0
m(A, V | β0)

g0(A | X)
(Y −Q02(A,W ))

+
∫
a
h(a, V )

d

dβ0

m(a, V | β0)(Q02(a,W )−m(a, V | β0))dµ
∗(a)

≡ D∗
1(Q0, g0)(W,A, Y ) +D∗

2(Q0)(W ),

where Q02(a,W ) = EQ0(Y | A = a,W ), and we note that β0 = β(Q0) is a
parameter of Q0 = (Q01, Q02). The normalizing matrix c0 = c(PQ0,g0 , g0, β0) is
defined as

c(PQ0,g0 , g0, β0) = PQ0,g0

h(A, V )

g0(A | X)

d

dβ0

m(A, V | β0)
d

dβ0

m(A, V | β0)
>

= EQ0

∫
a
h(a, V )

d

dβ0

m(a, V | β0)
d

dβ0

m(a, V | β0)
>dµ∗(a).

Let Σ(Q0, g0) ≡ PQ0,g0D
∗(Q0, g0)

2. Let σ2(Q0, g0)(v) be the variance of the
efficient influence curve of the v-adjusted optimal dose defined by fv(β0) =

− β0(1)(v)
2β0(2)(v)

, and let σ2(Q0, g0) be the variance of the efficient influence curve of

the marginal optimal dose defined by f(β0) = − β0(1)
2β0(2)

. Consider the 1 × m

vectors bv(Q0) ≡ c−>0 ḟv(β0) and b(Q0) ≡ c−>0 ḟ(β0)), respectively. We have

σ2(Q0, g0)(v) =
m∑
j=1

m∑
k=1

bv(Q0)(j)bv(Q0)(k)Σ(Q0, g0)(j, k)

σ2(Q0, g0) =
m∑
j=1

m∑
k=1

b(Q0)(j)b(Q0)(k)Σ(Q0, g0)(j, k).

Let G1 = {g ∈ G : g(· | W ) = g(· | V )} be the set of fixed designs in which
the treatment decision is only based on V ⊂ W . We can now define the design
function for the marginal optimal dose (i.e., optimal fixed design minimizing
variance of efficient influence curve for marginal optimal dose):

g1,Q0 = arg min
g∈G1

σ2(Q0, g0).

Similarly, we can define the design function for the v-adjusted optimal dose:

g2,Q0 = arg min
g∈G1

∫
v
σ2(Q0, g0)(v)dR(v),

for a user supplied probability distribution R.
118

http://biostats.bepress.com/ucbbiostat/paper232



Define

f1(Q0)(a, V ) ≡
∑
j,k

b(Q0)(j)b(Q0)(k)
d

dβ0j

m(a, V | β0)
d

dβ0k

m(a, V | β0)

f2(Q0)(a, V ) ≡
∫
v
dR(v)

∑
j,k

bv(Q0)(j)bv(Q0)(k)
d

dβ0j

m(a, V | β0)
d

dβ0k

m(a, V | β0).

We have

gs,Q0 = arg min
g∈G1

∑
aj∈A

EQ0

ms(Q0)(aj, V )

g0(aj | V )

for the specified function ms(Q0)(aj, v) ≡ h(aj, V )σ2(Q0)(aj, V )fs(Q0)(aj, V )dµ∗(aj),
s = 1, 2. Assume that ms(Q0)(aj, v) > 0 for all aj ∈ A and v with dR(v) > 0,
s = 1, 2.

For s ∈ {1, 2}, we have

gs,Q0(aj | v) =

√
ms(Q0)(aj ,v)

ms(Q0)(a0,v)

1 +
∑J
j=1

√
ms(Q0)(aj ,v)

ms(Q0)(a0,v)

j = 1, . . . , J

gs,Q0(a0 | v) =
1

1 +
∑J
j=1

√
ms(Q0)(aj ,v)

ms(Q0)(a0,v)

.

Application of our theorems for adaptive designs teach us that, under regu-
larity conditions, the adaptive design gi = gs,Qθi−1

converges to its target fixed
design gs,Qθ0

as i→∞.

17 Adaptive designs for regression.

Consider the case that one wishes to understand how the mean of an outcome
is affected by a set of input variables. This function from the input vari-
ables to the mean is called a regression. The design settings for experiment i
now corresponds with the settings of the input variables. An adaptive design
allows now that we select the distribution of the settings in experiment i in re-
sponse to what we have learned from the first i−1 experiments. In particular,
we could aim to learn a design distribution which is optimal for a particular
regression parameter of interest. Regression is one of the most common sta-
tistical applications in the practice of statistics. Therefore it is useful to point
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out that adaptive designs can also be used to target and estimate regression
parameters.

In the following two sub-sections we consider parametric and semi-parametric
regression models.

17.1 Adaptive designs for parametric regression mod-
els.

Let X = (Y (a) : a ∈ A) ∼ PX0, where a denotes now a vector of covariate
values, and Y (a) denotes the outcome under such a covariate-setting. Suppose
that one assumes a regression model E0Y (a) = m(a | β0) for some regression
model {m(· | β) : β}.

Let X1, . . . , Xn be n i.i.d copies of X ∼ PX0. We observe for experiment
i Oi = (Ai, Yi = Yi(Ai)), i = 1, . . . , n. An adaptive design corresponds with
drawing the covariate settings Ai from a conditional distribution of Ai, given
the data O1, . . . , Oi−1 observed in the previous i− 1 experiments:

gi(Ai | X, A1, . . . , Ai−1) = P (Ai | Ō(i− 1)), i = 1, . . . , n.

The Q0-factor of the likelihood of O1, . . . , On is given by

n∏
i=1

Q0(Yi | Ai),

where Q0(y | a) = P (Y (a) = y). Given a correctly specified parametric model
Q = {Qθ : θ} for Q0, the maximum likelihood estimator of θ0 is thus defined
as:

θn = arg max
θ

n∏
i=1

Qθ(Yi | Ai).

For example, if Y is continuous, one could assume normal and independent
errors, and if Y is binary, then the regression model itself implies a model for
Q0. In both cases, θ0 includes as component the regression components β0.

Under weak regularity conditions, the maximum likelihood estimator solves
the score equation 0 =

∑
i S(θn)(Oi) = 0, where S(θ)(Oi) = d

dθ
logQθ(Yi | Ai).

As shown by our Theorem 7, statistical inference can now be based on the
Martingale Taylor expansion

θn − θ0 = −A−1
n

1

n

n∑
i=1

S(θ0)(Oi) + oP (1/
√
n),

where An = 1
n

∑n
i=1

d
dθ0
S(θ0)(Oi). 120
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We can also use a martingale estimating function based approach to con-
struct estimators of β0. The class of estimating functions for β0 for fixed
designs is given by

Dh(β0)(A, Y ) = h(A)(Y −m(A | β)),

with the optimal estimating function given by hopt(A) = d
dβ
m(A | β)/VAR(Y |

A) (see Chapter 2, van der Laan and Robins (2003)). These estimating func-
tions are also Martingale estimating functions as can be shown as follows.
Firstly, we note that

PQ0,gi
h(Ai)(Yi −m(Ai | β0)) = E(h(Ai)(Yi(Ai)−m(Ai | β0)) | O1, . . . , Oi−1)

= E(
∑
a

h(a)(Yi(a)−m(a | β0))gi(a),

where gi(a) = P (Ai = a | Ō(i−1)). The latter random variable is a function of
Xi and O1, . . . , Oi−1 (through gi(a)). Since Xi is independent of O1, . . . , Oi−1,
the conditional expectation, given O1, . . . , Oi−1, corresponds with taking the
expectation w.r.t. the distribution of X:

E(
∑
h(a)(Yi(a)−m(a | β0))gi(a)

=
∑
a h(a)(E0(Yi(a))−m(a | β0))gi(a) = 0.

This proves that we can actually use as class of Martingale estimating func-
tions {Dh(β) : h}, and estimate β0, for example, with the solution of 0 =∑
i

d
dβn

m(Ai | βn)(Yi −m(Ai | βn)) = 0, or equivalently,

βn = arg min
β

∑
i

(Yi −m(Ai | β))2.

One can also use weights which are a function of Ai.
This teaches us that the approach of generalized estimating equations for

fixed designs immediately generalizes to adaptive designs, and our theorems
provide us with the corresponding statistical inference under the stability con-
dition that the adaptive design gi is asymptotically a fixed design. A nice
property of these estimating functions is that they do not depend on gi through
inverse weighting, just as scores of correctly specified parametric models are
martingale estimating functions.

In the above example, the class of estimating functions for fixed designs
happen to also be Martingale estimating functions for adaptive designs gi. The
above class of Martingale estimating functions w.r.t. the adaptive design gi,
which are independent of gi, represents an example of such classes of Martin-
gale estimating functions (i.e., Martingale estimating functions independent of
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gi) for a large class of censored data structures and adaptive designs. That is,
it is an application of the general Theorem 3 presented earlier.

Finally, we remark that the targeted adaptive designs gi = gQi−1
could be

based on a design function gQ minimizing the variance of the efficient influence
curve at PQ,g of a particular real valued parameter of the regression vector-
parameter β over a user supplied class of fixed designs, so that the adaptive
design will be targeting this particular parameter.

17.2 Adaptive designs for semiparametric regression.

Let’s now consider a semi-parametric regression model. Let X = (Y (a1, a2) :
(a1, a2) ∈ A) ∼ PX0. Consider a semi-parametric regression model EY (a1, a2)−
EY (0, a2) = m(a1, a2 | β0), or equivalently, EY (a1, a2) = m(a1, a2 | β0)+s(a2)
for an arbitrary function s and a parametric form m(· | β) satisfying m(0, a2 |
β) = 0 for all a2 and β. The parameter of interest is β0.

Let Oi = (Ai = (A1i, A2i), Yi = Yi(Ai)), i = 1, . . . , n. In a sequen-
tially adaptive design Ai is drawn from a conditional distribution of Ai, given
O1, . . . , Oi−1:

gi(Ai | X1, . . . , Xn, O1, . . . , Oi−1) = P (Ai | O1, . . . , Oi−1), i = 1, . . . , n.

We have that β0 is identifiable through the relation

E0(Yi | A1i, A2i)− E0(Yi | A1i = 0, A2i) = m(Ai | β0).

The Q0-factor of the density of O1, . . . , On is given by:

n∏
i=1

Q0(Yi | Ai),

where Q0(y | a) = PX0(Y (a) = y). We are concerned with construction of a
targeted maximum likelihood estimator of β0.

Firstly, we consider a working regression model Qw = {Qθ : θ ∈ Θ} for Q0.
For example, the working model assumes EθY (a) = m(a1, a2 | β)+sθ(a), where
β represents a component of θ and sθ is a particular parametric form in θ. Let
θn be an estimator based on a Martingale estimating function D(θ∗)(Oi, Zi)
satisfying PQ0,gi

D(θ∗0) = 0 for all i, where θ∗0 either equals θ0 (as in the weighted
maximum likelihood estimator using weights g∗/gi) or includes θ0 as a com-
ponent (as in the sequentially weighted maximum likelihood estimator using
weights gθnk

/gi at sample size nk). Thus, θ∗n is a solution of

0 =
n∑
i=1

D(θ∗n)(Oi, Zi) = 0.
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The efficient influence curve: In order to construct the targeted MLE
we need to know the efficient influence curve of β0 in the fixed design model.
We note that the fixed design model is equivalent with the semi-parametric
regression model E(Y | A1, A2)− E(Y | A1 = 0, A2) = m(A1, A2 | β0).

The orthogonal complement of the nuisance tangent space in the fixed
design model is given by:

T⊥nuis(p) = {Dh(p)(O) : h} ⊂ L2
0(P ),

where

Dh(p)(O) ≡ h(p)(A1, A2)(Y −m(A1, A2 | β(p))− Ep(Y | A1 = 0, A2),

and h(p)(A1, A2) = h(A1, A2) − Ep(h(A1, A2) | A2). The orthogonal comple-
ment of the nuisance tangent space corresponds with the set of gradients for
β(p) at p given by:

T⊥nuis(p)
∗ =

{
−c(p)(h)−1Dh(p)(O) : h = (h1, . . . , hd)

}
,

where c(p)(h) = d
dβ
EpDh(p, β)

∣∣∣
β=β(p)

, and Dh now represents a vector function

(Dh1 , . . . , Dhd
). The efficient influence curve is identified by a closed form index

h∗(p) (see e.g., van der Laan (2006b)):

h∗(p)(A1, A2) =
1

σ2(A)

d

dβ(p)
m(A | β(p))

− 1

σ2(A)

Ep
(

d
dβ(p)

m(A | β(p))/σ2(A) | A2

)
Ep(1/σ2(A) | A2)

. (37)

This choice h∗(p) corresponds with the efficient influence curve as provided
and proved in Robins and Rotnitzky and Yu and van der Laan (2003). Let
D(p) = Dh∗(p)(p) be this efficient influence curve at p as identified by this
index h∗(p). We note that D(p) = D(g(p), Q(p)) depends on the conditional
distribution g(p)(A1 | A2) of A1, given A2, and the conditional distribution
Q(p) of Y , given A.

Let g(p) be the marginal density of A under p, and let Q(p) be the condi-
tional distribution of Y , given A, under p. We note that the parameter β(p) is
only a function of Q(p), and the density factorizes as p(O) = g(p)(A)Q(p)(Y |
A). As a consequence the elements Dh(p) are orthogonal to the tangent space
of the nuisance parameter g(p). That is, we can decompose the efficient score
D(p) into two subcomponents as follows:

D(p) = D(p)− Ep(D(p) | A) + Ep(D(p) | A)− EpD(p),
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which corresponds with scores for p(Y | A), p(A), respectively, but Ep(D(p) |
A) − EpD(p) = 0. Thus the efficient influence curve D(p) represents only a
score for Q(p)(Y | A), and indeed satisfies Ep(D(p) | A) = 0.

Let Qθ,g(ε) be a parametric extension through Qθ at ε = 0, satisfying
EQθ,g(ε)(Y | A) − EQθ,g(ε)(Y | A1 = 0, A2) = m(A | β(ε)) for some β(ε), and
having score D(Qθ, g) at ε = 0. In the following paragraph we construct such
a choice (see van der Laan and Rubin (2006)). We show that if EQθ

(Y |
A) = m(A | β) + r(A2) for some r and Y , given A, is normally distributed
then, we can define the extension by just fluctuating the mean as m(A |
β + ε) + r(A2) + εr1(A2), where

r1(pθ,g)(A2) =
Eg
(
d/dβm(A|β)

σ2(A)
| A2

)
Ep
(

1
σ2(A)

| A2

) .

Let θ → gθ be a design function for the marginal distribution of A =
(A1, A2) selected to approximate the actual adaptive design gi in the sense
that gi ≈ gθi−1

. Let εn be a solution of

0 =
n∑
i=1

D∗(Qθn,gθn
(εn), gθn)(Oi)

gθn(Ai)

gi(Ai)
.

In the case that β → m(A | β) is linear, below it is shown that εn is a
weighted MLE:

εn = arg max
ε

n∏
i=1

Qθn,gθn
(εn)(Oi)

gθn(Ai)

gi(Ai)
. (38)

Using our theorem for targeted MLE of Theorem 7, under appropriate regu-
larity conditions, it follows that

√
n(β(Qθn(εn))−β(Qθ0(ε0)) converges in distri-

bution. If β → m(· | β) is linear, it follows immediately that PQ0,gD(Qθ0(ε0), g) =
0 implies β(Qθ0(ε0)) = β0. The same robustness can be established in general.
As a consequence of this result, the asymptotic normality of the targeted MLE
as an estimator of β0 is established.

We note that if the design only adapts A1i, given A2i, then the weights
only involve gθ(A1i | A2i)/gi(A1i | A2i). The adaptive design could be tar-
geted towards the estimation of a particular univariate summary measure or
component of β0.

Hardest parametric sub-model Qθ,g(ε).

Suppose that Qθ is a normal distribution with mean Eθ(Y | A) = m(A |
β) + rθ(A2) and variance σ2(A) = σ2(θ)(A). Let pθ,g denote the density of O
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under Qθ and marginal distribution g for A. Recall that D(p) = (h(p)(A) −
Ep(h(p)(A) | A2))(Y − m(A | β(p)) − Ep(Y | A1 = 0, A2)). For notational
convenience, we will represent this function as h(p)(A)(Y − Ep(Y | A)), but
now choosing h(p) so that Ep(h(p)(A) | A2) = 0. Consider the parametric
sub-model defined as the normal density with conditional variance σ2(A) and
conditional mean m(A | β(ε)) + rθ(ε)(A2). That is,

Qθ(ε)(Y | A) =
1

σ(A)
f0 ({Y −m(A | β(ε))− rθ(ε)(A2)}/σ(A)) ,

where β(0) = β, rθ(0) = rθ = Eθ(Y | A1 = 0, A2), and f0 is the standard
normal density. We note that this is a valid sub-model through Qθ at ε = 0.
Let β(ε) ≡ β+ ε and rθ(ε) = rθ + εr1(A2). It remains to find a function r1(A2)
so that the score of Qθ(ε) at ε = 0 equals the efficient influence curve D(Qθ, g)
at pθ,g.

We have that the score S(ε) at ε is given by (note that f ′0(x)/f0(x) = x/σ2)

S(ε) =
(Y −m(A | β(ε))− rθ(ε)(A2))

σ2(A)

{
d

dε
m(A | β(ε))− d

dε
rθ(ε)(A2))

}

=

{
d

dβ(ε)
m(A | β(ε))− r1(A2))

}
(Y −m(A | β(ε))− rθ(ε)(A2))

σ2(A)
.

Thus S(0) equals

1
σ2(A)

{
d
dβ
m(A | β)− r1(A2)

}
(Y − EQ(Y | A)).

In order to have that this score equals Dh = h(A)(Y − EQ(Y | A)) for a
particular h(A) with Ep(h(A) | A2) = 0, we need

r1(A2) = r1(p)(A2) =
Ep
(
d/dβm(A|β)

σ2(A)
| A2

)
Ep
(

1
σ2(A)

| A2

) .

We note that if m is linear in β, then r1(p) = r1(g) only depends on g. This
yields the following score for our sub-model Qθ(ε) at ε = 0:

S(0) = h(pθ,g)(A)(Y −m(A | β)− rθ(A2)),

where

h(pθ,g)(A) =
1

σ2(A)

d

dβ
m(A | β)

− 1

σ2(A)

Eg
(
d
dβ
m(A | β)/σ2

θ(A) | A2

)
Ep(1/σ2

θ(A) | A2)
. (39)
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So we succeeded in finding a sub-model Qθ(ε) with a score at ε = 0 equal to
the efficient influence curve at pθ,g.

We will now show that εn as defined earlier can be viewed as a weighted
MLE. Consider the weighted log-likelihood for p0

n(ε) in ε:

l(ε) ≡ 1

n

n∑
i=1

log f0(Yi −m(Ai,Wi | β0
n + ε)− {rθ0n(W ) + εr1(p

0
n)(W )})wi

with weights wi = gθ/gi. Let εn be the maximizer, which can thus be computed
with standard weighted least squares regression:

εn = arg min
ε

n∑
i=1

wi
1

σ2(Ai,Wi)

(
Yi −m(Ai,Wi | β0

n + ε)− rθ0n(Wi)− εr1(p
0
n)(Wi)

)2
(40)

The score equation d/dεl(ε) = PnS(ε) = 1/n
∑
i S(ε)(Oi, Zi) for εn is given by

0 = Pnwi
1

σ2(A,W )

{
d

β0
n(ε)

m(A,W | β0
n(ε))− r1(p

0
n)(W ))

}
×(Y −m(A,W | β0

n(ε))− rθ0n(W )− εr1(p
0
n)(W )).

In the sequel we consider the case that m(A,W | β) = β>m1(A,W ) is lin-
ear in β for some specified covariate vector m1(A,W ). In this case we have
d/dβm(A,W | β) = m1(A,W ) so that the score equation PnS(ε) = 0 reduces
to:

0 = Pnwi
1

σ2(A,W )

{
m1(A,W )− r1(p

0
n)(W )

}
×

(Y − (β0
n + εn)m1(A,W )− rθ0n(W )− εnr1(p

0
n)(W )). (41)

Firstly, we note that εn exist in closed form:

εn = C−1
n Pnwi

{m1(A,W )− r(p0
n)(W )} (Y − β0

nm1(A,W )− θ0
n(W ))

σ2(A,W )
,

where the d× d matrix Cn is given by

Cn ≡ Pnwi
1

σ2(A,W )

{
m1(A,W )− r(p0

n)(W )
}

(m1(A,W ) + r(p0
n)(W ))>.

Let p0
n(εn) be the new density estimator. Recall that the distribution of

A under p0
n(εn) is still the same as under p0

n, because p0
n(ε) only updates the

conditional distribution of Y , given A. We now wish to investigate when
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this first step targeted MLE p1
n ≡ p0

n(εn) solves the efficient score equation:
PnwiD(p0

n(εn)) = 0. We have that PnwiD(p0
n(εn)) is given by

Pnwi
{m1 − r1(p

0
n(εn))} (Y − (β0

n + εn)m1 − rθ0n − εnr1(p
0(εn)))

σ2
.

Because r1(p
0
n(ε)) = r1(p

0
n), it follows that PnD(p0(εn)) is given by

Pnwi
{m1 − r1(p

0
n)} (Y − (β0

n + εn)m1 − rθ0n − εnr1(p
0
n))

σ2
,

but the latter equals zero by the fact that PnS(εn) = 0 (41). This proves
that, if m(A,W | β) is linear in β, then εn is indeed the weighted maximum
likelihood estimator (38). For non-linear models β → m(A,W | β) the solution
εn of (38) is not exactly equal to the weighted MLE.

18 Other examples of adaptive designs.

In this section we will present a number of other examples of adaptive designs
to which our formal results can be applied.

18.1 Joint adaptation of the missingness indicators for
auxiliary covariates and the treatment mechanism.

Suppose that on the i-th experimental unit we observe a J-dimensional vector
of covariates (∆i(j)Wi(j),∆i(j) : j = 1, . . . , J) which are subject to missing-
ness, a vector of covariates Ei which are always observed, a treatment Ri, and
an outcome Yi of interest. Here ∆i(j) denotes a missing-ness indicator: if
∆i(j) = 0, then Wi(j) is missing.

We define the full data on the i-th experimental unit asXi = (Ei,Wi, (Yi(r) :
r)), where Yi(r) denotes the treatment specific counterfactual outcomes, and
Wi = (Wi(j) : j = 1, . . . , J). The censoring variable is now defined as
Ai = (∆i, Ri) and denotes both the missing-ness indicators as well as the
treatment assignment Ri. The observed data can be represented as Oi =
(Ei,∆iWi,∆i, Ri, Yi = Yi(Ri)), and is thus a function of Xi and the censoring
variable Ai, i = 1, . . . , n.

It is assumed that the conditional probability distribution of ∆i, Ri, given
Xi and O1, . . . , Oi−1, only depends on Xi through the always observed co-
variates Ei. In this case, a choice of adaptive design is defined by the specifica-
tion of the conditional distribution of ∆i, Ri, givenEi and the dataO1, . . . , Oi−1
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observed on previous experiments,

gi(δ, r | Ei) ≡ g(δ, r | Ei, O1, . . . , Oi−1).

We can factorize this conditional distribution into a treatment mechanism and
missing-ness mechanism:

gi(δ, r | Ei) = g(δ | Ei, O1, . . . , Oi−1)g(r | δ, Ei, O1, . . . , Oi−1).

Note that this allows, beyond the previously studied adaptation of the ran-
domization probabilities for treatment, to set the missing-ness indicators (and
thereby the decision about what variables to measure) for experiment i in
response to data collected in previous experiments.

We wish to consider some targeted adaptive designs gi = gθi
, where θi is

an estimator of certain parameters θ0 of the full data distribution based on
O1, . . . , Oi−1.

Firstly, consider the case that one is interested in estimating a causal effect
ψ0(r) = E0(Y (r) − Y (0)) of treatment level r relative to treatment level 0,
or an adjusted causal effect ψ(0)(r, V ) = E0(Y (r) − Y (0) | V ) for a baseline
co-variate V ⊂ E.

For the sake of illustration, let’s consider the marginal causal effect pa-
rameter. Let W ∗ = (W∆,∆) denote our observed data on the co-variate
vector W . We have that Ai is conditionally independent of Xi, given W ∗

i , Ei,
and O1, . . . , Oi−1. As a consequence, we have that ψ0 = E0(Y (r) − Y (0)) is
identified by the following parameter of the observed data distribution:

ψ0 = E0E0(Yi | Ri = a,Ei,W
∗
i )− E0(Yi | Ri = 0,W ∗

i ).

In addition, if one replaces (W∆,∆) by any sub-vector, including the empty
set this identifiability result still holds. We could estimate ψ0 with the targeted
MLE ψn as defined in previous section. The efficient influence curve of ψ0 at
a fixed design PQ0,g0 , g0 ∈ G, is given by:

D∗(Q0, g0) = (Y −Q0(R,E,W
∗))

{
I(R = 1)

g(1 | E,W ∗)
− I(R = 0)

g(0 | E,W ∗)

}
+Q0(1, E,W

∗)−Q0(0, E,W
∗)− ψ0.

The variance of this efficient influence curve depends on the true marginal
distribution of W ∗, and on the treatment mechanism g(r | E,W ∗). The opti-
mal design minimizing the variance of this efficient influence curve would be
to allow for no missingness so that W ∗ = W , and the optimal randomization
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probabilities for treatment are defined by the Neyman allocation probabilities
conditional on (E,W ):

gθ0(1 | E,W ) =
σ(1 | E,W )

σ(0 | E,W ) + σ(1 | E,W )
(42)

gθ0(0 | E,W ) = 1− gθ0(1 | E,W ), (43)

where σ2(j | E,W ) = VAR(Y | A = j, E,W ). However, suppose that we are
in the situation that the measurement of variable W (j) costs s(j) dollars on
each subject, and that we wish to run a trial with n subjects. In addition,
assume that their is only B dollars per patient available to spend on co-variate
selection. So given a choice of missing indicator vectors ∆1, . . . ,∆n the average
cost for covariate measurement per patient is given by

1

n

n∑
i=1

J∑
j=1

∆i(j)s(j).

The expected average cost per patient is thus given by:

J∑
j=1

Π(j)s(j),

where Π(j) = P (∆(j) = 1). In principle, one could now define an optimal fixed
design (g(Q0,Π(Q0)) as the minimizer of the variance of the efficient influence
curve under the constraint that the expected average cost is bounded by B:

(g(Q0),Π(Q0)) = arg min
g,Π∈{

∑
j
Π(j)s(j)≤B}

VARQ0,g,ΠD
∗(Q0, g).

One might also formulate a more ad hoc mapping from a candidate Q into a
preferred choice of design (g(Q),Π(Q)). This defines now a design function and
corresponding adaptive design (gi,Πi) = (g(Qi−1),Π(Qi−1)), where Qi−1 is an
estimate of the marginal distribution of W and the conditional distribution of
Y , given A,W , based on the first i− 1 observations. As an example of a more
ad hoc mapping Π(Qi−1), given O1, . . . , Oi−1, one might estimate the marginal
association of Y and Wj for each j, and set Πi(j) = 1 for the top ranked
variables, and set Πi(j) = 0 for the remaining variables, while controlling the
average cost

∑
j Πi(j)s(j) ≤ B. In the next subsection we study this example

of adaptation in more generality in the case that the treatment mechanism is
considered given.
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18.2 Adapting the choice of auxiliary covariate infor-
mation.

Let X = ((Y (a) : a),W ), W a vector of covariates, and W (∆) = Φ(∆,W ) is
a coarsening of W indexed by a censoring (possibly multivariate) variable ∆.
For example, ∆ = 0 might correspond with the most precise and expensive
measurement satisfying W (0) = W , while larger ∆ values result in cheaper
but more coarsened measurements of W . Let ψ0 = E(Y (r) − Y (0)) be the
parameter of interest. Let O = (∆,W (∆), R, Y = Y (A)). A fixed design
is defined as the conditional distribution of (∆, R), given X, which can be
factorized as the conditional distribution Π of ∆, given X, and the conditional
distribution g(· | ∆, X) of R, given ∆, X. We consider CAR fixed designs for
which this conditional distribution only depends on X through E, where E is
always measured: i.e., E is a function of W (∆). We denote this set of fixed
CAR designs by G1 ⊂ G. We have that ψ0 = E0(Y (r)− Y (0)) is identified by
the following parameter of the observed data distribution:

ψ0 = E0E0(Y | R = r,W ∗(∆))− E0(Y | R = 0,W ∗(∆)),

where W ∗(∆) ≡ (∆,W (∆)). In addition, if one replaces W ∗(∆) by any sub-
vector including E, this identifiability result still holds. In particular,

ψ0 = E0(E(Y | R = r, E)− E0(Y | R = 0, E)).

We could estimate ψ0 with the targeted MLE ψn as defined in previous section.
The efficient influence curve of ψ0 at a fixed design data generating distribution
PQ0,g0 is given by:

D∗(Q0, g0) = (Y −Q0(R,W
∗(∆)))

{
I(R = 1)

g0(1 | W ∗(∆))
− I(R = 0)

g0(0 | W ∗(∆))

}
+Q0(1,W

∗(∆))−Q0(0,W
∗(∆))− ψ0,

where Q0(R,W
∗(∆)) = E0(Y | R,W ∗(∆)).

We will now show that Q0(R,W
∗(∆)) is only a parameter of the distribu-

tion of X. Since ∆ is conditionally independent of X, given E, we have

Q0(R,W
∗(∆)) = E[E[Y | R,∆,W ] | R,∆,W (∆), E] = E(Q0(R,W ) | R,∆,W (∆)).

In addition, E(Q0(R,W ) | R = r,∆,W (∆)) = E(Q0(r,W ) | ∆,W (∆)) so
that the latter conditional expectation is w.r.t. the conditional density of W ,
given ∆,W (∆)). By the fact that (∆,W (∆)) is a CAR missing data structure
on W , the latter conditional density satisfies P (W = w | W ∗(∆) = w∗) =
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p(W = w | W ∈ C(w∗)), where C(W ∗(∆)) is the coarsening for W implied
by W ∗(∆) = (∆,W (∆)) (see Gill et al. (1997) or Chapter 1 in van der Laan
and Robins (2003)). Therefore, we can conclude that E(Y | R,W ∗(∆)) is
only a parameter of the distribution of X and does thus not depend on the
conditional distribution g0 of (∆, A), given X.

For notational convenience, let W ∗ = W ∗(∆). The variance of the efficient
influence curve D∗(Q0, g0) under PQ0,g0 can be written as:

V 2 ≡ E(Y −Q0(R,W
∗))2

(
I(R = 1)

g2
0(1 | W ∗)

+
I(R = 0)

g2
0(0 | W ∗)

)
+E (Q(1,W ∗)−Q(0,W ∗)− ψ0)

2

= E

(
σ2

0(1,W
∗)

g0(1 | W ∗)
+
σ2

0(0,W
∗)

g0(0 | W ∗)

)
+E (Q0(1,W

∗)−Q0(0,W
∗))2 − ψ2

0

= EW
∑
δ

Π(δ | E)

(
σ2

0(1,W
∗(δ))

g0(1 | δ, E)
+
σ2

0(0,W
∗(δ))

g0(0 | δ, E)
+ (Q0(1,W

∗(δ))−Q0(0,W
∗(δ)))2

)
−ψ2

0

= EE
∑
δ

Π(δ | E)

(
E(σ2

0(1,W
∗(δ)) | E)

g0(1 | δ, E)
+
E(σ2

0(0,W
∗(δ)) | E)

g0(0 | δ, E)

)

+EE
∑
δ

Π(δ | E)E
[
(Q0(1,W

∗(δ))−Q0(0,W
∗(δ)))2 | E

]
− ψ2

0

≡ EE
∑
δ

Π(δ | E)Φ(Q0, g0)(δ, E)− ψ2
0,

where σ2
0(r,W

∗) = E0((Y −Q0(R,W
∗))2 | R = r,W ∗) (which is only a function

of the distribution of X by the same argument provided above for Q0(R,W
∗)).

Assume that the cost of measuring W (δ) equals s(δ). Then the average
cost across n subjects is 1/n

∑n
i=1 s(∆i). The expected cost per subject is thus

EE
∑
δ s(δ)Π(δ | E), and assume that we wish to bound the expected cost

per subject by a number B. Given Q0 and the treatment mechanism g0, an
optimal fixed design for Π would now be obtained by, for each E, minimizing∑

δ

Π(δ | E)Φ(Q0, g0)(δ, E)

over (Π(δ | E) : δ) under the constraint that
∑
δ Π(δ | E)s(δ) = B. Thus for

each E, this is a minimizer of a linear criteria under a linear constraint. This
minimum can be obtained with standard constrained minimization algorithms
(e.g., simplex algorithm). We denote this optimal choice with ΠQ0,g0 .
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A targeted adaptive design is given by Πi = ΠQi−1,gi
with Qi−1 being an

estimator based on O1, . . . , Oi−1, which only needs to be specified to result in
an estimator of Φ(Q0), and gi the adaptive treatment mechanism used in the
i-th data generating experiment.

18.3 Adapting the missingness mechanism for general
CAR censored data structures.

Let X be the full data of interest with probability distribution PX0. Assume
that O = Φ(X,A) is a specified (by Φ) missing data structure on X with
censoring variable A. Assume that g0(A | X) is a fixed CAR design in the
set G of CAR designs. Let D(Q0)(X) be the full data efficient influence curve
for a parameter ψ0 of interest in the nonparametric full data model, where
Q0 denotes the FX-factor of the density p0 of O. In the case that X can be
fully observed with positive probability, a general IPCW estimating function
is given by:

DIPCW (g0, Q0)(O) =
D(X)∆

Π0(X)
,

where ∆ = I(D(X) is function of O), and Π0(X) = P0(∆ = 1 | X) is deter-
mined by the censoring mechanism g0. Here it needs to be assumed that there
is a positive probability that D(X) is observed. By CAR, we have that Π0(X)
is a function of O only so that DIPCW is indeed a function of O only. The
efficient influence curve for ψ0 is now defined as the projection of DIPCW on
the tangent space of Q0 (see van der Laan and Robins (2003)). Therefore, in
the case that the efficient influence curve is complex, one might use the simple
DIPCW (or another influence curve in the fixed design model with g0 known)
to define design functions of interest to generate adaptive designs.

From an efficiency point of view, the optimal design would be the one for
which Π0(X) = 1 for all X. However, measuring variables can be expensive so
that part of the planning of a trial might be to consider the trade off between
measuring variables and thereby increase the information in the data, and
the cost of measuring these variables. For that purpose, we assume that the
proportion of observations for which D(X) can be measured is restricted by a
upper bound δ completely determined by the maximal total cost the designer
is willing to spend. We note that P (∆ = 1) = EQ0P (∆ = 1 | X) = EQ0Π0(X).

We now define as design function

gQ0 = arg min
g∈G1,EQ0

Π0(X)≤δ
VARg0,Q0D

2
IPCW (g0, Q0)(O).
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That is, we are interested to select a missing-ness mechanism which minimizes
the variance of DIPCW under the constraint that the missing-ness mechanism
is less “expensive” than δ. In order to investigate if this kind of design function
can be determined in closed form we investigate this minimization problem in
more detail.

We note that the variance of DIPCW is given by

EX
D2(X)

Π0(X)
+ ψ2

0.

Treating X as discrete, the minimization problem over the missingness mech-
anism Π reduces to minimizing

∑
x

D2(x)

Π(x)
p0(x),

over Π under the constraint that
∑
x Π(x)p0(x) = δ, where p0(x) denotes the

probability distribution of X. We note that these summations/integrals w.r.t.
p0(X) are identified by the PX-factor Q0, since the variance of the observable
DIPCW is obviously identified from the observed data distribution. If Π0(X)
only depends on X through (say, baseline covariates) W = Φ(X) for some Φ,
then we could write the criteria to be minimized as

Π → E0
E0(D

2(X) | W )

Π(W )
.

Thus, in this case we need to minimize Π → EWσ
2
0(W )/Π(W ) under the

constraint that EWΠ(W ) = δ, where σ2
0(W ) ≡ E0(D

2(X) | W ). The Lagrange
multiplier global minimization problem corresponding with this constrained
minimization problem is given by

Π →
∑
w

σ2
0(w)p0(w)

Π(w)
− λ{

∑
Π(w)p0(w)− δ}.

The solution to this minimization problem is given by

δ
σ0(W )

E0σ0(W )
.

This solution is not necessarily smaller than 1 for all W . However, it can easily
be projected in a function between 0 and 1. For example, it does suggest the
following design function:

ΠQ0(W ) = c0(W ) min

(
1,

δσ0(W )

E0σ0(W )

)
,
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where c0(W ) is a normalizing constant so that EQ0ΠQ0(W ) = δ. This optimal
fixed design now implies a targeted adaptive design Πi = ΠQi−1

, where Qi−1

needs to be specified till the degree that it maps into an estimator of σ2
0(W ).

We will now present some examples of missing data structures for which
we can determine this closed form targeted adaptive design.

For the sake of illustration we first consider a simple example. Suppose that
the full data is X = (Y,W ), where Y is an outcome of interest and W is a
vector of baseline covariates. Suppose we observe O = (W,∆,∆Y ), where ∆ is
a missing indicator which equals 1 if the outcome is observed, and 0 otherwise.
Suppose that the parameter of interest is the mean, ψ0 = E0Y , of Y . A CAR
fixed design/censoring mechanism is a conditional distribution of ∆, given X,
which is only allowed to depend on X through W . The efficient influence curve
in the nonparametric full data model is given by D(ψ0)(X) = (Y − ψ0). The
IPCW-component of the efficient influence curve is given by:

DIPCW (g0, ψ0)(O) =
D(ψ0)(Y )∆

Π0(W )
.

The variance of DIPCW is expressed as

E0
Y 2

Π0(W )
= EW

E0(Y
2 | W )

Π0(W )
.

Thus, we need to minimize Π → EWσ
2
0(W )/Π(W ) under the constraint that

EWΠ(W ) = δ, where σ2
0(W ) ≡ E(Y 2 | W ). The Lagrange multiplier global

minimization problem corresponding with this constrained minimization prob-
lem is given by

Π →
∑
w

σ2
0(w)p(w)

Π(w)
− λ{

∑
Π(w)p(w)− δ}.

The solution to this minimization problem is given by

δ
σ0(W )

E0σ0(W )
.

This solution is not necessarily smaller than 1 for all W . However, it can easily
be projected in a function between 0 and 1. For example, it does suggest the
following design function:

ΠQ0(W ) = c0(W ) min

(
1,

δσ0(W )

E0σ0(W )

)
,
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where c0(W ) is a normalizing constant so that EQ0ΠQ0(W ) = δ. Thus, this
fixed design gives preference to measure the more variable Y in order to obtain
more information for the marginal mean of Y .

This implies as adaptive design Πi = ΠQi−1
with Qi−1 representing an

estimator of E(Y 2 | W ), and the empirical distribution for the marginal of W ,
based on O1, . . . , Oi−1.

It is also of interest to compare this design function based on the IPCW
estimating function with the design function one would obtain if one uses the
actual efficient influence curve. The efficient influence curve is given by:

D∗(Q0, g0)(O) =
(Y − E0(Y | ∆ = 1,W ))∆

Π0(W )
+ E0(Y | ∆ = 1,W )− ψ0.

The variance of the efficient influence curve is thus given by

E0
(Y − E0(Y | ∆ = 1,W ))2

Π0(W )
,

plus a term which does not depend on Π0. Thus, in this case, we find the
Lagrange multiplier solution

δ
σ∗0(W )

Eσ∗0(W )
,

where σ∗20 (W ) = E0{(Y − E0(Y | ∆ = 1,W ))2 | W}. This results in the
suggested design function:

Π∗
Q0

(W ) = c∗0(W ) min

(
1,

δσ∗0(W )

E0σ∗0(W )

)
,

where c0(W ) is a normalizing constant so that EQ0Π
∗
Q0

(W ) = δ. In this partic-
ular example, there is no reason to give preference to ΠQ0 , but, instead, Π∗

Q0
is

the preferred design function, but in situations in which the efficient influence
curve is too complex, the design function based on the IPCW component of
the efficient influence curve might be more tractable.

18.4 Adapting the missingness mechanisms in a sequen-
tial design, and targeted MLE.

Let’s now consider a missing data structure in which Xi = (Yi, Ei,Wi) ∼ PX0,
the effect of the variable Ei on Yi is of interest, Ei is expensive to measure, but
a surrogate E∗

i ⊂ Wi is available for everybody. Here X1, . . . , Xn are indepen-
dent and identically distributed with common probability distribution PX0.135
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The observed data structure is Oi = (Yi,∆i,∆iEi,Wi), i = 1, . . . , n. A CAR
fixed design/missingness mechanism is a conditional probability distribution
g0 of ∆i, given Xi, which only depends on W ∗

i ≡ (Yi,Wi). On the other hand,
an adaptive design g = (g1, . . . , gn) is defined by conditional probability dis-
tributions gi of ∆i, given Xi, and Ō(i− 1), which only depends on Xi through
W ∗
i , i = 1, . . . , n.
Let ψ0 be a non-parametrically defined real valued effect of E on Y such

as a pairwise correlation, or the regression coefficient in a marginal linear
regression of Y on E. We wish to define a targeted adaptive design. For that
purpose we will aim to minimize the variance of the efficient influence curve
of ψ0 over all fixed designs. Let D(Q0)(Y,E,W ) be the full data efficient
influence curve in the nonparametric full data model for this parameter ψ0.
The IPCW estimating function is given by:

DIPCW (Q0, g0)(O) =
D(Q0)(X)∆

Π(W ∗)
,

where Π(W ∗) = P (∆ = 1 | X) = P (∆ = 1 | W ∗). The efficient influence
curve of Ψ at pQ0,g0 is given by:

D∗(Q0, g0)(O) =
{D(Q0)(X)− E0(D(Q0)(X) | ∆ = 1,W ∗)}∆

Π0(W ∗)

+E0(D(Q0)(X) | ∆ = 1,W ∗).

It follows that the variance of the efficient influence curve is given by

E0
σ2

0(W
∗)

Π0(W ∗)
,

plus a term not depending on the missingness mechanism g0, where

σ2
0(W

∗) = E0(D1(X)2 | W ∗),

D1(X) = D(Q0)(X)− E0(D(Q0)(X) | ∆ = 1,W ∗).

Suppose we wish to minimize this variance over all fixed CAR designs Π un-
der the constraint that E0Π(W ∗) = δ. Thus, we need to minimize Π →
EW ∗σ2

0(W
∗)/Π(W ∗) under the constraint that EW ∗Π(W ∗) = δ. The Lagrange

multiplier global minimization problem corresponding with this constrained
minimization problem is given by

∑
w∗

σ2
0(w

∗)p(w∗)

Π(w∗)
− λ{

∑
Π(w∗)p(w∗)− δ}.
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The solution to this minimization problem is given by

δ
σ0(W

∗)

E0σ0(W ∗)
.

This solution is not necessarily smaller than 1 for allW ∗. However, it can easily
be projected in a function between 0 and 1. For example, it does suggest the
following design function:

ΠQ0(W
∗) = c0(W

∗) min

(
1,

δσ0(W
∗)

E0σ0(W ∗)

)
.

This design function yields a targeted adaptive design Πi = ΠQi−1
, i = 1, . . . , n,

given a series of estimators Q1, . . . , Qn of Q0. This targeted adaptive design
prefers to measure subjects for whichW ∗

i corresponds with a more variable cen-
tered full data efficient influence curve D1(X). A special case of this targeted
adaptive design is a two stage design in which one sets Πi = π for i = 1, . . . , n1,
and one sets Πi = ΠQn1

for the remaining subjects i = n1 + 1, . . . , n, where
Qn1 is an estimator of the distribution Q0 of X = (E,W ∗) based on the first
n1 observations.

Targeted MLE for fixed design: We will now consider the targeted
MLE of ψ0 for the fixed design and adaptive design, respectively. The density
of O under a fixed design PQ0,g0 can be factorized as:

pQ0,g0(O) = p0(W
∗)p0(E | W ∗)∆g0(∆ | W ∗).

We consider a parametric model pθ(E | W ∗) for the conditional distribution
of E, given W ∗ = (W,Y ), and we leave the marginal distribution of W ∗ =
(W,Y ) nonparametric. The maximum likelihood estimator for the marginal
distribution of W ∗ = (W,Y ) is the empirical probability distribution of W ∗

i =
(Yi,Wi), i = 1, . . . , n. The weighted maximum likelihood estimator for θ is
defined as

θn = arg max
θ

n∑
i=1

∆i log pθ(Ei | W ∗
i )wi,

where the weights are set to 1 in the fixed design, and, if we have an adaptive
design, then wi = g∗(1 | W ∗

i )/gi(1 | W ∗
i ) for a user supplied fixed design g∗ ∈ G.

We note that this maximum likelihood estimator is identical to the standard
weighted MLE for the parametric regression model of E on W ∗ = (Y,W )
as one would have used for uncensored data, but now restricted to all un-
censored observations with ∆i = 1. As a consequence, θn can be computed
with standard regression methodology and software, as long as one models the
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conditional distribution of E, given W ∗, with a standard regression model for
which software is available. Let Q0

n denote the distribution of X = (W ∗, E)
with marginal of W ∗ being the empirical probability distribution, and condi-
tional of E, given W ∗, be equal to pθn .

Let’s now consider the targeted MLE for the fixed design. Firstly, we note
that the efficient influence curve D∗(Q0, g0) can be written as a sum of two
components D∗

1(Q0, g0) and D∗
2(Q0), where

D∗
1(Q0, g0) ≡ {D(Q0)(X)− E0(D(Q0)(X) | ∆ = 1,W ∗)}∆

Π0(W ∗)

D∗
2(Q0) ≡ E0(D(Q0)(X) | ∆ = 1,W ∗).

We note that D2(Q0) is a function of W ∗ = (Y,W ) with mean zero so that
it represents a score for the marginal distribution of W ∗. Since we use the
nonparametric maximum likelihood estimator for the marginal distribution of
W ∗ there is no need to construct an ε-fluctuation of the MLE of the marginal
distribution of W ∗. Thus, in order to construct a targeted MLE it remains
to construct an extension pθn(ε) so that pθn(0) = pθn , and d

dε
log pθn(ε) at

ε = 0 equals D∗
1(Q0, g0). Below we present an easy to implement strategy for

constructing such an ε-fluctuation. Let ε1n be defined as

ε1n = arg max
ε

n∏
i=1

pθn(ε)(Ei | W ∗
i )∆i ,

which defines the first step targeted MLE Q0
n(ε

1
n) and corresponding ψ1

n =
Ψ(Q0

n(ε
1
n)). Iteration of this updating step leads to the k-th step targeted

MLE. Alternatively, we define the first step targeted MLE by a solution εn of

0 =
n∑
i=1

D(Q0
n(ε), g0)(Oi).

In both cases we end up with a solution (or approximate solution) Q∗
n of the

last equation, which is the single drive of the resulting robust asymptotics for
the corresponding targeted MLE ψ∗n = Ψ(Q∗

n).
Constructing an ε-fluctuation: We will now present an approach for

constructing the wished ε-fluctuation Q0
n(ε) of Q0

n. The model fit Q0
n for the

conditional distribution of E, given W ∗, and the marginal of W ∗ implies also
a fit for the conditional distribution of D(Q0

n), given W ∗. Let’s denote this fit
of D(Q0

n), given W ∗, with q0
n(· | W ∗). The density of W ∗, E under Q0

n can be
represented as

Q0
n(W

∗, E) = p0
n(W

∗)qθn(D(Q0
n)(W

∗, E) | W ∗),
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where we assume that, given W ∗, E → D(Q0)(E,W
∗) is 1-1, and we treat all

random variables as discrete (otherwise, we have to include a Jacobian). As
ε-fluctuation of Q0

n, we now propose the ε-fluctuation

Q0
n(ε)(W

∗, E) = p0
n(W

∗)qθn(ε)(D(Q0
n)(W

∗, E) | W ∗),

where d
dε

log qθn(ε)(D(Q0
n)(W

∗, E) | W ∗)∆
∣∣∣
ε=0

is given by

{D(Q0
n)(W

∗, E)− Eθn(D(Q0
n)(W

∗, E) | ∆ = 1,W ∗)}∆
Π0(W ∗)

.

If qθn is a normal density with variance σ2 and mean equal to a fitted regression
mθn(W ∗), then qθn(ε) can be selected to be the normal density with variance
σ2 and mean mθn(W ∗) + εh(Π0)(W

∗), where the extra covariate is defined as:

h(Π0)(W
∗) =

1

Π0(W ∗)
.

Similarly, for other types of densities qθn it will typically also be possible to
augment its mean with a covariate εh(W ∗) so that the score equals D1(Q

0
n, g0).

Alternatively, if qθn is not a normal density, one could simply redefine Q0
n

by redefining its conditional distribution of D(Q0
n), given W ∗, as a normal

density with mean EQ0
n
(D(Q0

n) | W ∗) = mθn(W ∗) and variance σ2, and thereby
proceed as above by augmenting this regression fit mθn with εh(W ∗).

Targeted MLE for adaptive design: For adaptive designs, the targeted
MLE requires the same extension pθn(ε) so that pθn(0) = Qθn , and d

dε
log pθn(ε)

at ε = 0 equals D∗
1(Qθn , g), but where one now sets g = gθn (i.e., gQθn

), and
gi corresponds with the adaptive missingness probabilities ΠQi−1

. One sets εn
equal to the solution of

0 =
n∑
i=1

D1(Qθn(εn), gθn)(Oi)
gθn(1 | Xi)

gi(1 | Xi)
, (44)

which corresponds with a weighted least squares estimator using weights wi =
gθn(1 | Xi)/gi(1 | Xi), i = 1, . . . , n.

Thus, the targeted MLE in which one sets g = gθn in the epsilon path
Qθn,g(ε) can be constructed in exactly the same manner as for the fixed design
above, with g0 replaced by gθn and by using weights wi in the MLE-steps for ε.
In particular, the extra covariate h(Π0)(W

∗
i ) for subject i is now replaced by

h(ΠQθn
)(W ∗

i ), i = 1, . . . , n. Thus this targeted MLE can be calculated with
standard regression software.
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Application of our CLT theorem for the targeted MLE in adaptive designs
(and thus also for fixed designs) proves that, under regularity conditions, ψ∗n is
consistent and asymptotically normally distributed when E0D(Q∗) = 0 implies
Ψ(Q∗) = ψ0, where Q∗ is the limit of Q∗

n = Qθn(εn) as n→∞. Its asymptotic
normal distribution is the same as the normal limit distribution of the targeted
MLE under a fixed design PQ0,gQ∗ , where gQ∗ is the stable limit of the adaptive
design gi = gQi

as i→∞. Specifically, we have

ψ∗n − ψ0 =
1

n

n∑
i=1

D∗(Qθ0(ε0), gθ0)(Oi)
gθ0(Ai | Xi)

gi(Ai | Xi)
+ op(1/

√
n),

so that statistical inference can be based on the Martingale CLT: see Theorem
8 for the precise statements.

18.5 Adaptive sequentially randomized clinical trials for
time-dependent treatment.

Suppose that we observe on the i-th randomly sampled subject baseline co-
variates Li(0), a treatment Ai(0), an intermediate outcome Li(1), a subsequent
treatmentAi(1), and a final outcome Yi = Li(2): Oi = (Li(0), Ai(0), Li(1), Ai(1), Yi =
Li(2)), i = 1, . . . , n. Let Lā = (L(0), La(0)(1), La(0)a(1)(2)) be the counterfac-
tual process one would observe on a randomly sampled subject if the subject
would have been assigned treatments a(0), a(1). Let X = (Lā : ā) be the col-
lection of these treatment specific random variables, which represents the full
data we would have liked to observe on each subject. The observed data on
the randomly sampled subject can be represented as a missing data structure
on Xi as follows:

Oi = (Li(0), Ai(0), LAi(0)(1), Ai(1), Yi = LĀi(1)(2)), i = 1, . . . , n.

It is assumed that Xi are i.i.d. random variables with common probability
distribution PX0. The adaptive design is defined by the distribution

gi(a | Xi) = P (Ai = a | Xi, O1, . . . , Oi−1),

where a = (a(0), a(1)) represents a possible treatment strategy. Conditional
on O1, . . . , Oi−1, it is assumed that gi satisfies the sequential randomization
assumption (SRA) which states:

gi(a | Xi) =
1∏
j=0

gi(a(j) | Āi(j − 1) = ā(j − 1), Xi)

=
1∏
j=0

gi(a(j) | Āi(j − 1), L̄i(j)) SRA, (45)
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where we used the notation Ā(j) = (A(0), . . . , A(j)), and the convention
Ā(−1) being empty (similarly for L). That is, the randomization probabil-
ities for treatment, Ai(j), at time j for subject i can be a function of the
observed past of the subject i as known at time j, and the data observed on
all previously recruited subjects 1, . . . , i− 1. The set of fixed designs G are all
conditional probability distributions of A, given X, satisfying the SRA.

For example, consider a trial in which one wishes to investigate 4 drugs
for the treatment of HIV-infected patients. For that purpose, one sequentially
recruits blocks of patients over time. Each patient is initially randomized to
one of the four drugs, and after a few months an intermediate outcome (e.g.,
success or failure) is collected. Subsequently, the patient is randomized again
to a subset of these 4 drugs depending on the intermediate response, and a
final outcome is collected: e.g., if the previously assigned treatment resulted in
a good response the patient proceeds on the same treatment, but if it resulted
in a poor response (e.g., side effects), then the patient is randomized to the
remaining three drugs. In an adaptive design of the type above, one is allowed
to make these randomization probabilities also a function of the data collected
on the previously recruited patients. For example, during the trial one might
determine that patients who fail on drug 1 almost always also fail on drug 3
(e.g., due to cross-resistance), and, as a consequence, one might stop switching
patients from drug 1 to drug 3.

In this kind of trial one might be interested in comparing certain treatment
rules. As a specific example, consider the rule d(a) = d(a(0), a(1)), which as-
signs treatment a(0) at time 0, and, if the intermediate outcome is a success,
then the patient stays on a(0), but otherwise, the patient is switched to a(1).
We remind the reader that a dynamic treatment rule d applied at time points
0, 1 are two functions d(j) of the observed past as available right before time
j, j = 0, 1. Here a(0) ∈ {1, 2, 3, 4}, and a(1) ∈ {1, 2, 3, 4}/{a(0)} is any treat-
ment different from a(0). This describes 12 possible treatment rules. Suppose
that we are interested in estimating EYd(a) for each of these 12 possible rules
d(a), where Yd(a) is the outcome one would observe on the randomly sampled
patient if the patient follows rule d(a). This counterfactual is a function of
X and a = (a(0), a(1)): Ld(a)(0) = L(0), Ld(a)(1) = La(0)(1), Yd(a) = Ld(a)(2)
equals La(0),a(0) if La(0)(1) = 1, and else it equals La(0)a(1).

Let D = {d(a) : a} denote the set of 12 possible dynamic rules d(a).
Suppose that the parameter of interest is ψ0 = EYd1 − EYd0 for two rules
d0, d1 ∈ D, and we leave the full data distribution unspecified. We will first
define the efficient influence curve for the fixed design and the locally efficient
targeted MLE of ψ0 for the fixed and adaptive design. Subsequently, we will
present a strategy for defining targeted adaptive designs.
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Let I(A = d(L)) denote the indicator that the randomly sampled subject
followed rule d: i.e., A(0) = d0(L(0)), A(1) = d1(A(0), L̄(1)). The efficient
influence curve can be represented as the projection of the IPTW estimating
function on the tangent space of the PX0 factor Q0 of the density of O: see
van der Laan and Robins (2003). The IPTW estimating function for ψ0 is
given by

DIPTW (O) = Y

(
I(A = d1(L))

g(A | X)
− I(A = d0(L))

g(A | X)

)
− ψ0.

The efficient influence curve for ψ0 at a fixed design p0 = Q0g0 (Q0 denotes
the PX-factor of the density of O, and g0 ∈ G is the conditional density of A,
given X) can be presented as

D∗(p0)(O) = D1(p0)(0) +D2(p0)(0) +D3(p0)(O),

where

D1(Q0, g0)(O) = E0(DIPTW (O) | L(0))

D2(Q0, g0)(O) = E0(DIPTW (O) | L̄(1), A(0))− E0(DIPTW (O) | L(0), A(0))

D3(Q0, g0)(O) = E0(DIPTW (O) | L̄(2), Ā(1))− E0(DIPTW (O) | L̄(1), Ā(1)).

Let p0
n = (g0

n, Q
0
n) be an initial density estimator of p0 = (g0, Q0). For exam-

ple, p0
n could be the maximum likelihood estimator based on a working model

for Q0. Note that Q0
n includes as components an estimator of the marginal

distribution of L(0), conditional distribution of L(1), given L(0), A(0), and
conditional distribution of Y = L(2), given L̄(1), Ā(1). We will denote these
3 conditional distributions with Q0j, j = 0, 1, 2. Let the marginal distribu-
tion of L(0) be estimated with the empirical probability distribution of Li(0),
i = 1, . . . , n. If L(1) is a simple indicator of having a successful response to
treatment A(0), we can estimate the conditional distribution of L(1), given
L(0), A(0), with logistic regression software. Similarly, if Y is a 1-0 outcome,
we can estimate the conditional distribution of Y with logistic regression, and,
if Y is a continuous outcome, we can use linear regression with normal errors.
In the case that L(1) and or Y are categorical outcomes, then we can use
multi-nomial logistic regression models to estimate these conditional distribu-
tions.

For concreteness and the sake of illustration, we assume that L(1) and
Y = L(2) are both binary. Let Qjθ(j) be a logistic regression working model
for Li(j), given the past L̄i(j − 1), Āi(j − 1):

Qjθ(j)(1 | L̄i(j−1), Āi(j−1)) =
1

1 + exp
(
−mj(L̄i(j − 1), Āi(j − 1) | θ(j))

) , j = 1, 2.
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Let Q0
jn = Qjθn(j) be the corresponding maximum likelihood estimator accord-

ing to these working models, j = 1, 2:

θn(j) = arg max
θ(j)

n∑
i=1

log
{
Qjθ(j)(Li(j) | L̄i(j − 1), Āi(j − 1))

}Li(j)
j = 1, 2.

Targeted MLE in fixed design: We now proceed to map this maximum
likelihood estimator Qθn according to a possibly misspecified working model
into the fully robust targeted maximum likelihood estimator. For that purpose,
we now define the ε-fluctuation Q0

jn(ε)(1 | L̄i(j − 1), Āi(j − 1)) of these fitted
working models as

1

1 + exp
(
−mj(L̄i(j − 1), Āi(j − 1) | θn(j)) + εhj(L̄(j − 1), Ā(j − 1))

) .
The score of ε at ε = 0 for observation i is given by:

Sj(0i) = hj(L̄i(j− 1), Āi(j− 1))(Li(j)−Q0
jn(1 | L̄i(j− 1), Āi(j− 1)), j = 1, 2,

and if we assume a common ε for the two working models, then the score of
ε at ε = 0 is given by the sum S1(Oi) + S2(Oi) of these two scores. We need
that this score Sj equals the efficient influence curve component Dj(p

0
n). By

the fact that, Dj(p)(L(j), L̄(j − 1), Ā(j − 1)) equals(
Dj(p)(1, L̄(j − 1), Ā(j − 1))−Dj(p)(0, L̄(j − 1), Ā(j − 1))

)
×
(
L(j)− Ep(L(j) | L̄(j − 1), Ā(j − 1))

)
,

it follows that we should select hj(L̄i(j − 1), Āi(j − 1)) as(
Dj(p

0
n)(1, L̄i(j − 1), Āi(j − 1))−Dj(p

0
n)(0, L̄i(j − 1), Āi(j − 1))

)
, j = 1, 2.

Let ε0n be the MLE of ε. Since the empirical marginal distribution of L(0)
is already a nonparametric MLE, there is no need to update the marginal
distribution of L(0) under Q0

n. Given p0
n, this MLE ε0n can be fitted with

standard logistic regression software. This yields now an updated fit Q1
n =

Q0
n(ε

0
n). This updating can be iterated to obtain a sequence of updates Qk

n =
Qk−1
n (εkn), k = 1, 2, . . .. As shown in van der Laan and Rubin (2006), for k

large enough, this results in an update so that

PnD
∗(g0, Q

k
n) = oP (1/

√
n).

In our experience, a few iterations already closely approximates a solution
of the actual estimating equation PnD

∗(g0, Q) = 0. In the sequentially ran-
domized trial g0 is known so that there is no need to estimate g0: i.e., in
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observational studies one replaces g0 by an estimator g0
n. The targeted MLE is

defined as the substitution estimator Ψ(Qk
n) corresponding with the updated

MLE Qk
n. The consistency and asymptotic linearity of this targeted MLE of

ψ0 follows in essence from the fact that P0D
∗(g0, Q) = −(Ψ(Q)− ψ0) so that

solutions of the estimating equation PnD
∗(g0, Q) = 0 in Q result in consis-

tent estimators of ψ0, even if the original working model and thereby Q0
n is

inconsistent.
Targeted MLE in adaptive design: The iterative targeted MLE for

the adaptive design based on the Qθ,gθ
(ε)-path is similar, but g0(Ai | Xi) for

observation Oi is now replaced by gθn(Ai | Xi) and we use weights wi = gθn/gi
in the ML-steps for ε.

Thus, we now select the covariate extension hji(L̄i(j − 1), Āi(j − 1)) as(
Dj(gθn , Q

0
n)(1, L̄i(j − 1), Āi(j − 1))−Dj(gθn , Q

0
n)(0, L̄i(j − 1), Āi(j − 1))

)
, j = 1, 2.

As above, this results in an update (for k large enough) so that

1

n

n∑
i=1

D∗(Qk
n, gθn)(Oi)

gθn(Ai | Xi)

gi(Ai | Xi)
= oP (1/

√
n).

The targeted MLE is defined as the substitution estimator Ψ(Qk
n) correspond-

ing with the updated MLE Qk
n.

The one-step targeted MLE as defined in Section 12 is based on the path
Qθ,gθn

(ε) for a targeted adaptive design gn = gθn−1 , where ε is estimated by a
solution εn of

0 =
n∑
i=1

D∗(Qθn,gθn
(εn), gθn)

gθn

gi
.

If there are multiple solutions εn one can use the log likelihood of Qθn,gn(ε) as
criteria to select the one with the highest log-likelihood.

The consistency and asymptotic linearity of this targeted MLE of ψ0 follows
in essence from the fact that PQ0,gD

∗(Q, g) = −(Ψ(Q) − ψ0) for all g so that
solutions of the estimating equation 1

n

∑n
i=1 PQ0,gi

D∗(Q, g)g/gi = 0 in Q result
in consistent estimators of ψ0, even if the original working model and thereby
Q0
n is inconsistent. Formally, our Theorem 8 provides the formal template for

proving this consistency and asymptotic linearity, under the assumption that
the adaptive design gi is asymptotically stable (i.e., asymptotically gi approx-
imates a fixed design in G), and some regularity conditions. In particular,
under these regularity conditions, it shows that

Ψ(Qθn,gθn
(εn))− ψ0 =

1

n

n∑
i=1

D∗(Qθ0,gθ0
(ε0), gθ0)(Oi)

gθ0(Ai | Xi)

gi(Ai | Xi)
+ oP (1/

√
n),
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where the sum is a Martingale so that statistical inference can proceed based
on the Martingale CLT, as specified in Theorem 8.

Targeted adaptive design: In order to formulate a targeted adaptive
design targeted at ψ0, we propose the design function:

gQ0 ≡ arg min
g∈G1

PQ0,gD
2
IPTW (Q0, g).

That is, gQ0 is the fixed design which minimizes the variance of the IPTW
component of the efficient influence curve among all fixed designs in a user
supplied set G1. We suggest that this design function is more tractable than the
design function minimizing the variance of the actual efficient influence curve
of ψ0, and that it still has nice properties since the actual efficient influence
curve is defined as the projection of DIPTW on the tangent space of Q0.

Since the IPTW estimating function for ψ0 is given by

DIPTW (O) = Y

(
I(A = d1(L))

g(A | X)
− I(A = d0(L))

g(A | X)

)
− ψ0,

it follows that the variance of the IPTW estimating function is given by

σ2(g,Q0) = E

{
Y 2
d1

g(d1(Ld1) | X)
+

Y 2
d0

g(d0(Ld0) | X)

}
,

plus ψ2
0. Treating l as discrete, and noting that we can ignore the ψ0 term,

this can be written as:

σ2(g,Q0) =
∑
l

∑
a

l(2)2 I(d1(l) = a)pd1(l) + I(d0(l) = a)pd0(l)

g(a | l)

≡
∑
l

∑
a

φ0(a, l)

g(a | l)
,

where pd(l) denotes the density of the counterfactual process Ld under dynamic
treatment rule d, and φ0 is defined as the numerator in the integrand on the
left-hand side summation. By the G-computation formula, this counterfactual
density pd is identified by the FX-part Q0 of p0, and is given by

pd(l) = Q00(l(0))Q01(l(1) | l(0), a(0) = d(l(0)))Q02(l(2) | l̄(1), ā = d(l̄(1)))

in which the treatment in the conditioning events is set at a value determinis-
tically implied by the rule d and l. One now needs to minimize this variance
expression over the conditional probability distribution g(a | l) = g(a(0) |
l(0))g(a(1) | a(0), l̄(1)) among all g ∈ G1. In certain settings the optimal gQ0145
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exists in closed form in terms of φ0 and can be derived analogue to our closed
form derivations for the treatment mechanism in clinical trials.

This approach for generating candidate targeted adaptive designs can be
generalized to a set of pairwise comparisons of dynamic treatment regimens,
as in Section 2.

18.6 Adapting the monitoring mechanism: current sta-
tus data.

Let the full data on an experimental unit be given by X = (T,W ), where T
is a time till onset of disease, and W is a vector of baseline covariates. The
observed data on an experimental unit is O = (W,C,∆ = I(T ≤ C)), where
C is the monitoring time at which one determines the current status ∆ of
the unit. We refer to chapter 4 of van der Laan and Robins (2003) for an
overview of literature and a detailed treatment of this data structure and its
generalization to time-dependent covariates. A particular application are data
collected in carcinogenicity experiments in whichW are baseline characteristics
of the mouse, and C is the time at which the mouse is sacrificed/monitored
and the absence or presence of a tumor is determined. Suppose that one is
concerned with estimation of a smooth parameter, ψ0(r) ≡

∫
r(t)(1−FT0(t))dt,

of the cumulative distribution function FT0 of the time till onset T , where the
function r is user supplied. The set of fixed CAR designs are all conditional
distributions of C, given X, for which C is conditionally independent of T ,
given W : G = {g(· | X) : g(· | X) = g(· | W )}. The variance of the efficient
influence curve of this real valued parameter ψ0(r) at a distribution Pg0,Q0 of
O is given by

EW

∫ r2(c)

g0(c | W )
F0(c | W )(1− F0(c | W ))dc,

plus a term which does not depend on the monitoring density g. As shown
in ?, the optimal monitoring density minimizing this variance of the efficient
influence curve is given by:

gQ0(c | W ) =
| r(c) |

√
F0(c | W )(1− F0(c | W ))

K∗(W )
,

where K∗(W ) is the normalizing constant so that the expression on the right
hand side integrates over c till 1.

In general, for a parameter ψ0 for which the full data efficient influence
curve in the nonparametric full data model is given by D(Q0)(T, Z), we have
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that the efficient influence curve of ψ0 is given by

D∗(Q0, g0)(O) =
D(Q0)1(C,W )

g0(C | W )
(F0(C | W )−∆) + E0(D(Q0)(T,W ) | W ),

where D(Q0)1(t,W ) = d
dt
D(Q0)(t,W ). Thus, the variance of the efficient

influence curve, up till a term not depending on the monitoring density, is
given by:

EW

∫
c

D(Q0)1(c,W )2

g(c | W )
F0(c | W )(1− F0(c | W )).

Thus, the optimal monitoring mechanism is given by

gQ0(c | W ) =
| D(Q0)1(c,W ) |

√
F0(c | W )(1− F0(c | W ))

K∗(W )
,

where K∗(W ) is the normalizing constant so that the expression on the right
hand side integrates over c till 1.

This optimal fixed design gQ0 is unknown since it depends on the true
conditional distribution function of T , given W . It implies a targeted adaptive
design;

gi(c | W ) = gQi
(c | W ),

where Qi generates an estimator of F0(c | W ) based on O1, . . . , Oi−1. For
example, this estimator could be based on the following relation:

F0(c | W ) = P (∆ = 1 | C = c,W ),

a logistic regression model for P (∆ = 1 | C = c,W ), and a corresponding
maximum likelihood estimator of F0(c | W ), which can be obtained with
standard software.

Given a sequence O1, . . . , On generated with this targeted adaptive design
gi, one can estimate the unknown parameter ψ0 with the targeted MLE. In
order to implement a targeted MLE for a particular parameter ψ0 we note the
following. Firstly, the PX-factor of the density of O1, . . . , On is given by:

L(Q) =
n∏
i=1

F (Wi)F (Ci | Wi)
∆i(1− F (Ci | Wi))

1−∆i .

Consider an initial fitQ0 representing the empirical distribution for the marginal
distribution of W and a fit F 0(· | W ) = 1

1+exp(−h0(c)−β0W )
of the conditional

distribution of T , given W . Consider the ε-fluctuation:

Fε,h(c | W ) =
1

1 + exp(−(h0(c) + β0W + εh(c,W )))
.
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The score of ε at ε = 0 is given by h(C,W )(∆−F 0(C | W )). Since the model
for X is left unspecified, for a parameter ψ0 with full data efficient influence
curve D(Q0)(T, Z), the efficient influence curve for ψ0 at PQ0,g0 is given by

D∗(Q0, g0)(O) =
D(Q0)1(C,W )

g0(C | W )
(F0(C | W )−∆) + E0(D(Q0)(T,W ) | W ),

where D(Q0)1(t,W ) = d
dt
D(t,W ). Thus the component of the efficient influ-

ence curve which represents a score of the conditional distribution of T , given
W , part of the likelihood is given by D(Q0)1/g0(F0 −∆).

This shows that, in order to obtain the targeted MLE for a fixed design,
we should chose as additional covariate h(C,W ) the following choice:

h∗(g0, Q
0)(C,W ) ≡ −D(Q0)1(C,W )

g0(C | W )
.

Consider now data generated by an adaptive design. Let Fθn(· | W ) be a
weighted maximum likelihood estimator of F0(· | W ) according to a working
model with weights g∗(Ci | Wi)/gi(Ci | Wi) for a user supplied fixed moni-
toring design g∗ ∈ G. Consider the path Fθn,h∗(gθn ,Qθn )(ε) through Fθn defined
above, but with g0 replaced by gθn , and let Qθn(ε) represent the corresponding
path through Q0 (where the marginal of W is set at the empirical probability
distribution). Let εn be the solution of

0 =
n∑
i=1

D∗(Qθn(εn), gθn)wi,

where wi = gθn(Ci | Xi)/gi(Ci | Xi), i = 1, . . . , n. It follows that

εn = arg max
ε

n∑
i=1

wi log
{
Fθn,h∗(gθn ,Qθn )(ε)(Ci | Wi)

∆i(1− Fθn,h∗(gθn ,Qθn ))(Ci | Wi))
1−∆i

}
,

which is obtained with standard logistic regression software. In the case that
h∗(g,Q) does not depend on Q, such as in the case that ψ0 =

∫
r(t)(1 −

FT0)(t)dt, it follows that the k-th step of this targeted MLE equals the first
step targeted MLE.

As a consequence of our general CLT theorem for targeted MLE in adaptive
designs gi = gQi−1

, it follows that, under regularity conditions, the resulting
targeted MLE of ψ0 is always consistent and asymptotically linear (even if the
working model is misspecified)

Ψ(Qθn,gθn
(εn))− ψ0 =

1

n

n∑
i=1

D∗(Qθ0,gθ0
(ε0), gθ0)(Oi)wi + oP (1/

√
n),
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where the sum is a Martingale so that statistical inference can be based on
the Martingale Central Limit Theorem, as specified in Theorem 8. That is,
by using a targeted adaptive design and targeted MLE we adapt towards the
optimal design g(Q0) (and we are consistent in doing so if Q∗ = Q0), and
we achieve the asymptotic normal limit distribution corresponding with i.i.d.
sampling from PQ0,g(Q∗).

18.7 Adapting the monitoring mechanism: interval cen-
sored data.

Let the full data be given by X = (T,W ) again, where T is the time till
onset of a disease which can only be observed by monitoring and testing the
unit of study. Suppose that T is discrete on time points t0 < . . . < tJ . Let
A(1), . . . , A(J) represent monitoring indicators, where A(j) = 1 if the subject
is monitored at time tj and is zero otherwise. The observed data on the i-th
experimental unit is

Oi = (Wi, Ai(j),∆i(j) ≡ Ai(j)I(Ti ≤ tj), j = 1, . . . , J).

Thus, for each monitoring time we observe the indicator if the onset of the
disease occurred or not. A fixed design is the conditional probability distri-
bution of A = (A(1), . . . , A(J)), given (T,W ), and is assumed to satisfy the
sequential randomization assumption:

g(A | X) =
J∏
j=1

gj(A(j) | Ā(j − 1), ∆̄(j − 1),W ).

In words, the probability of being monitored at time tj, past monitoring Ā(j−
1) and X, only depends on the observed indicators ∆(1), . . . ,∆(j − 1), and
the baseline covariates W .

An adaptive design, on the other hand, will also allow that these monitoring
probabilities at time tj for experimental unit i are a function of the previously
recruited i− 1 subjects:

gi(Ai | Xi) =
J∏
j=1

gj(Ai(j) | Āi(j − 1), ∆̄i(j − 1),Wi, Ō(i− 1)).

For example, during the course of the trial one might learn that for certain
subgroups the onsets occur mostly in the first half of time window and other
subgroups might only experience very few onsets. This kind of information
could now be used to adapt the monitoring mechanism for the subsequent
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experimental units in order to monitor with higher probability in time windows
with reasonable onset intensity.

Analogue to Section 2 and the previous subsection, we could also define a
design function as the minimizer of the variance of the IPCW estimating func-
tion for a particular parameter of interest over all fixed designs satisfying the
SRA assumption, where the IPCW estimating function is defined in Chapter
6 of van der Laan and Robins (2003). Again, this is a more tractable approach
than minimizing the variance of the efficient influence curve since the latter
does not exist in closed form, although, almost efficient closed form influence
curves are defined in chapter 6 of van der Laan and Robins (2003).

19 Adaptive designs for longitudinal data struc-

tures.

Let La = (La(0), . . . , La(τ + 1)) be a a-specific process over time. Let Ta be a
potentially random end of follow up time (e.g., survival) with support [0, τ+1],
and Ra(t) ≡ I(Ta ≤ t) is assumed to be a component of La(t). Let La(t) =
La(min(t, Ta)) be the process that stops observing La(t) at this follow up time
Ta in the sense that it stays constant after Ta. It is assumed that La(t) =
Lā(t−1)(t) is only affected by the design settings ā(t− 1) = (a(0), . . . , a(t− 1)),
t = 0, . . . , τ + 1, which is an assumption following from the time-ordering
stating that treatment A(t−1) is measured after L(t−1) and before L(t). Let
A be a set of possible design settings a = (a(0), . . . , a(τ)). We will assume that
each time-specific component a(t) = (a1(t), a2(t)) of the vector a ∈ A consists
of two real valued components (typically binary or categorical), so that it will
be clear for the readers how to immediately generalize our setting to more
than 2 components for each setting a(t) at time t. For example, a1(t) might
denote treatment assignment at time t, and a2(t) might denote an indicator
of being right censored at time t.

Let X = (La : a ∈ A) ∼ PX0 be the full data structure. We will assume
that the model for PX0 is nonparametric. It is assumed that X1, . . . , Xn are
n i.i.d. copies of X. Suppose that the observed data on each of the n ex-
perimental units is Oi = (Ai, Li = LAi

), where Ai = (Ai(0), . . . , Ai(τ)) and
Ai(t) = Ai(min(t, T̃i − 1)) is truncated at T̃i − 1 so that it is defined up till
time τ , where T̃i = Ti,Ai

is the follow up time under design Ai, i = 1, . . . , n.
Similarly, LAi

(t) = LAi
(min(t, T̃i)) is truncated at T̃i. If a2(t) denotes a right-

censoring indicator, then the set of possible designs A will have elements a so
that a1(t) = a1(t− 1) for t larger than the first time point at which a2 jumps
to 1: that is, after right-censoring the unit, the settings for treatment do not
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change anymore. In this manner, it is guaranteed that the observed Ai can be
uniquely defined as an element of A, and Li = LAi

.
As set of fixed designs we consider the conditional distribution of A, given

X, satisfying the sequential randomization assumption:

g(a | X) =
τ∏
t=0

P (A(t) = a(t) | Ā(t− 1) = ā(t− 1), X)

=
Ta−1∏
t=0

P (A(t) = a(t) | Ā(t− 1) = ā(t− 1), X) (46)

×
τ∏

t=Ta

I(a(t) = a(t− 1))

SRA
=

Ta−1∏
t=0

P (A(t) = a(t) | Ā(t− 1) = ā(t− 1), L̄a(t)) (47)

×
τ∏

t=Ta

I(a(t) = a(t− 1)) (48)

=
Ta−1∏
t=0

P (A1(t) = a1(t) | Ā(t− 1) = ā(t− 1), L̄a(t)) (49)

Ta−1∏
t=0

P (A2(t) = a2(t) | A1(t) = a1(t), Ā(t− 1) = ā(t− 1), L̄a(t))(50)

×
τ∏

t=Ta

I(a(t) = a(t− 1)))

≡
Ta−1∏
t=0

g1(a1(t) | ā(t− 1)l, L̄a(t)) (51)

Ta−1∏
t=0

g2(a2(t) | a1(t), ā(t− 1), L̄a(t))
τ∏

t=Ta

I(a(t) = a(t− 1)),

where we factorized the design in terms of an A1 (say treatment assignment)
mechanism and A2 (say right-censoring assignment) mechanism.

Let G be the set of all conditional distributions of A, given X, satisfying
the SRA. An adaptive CAR/SRA design is now a conditional distribution of
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Ai, given Xi and O1, . . . , Oi−1, satisfying

gi(a | Xi, Ō(i− 1)) =
∏τ
t=0 P (Ai(t) = a(t) | Āi(t− 1) = ā(t− 1), Xi, Ō(i− 1))

=
∏Tia−1
t=0 P (Ai(t) = a(t) | Āi(t− 1) = ā(t− 1), Xi, Ō(i− 1))

=
∏Tia−1
t=0 P (Ai(t) = a(t) | Āi(t− 1) = ā(t− 1), L̄ia(t), Ō(i− 1)) SRA

=
∏Tia−1
t=0 P (A1i(t) = a1(t) | Āi(t− 1) = ā(t− 1), L̄ia(t), Ō(i− 1))∏Tia−1

t=0 P (A2i(t) = a2(t) | A1i(t) = a1(t), Āi(t− 1) = ā(t− 1), L̄ia(t), Ō(i− 1))

≡ ∏Tia−1
t=0 g1i(a1(t) | ā(t− 1)l, L̄ia(t), Ō(i− 1))∏Tia−1

t=0 g2i(a2(t) | a1(t), ā(t− 1), L̄ia(t), Ō(i− 1)),

where we assumed that a(t) = a(t − 1) for t > Tia − 1, and if the latter does
not hold, then, as for the fixed design, gi(a | Xi) = 0. Let Ei(0), . . . , Ei(τ) be
the chronological times at which Ai(0), . . . , Ai(τ) are assigned, i = 1, . . . , n.
At time Ei(t), the complete observations Oj might not be available yet for
experiments j = 1, . . . , i − 1. Let Ōj(Ei(t)) represent the part of Oj which
is available at chronological time Ei(t), and, for notational convenience, let
ŌEi(t)(i− 1) represent (Ōj(Ei(t)) : j = 1, . . . , i− 1). Then,

gi(a | Xi, Ō(i− 1)) =
Tia−1∏
t=0

g1i(a1(t) | ā(t− 1), L̄ia(t), ŌEi(t)(i− 1))

Tia−1∏
t=0

g2i(a2(t) | a1(t), ā(t− 1), L̄ia(t), ŌEi(t)(i− 1)).

The density of O1, . . . , On under the adaptive design g = (g1, . . . , gn) is
given by:

PQ0,g(Oi : i = 1, . . . , n) =
n∏
i=1

Q0(Ai, Li)g(Ai | Xi, Ō(i− 1))

=
n∏
i=1

∏
t=0

Q0t(Li(t) | L̄i(t− 1), Āi(t− 1))g(Ai | Xi, Ō(i− 1)),

where Q0(a, l) = PX0(La = l), and Q0t(l(t) | l̄(t− 1), ā(t− 1)) = PX0(La(t) =
l(t) | L̄a(t−1) = l̄(t−1)), which equals the conditional probability distribution
Li(t) at l(t), given L̄i(t−1) = l̄(t−1), Āi(t−1) = ā(t−1), i = 1, . . . , n. Given
a working model Qw = {Qθ : θ} for Q0 one can now construct a maximum
likelihood estimator, possibly using likelihood based cross-validation to select
certain fine tuning parameters. Let Qθn = (Qtθn : t = 0, . . . , τ + 1) be this
maximum likelihood estimator. We note that the non-degenerate part of Q0t

represents the conditional distribution of L(t), given Ā(t− 1), L̄(t− 1), where
L̄(t−1) always implies T̃ ≥ t, while, if L̄(t−1) implies that T̃ already occurred,
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then Qot is degenerate and thus known (recall that all processes are truncated
after T̃ ).

Consider a particular parameter ψ0 = Ψ(Q0) of interest. We now wish to
focus on the targeted maximum likelihood estimator for the adaptive design,
which maps this typically inconsistent Qθn into a new updated Qθn(εn) which
results in a consistent and asymptotically linear, and thereby asymptotically
normally distributed estimator of ψ0.

Firstly, let’s consider a fixed design, since the targeted MLE for the adap-
tive design is a generalization of the targeted MLE for the fixed design. Let
D(Q0) =

∑
a∈Aw(a, L(0)))Da(Q0)(La) be the efficient influence curve of ψ0

in the full data model, where it is assumed that it can be represented as a
weighted sum of a-specific functions of La. The IPCW component of the effi-
cient influence curve can be given by (see chapter 6, van der Laan and Robins
(2003)):

DIPCW (Q0, g)(O) =
w(A,L(0))DA(Q0)(L)

g(A | X)
,

which indeed satisfies

E(DIPCW (Q0, g)(O) | X) =
∑
a∈A

w(a, L(0))Da(Q0)(La),

under the assumption that supa∈A
w(a,L(0))Da(Q0)(La)

g(a|X)
< ∞. The efficient influ-

ence curve of ψ0 at fixed CAR design PQ0,g can now be represented as the
projection of DIPCW (Q0, g) on the tangent space of Q0:

D∗(Q0, g)(O) =
τ+1∑
t=0

EQ0,g(DIPCW (Q0, g) | L̄(t), Ā(t− 1))

−
τ+1∑
t=0

EQ0,g(DIPCW (Q0, g) | L̄(t− 1), Ā(t− 1))

≡
τ+1∑
t=0

D∗
t (Q0, g),

where D∗
t (Q0, g) is a score of Q0t, t = 0, . . . , τ + 1. Here we used that the

tangent spaces of Q0 is the orthogonal sum of the tangent spaces of Q0t, and
the latter tangent space is all functions of L̄(t), Ā(t−1) which have conditional
mean zero given L̄(t − 1), Ā(t − 1). We also note that the sum over time t
stops at T̃ since at and after this time point the two conditional expectations
cancel each other (due to the fact that all observed processes are truncated at
T̃ ).
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Let {Qtθn(ε) : ε} be a parametric extension satisfying Qtθn(0) = Qtθn and
that the linear span of the scores of Qtθn(ε) at ε = 0 include the components of
D∗
t (Qθn , g), t = 0, . . . , τ +1: for example, ε is of the same dimension as ψ0 and

the score of ε of Qtθn(ε) equals D∗
t (Qθn , g). Assuming a common parameter ε

for all t, let ε1n be defined as the MLE:

ε1n = arg max
ε

n∏
i=1

τ+1∏
t=0

Qtθn(ε)(Li(t) | L̄i(t− 1), Āi(t− 1)),

and iterate this procedure to obtain the k − th step targeted MLE Qk
n =

Qk−1
n (εkn) with Q0

n = Qθn , or we simply select εn as the solution of

0 =
n∑
i=1

τ+1∑
t=0

D∗
t (Qθn(ε), g)(Oi).

We focus on the latter approach, since also the iterative approach ends up with
an approximate solution Qn of this equation so that the same asymptotics
apply (see Section 12). The targeted MLE of ψ0 is now defined as ψn =
Ψ(Qn) = Ψ(Qθn(εn)).

Consider now data generated in an adaptive design. Let {Qθ : θ} be a
working model for Q0, and let θn be the weighted MLE using weights g∗(Ai |
Xi)/gi(Ai | Xi) for a user supplied fixed design g∗ ∈ G, which can be computed
as above. Consider the path above Qθn,g(ε) with g replaced by gθn , and let
εn be the solution of 0 =

∑n
i=1D

∗(Qθn,gθn
(εn), gθn)wi, where wi = gθn/gi, i =

1, . . . , n. The targeted MLE of ψ0 as analyzed in Section 12 is now given by
Ψ(Qθn(εn).

Thus, εn is defined as the solution of

0 =
n∑
i=1

τ+1∑
t=0

D∗
t (Qθn(ε), gθn)(Oi)wi,

and the targeted MLE of ψ0 is defined as ψn = Ψ(Qθn(εn)) again.
In order to provide an explicit demonstration of this targeted MLE, con-

sider the case that L(t) for t = 1, . . . , τ+1 is binary. Suppose that Qt,θ is mod-
elled with a logistic regression model for the binary L(t), given L̄(t−1), Ā(t−1),
where we only need to model it for histories which imply that T̃ ≥ t. One could
assume a separate logistic regression model for each t ≥ 1, or one could assume
models with common parameters. By adding a covariate h(t, L̄(t−1), Ā(t−1))
to the logistic regression model with parameter ε, we obtain a model Qt,θn(ε)
whose score at ε = 0 equals h(t, L̄(t−1), Ā(t−1))(L(t)−Qt,θ(1 | L̄(t−1), Ā(t−
1)). We can represent D∗

t (Q, g)(L(t), L̄(t− 1), Ā(t− 1)) as

(D∗
t (1, L̄(t−1), Ā(t−1))−D∗

t (0, L̄(t−1), Ā(t−1))(L(t)−Qt(1, L̄(t−1), Ā(t−1))).
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Thus, for the fixed design we should select h∗(Qθn , g)(t, L̄i(t− 1), Āi(t− 1)) as

(D∗
t (Qθn , g)(1, L̄i(t− 1), Āi(t− 1))−D∗

t (Qθn , g)(0, L̄i(t− 1), Āi(t− 1)).

For the adaptive design we select h∗(Qθn , gθn)(t, L̄i(t − 1), Āi(t − 1)), t =
1, . . . , τ + 1, i = 1, . . . , n. As above, ε is selected to solve the efficient in-
fluence curve equation 0 =

∑
iD

∗(Qθn(εn), gθn)wi = 0. The iterative targeted
MLE involves iteratively applying weighted maximum likelihood estimation
for logistic regression, which can thus be carried out with standard logistic
regression software.

If L(t) = (L(t)(1), . . . , L(t)(k)) is a vector of k binary variables, then we
can further factorize Q0t as a product of k conditional probabilities Q0tj of
L(t)(j), given L(t)(1), . . . , L(t)(j − 1)) and L̄(t − 1), Ā(t − 1), and model
each of these k conditional probability distributions with logistic regression.
The (iterative) targeted MLE can in this case be computed in exactly the
same manner as above: In the above presentation of the targeted MLE for
binary L(t) replace L(1), . . . , L(τ + 1) by the sequence of binary variables
L(1)(1), . . . , L(1)(k1), . . . , L(τ + 1)(1), . . . , L(τ + 1)(kτ+1)), rename this last
sequence as L′(0), . . . , L′(τ ′ + 1) and apply the above targeted MLE.

Since any categorical variable can be coded with 1-0 variables, this manner
of computing targeted MLE, by adding explicit covariates to the logistic re-
gression models, provides a general manner for computing the targeted MLE
for fixed and adaptive designs.

As a consequence of our general CLT Theorem 8 for the targeted MLE in
adaptive designs gi = gθi−1

, it follows that, under regularity conditions, the
targeted MLE of ψ0 is always consistent and asymptotically linear (even if
working model Qw for Q0 is misspecified):

Ψ(Qθn,gθn
(εn))− ψ0 =

1

n

n∑
i=1

D∗(Qθ0,gθ0
(ε0), gθ0)(Oi)wi + oP (1/

√
n),

where the sum is a Martingale satisfying the conditions of the Martingale CLT
so that statistical inference follows. That is, by using an adaptive design gi
which learns a fixed design gθ0 ∈ G as i→∞, and applying the targeted MLE
we adapt towards the design gθ0 (and this design is optimal if Qθ0 = Q0),
and we achieve the asymptotic normal limit distribution corresponding with
i.i.d. sampling from PQ0,gθ0

. As is evident from our CLT theorem for the
targeted MLE in adaptive designs, the asymptotic consistency and linearity
under a misspecified working model relies on PQ0,gi

D∗(Q∗, gi) = EQ0D
F (Q∗) =

0 implying that Ψ(Q∗) = ψ0. Thus, if the full data efficient influence curve does
rely on some nuisance parameters ofQ0, thenQθn(εn) needs to correctly specify
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these nuisance parameters. In many examples, the full data efficient influence
curve does only depend on Q0 through ψ0 so that this result is automatically
true.

19.1 Example: Adaptive randomized trial with right
censored survival outcome.

The full data of interest consists of baseline covariates W , and a set of treat-
ment specific survival times Ta(0) with support {0, 1, . . . , τ + 1} indexed by a
set of possible single time points treatments a(0) assigned at baseline. Let
a = (a(0), a(1), . . . , a(τ)) with a(t) = I(c = t), t = 1, 2, . . . , τ for some set
censoring time c: thus, a(t) has only a single 1 at most, and after this 1 it
stays zero. If a(1) = . . . = a(τ) = 0, then we will also refer to this as c = ∞.
Let L(0) = W , La(t) = (I(Ta(0)c ≤ t), t = 1, . . ., where Ta(0)c ≡ min(Ta(0), c).
The full data is X = (La : a ∈ A). The observed data on each experimen-
tal unit is Oi = (Ai, LAi

), where Ai identifies the assigned treatment Ai(0)
and the right-censoring time Ci, where Ci ≡ ∞ if Ti ≤ Ci. Equivalently,
Oi = (Wi, Ai, T̃i = TAi

). Let

ψ0(t) = P (Ta(0) > t)− P (T0 > t) = P (Ta(0)0 > t)− P (T00 > t),

where Ta(0)0 = Ta(0) is the follow up time if censoring is set at c = ∞, which
thus equals the treatment specific survival time Ta(0).

A CAR fixed design is a conditional distribution of A, given X, satisfying

g(a | X) =
τ∏
t=0

g(a(t) | Ā(t− 1) = ā(t− 1), X)

CAR
=

min(c(a),Ta(0)−1)∏
t=0

g(a(t) | Ā(t− 1) = ā(t− 1), L̄A(t))
τ∏

t=Ta

I(a(t) = 0),

where the first factor at t = 0 denotes a treatment mechanism, and the other
factors represent the censoring mechanism, where censoring is set at ∞ after
the failure time Ta(0). An adaptive CAR design g = (g1, . . . , gn) consists of n
conditional distributions of Ai, given Xi and O1, . . . , Oi−1, satisfying

gi(a | Xi) = gi(a | Xi, Ō(i−1)) =
∏
t=0

git(a(t) | Āi(t−1) = ā(t−1), L̄i(t), Ō(i−1)).

The density of O1, . . . , On is given by:

pQ0,g(O1, . . . , On) =
n∏
i=1

Q0(Ai, Li)gi(Ai | Xi)
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=
n∏
i=1

τ+1∏
t=0

Q0t(Li(t) | L̄i(t− 1), Āi(t− 1))
n∏
i=1

gi(Ai | Xi, Ō(i− 1))

=
n∏
i=1

T̃i=min(TiAi(0)
,Ci)∏

t=0

Q0t(Li(t) | L̄i(t− 1), Āi(t− 1))

n∏
i=1

T̃i∏
t=0

git(Ai(t) | Āi(t− 1), L̄i(t), Ō(i− 1)),

where Q0t(l(t) | l̄(t− 1), ā(t− 1)) denotes the conditional probability distribu-
tion of La(t) at l(t) given L̄a(t − 1) = l̄(t − 1), so that Q0(a, l) = P (La = l).
As discussed earlier, if at time Ei(t), the observation O1, . . . , Oi−1 are not
yet fully observed, then git will only depend on O1, . . . , Oi−1 through right-
censored versions of these i − 1 data structures. Note that Q0t models the
hazard of survival time Ti = TAi(0), given Ti has not happened yet, baseline
covariates Wi, and treatment Ai(0).

We could model Q0t with a logistic regression model:

Qtθ(dL(t) = 1 | L̄(t−1), L(0), Ā(t−1), A(0)) = I(T̃ ≥ t)
1

1 + exp(−θ(t)f(L(0), A(0)))
,

where f(L(0), A(0)) is a vector valued summary measure of (L(0), A(0)). Note
that this logistic function at Ā(t− 1) = ā(t− 1) is actually modelling

P (dL(t) = 1 | L̄(t−1), Ā(t−1) = ā(t−1), T̃ ≥ t) = P (Ta(0) = t | Ta(0) ≥ t, L(0)),

which is the hazard of the treatment specific survival time Ta(0) indexed by
baseline treatment a(0), conditional on L(0). Let Qw = {Qθ : θ} = {(Qtθ(t) :
t) : θ} be this model for Q0. The maximum likelihood estimator of θ = (θ(t) :
t) can be computed with standard logistic regression software. If the survival
time is continuous (e.g.,, the time scale is chosen fine enough so that no ties
occur at the same time), then one could also model Q0t with a multiplicative
intensity model:

P (dL(t) = 1 | L̄(t−), Ā(t−)) = I(T̃ ≥ t)λ0(t) exp(θft(L(0), A(0))),

where ft(L(0), A(0)) is a time dependent covariate defined as a function of
t, L(0), A(0). In particular, one could assume a Cox-proportional hazards
model for T conditional on L(0), A(0). Again, the maximum likelihood es-
timator for the multiplicative intensity model can be fitted with standard
software (e.g., Coxph() in R).

We now wish to consider the targeted maximum likelihood estimator of
ψ0 based on this maximum likelihood estimator for this working model Qw.
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Firstly, we consider the fixed design case. An inverse probability of censoring
weighted estimating function for ψ0(t0) is given by:

DIPCW (Q0, g)(O) = I(T > t0)I(C ≥ t0)

{
I(A(0) = a(0))

g(a(0)0̄(t0) | X)
− I(A(0) = 0)

g(00̄(t0) | X)

}
−Ψ(Q0)(t0),

where

g(a(0)0̄(t0) | X) = g(a(0) | L(0))
t0∏
t=1

P (A(t) = 0 | A(0) = a(0), A(t−1) = 0, L(0))

is the conditional probability of having a(0) assigned and being uncensored up
till and including time t0. The efficient influence curve D∗(Q0, g) at a fixed
design data generating distribution PQ0,g can be represented as the projection
of DIPCW onto the tangent space of Q0:

D∗(Q0, g) = Π(DIPCW (Q0, g) | T (Q0))

=
τ+1∑
t=0

EQ0,g(DIPCW (Q0, g) | L̄(t), Ā(t− 1))

−
τ+1∑
t=0

EQ0,g(DIPCW (Q0, g) | L̄(t− 1), Ā(t− 1))

=
T̃∑
t=0

EQ0,g(DIPCW (Q0, g) | L(0), A(0), dL(t), T̃ = min(T,C) ≥ t)

−
T̃∑
t=0

EQ0,g(DIPCW (Q0, g) | L(0), A(0), T̃ = min(T,C) ≥ t),

where we recall that dL(t) = I(T̃ = t, C ≥ t) equals 1 if a failure T = t occurs
at time t (but dL(t) = 0 if C = t but T 6= t). We define h∗(Q0, g)(t, L(0), A(0))
as

EQ0,g(DIPCW (Q0, g) | L(0), A(0), dL(t) = 1, T̃ = min(T,C) ≥ t)

−EQ0,g(DIPCW (Q0, g) | L(0), A(0), dL(t) = 0, T̃ = min(T,C) ≥ t),

and we note that

D∗(Q0, g) =
T̃∑
t=0

D∗
t (Q0, g)

=
T̃∑
t=0

h∗(Q0, g)(t, L(0), A(0))(dL(t)−Q0t(1 | L̄(t− 1), Ā(t− 1))).
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Let Qtθn(ε) be a 1-dimensional extension parameter ε so that Qtθn(0) =
Qtθn and the score of ε at ε = 0 for observation Oi equals D∗

t (Qθn , g) =
h∗(Qθn , g)(t, Li(0), Ai(0))(dLi(t)−Qtθn(1 | L̄i(t− 1), Āi(t− 1))). This can be
achieved by adding to the logistic regression model Qtθn(1 | L̄i(t−1), Āi(t−1))
a covariate h∗(Qθn , g)(t, Li(0), Ai(0)) with coefficient ε. Similarly, one can add
this covariate to the multiplicative intensity model. Let εn be the maximum
likelihood estimator of ε for this one dimensional parametric model

εn = arg max
ε

n∏
i=1

∏
t

Qtθn(ε)(Li(t) | L̄i(t− 1), Āi(t− 1)).

Computing εn corresponds with fitting a logistic regression model based on
a pooled (across time) sample with a single regression coefficient ε and can
thus be done with standard software. Let Qθn(εn) = (Qtθn(εn) : t). The
first step targeted maximum likelihood estimator of ψ0 for the fixed design
is now defined as ψn = Ψ(Qθn(εn)). The k-th step targeted MLE is defined
by iterating this process. One can also simply define εn as the solution of
0 =

∑
iD

∗(Qθn(ε), g) = 0.
Application of results in van der Laan and Rubin (2006) or the CLT The-

orem 8 for the k-th step targeted MLE or this latter one step targeted MLE
shows that ψn is consistent and asymptotically linear at PQ0,g with influence
curve D∗(Q∗, g), where Q∗ is the limit of Qθn(εn). In particular, if Q∗ = Q0,
i.e., if Q is correctly specified, then ψn is asymptotically efficient. In other
words, the targeted MLE is locally efficient.

The targeted maximum likelihood estimator for the adaptive design is now
defined by replacing g by gθn in the path Qθ(ε), and estimate θ0 with the
weighted maximum likelihood estimator using weights wi = g∗(Ai | Xi)/gi(Ai |
Xi), where we also showed that g∗ can be adaptively and sequentially esti-
mated. In addition, one uses weights wi = gθn/gi in the equations for εn.

Specifically, let Qtθn(ε) be a 1-dimensional extension parameter ε so that
Qtθn(0) = Qtθn and the score of ε at ε = 0 for observationOi equalsD∗

t (Qθn , gθn) =
h∗(Qθn , gθn)(t, Li(0), Ai(0))(dLi(t)−Qtθn(1 | L̄i(t−1), Āi(t−1))). This can be
achieved by adding to the logistic regression modelQtθn(1 | L̄i(t−1), Āi(t−1)) a
covariate h∗(Qθn , gθn)(t, Li(0), Ai(0)) with coefficient ε. Similarly, one can add
this covariate to the multiplicative intensity model.

One estimates ε with a solution εn of 0 =
∑
iD

∗(Qθn(ε), gθn)wi = 0 where
wi = gθn/gi. Consider the case that the adaptive design gi = gθi−1

. Application
of our central limit theorem for a targeted MLE shows that the targeted MLE
ψn is consistent and asymptotically linear for ψ0 with normal limit distribution
identical to the normal limit distribution for an asymptotically linear estimator
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with influence curve D∗(Q∗, gθ0) under a fixed design data generating distri-
bution PQ0,gθ0

, where Q∗ is the limit of Qθn(εn) and gθ0 ∈ G is the stable fixed
design limit of the adaptive design gi = gθi−1

for i → ∞. In other words, ψn
is asymptotically equivalent with the locally efficient targeted MLE at PQ0,gθ0

with an unknown fixed design gθ0 .Specifically, under regularity conditions,

Ψ(Qθn,gθn
(εn))− ψ0 =

1

n

n∑
i=1

D∗(Qθ0,gθ0
(ε0), gθ0)(Oi)

gθ0(Ai | Xi)

gi(Ai | Xi)
+ oP (1/

√
n),

where the right hand side sum is a Martingale satisfying the conditions of the
Martingale CLT so that the limit distribution is normal with mean zero and
covariance matrix which can be consistently estimated with

Σn =
1

n

n∑
i=1

{D∗(Qθn,gθn
(εn), gθn)wi}2.

We refer to Theorem 8 for precise statements.
The fundamental identity this robustness of the targeted MLE is based

upon is that PQ0,gi
D∗(Q, gi)(= −(Ψ(Q) − ψ0)) = 0 implies Ψ(Q)− ψ0 = 0 so

that a solutionQn, such as the targeted MLEQn, solving 1
n

∑
iD

∗(Qn, gθn)wi =
0 will result in an estimator Ψ(Qn) consistent for ψ0.

20 IPCW-Reduced Data Targeted MLE for

fixed and adaptive designs

As is apparent from our presentation of the targeted MLE for longitudinal
data structures with time dependent covariates in the previous Section 19,
the (iterative) targeted MLE can be quite involved for complex longitudinal
data structures. Therefore, it is of interest to also provide easy to compute
statistical estimation procedures which still inherit many of the nice features
of the iterative targeted MLE. For that purpose we propose a general class of
so called Inverse Probability of Censoring Weighted-Reduced Data-Targeted
MLE, which can be chosen to be much simpler by only requiring computation
of the targeted MLE for a user supplied reduced (simplified) data structure,
while weighting the log-likelihoods in this procedure with inverse probability of
censoring weights, thereby still preserving consistency under general adaptive
or fixed designs only satisfying CAR/SRA for the complete data structure.
The following applies also to fixed design by letting the design mechanism g0i

for experiment i be equal to a common g0 for all i = 1, . . . , n.
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Let X = (La : a = (a(0), . . . , a(K)) ∈ A) be a collection of action/design
specific random variables La indexed by action/design regimen a, and let the
observed data structure for one experimental unit be given by

O = (A,L = LA) = (L(0), A(0), . . . , LA(K), A(K), LA(K + 1)).

The latter represents the time ordering which implies that La(t) = Lā(t−1)(t)
and thus LA(t) = L − Ā(t− 1)(t). Typically, La(t) includes a component
Ra(t) = I(Ta ≤ t) for a failure/end of follow up time Ta, and La(t) =
La(min(t, Ta)) becomes degenerate after this time variable Ta. The action pro-
cess A(t) can have various components describing censoring as well as treat-
ment actions at time t, and for certain values of A(t − 1), such as values
implying right-censoring, the future process A(t), . . . , A(K) will be a deter-
ministic function of Ā(t − 1) = (A(0), . . . , A(t − 1)). In addition, typically,
certain values of the observed history L̄(t), Ā(t− 1), such as one implying the
failure time event TA = t, will determine the future values A(t), . . . , A(K).

We assume the adaptive sequential randomization assumption on the con-
ditional distribution of Ai, given Xi and Ō(i− 1)

gi(a | Xi) =
∏
t

gti(a(t) | Āi(t−1) = ā(t−1), Xi)
SRA
=

∏
t

gti(a(t) | Āi(t−1) = ā(t−1), LĀ(t−1),i(t)),

where the conditional distributions gi and gti are allowed to be deterministic
functions of Ō(i−1). By support restrictions on A and the possibly determin-
istic relation between an observed history Āi(t−1), L̄i(t) and the future action
process Ai(t), . . . , Ai(K), this product over time t can often be represented as

gi(a | Xi) =
min(Tai−1,ca)∏

t=0

gti(a(t) | Āi(t−1) = ā(t−1), L̄i(t))
K∏

t=min(Tai−1,Ca)+1

I(a(t+1) = a(t)),

where ca denotes the censoring/end of follow up time implied by action regimen
a.

Under this CAR/SRA, the probability distribution of the observed data
random variable Oi = (Ai, LAi) for the single experimental unit i, given
O1, . . . , Oi−1, factorizes in a factor Q0 implied by the full data distribution
of X and a factor gi(· | X).

dPQ0,gi
(Oi) =

K+1∏
t=0

PQ0(Li(t) | L̄i(t− 1), Āi(t− 1))gi(Ai | Xi)

≡
K+1∏
t=0

Q0t(Li(t) | L̄i(t− 1), Āi(t− 1))gi(Ai | Xi),
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where, by CAR we have Q0t(l(t) | l̄(t − 1), ā(t − 1)) = P (La(t) = l(t) |
L̄a(t− 1) = l̄(t− 1)) so that indeed Q0 represents the identifiable part of the
full data distribution of X.

Consider a particular model M(g) = {PQ,g : Q ∈ Q} for a single exper-
imental unit O implied by a model Q for Q0 and a fixed design/censoring
mechanism g contained in the set G of all SRA-conditional distributions of A,
given X. Consider also a particular parameter Ψ : Q → IRd defined on this
model Q for Q0, and let ψ0 = Ψ(Q0) denote the true parameter value. Since
Q0 is identifiable, one can also view Ψ as a parameter on the model M(g) of
possible data generating distributions of O.

In this article we provide a class of so called Inverse Probability of Censoring
Weighted-Reduced Data- Targeted Maximum Likelihood estimators (IPCW-
R-TMLE), obtained by applying the iterative targeted MLE for to reduced
data structures Or

i or Oi, but using inverse probability of censoring weighted
log-likelihoods at each step. The general targeted MLE methodology is pro-
posed and developed in van der Laan and Rubin (2006) for fixed designs,
and can thus also be applied to the complete longitudinal data structures Oi.
The advantage of the IPCW-R-TML estimators is mainly of a practical nature.
That is, the IPCW-R-TMLE is often far less complex (and thereby much easier
to implement with standard software packages implementing maximum likeli-
hood procedures for the reduced data) than the actual targeted MLE for the
actual observed longitudinal data structure which includes time-dependent co-
variate processes, while the IPCW-R-TMLE still preserves and improves upon
important efficiency and robustness properties of the targeted MLE for the
reduced data structure. Specifically, an IPCW-R-TML estimator is defined by
the following steps.

Specify Reduced Data Structure for single experimental unit: Determine
a reduction Or = (A,LrA) (i.e., Or is a function of O), where LrA is a
measurable function of LA, where the reduction needs to be so that
it is still possible to identify the parameter of interest ψ0 from the
probability distribution of Or under the under the SRA assumption
for the reduced full data structure Xr = (Lra : a ∈ A). For example,
O = (W = L(0), A, L̄(K), Y = L(K + 1)) consists of baseline covariates
W , treatment regimen A = (A(0), . . . , A(K)), time dependent covariate
process L̄(K), and a final outcome Y , while one defines Or = (W,A, Y ),
which is obtained from O by deleting all time-dependent covariates.

Reduced Data Model for single experimental unit. Consider the cor-
responding reduced data SRA model Mr(gr) = {dP r

Qr,gr = Qrgr : Qr ∈
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Qr} for a gr ∈ Gr (as described above in general) for Or = (A,LrA), where
Gr is a set of conditional distributions of A, given Xr = (Lra : a ∈ A),
satisfying the SRA assumption for the reduced data structure Or, and
Qr is a model for the identified component Qr

0 of the full data distribu-
tion of Xr. Since Qr

0 is a function of Q0, it follows that the model
Qr = {Qr : Q ∈ Q} for Qr

0 is implied by model Q for Q0. Let
Ψr : Qr → IRd be such that Ψr(Qr) = Ψ(Q) for all Q ∈ Qr, and, in
particular, Ψr(Qr

0) = Ψ(Q0).

Factorization of Qr: Suppose dPQr
0,g

r
0

=
∏
j Q

r
j0g

r
0 factors in various terms

Qr
j0, j = 1, . . . , J (e.g., J = K + 1). Suppose that Qr

j0(O
r) depends on

Or only through ((A(0), . . . , A(jr−1), L̄r(jr)), j = 1, . . . , J . In a typical
scenario, we have that Qr

j0 denotes the conditional distribution of Lr(jr),
given (A(0), . . . , A(jr − 1) and L̄r(jr − 1). For notational convenience,
we used the short-hand notation jr = jr(j), suppressing its deterministic
dependence on j.

Determine Qr
j-components of efficient influence curve for reduced data model:

Let Dr(P r) be the efficient influence curve at dP r = dP r
Qr,gr = Qrgr for

the parameter Ψr in the model Mr(gr) for the reduced data structure
Or. This efficient influence curve can be decomposed as:

Dr(P r) = Dr(Qr, gr) =
J∑
j=1

Dr
j (P

r),

where Dr
j (P

r) is an element of the tangent space generated by the j-th
factor Qr

j of Qr =
∏
j Q

r
j at P r, j = 1, . . . , J .

Determine hardest Qr
j-fluctuation functions: Given a Qr construct sub-

models {Qr
j(ε) : ε} through Qr

j at ε = 0, with score at ε = 0 equal to
Dr
j (Q

r, gr):

d

dε
logQr

j(ε)

∣∣∣∣∣
ε=0

= Dr
j (Q

r, gr), j = 1, . . . , J.

Construct IPCW-weights for each Qr
j-factor: For each j construct weight-

function

wji =
gr(Āi(j

r) | Xr)

gi(Āi(jr) | Xi)
, j = 1, . . . , J .
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In short, we will often represent the weights gr(Āi(j
r) | Xr)/gi(Ā(jr) |

X) as grj/gji. We note

Qr
j0 = arg max

Qr
j∈Q

r
j

PQ0,gi
logQr

jwji

= arg max
Qr

j∈Q
r
j

PQr
0,g

r
0
logQr

j , j = 1, . . . , J ,

so that it follows that the IPCW log-likelihood loss function
∑
j logQr

jwj
is a valid loss function for Qr

0.

IPCW-(Iterative) Targeted MLE based on reduced data at specified gr:
We will now compute the iterative targeted MLE under i.i.d sampling
Or

1, . . . , O
r
n from P r

Qr
0,g

r , treating gr as known (e.g., estimated a priori),

but assigning IPCW-weights, as follows. Let Qr0 be an initial estimator
of Qr

0 such as a weighted-MLE according to a working model Qr
j :

Qr0
j = arg max

Qr
j∈Q

r
j

∑
i

logQr
j(O

r
i )wji.

Compute the overall amount of fluctuation with weighted maximum like-
lihood estimation:

ε1n = arg max
ε

∑
i

∑
j

logQr0
j (ε)(Or

i )wji,

and compute the corresponding first step targeted ML update Qr1
j =

Qr0
j (ε1n), j = 1, . . . , J , and thereby the overall update Qr1 = Qr0(ε1n).

Iterate this process till convergence (i.e., εkn ≈ 0) and denote the final
update with Qr

n = (Qr
jn : j = 1, . . . , J).

Let D(Qr, gr, gi) =
∑
j D

r
j (Q

r, gr)
gr

j

gji
. Under a weak regularity condition

we have (see proof in van der Laan and Rubin (2006))

0 =
∑
i

D(Qr
n, g

r, gi)(Oi) =
∑
i

∑
j

Dr
j (Q

r
n, g

r)(Or
i )wji. (52)

Substitution estimator: Our estimator of ψ0 is given by Ψr(Qr
n).

The IPCW-R-TMLE is an estimator Qr
n solving an IPCW-reduced data

efficient influence curve equation (52). Firstly, we establish that this IPCW-
reduced data efficient influence curve is an ”estimating function” for the target
parameter with nice robustness properties w.r.t its nuisance parametersQr

0 and
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g0. Subsequently, we discuss the corresponding implications on the statistical
properties of the IPCW-R-TMLE.

Robustness properties of IPCW-Reduced Data Efficient Influence
Function: Recall that Dr(Qr, gr) denotes the efficient influence curve for the
reduced data Or ∼ PQr,gr for model Mr and parameter Ψr. It follows from
general results in van der Laan and Robins (2003) that PQr

0,g
r
0
Dr(Qr, gr) = 0 if

either Qr = Qr
0 or Ψ(Qr) = Ψ(Qr

0) and gr = gr0. This double robustness result
for Dr is exploited/inherited by the estimating function

D(Qr, gr, g0) ≡
∑
j

Dr
j (Q

r, gr)grj/gji,

whose corresponding estimating equation is solved by our IPCW targeted
MLE, in the following manner. We have

PQ0,g0i
D(Qr, gr, gi) = PQ0,g0i

∑
j

Dr
j (Q

r, gr)
grj
gji

= PQ0,gr

∑
j

Dr
j (Q

r, gr)
g0ji

gji
.

This implies that if gji = g0ji (i.e., the action mechanism is correctly specified),
then PQ0,g0i

D(Qr, gr, gi) = 0 for all choices of Qr, gr with Ψ(Qr) = Ψ(Qr
0). In

a typical scenario, we have that Qr
j0 denotes the conditional distribution of

Lr(jr), given A(0), . . . , A(jr − 1) and L̄r(jr − 1). In this case, if g0j is only
a function of Or, then if Qr = Qr

0, it follows that PQ0,grDr
j (Q

r
0, g

r)g0j

gj
= 0 for

all gj only being a function of Or (by using that the conditional expectation
of a score Dr

j (Q
r
0, g

r) of Qr
j0, given (A(0), . . . , A(jr − 1) and L̄r(jr − 1), equals

zero), and as a consequence, PQ0,g0i
D(Qr

0, g
r, g) = 0 for such misspecified g.

That is, in the case that the true g0i and its asymptotic fit are only functions
of the reduced data structure, we have the double robustness of the estimating
function D(Qr, gr, g) in the sense that PQ0,g0i

D(Qr, gr, gi) = 0 if Ψ(Qr) =
Ψ(Qr

0) and, either Qr = Qr
0 or gi = g0i, for all gr.

Statistical Properties of IPCW-Reduced Data Targeted MLE:
The above mentioned robustness property of the estimating equation

∑
iD(Qr

n, g
r
n, gni) =

0, gni an estimator of g0i, as solved by the IPCW-R-TMLE Qr
n translates under

regularity conditions in the following statistical properties of the substitution
estimator ψn = Ψr(Qr

n). Firstly, under appropriate regularity conditions, if
gni consistently estimates g0i, then ψn will be a consistent and asymptotically
linear estimator of ψ0. In addition, if gni(A | X) and its target g0i(A | X)
are only functions of the reduced data structure Or

i for each i (beyond being
functions of Ō(i − 1)), then 1) ψn is consistent and asymptotically linear if
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either Qr
n consistently estimates Qr

0 or gni consistently estimates g0i, and if
both estimates are consistent, then the estimator ψn is more efficient than an
efficient estimator based on n i.i.d. observations of the reduced data structure
Or only.

Off course, in adaptive of fixed designs the design mechanism g0i is typically
known so that in that case the IPCW-R-TMLE is always a consistent and
asymptotically linear estimator.

Remark: Special IPC-weighting. We note that an important feature of
the IPCW-R-TMLE is that we apply the IPC-weighting to the log of each
time-dependent dependent factor Qr

t separately (Qr =
∏
tQt). In this manner,

we guarantee that the weights are only functions of the conditioning data of the
conditional distribution of Qr

t so that the wished double robustness is achieved.
It shows that the manner of applying IPC-weighting is important to achieve
the wished double robustness and it also provides a more stable weighting
scheme than applying a single IPC-weight to the whole log likelihood of Q0.

21 IPCW-Reduced Data-Targeted-MLE for Marginal

Structural Models for fixed and adaptive

designs.

In this section we apply the IPCW-R-TMLE presented in the previous section
to estimate causal effects in fixed or adaptive designs.

Let Oi = (Wi = Li(0), Ai(0), . . . , Li(K), Ai(K), Yi = Li(K + 1)), where
Li(0) are baseline co-variates, Ai(j) = (A1i(j), A2i(j)), A1i(j) denotes a treat-
ment at time j, A2i(j) = I(Ci ≤ j) indicates a censoring event/drop out at
time j, Li(j) are time dependent co-variates collected after Ai(j−1) and before
Ai(j), and Yi is a final outcome of interest collected at time K+1, i = 1, . . . , n.
The chronological ordering of the data implies that Li(j) = LiĀi(j−1)(j) is
affected by past action history Āi(j − 1). Let the full data structure be
Xi = (Lia : a ∈ A), Lia(t) = Liā(t−1)(t), so that the observed data structure
Oi for the i-th experimental unit can be presented as a missing data structure
Oi = (Ai, LiAi

). It is assumed that Xi, i = 1, . . . , n, are n i.i.d. copies of
a random variable X. We assume the sequential randomization assumption
g0i(Ai(j) | Āi(j − 1), Xi) = g0i(Ai(j) | Āi(j − 1), L̄i(j)), j = 0, . . . , K, where
g0i is a conditional distribution indexed by a function of Ō(i−1). Conditional
on O1, . . . , Oi−1, we have Oi ∼ dPQ0,g0i

(Ai, Li) = Q0(Ai, Li)g0i(Ai | Xi), where
Q0(a, l) = P (La = l), under the assumption that g0i(a | X) > 0 for all a ∈ A.
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Consider a marginal structural working model E0(Ya10 | V ) = m(a1, V | β0)
for a user supplied working model {m(· | β) : β} for the counterfactual mean of
Ya10 under treatment regimen a1 = (a1(0), . . . , a1(K)) and no censoring (i.e.,
a2 = 0), conditional on baseline covariates V included in the set of baseline
covariates W = L(0). Our goal is to estimate β0 defined non-parametrically
as

β0 = Ψ(Q0) ≡ arg min
β
EQ0

∑
a1

h(a1, V )(m(a1, V | β)− EQ0(Ya10 | V ))2

for some user supplied weight function h(a1, V ). A typical choice is h(a1, V ) =
g∗(a1 | V ), where g∗ is a conditional distribution of A1, given V , representing
the limit of an estimate of the true conditional distribution of A1, given V
according to a possibly misspecified working model. Equivalently,

β0 = Ψ(Q0) = arg min
β
EQ0

∑
a1

h(a1, V )(Q0(a1,W )−m(a1, V | β))2,

where we define Q0(a1,W ) = E0(Ya10 | W ).
Conditional on O1, . . . , Oi−1, the model for the observed data structure

Oi ∼ dPQ0,g0i
= Q0g0 can be written as M(g0i) = {PQ,g0i

: Q}, where Q can
be arbitrary.

Data reduction: Let the reduced data be obtained by excluding all the
time-dependent co-variates Or

i = (Wi, Ai = (Ai(0), . . . , Ai(K)), YiAi
). Let

Xr = (W, (Ya : a ∈ A)), so that Or
i = (Wi, Ai, YiAi

) is a missing data structure
on Xr

i , i = 1, . . . , n.
SRA for reduced data: Consider an action mechanism gr satisfying

gr(A | X) = gr(A | Xr) = gr(A | W ). We consider a choice gr so that
P (A2 = 0) = 1 under gr.

Reduced Data Model: In the reduced data model for Or
i one assumes

gr(Ai | Xr) = gr(Ai | Wi), so that, conditional on Or
1, . . . , O

r
i−1, O

r
i ∼ pQr

0,g
r =

Qr
0g
r, Qr

0 = Qr
01 ∗Qr

02, where Qr
01 is a marginal distribution of Wi, Q

r
02 is a con-

ditional distribution of Yi, given Ai,Wi, and gr is the conditional distribution
of Ai, given Xr

i . We have Qr
02(y | a, w) = P (Ya = y | W = w). We note that

Qr
0 is a function of Q0, and both are identified as counterfactual distributions:

Qr
0(w, a, y) = P (W = w, Ya = y) is a sub-distribution of Q0(a, l) = P (La = l).

Consider the parameter

βr0 = Ψr(Qr
0) ≡ arg min

β
E0

∑
a1

h(a1, V ){Qr
0(a1,W )−m(a1, V | β)}2,

where Qr
0(a1,W ) = E0(Ya10 | W ). It follows that βr0 = β0. In general,

Ψr(Qr) = Ψ(Q) for any Q and corresponding Qr.
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Efficient influence curve of Ψr in fixed design reduced data model:
The efficient influence curve of Ψr at pQr

0,g
r ∈Mr(gr) is given by

Dr =
h(A1, V )

gr(A10 | W )

d

dβ0

m(A1, V | β0)(Y −Qr
0(A1,W ))I(A2 = 0)

+
∑
a1

h(a1, V )
d

dβ0

m(a1, V | β0)(Q
r
0(a1,W )−m(a1, V | β0))

≡ Dr
1(Q

r
0, g

r) +D2(Q
r
0),

where Qr
0(a1,W ) = E0(Ya10 | W ). We also note that gr can be factored as

gr(A10 | W ) =
K∏
j=0

gr1(A1(j) | A2(j) = 0, Ā1(j),W )

K∏
j=1

gr2(A2(j) = 0 | Ā1(j − 1), A2(j − 1) = 0,W ),

where gr1 represents a treatment mechanism and gr2 a censoring mechanism.
IPCW-Weighted Reduced Data Efficient Influence Curve: By

weighting the first component Dr
1 with gr/g0i, we obtain

D1(Q
r
0, g

r)(Or
i )g

r(Ai | Xr
i )/g0i(Ai | Xi) = D1(Q

r
0, g

r)(Or
i )g

r(A1i0 | Xr
i )/g0i(A1i0 | Xi),

which yields the following IPCW-Weighted Reduced Data Efficient Influence
Curve:

D(Q0, g0i)(Oi) =
h(A1i, Vi)

g0i(A1i0 | Xi)

d

dβ0

m(A1i, Vi | β0)(Yi −Qr
0(A1i,Wi))I(A2i = 0)

+
∑
a1

h(a1, Vi)
d

dβ0

m(a1, Vi | β0)(Q
r
0(a1,Wi)−m(a1, Vi | β0))

≡ D1(Q
r
0, g0)(Oi) +D2(Q

r
0)(Wi).

IPCW-R-Targeted MLE solving IPCW-Reduced Data Efficient
Influence Curve Equation: We will now compute the iterative targeted
MLE based on Or

1, . . . , O
r
n from P r

Qr
0,g

r , treating gr as known, but assigning
IPCW-weights, as follows. Firstly, we estimate the marginal distribution Qr

01

of W with the empirical probability distribution of W1, . . . ,Wn. Let Qr0
2 be

an initial estimator of the conditional distribution Qr
20 of Ya10, given W , such

as a weighted-MLE according to a working model for Y , given A,W :

Qr0
2 = arg max

Qr
2∈Q

r
2

∑
i

logQr
2(Yi | Ai,Wi)wi,
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where

wi = I(A2i = 0)
grn(A1i0 | Wi)

g0i(A1i0 | Xi)
.

For example, if one assumes a normal error regression model for Y on A,W ,
then this corresponds with weighted least squares regression, and if Y is binary,
and one assumes a logistic regression model for Y , given A,W , then this
corresponds with weighted logistic linear regression.

Subsequently, we extend the current fit Qr0
2 with an ε-fluctuation so that

the score at ε = 0 equals D1(Q
r0, gr). As shown previously, in the normal

regression model case, this corresponds with adding a covariate-extension

ε
h(A1i, Vi)

gr(A1i0 | Wi)

d

dβ0

m(A1i, Vi | β0)

and, in the logistic regression case, one adds the covariate extension

ε
h(A1i, Vi)

gr(A1i0 | Wi)

d
dβ0
m(A1i, Vi | β0)

mβ0(1−mβ0)(A1i, Vi)

to the logit. We now compute the amount of fluctuation with weighted maxi-
mum likelihood

ε1n = arg max
ε

∑
i

∑
j

logQr0
2 (ε)(Or

i )wi,

which corresponds with univariate weighted least squares regression or univari-
ate weighted logistic regression, and can thus be done with standard software.

We now compute the corresponding first step targeted ML update Qr1
2 =

Qr0
2 (ε1n) of Qr0. We iterate this process till convergence (i.e., εkn ≈ 0) and

denote the final update with Qr
2n. If m(· | β) is linear in β or if it is a logistic

linear model, then it follows that the ε-fluctuations mentioned above do not
depend on the updates Qrk

2 , and, as a consequence, convergence occurs in one
single update step: Qrk

2 = Qr1
2 , k = 2, 3, . . ..

Let Qr
n = (Qr

1n, Q
r
2n) be the corresponding estimate of the true Qr

0 =
(Qr

01, Q
r
02). Under a weak regularity condition we have that the IPCW-R-

TMLE Qr
n of Qr

0 solves the IPCW-R-Efficient influence curve equation

0 =
∑
i

D(Qr
n, g0i)(Oi).

Substitution estimator: The IPCW-R-TML estimator of β0 = Ψ(Q0) is
given by Ψr(Qr

n).
Estimation of Treatment and Censoring mechanism: In the case

that g0i is unknown, when estimating g0i(A | X) it is a good strategy to give
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preference to the baseline covariates W , so that the time-dependent covariates
are only entered if they provide significant improvement relative to a fit based
on the baseline covariates only. In this manner, one obtains relatively stable
weights wi = gr0(Ai | Xi)/g0i(Ai | Xi). In addition, as point out above,
it exploits maximally the double robust property of the IPCW-R-Efficient
influence curve function w.r.t. the baseline covariates. Application of the
central limit theorem for martingale estimating equations provides the wished
statistical inference.

22 DR-IPCW-Iterative Targeted MLE for adap-

tive designs

This section is till a large degree a copy of the previous Section 20, but we
now point out that the reduction of the data is optional and that thereby
the resulting class of iterative targeted MLE’s covers the whole range of itera-
tive targeted MLE’s as presented in this article so far (including the iterative
targeted MLE of Section 13).

Let X = (La : a = (a(0), . . . , a(K)) ∈ A) be a collection of action/design
specific random variables La indexed by action/design regimen a, and let the
observed data structure for one experimental unit be given by

O = (A,L = LA) = (L(0), A(0), . . . , LA(K), A(K), LA(K + 1)).

The latter represents the time ordering which implies that La(t) = Lā(t−1)(t)
and thus LA(t) = LĀ(t−1)(t). Typically, La(t) includes a component Ra(t) =
I(Ta ≤ t) for a failure/end of follow up time Ta, and La(t) = La(min(t, Ta))
becomes degenerate after this time variable Ta. The action process A(t) can
have various components describing censoring as well as treatment actions
at time t, and for certain values of A(t − 1), such as values implying right-
censoring, the future process A(t), . . . , A(K) will be a deterministic function
of Ā(t− 1) = (A(0), . . . , A(t− 1)). In addition, typically, certain values of the
observed history L̄(t), Ā(t − 1), such as one implying the failure time event
TA = t, will determine the future values A(t), . . . , A(K).

We assume the adaptive sequential randomization assumption on the con-
ditional distribution of Ai, given Xi and Ō(i− 1)

gi(a | Xi) =
∏
t

gti(a(t) | Āi(t−1) = ā(t−1), Xi)
SRA
=

∏
t

gti(a(t) | Āi(t−1) = ā(t−1), LĀ(t−1),i(t)),

where the conditional distributions gi and gti are allowed to be deterministic
functions of Ō(i−1). By support restrictions on A and the possibly determin-
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istic relation between an observed history Āi(t−1), L̄i(t) and the future action
process Ai(t), . . . , Ai(K), this product over time t can often be represented as

gi(a | Xi) =
min(Tai−1,ca)∏

t=0

gti(a(t) | Āi(t−1) = ā(t−1), L̄i(t))
K∏

t=min(Tai−1,Ca)+1

I(a(t+1) = a(t)),

where ca denotes the censoring/end of follow up time implied by action regimen
a.

Under this CAR/SRA, the probability distribution of the observed data
random variable Oi = (Ai, LAi) for the single experimental unit i, given
O1, . . . , Oi−1, factorizes in a factor Q0 implied by the full data distribution
of X and a factor gi(· | X).

dPQ0,gi
(Oi) =

K+1∏
t=0

PQ0(Li(t) | L̄i(t− 1), Āi(t− 1))gi(Ai | Xi)

≡
K+1∏
t=0

Q0t(Li(t) | L̄i(t− 1), Āi(t− 1))gi(Ai | Xi),

where, by CAR we have Q0t(l(t) | l̄(t − 1), ā(t − 1)) = P (La(t) = l(t) |
L̄a(t− 1) = l̄(t− 1)) so that indeed Q0 represents the identifiable part of the
full data distribution of X.

Our goal is estimation of a parameter Ψ : Q → IRd. For fixed CAR-
designs/CAR censoring mechanisms, in van der Laan and Rubin (2006) we
introduced an iterative targeted maximum likelihood estimator of ψ0 = Ψ(Q0).
In this section we show that this iterative targeted MLE estimator can be
generalized to adaptive designs by applying time-dependent IPCW-weights for
the corresponding time-specific log-likelihoods for Q0t. The resulting IPCW
iterative targeted MLE will now be double robust in the sense that if either
the censoring/design mechanism is known or the working model for Q0 is
correct, then the estimator of ψ0 is consistent and asymptotically normally
distributed. This result implies, in particular, that even in the case that the
design is unknown, this IPCW-iterative targeted MLE is still more robust than
the MLE based on the working model. In addition, if the working model is
correctly specified, it can be expected that the finite sample and asymptotic
efficiency of the IPCW-iterative targeted MLE is very close to the finite sample
and asymptotic efficiency of the MLE for the correctly specified working model.

In addition, one can also start out reducing the data structure, and again
apply the iterative targeted maximum likelihood estimator for the reduced
data but with the appropriate time-dependent IPCW-weights for the corre-
sponding time-specific log-likelihoods for the time-dependent factors Qr

0j in
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the Qr
0-factor of the reduced data likelihood, where Qr

0 denotes the identified
component of Q0 in the reduced data CAR model (i.e., after the reduction of
the data). In this manner, the IPCW-iterative targeted MLE provides us with
a very large class of double robust targeted maximum likelihood estimators,
where the level of robustness, complexity, and asymptotic efficiency depends
on the degree of data reduction applied: no reduction gives maximal potential
(achieved when the working model for Q0 is correctly specified) asymptotic
efficiency and maximal double robustness (i.e., the estimator is consistent if
the working model for Q0 is correctly specified, even if there is time-dependent
censoring/treatment assignment, and even if the model for censoring/design
mechanism is completely misspecified), but reduction of the data can make the
estimator much easier to implement and can provide important finite sample
robustness gains.

Consider the model M(g) = {PQ,g : Q ∈ Q} for a single experimental unit
O implied by a model Q for Q0 and a fixed design/censoring mechanism g
contained in the set G of all SRA-conditional distributions of A, given X. We
note that, since Q0 is identifiable based on i.i.d. sampling from an element
in M(g), one can also view Ψ as a parameter on the model M(g) of possible
data generating distributions of O.

We will now provide the class of so called Double Robust Inverse Prob-
ability of Censoring Weighted (Reduced Data) Iterative Targeted Maximum
Likelihood estimators (DR-IPCW-(R)-TMLE), obtained by applying the iter-
ative targeted MLE for fixed designs, as developed in van der Laan and Rubin
(2006), to adaptive designs, but using inverse probability of censoring weighted
time-dependent log-likelihoods at each step. In our abbreviation we put ”Re-
duced Data” between parentheses in order to indicate that reducing the data is
an optional step, which can be skipped. Specifically, the DR-IPCW-(R)-TML
estimator is defined by the following steps.

(Optional) Specify Reduced Data Structure for single experimental unit:
Determine a reduction Or = (A,LrA) (i.e., Or is a function of O), where
LrA is a measurable function of LA, where the reduction needs to be
so that it is still possible to identify the parameter of interest ψ0 from
the probability distribution of Or under the under the SRA assumption
for the reduced full data structure Xr = (Lra : a ∈ A). For example,
O = (W = L(0), A, L̄(K), Y = L(K + 1)) consists of baseline covariates
W , treatment regimen A = (A(0), . . . , A(K)), time dependent covariate
process L̄(K), and a final outcome Y , while one defines Or = (W,A, Y ),
which is obtained from O by deleting all time-dependent covariates. One
option is to not reduced the data in which case Or = O.
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Reduced Data Model for single experimental unit. Consider the cor-
responding reduced data SRA model Mr(gr) = {dP r

Qr,gr = Qrgr : Qr ∈
Qr} for a gr ∈ Gr (as described above in general) for Or = (A,LrA), where
Gr is a set of conditional distributions of A, given Xr = (Lra : a ∈ A),
satisfying the SRA assumption for the reduced data structure Or, and
Qr is a model for the identified component Qr

0 of the full data distribu-
tion of Xr. Since Qr

0 is a function of Q0, it follows that the model
Qr = {Qr : Q ∈ Q} for Qr

0 is implied by model Q for Q0. Let
Ψr : Qr → IRd be such that Ψr(Qr) = Ψ(Q) for all Q ∈ Qr, and, in
particular, Ψr(Qr

0) = Ψ(Q0).

In particular, if the data is not reduced in the previous step, thenOr = O,
Qr = Q, gr = g, Mr(gr) = M(g), Gr = G, Ψr = Ψ.

Factorization of Qr: Suppose dPQr
0,g

r
0

=
∏
j Q

r
j0g

r
0 factors in various terms

Qr
j0, j = 1, . . . , J (e.g., J = K + 1). Suppose that Qr

j0(O
r) depends on

Or only through ((A(0), . . . , A(jr−1), L̄r(jr)), j = 1, . . . , J . In a typical
scenario, we have that Qr

j0 denotes the conditional distribution of Lr(jr),
given (A(0), . . . , A(jr − 1) and L̄r(jr − 1). For notational convenience,
we used the short-hand notation jr = jr(j), suppressing its deterministic
dependence on j.

In particular, if the data is not reduced, then dPQ0,g0 =
∏
tQt0g0, t =

1, . . . , K + 1 where Qt0 denotes the conditional distribution of L(t),
given L̄(t − 1), Ā(t − 1), so that Qt0(O) depends on O only through
(A(0), . . . , A(t− 1)), t = 1, . . . , K + 1.

Determine Qr
j-components of efficient influence curve for reduced data model:

Let Dr(P r) be the efficient influence curve at dP r = dP r
Qr,gr = Qrgr for

the parameter Ψr in the model Mr(gr) for the reduced data structure
Or. This efficient influence curve can be decomposed as:

Dr(P r) = Dr(Qr, gr) =
J∑
j=1

Dr
j (P

r),

where Dr
j (P

r) is an element of the tangent space generated by the j-th
factor Qr

j of Qr =
∏
j Q

r
j at P r, j = 1, . . . , J .

In particular, if the data was not reduced and the model for Q0 is non-
parametric, then the efficient influence curve D(P ) =

∑K+1
t=1 Dt(P ) with

Dt(P ) = EP (D(P )(O) | Ā(t−1), L̄(t))−EP (D(P )(O) | Ā(t−1), L̄(t−1))

being the projection of D(P ) on the tangent space generated by the
conditional distribution Q0t of L(t), given L̄(t− 1), Ā(t− 1).
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Determine hardest Qr
j-fluctuation functions: Given a Qr construct sub-

models {Qr
j(ε) : ε} through Qr

j at ε = 0, with score at ε = 0 equal to
Dr
j (Q

r, gr):

d

dε
logQr

j(ε)

∣∣∣∣∣
ε=0

= Dr
j (Q

r, gr), j = 1, . . . , J.

In particular, if the data is not reduced, then, given a Q ∈ Q construct
sub-models {Qt(ε) : ε} through Qt at ε = 0, with score at ε = 0 equal to
Dt(Q, g):

d

dε
logQt(ε)

∣∣∣∣∣
ε=0

= Dt(Q, g), t = 1, . . . , K + 1.

Construct IPCW-weights for each j-specific Qr
j-factor: For each j con-

struct weight-function

wji =
gr(Āi(j

r) | Xr)

gi(Āi(jr) | Xi)
, j = 1, . . . , J .

In short, we will often represent the weights gr(Āi(j
r) | Xr)/gi(Ā(jr) |

X) as grj/gji. We note

Qr
j0 = arg max

Qr
j∈Q

r
j

PQ0,gi
logQr

jwji

= arg max
Qr

j∈Q
r
j

PQr
0,g

r
0
logQr

j , j = 1, . . . , J ,

so that it follows that the IPCW log-likelihood loss function
∑
j logQr

jwj
is a valid loss function for Qr

0.

In particular, if the data is not reduced, then, for each time t construct
weight function

wti =
gr(Āi(t− 1) | Xi)

gi(Āi(t− 1) | Xi)
, t = 1, . . . , K + 1.

IPCW-(Iterative) Targeted MLE based on reduced data at specified gr:
We will now compute the iterative targeted MLE under i.i.d sampling
Or

1, . . . , O
r
n from P r

Qr
0,g

r , treating gr as known (e.g., estimated a priori),

but assigning IPCW-weights, as follows. Let Qr0 be an initial estimator
of Qr

0 such as a weighted-MLE according to a working model Qr
j :

Qr0
j = arg max

Qr
j∈Q

r
j

∑
i

logQr
j(O

r
i )wji.

174

http://biostats.bepress.com/ucbbiostat/paper232



Compute the overall amount of fluctuation with weighted maximum like-
lihood estimation:

ε1n = arg max
ε

∑
i

∑
j

logQr0
j (ε)(Or

i )wji,

and compute the corresponding first step targeted ML update Qr1
j =

Qr0
j (ε1n), j = 1, . . . , J , and thereby the overall update Qr1 = Qr0(ε1n).

Iterate this process till convergence (i.e., εkn ≈ 0) and denote the final
update with Qr

n = (Qr
jn : j = 1, . . . , J).

Let D(Qr, gr, gi) =
∑
j D

r
j (Q

r, gr)
gr

j

gji
. Under a weak regularity condition

we have (see proof in van der Laan and Rubin (2006))

0 =
∑
i

D(Qr
n, g

r, gi)(Oi) =
∑
i

∑
j

Dr
j (Q

r
n, g

r)(Or
i )wji. (53)

In particular, if the data is not reduced, then Qn solves the equation

0 =
∑
i

∑
t

Dt(Qn, g
r)(Oi)wti.

Substitution estimator: Our estimator of ψ0 is given by Ψr(Qr
n).

In particular, if the data is not reduced, then ψ0 is estimated with Ψ(Qn).

The DR-IPCW-R-TMLE is an estimator Qr
n solving an IPCW-reduced

data efficient influence curve equation (53). Firstly, we establish that this
IPCW-reduced data efficient influence curve is an ”estimating function” for the
target parameter with nice robustness properties w.r.t its nuisance parameters
Qr

0 and g0. Subsequently, we discuss the corresponding implications on the
statistical properties of the DR-IPCW-R-TMLE.

Robustness properties of IPCW-Reduced Data Efficient Influence
Function: Recall that Dr(Qr, gr) denotes the efficient influence curve for the
reduced data Or ∼ PQr,gr for model Mr and parameter Ψr. It follows from
general results in van der Laan and Robins (2003) that PQr

0,g
r
0
Dr(Qr, gr) = 0 if

either Qr = Qr
0 or Ψ(Qr) = Ψ(Qr

0) and gr = gr0. This double robustness result
for Dr is exploited/inherited by the estimating function

D(Qr, gr, g0) ≡
∑
j

Dr
j (Q

r, gr)grj/gji,
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whose corresponding estimating equation is solved by our IPCW targeted
MLE, in the following manner. We have

PQ0,g0i
D(Qr, gr, gi) = PQ0,g0i

∑
j

Dr
j (Q

r, gr)
grj
gji

= PQ0,gr

∑
j

Dr
j (Q

r, gr)
g0ji

gji
.

This implies that if gji = g0ji (i.e., the action mechanism is correctly specified),
then PQ0,g0i

D(Qr, gr, gi) = 0 for all choices of Qr, gr with Ψ(Qr) = Ψ(Qr
0). In

a typical scenario, we have that Qr
j0 denotes the conditional distribution of

Lr(jr), given A(0), . . . , A(jr − 1) and L̄r(jr − 1). In this case, if g0j is only
a function of Or, then if Qr = Qr

0, it follows that PQ0,grDr
j (Q

r
0, g

r)g0j

gj
= 0 for

all gj only being a function of Or (by using that the conditional expectation
of a score Dr

j (Q
r
0, g

r) of Qr
j0, given (A(0), . . . , A(jr − 1) and L̄r(jr − 1), equals

zero), and as a consequence, PQ0,g0i
D(Qr

0, g
r, g) = 0 for such misspecified g.

That is, in the case that the true g0i and its asymptotic fit are only functions
of the reduced data structure, we have the double robustness of the estimating
function D(Qr, gr, g) in the sense that PQ0,g0i

D(Qr, gr, gi) = 0 if Ψ(Qr) =
Ψ(Qr

0) and, either Qr = Qr
0 or gi = g0i, for all gr.

In particular, if the data is not reduced, then we have

PQ0,g0i
D(Q, g, gi) = 0 if Ψ(Q) = ψ0 and either Q = Q0 or gi = g0i,

for all g ∈ G.
Statistical Properties of IPCW-R-TMLE: The above mentioned ro-

bustness property of the estimating equation
∑
iD(Qr

n, g
r
n, gni) = 0, gni an

estimator of g0i, as solved by the IPCW-R-TMLE Qr
n translates under reg-

ularity conditions in the following statistical properties of the substitution
estimator ψn = Ψr(Qr

n). Firstly, under appropriate regularity conditions, if
gni consistently estimates g0i, then ψn will be a consistent and asymptotically
linear estimator of ψ0. In addition, if gni(A | X) and its target g0i(A | X)
are only functions of the reduced data structure Or

i for each i (beyond being
functions of Ō(i − 1)), then 1) ψn is consistent and asymptotically linear if
either Qr

n consistently estimates Qr
0 or gni consistently estimates g0i, and if

both estimates are consistent, then the estimator ψn is more efficient than an
efficient estimator based on n i.i.d. observations of the reduced data structure
Or ∼ P r

Qr
0,g

r only.

In particular, if the data is not reduced, andQn is solution of 0 =
∑
iD(Qn, gn, gni)(Oi),

then, under regularity conditions, if either gni consistently estimates g0i, or Qn
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consistently estimates Q0, then the substitution estimator ψn = Ψ(Qn) is con-
sistent and asymptotically normally distributed. In addition, if gn/gni → 1
and gn converges to some fixed design g0 ∈ G, then, if Qn is consistent for
Q0, then the substitution estimator ψn is at least as efficient than an efficient
estimator based on n i.i.d. observations of O ∼ PQ0,g0 .

Off course, in adaptive of fixed designs the design mechanism g0i is typically
known so that in that case the DR-IPCW-R-TMLE is always a consistent and
asymptotically linear estimator.

22.1 Example: Causal effect of treatment in presence
of baseline covariates.

Consider the case that in each experiment we observe baseline covariates Wi, a
treatment assignment Ai, and an outcome of interest Yi, i = 1, . . . , n. Suppose
that the parameter of interest is the marginal causal effect of treatment on out-
come, formally defined as ψ0 = EY1 − EY0 = E0{E0(Y | A = 1,W )− E0(Y |
A = 0,W )}. Consider a fixed design gr representing a fixed conditional distri-
bution of A, given W . The Q0-factor of the density of Oi, given O1, . . . , Oi−1,
is given by the product of the marginal probability distribution of Wi and
the conditional probability distribution of Yi, given Ai,Wi. Consider initial
estimators Q0

n(W ) and Q0
n(Y | A,W ) of these two factors such as maximum

likelihood estimators according to working models for the marginal distribu-
tion of W and the conditional distribution of Y , given A,W . Let Q0

n(ε)(W )
be a fluctuation with score D1(Q

0
n)(W ) = Q0

n(1,W ) − Q0
n(0,W ) − Ψ(Q0

n)
and let Q0

n(ε)(Y | A,W ) be a fluctuation with score D2(g
r, Q0

n) = (Y −
Q0
n(A,W )) {I(A = 1)/gr(1 | W )− I(A = 0)/gr(0 | W )}. The latter fluctua-

tion can be achieved by adding an ε covariate extension

εh(A,W ) = ε {I(A = 1)/gr(1 | W )− I(A = 0)/gr(0 | W )}

to an initial linear or logistic regression fit, as presented earlier. The joint
fluctuation (Q0

n(ε)(W ), Q0
n(ε)(Y | A,W )) defines now a fluctuation of the Q0

n

factor of the probability distribution of the data with score at ε = 0 equal
to efficient influence curve D(Q0

n, g
r). We now estimate ε with the IPCW-

maximum likelihood estimator:

ε0n = arg max
ε

∑
i

logQ0
n(ε)(Wi) + logQ0

n(ε)(Yi | Ai,Wi)wi,

where wi = gr(Ai | Wi)/gi(Ai | Wi). Note that we do not need to weight the
first factor Q0

n(ε)(W ) since this one does not depend on A. In the special, but
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natural case, that Q0
n is the empirical distribution of W1, . . . ,Wn, then one

could replace Q0
n(ε)(W ) by Q0

n(W ) and thus only fluctuate the conditional
distribution of Y , given A,W .In addition, it is also an option to use a bivari-
ate fluctuation Q0

n(ε1)(W ) and Q0
n(ε2)(Y | A,W ), but this is not necessary.

This defines now an update Q1
n = Q0

n(ε
0
n). We can now iterate this process

of updating. However, we note that the ε-extension of Q1
n(ε)(Y | A,W ) cor-

responds typically with adding ε0nh(A,W ) + εh(A,W ) to Q0
n(Y | A,W ) or its

logit. Thus, in the special case that Q0
n(W ) is the empirical distribution and

or that we use a bivariate fluctuation, convergence occurs in the first step for
the conditional distribution of Y , given A,W , so that Qk

n = Q1
n, k = 1, 2, . . ..

At convergence, we have that the final solution Qk
n solves

0 =
n∑
i=1

D1(Q
k
n)(Wi) +D2(Q

k
n, g

r)(Oi)
gr(Ai | Wi)

gi(Ai | Wi)
,

which can also be written as

Ψ(Qk
n) =

1

n

n∑
i=1

Qk
n(1,Wi)−Qk

n(0,Wi) +D2(Q
k
n, g

r)(Oi)
gr(Ai | Wi)

gi(Ai | Wi)
.

Conservative statistical inference can now be based on the asymptotically lin-
ear martingale expansion

Ψ(Qk
n)− ψ0 =

1

n

n∑
i=1

Q(1,Wi)−Q(0,Wi)− ψ0 +D2(Q, g
r)(Oi)

gr(Ai | Wi)

gi(Ai | Wi)
,

where Q denotes the limit of Qk
n.

23 Targeted Empirical Bayesian Learning for

i.i.d. sampling

The iterative targeted maximum likelihood estimation methodology in van der
Laan and Rubin (2006) for i.i.d. sampling, resulting in a sequence of updated
density estimators converging to a solution of the efficient influence curve
equation, can be generalized to a targeted empirical Bayesian learning method
in which one assumes a prior distribution on the parameter of interest and
ends up with a targeted posterior distribution of this parameter of interest. In
addition, we can extend this further to adaptive designs. In this section, we
first present targeted empirical Bayesian learning for i.i.d. sampling, and its
generalization to adaptive designs is handled in the next section.
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Consider the setting in which we observe n i.i.d. observations O1, . . . , On

of a random variable O ∼ P0, which is known to be an element of a model
M, and let Ψ : M → IRd be the target parameter mapping of interest. A
special case is that O = Φ(A,X) is modelled by a CAR censored data model
calM = {dPQ,g = Qg : Q ∈ Q, g ∈ G1} for some submodel G1 of all CAR
censoring mechanisms, thereby including the fixed designs, and some model Q
for the factor Q0 representing the identifiable part of the distribution of X.

Step 1, Determine Prior Distribution on Parameter of Interest: Specify
a prior distribution Π of the parameter ψ0. Let fΠ be the density of Π.

Step 2, Determine targeted (frequentist) estimator of distribution P0:
Consider a targeted estimated probability distribution P̂ in the model
M. This estimator is recommended to be a targeted estimator itself
such as the iterative targeted MLE (van der Laan and Rubin (2006)).

Step 3, Determine targeted optimal ε-fluctuation function: Let {P̂ (ε) :
ε} ⊂ M be a fluctuation through P̂ at ε = 0 with score at ε = 0 equal
to the efficient influence curve D∗(P̂ ) at ε = 0.

Step 4, Derive prior distribution on fluctuation parameter ε equiva-
lent with prior on ψ0: Determine a prior distribution on ε that yields
the assumed prior distribution on the true parameter ψ0 of interest. For
this purpose one notes that a prior distribution on a set E of ε-values im-
plies a prior distribution on {Ψ(P̂ (ε)) : ε ∈ E} (and thus on ψ0) through
the mapping f(P̂ ) : ε→ Ψ(P̂ (ε)). As a consequence, one can choose the
prior distribution of ε as the probability distribution of f(P̂ )−1(X) with
X ∼ Π, assuming f(P̂ ) is invertible. This corresponds with a random
variable E defined by drawing from Π and applying f(P̂ )−1 to it. Let
Π∗ be this prior distribution of ε. The density of Π∗ is given by

fΠ∗(ε) = fΠ(f(P̂ )(ε))J(ε),

where J(ε) =| d
dε
f(P̂ )(ε) | is the Jacobian corresponding with transfor-

mation ψ = f(P̂ )(ε).

Step 5, Determine (targeted) posterior distribution of ε, given data,
treating P̂ as fixed/non random: Since, from a Bayesian perspective,
the conditional density of O1, . . . , On, given ε, is given by

∏n
i=1 dP̂ (ε)(Oi),

by Bayes formula, the posterior density of ε, given the data O1, . . . , On,
treating P̂ as fixed and given, is given by (up till normalizing constant)

∞
n∏
i=1

dP̂ (ε)(Oi)fΠ∗(ε).
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One can use standard Bayesian methodology such as Monte-Carlo Markov
Chain sampling to sample a large number of draws, say, E1, . . . , EB, from
this posterior distribution of ε, given O1, . . . , On.

Step 6, Output targeted posterior distribution of ψ0, given data,
treating P̂ as fixed/non random: The posterior distribution of ψ0 is
now described by the sample f(P̂ )(Eb) = Ψ(P̂ (Eb)), b = 1, . . . , B.

Optional: Iterate. If P̂ was not a targeted estimator, then one could com-
pute the posterior mean of ε, given O1, . . . , On, and compute the updated
distribution P 1 = P̂ (E(ε | O1, . . . , On)) by substituting the posterior
mean of ε into the fluctuation function P̂ (ε) for ε. One now carries out
Step 3-5 (thus with the same a priori specified prior distribution on ψ0)
and one iterates this process till the posterior mean of ε converges to zero
at which point we have achieved our wished targeted estimator of P0.
One now finalizes the procedure with Step 6, by outputting the posterior
distribution of ψ0.

We refer to this methodology as empirical targeted Bayesian because we
treat the (initial) frequentist estimator P̂ in the model {P̂ (ε) : ε} for the data
generating distribution as fixed so that only ε is treated as a parameter on
which we put a prior distribution, and we calculate its posterior distribution
accordingly.

Rational behind the targeted posterior distribution on parame-
ter of interest: The rational of this methodology for generating a posterior
distribution of ψ0 is as follows. To evaluate the posterior distribution of ψ0

we need to be concerned about its bias w.r.t to ψ0 and its spread needs to be
representative of the actual standard error of the posterior mean. Regarding
the bias, because P̂ is a targeted estimator of the data generating distribution
such as the iterative targeted MLE, Ψ(P̂ ) is a robust and locally efficient esti-
mator of ψ0. Consequently, also the posterior mean of the outputted posterior
distribution of ψ0 will be centered closely around Ψ(P̂ ) and will thus represent
a robust and locally efficient estimator w.r.t to frequentist theory. Regarding
the spread, one needs to know that {P0(ε) : ε}, whose score at ε0 = 0 equals
the efficient influence curve of Ψ : M→ IRd at P0, is a so called hardest sub-
model for estimation of ψ0 (e.g., see Bickel et al. (1997) or van der Laan and
Robins (2003)) in the sense that estimation of the parameter ψ0 = Ψ(P0(ε0))
of ε0 in this hardest sub-model of M (treating P0 as known so that only ε0 is
the unknown parameter) is asymptotically as hard as it is to estimate ψ0 in
the actual model M. As a consequence, statistical inference (i.e., asymptotic
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covariance matrix, and information matrix) for a maximum likelihood estima-
tor of ψ0 = Ψ(P0(ε0)) in this sub-model (in which ε0 = 0 is the only unknown
parameter) will be representative of the statistical inference of the estimator
Ψ(P̂ ) of ψ0 in the actual model M.

To make this point more specific, we consider statistical inference of the ML
estimator Ψ(P̂ (εn)) of Ψ(P̂ (ε0)), ε0 = 0, in the model {P̂ (ε) : ε} treating P̂ as
given. We have that εn solves its score equation 0 =

∑
iD

∗(P̂ (εn)), and because
P̂ is already a targeted estimator such as the iterative targeted MLE we have
that εn ≈ 0. In addition, we have the identity d

dε0
Ψ(P̂ (ε0)) = d

dε0
EP̂D

∗(P̂ (ε0))
is the identity matrix (Lemma 1.2, page 59, van der Laan and Robins (2003)).
As a consequence, the standard delta-method applied to the MLE εn as an
estimator of ε0 yields the asymptotic linearity

Ψ(P̂ (εn))−Ψ(P̂ (ε0)) ≈
1

n

n∑
i=1

D∗(P̂ )(Oi).

That is, under this hardest sub-model we would estimate the asymptotic vari-
ance VARP̂D

∗(P̂ ) of
√
n(Ψ(P̂ (εn))− ψ0) as 1/n

∑
iD

∗(P̂ )(Oi)
2, which is typ-

ically the right estimate in the actual model. So this shows that indeed sta-
tistical inference of the MLE Ψ(P̂ (εn)) of Ψ(P̂ (ε0)) for the hardest submodel
provides the right statistical inference for this MLE Ψ(P̂ (εn)) as an estimator
of ψ0 in the actual model. By the asymptotic equivalence of posterior means
of posterior distributions and MLE, this also argues for the appropriateness of
Bayesian inference based on the hardest working model, as carried out by our
proposed Targeted empirical Bayesian methodology.

23.1 Example: Targeted Bayesian learning of Survival
function.

We now illustrate this completely general empirical targeted Bayesian analogue
of the iterative targeted MLE methodology with a simple example. Suppose,
we wish to estimate a survival function at a point, ψ0 = P0(O > x0), based on
n i.i.d. observations O1, . . . , On ∼ P0 in a nonparametric model for P0.

Prior distribution: Consider a prior distribution on ψ0 such as a uniform
distribution on [a0, b0] ⊂ [0, 1] for some numbers 0 ≤ a0 < b0 ≤ 1. Let π be its
density.

Targeted density estimator: Consider a targeted ML density estimator
p̂ = p0(ε0) of the density p0, given an initial density estimator p0, a one-
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dimensional fluctuation function ε→ p0(ε) (into valid densities), and

ε0 = arg max
ε

n∏
i=1

p0(ε)(Oi),

satisfying 0 =
∑
iD

∗(p0(ε0))(Oi), where D∗(p) = I(O ≤ x0) −
∫∞
x0
p(x)dx is

the efficient influence curve of Ψ at p. In van der Laan and Rubin (2006)
we showed that indeed the first step targeted MLE’s can be constructed to
already solve the efficient influence curve estimating equation: e.g. choose
p0(ε) = (1 + εD∗(p0)(O))p0.

Targeted fluctuation of targeted density estimator: Let p̂(ε) = (1+
εD∗(p̂))p̂ be the targeted fluctuation function of p̂ whose score at ε = 0 indeed
equals D∗(p̂).

Evaluate prior distribution for ε implied by prior of ψ0: We have
ε → f(P̂ )(ε) = Ψ(p̂(ε)) =

∫∞
x0

(1 + εD∗(P̂ )(x))p̂(x)dx. The inverse of ε →
f(P̂ )(ε) is given by

g(ψ) ≡ f(P̂ )−1(ψ) =
ψ −Ψ(p̂)

Ep̂D∗2(p̂)
,

which shows that f(P̂ ) is invertible. In particular, this shows that we can
choose the prior distribution of ε as the distribution of g(X) with X ∼ Π,
where Π is the prior distribution on ψ0 specified initially.

Targeted posterior density of ε: The derivative of f(P̂ ) at ε is given
by σ2 ≡ Ep̂D

∗2(P̂ ) so that the Jacobian is given by a constant J(ε) = σ2. The
univariate posterior density of ε, given O1, . . . , On, is thus given by

π(ε | O1, . . . , On) =

∏n
i=1 p̂(ε)(Oi)π(f(P̂ (ε))∫

ε

∏n
i=1 p̂(ε)(Oi)π(f(P̂ (ε))

, (54)

where we recall that π is the density of the prior distribution on ψ0.
Targeted posterior density of survival function: The posterior den-

sity of ε implies the posterior distribution of f(P̂ (ε)) = Ψ(P̂ (ε)), i.e. the
survival function at x0. In this example, one can even pursue analytic calcu-
lation of this posterior density of the survival function since it only involves
univariate density calculations. The Monte Carlo simulation approach would
be to sample E1, . . . , EB from the posterior density π(· | O1, . . . , On) specified
in (54), and evaluate the corresponding Ψ(P̂ (Eb)), b = 1, . . . , B, which gives
us a random sample from the posterior distribution of the survival function at
x0, given the observed data O1, . . . , On.
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Properties of targeted posterior distribution of survival function
and comparison with standard Bayesian learning: A standard Bayesian
approach would involve specifying a parametric model, specifying a prior dis-
tribution on all the parameters of this parametric model, calculating the cor-
responding posterior distribution involving sampling from a high dimensional
multivariate density (since there are many parameters), and model selection
(e.g.) based on the posterior density so that these calculations will have to
be carried out for lots of candidate parametric models. In spite of the com-
putational challenges and effort of this standard Bayesian approach, the re-
sulting estimator of the survival function will typically be too biased due to
model miss-specification. Model selection using a likelihood or Bayesian cri-
teria would generally not reduce the bias at the wished rate of o(1/

√
n), since

the selection is in essence based on a bias variance trade off for the purpose of
estimating the whole density. As a consequence, the relative efficiency of the
simple empirical survival probability and such a standard Bayesian estimator
(e.g posterior mean) would converge to infinity in favor of the empirical sur-
vival function. The same criticism would apply to a sieve based (frequentist)
maximum likelihood estimator using (say) likelihood based cross-validation
to select models or other fine tuning parameters. The problem of both the
Bayesian and maximum likelihood estimation methodology is that the estima-
tion and model selection are not targeted towards the nice smooth parameter
being the survival probability, so that the resulting estimation procedure in-
volves the wrong bias variance trade off.

On the other hand, the targeted empirical posterior Bayesian distribu-
tion is centered at the efficient empirical survival probability (recall Ψ(P̂ ) =
1/n

∑
i I(Oi > x0)), and the spread of the posterior distribution is asymp-

totically completely driven by the variance of this efficient empirical survival
function estimate (and by the prior distribution for small samples). In addi-
tion, the calculations for establishing this targeted posterior distribution only
involve sampling from a univariate posterior density and is therefore easy and
fast from a computational point of view.

24 Targeted Empirical Bayesian Learning in

adaptive designs.

Consider a sequential adaptive design in which we observe Oi = (Ai, Li =
Xi(Ai)) sequentially over time, and the data generating distribution dPQ0,gn =∏
iQ0(Ai, Li)g(A | X) of O1, . . . , On is described by (3). Here Q0(a, l) =

P (X(a) = l) is the identifiable component of the common distribution of the
183

Hosted by The Berkeley Electronic Press



full data structure X = (X(a) : a ∈ A), and design g is the conditional prob-
ability distribution of A = (A1, . . . , An), given X = (X1, . . . , Xn) satisfying
the sequential adaptive CAR assumption. We are concerned with statisti-
cal inference for a Euclidean parameter of interest Ψ : Q → IRd, where Q
denotes a model for Q0. Let ψ0 = Ψ(Q0) denote the true parameter value.
Let D∗(Q, g) be the efficient influence curve of Ψ in the fixed design model
M(g) = {dPQ,g = Qg : Q ∈ Q}. Below, we describe the steps defining
targeted empirical Bayesian learning in adaptive designs.

Step 1, Determine Prior Distribution on Parameter of Interest: Spec-
ify a prior distribution Π of the parameter ψ0. Let fΠ be the density of
Π.

Step 2, Determine targeted (frequentist) estimator of distribution
P0: Consider a targeted estimated probability distribution P̂ = P̂Q̂,g in
the model M = {dPQ,g : Q ∈ Q}. This estimator is recommended to be
a targeted estimator such as the iterative targeted MLE as presented in
Section 13.

Step 3, Determine targeted optimal ε-fluctuation function: Let {dPQ̂(ε),g :

ε} ⊂ M be a fluctuation through P̂ = PQ̂,g at ε = 0 with score at ε = 0

equal to the fixed design efficient influence curve D∗(Q̂, gQ̂) for some

fixed design gQ̂ possibly indexed by Q̂.

Step 4, Derive prior distribution on fluctuation parameter ε equiva-
lent with prior on ψ0: Determine a prior distribution on ε that yields
the assumed prior distribution on the true parameter ψ0 of interest. For
this purpose one notes that a prior distribution on a set E of ε-values im-
plies a prior distribution on {Ψ(Q̂(ε)) : ε ∈ E} (and thus on ψ0) through
the mapping f(Q̂) : ε→ Ψ(Q̂(ε)). As a consequence, one can choose the
prior distribution of ε as the probability distribution of f(Q̂)−1(X) with
X ∼ Π, assuming f(Q̂) is invertible. This corresponds with a random
variable E defined by drawing from Π and applying f(Q̂)−1 to it. Let
Π∗ be this prior distribution of ε. The density of Π∗ is given by

fΠ∗(ε) = fΠ(f(Q̂)(ε))J(ε),

where J(ε) =| d
dε
f(Q̂)(ε) | is the Jacobian corresponding with transfor-

mation ψ = f(Q̂)(ε).

Step 5, Determine (targeted) posterior distribution of ε, given data,
treating Q̂ as fixed/non random: Since, from a Bayesian perspective,
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the conditional density ofO1, . . . , On, given ε, is given by
∏n
i=1 Q̂(ε)(Oi)g(A |

X), by Bayes formula, the posterior density of ε, given the dataO1, . . . , On,
treating Q̂ as fixed and given, is given by (up till normalizing constant)

p(ε | O1, . . . , On) = ∞
n∏
i=1

Q̂(ε)(Oi)g(A | X)fΠ∗(ε)

= ∞
n∏
i=1

Q̂(ε)(Oi)fΠ∗(ε).

One can use standard Bayesian methodology such as Monte-Carlo Markov
Chain sampling to sample a large number of draws, say, E1, . . . , EB, from
this posterior distribution of ε, given O1, . . . , On.

Step 6, Output targeted posterior distribution of ψ0, given data,
treating P̂ as fixed/non random: The posterior distribution of ψ0 is
now described by the sample f(P̂ )(Eb) = Ψ(P̂ (Eb)), b = 1, . . . , B.

We refer to this methodology as empirical targeted Bayesian because we
treat the (initial) frequentist estimator P̂ in the model {P̂ (ε) : ε} for the data
generating distribution as fixed so that only ε is treated as a parameter on
which we put a prior distribution, and we calculate its posterior distribution
accordingly using our general representation (3) of the data generating distri-
bution in the sequential adaptive design.

Rational behind the targeted posterior distribution on parame-
ter of interest: The rational of this methodology for generating a posterior
distribution of ψ0 is as follows. To evaluate the posterior distribution of ψ0

we need to be concerned about its bias w.r.t to ψ0 and its spread needs to be
representative of the actual standard error of the posterior mean. Regarding
the bias, because P̂ is a targeted estimator of the data generating distribution
such as the iterative targeted MLE for adaptive designs as presented in Sec-
tion 13, Ψ(P̂ ) is a robust and locally efficient estimator of ψ0. Consequently,
also the posterior mean of the outputted posterior distribution of ψ0 will be
centered closely around Ψ(P̂ ) and will thus represent a robust and locally ef-
ficient estimator w.r.t to frequentist theory. Regarding the spread, one needs
to know that {P0(ε) : ε}, whose score at ε0 = 0 equals the efficient influence
curve of Ψ : M → IRd at P0, is a so called hardest submodel for estimation
of ψ0 (e.g., see Bickel et al. (1997) or van der Laan and Robins (2003)) in the
sense that estimation of the parameter ψ0 = Ψ(P0(ε0)) of ε0 in this hardest
sub-model of M (treating P0 as known so that only ε0 is the unknown pa-
rameter) is asymptotically as hard as it is to estimate ψ0 in the actual model
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M. As a consequence, as shown in the previous section, statistical inference
(i.e., asymptotic covariance matrix, and information matrix) for a maximum
likelihood estimator of ψ0 = Ψ(P̂ (ε0)) (parameter of only unknown parame-
ter ε0) in this sub-model will be representative of statistical inference for the
(targeted) maximum likelihood estimator Ψ(P̂ (εn)) of ψ0 in the model M.

24.1 Example: Targeted Bayesian learning of causal ef-
fect on survival function in adaptive design.

We now illustrate this completely general empirical targeted Bayesian analogue
of the iterative targeted MLE methodology with a simple example. Suppose,
we wish to estimate a difference of survival function at a point, ψ0 = P0(T1 >
t0) − P0(T0 > t0), based on observations Oi = (Wi, Ai, Ti = Ti(Ai)), i =
1, . . . , n, in a sequential adaptive design, where Wi are baseline covariates, Ai
is treatment, and Ti is the measured survival time. The i-th randomization
probability gi(1 | Xi = (T0i, T1i,Wi) is only a function of O1, . . . , Oi−1 and
Wi. Let Q → gQ be a design function so that, for example, gi = gQ̂i−1

for

a sequence of estimators Q̂i−1 based on O1, . . . , Oi−1. In general, we wish to
have that gi/gQn converges to 1 for i and n large. The fixed design efficient
influence curve of ψ0 is given by:

D∗(Q, g)(A, T ) = (Y−Q(A,W ))

{
I(A = 1)

g(1)
− I(A = 0)

g(0)

}
+Q(1,W )−Q(0,W )−Ψ(Q),

where Q0(1,W ) = E(Y | A = 1,W ), Q0(0,W ) = E(Y | A = 0,W ), Y =
I(T > t0), g0(1) = P (A = 1), and Ψ(Q) = Q(1)−Q(0).

Prior distribution on causal effect of treatment on survival: Con-
sider a prior distribution on the univariate parameter ψ0 such as a uniform
distribution on [a0, b0] ⊂ [0, 1] for some numbers 0 ≤ a0 < b0 ≤ 1. Let π be its
density.

Targeted ML density estimator: Consider an iterative targeted ML
density estimator Qn(Y | A) based on O1, . . . , On so that either

0 =
∑
i

D∗(Qn, gi)(Oi), or 0 =
∑
i

D∗(Qn, gQn)(Oi)
gQn(Ai)

gi(Ai)
.

In the marginal case in which there are no baseline covariates, these two effi-
cient influence curve estimating equations are identical and result in the fol-
lowing targeted ML estimator of ψ0:

ψn =

∑
i YiI(Ai = 1)/gi(1)∑
i I(Ai = 1)/gi(1)

−
∑
i YiI(Ai = 0)/gi(0)∑
i I(Ai = 0)/gi(0)

.
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In general, a slight modification in which only the Y | A,W component of the
efficient influence curve is inverse weighted, we have the following expression
for the estimator:

ψn =
1

n

n∑
i=1

(Yi−Qn(Ai,Wi))

{
I(Ai = 1)

gi(1 | Wi))
− I(Ai = 0)

gi(0 | Wi)

}
+Qn(1,Wi)−Qn(0,Wi).

Targeted fluctuation of targeted density estimator: Let Qn(ε)(T |
A,W ) be so that Qn(0) = Qn, and d

dε
logQn(ε)

∣∣∣
ε=0

= D∗(Qn, gQn). For ex-

ample, if one reduces the data Oi = (Wi, Ai, Ti) to (Wi, Ai, Yi), then this can
be arranged by modelling Qn(ε)(1 | Ai,W ) with a logistic regression with an
extra covariate extension εh(Ai,Wi) so that

h(Ai,Wi) =
{I(Ai = 1)/gQn(1 | Wi)− I(Ai = 0)/gQn(0 | Wi)}

Qn(1 | Ai,Wi)(1−Qn(1 | Ai,Wi))
.

Evaluate prior distribution for ε implied by prior of ψ0: We have
ε → f(Qn)(ε) = Ψ(Qn(ε)) = 1

n

∑
iQn(ε)(1 | Ai = 1,Wi) − Qn(ε)(1 | Ai =

0,Wi), where Qn(1 | Ai,Wi) denotes the estimate of P (Yi = 1 | Ai,Wi). We
can choose the prior distribution of ε as the distribution of g(X) with X ∼ Π,
where Π is the prior distribution on ψ0 specified initially and g denotes the
inverse of ε→ f(Qn)(ε), which is easy to work out in each application.

Targeted posterior density of ε: Denote the derivative of f(Qn) at ε
with σ2(ε) so that the Jacobian is given by J(ε) = σ2(ε). In particular we can
work this out with the logistic regression fluctuation function. The univariate
posterior density of ε, given O1, . . . , On, is thus given by

∞π(ε | O1, . . . , On) =
n∏
i=1

Qn(ε)(Yi | Ai,Wi)π(f(Qn(ε))σ
2(ε), (55)

where we recall that π is the density of the prior distribution on ψ0.
Targeted posterior density of causal effect on survival: The pos-

terior density of ε implies the posterior distribution of f(Qn(ε)) = Ψ(Qn(ε)),
i.e. the causal effect of treatment on survival function at t0. In this example,
one can even pursue analytic calculation of this posterior density of the sur-
vival function difference since it only involves univariate density calculations.
The Monte Carlo simulation approach would be to sample E1, . . . , EB from
the posterior density π(· | O1, . . . , On) specified in (55), and evaluate the cor-
responding Ψ(Qn(Eb)), b = 1, . . . , B, which gives us a random sample from
the posterior distribution of the survival function differences at t0, given the
observed data O1, . . . , On.
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Properties of targeted posterior distribution of causal effect of
treatment on survival function, and comparison with standard Bayesian
learning: A standard Bayesian approach would involve specifying a paramet-
ric model, specifying a prior distribution on all the parameters of this para-
metric model, calculating the corresponding posterior distribution involving
sampling from a high dimensional multivariate density (since there are many
parameters), and model selection (e.g.) based on the posterior density so that
these calculations will have to be carried out for lots of candidate parametric
models. In spite of the computational challenges and effort of this standard
Bayesian approach, the resulting estimator of the causal effect of treatment on
survival function will typically be too biased due to model miss-specification.
Model selection using a likelihood or Bayesian criteria would generally not re-
duce the bias at the wished rate of o(1/

√
n), since the selection is in essence

based on a bias variance trade off for the purpose of estimating the whole
density. The same criticism would apply to a sieve based (frequentist) maxi-
mum likelihood estimator using (say) likelihood based cross-validation to select
models or other fine tuning parameters. The problem of both the Bayesian and
maximum likelihood estimation methodology is that the estimation and model
selection are not targeted towards the smooth parameter being the causal effect
of treatment on survival probability, so that the resulting estimation procedure
involves the wrong bias variance trade off.

On the other hand, the targeted empirical posterior Bayesian distribution
of the causal effect on survival is centered at the locally efficient iterative
targeted MLE Ψ(Qn), and the spread of the posterior distribution is asymp-
totically completely driven by the variance of this efficient influence curve
under Qn at gQn , where gi/gQn converges to 1 for i large. In addition, the
calculations for establishing this targeted posterior distribution only involve
sampling from a univariate posterior density and is therefore easy and fast
from a computational point of view.

24.2 Discussion regarding targeted empirical Bayesian
learning in adaptive designs.

The proposed targeted empirical Bayesian learning allows us to use 1) the
frequentist framework and its corresponding targeted maximum likelihood es-
timators for sequential adaptive designs with good and well understood fre-
quentist properties, as needed for hypothesis testing and inference in general,
while 2) augmenting this framework with a simple straightforward calculation
of a posterior distribution for the scientific parameter of interest given a prior
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distribution on the scientific parameter of interest. In addition, one can use
the targeted empirical posterior distribution based on O1, . . . , Oi−1 to adapt
the design gi for experiment i, i = 1, . . . , n. This is particularly important in
cases in which prior studies provide important evidence about the scientific
parameter, which now can be incorporated to get more precise estimates for
small sample sizes, in particular, allowing for more reliable adaptations early
on in the design.

25 Sequential testing in an adaptive design

In this section we show that sequential testing, as exists in the current lit-
erature on group sequential testing in fixed designs (i.e., gi are fixed a priori
specified elements in G, i = 1, . . . , n), can be generalized to our general defini-
tion of adaptive designs for which the central limit theorems as presented in
this article apply. Specifically, analogue to the current literature on sequen-
tial testing in (fixed) group sequential designs, we propose a class of sequential
testing procedures based on a fixed numberK of sequential testing times which
control the Type-I error at level alpha as n converges to infinity for general
adaptive designs. We will distinguish between the case in which the K subse-
quent sample sizes (i.e., times) at which one tests the null hypothesis are given
a priori and thus non-random, and the case in which the k-th sample size at
which one tests the null hypothesis is set in response to the data collected
as was available at the k − 1-th testing sample size, k = 1. . . . , K. We will
refer to these two scenarios as ”Sequential Testing at Fixed Sample Sizes” and
”Sequential Testing at Random Sample Sizes”.

25.1 Sequential testing at fixed sample sizes.

Consider a univariate test statistic T (n) based on O1, . . . , On for testing the
null hypothesis H0 : ψ0 = 0 for a univariate parameter ψ0. Suppose that
one tests the null hypothesis at sample sizes n1 = p1n, . . . , nk = pkn based
on T (n1), . . . , T (nk), respectively, where 0 < p1 < . . . < pk ≤ 1 are fixed a
priori set proportions. We wish to use a sequential testing procedure based
on the sequential test ”if T (nj) > cj, then reject H0”, j = 1, . . . , k, (thus, it
stops at the first j for which T (nj) > cj), with the cut-offs cj chosen so that
the probability of falsely rejecting H0 in this sequential testing procedure is
smaller or equal than α. We note that the probability of falsely rejecting H0

can be decomposed as:

P (Reject H0) = P (T (n1) > c1) + P (T (n2) > c2, T (n1) < c1)189
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+ . . .+ P (T (nk) > ck, T (nl) < cl, l = 1 . . . , k − 1)

=
k∑
j=1

P (T (nj) > cj, T (nl) < cl, l = 1, . . . , j − 1).

Consider now a vector (α1, . . . , αk) of positive numbers so that
∑k
j=1 αj = α.

Each such a vector of αj-values defines now a sequential testing procedure
controlling the Type-I error at level α, by sequentially setting cj so that

P (T (nj) > cj, T (nl) < cl, l = 1, . . . , j − 1) = αj, j = 1, . . . , k.

Such a sequential testing procedure requires knowing the marginal distribu-
tion of T (n1) at the first test, the bivariate distribution of (T (n1), T (n2)) at
the second test, and, in general, it requires knowing the joint distribution of
(T (n1), . . . , T (nj)) at the j-th test, j = 1, . . . , k. A variety of such sequen-
tial testing procedures have been proposed in the literature based on such a
specification of αj-values. For example, a simple choice is to set the cut-offs
cj and α∗ so that α∗ = P (T (n1) > c1), P (T (n2) > c2 | T (n1) < c1) = α∗, . . .,
P (T (nk) > ck | T (nj) ≤ cj, j = 1, . . . , k − 1) = α∗, and

k∑
j=1

αj = α, where αj = (1−∑j−1
l=1 αl)α

∗.

Other popular choices can be found in the literature.
To conclude, the only requirement for an asymptotically valid class of se-

quential testing procedure is that we can establish the k-variate normal limit
distribution of (T (n1), . . . , T (nk)) as n → ∞. For that purpose, we assume
that the test statistic T (n) is such that, if H0 : ψ0 = 0 is true, then

T (n) =
1√
n

n∑
i=1

D(Oi, Zi)/σn + op(1),

where Zi is a function of O1, . . . , Oi−1,
∑
iD(Oi, Zi) is a univariate discrete

martingale and σ2
n is a consistent estimator of the variance of 1/

√
n
∑
iD(Oi, Zi)

(under H0): e.g., σ2
n = 1

n

∑n
i=1D(Oi, Zi)

2). Specifically, if ψ0 = 0, then
E(D(Oi, Zi) | O1, . . . , Oi−1) = 0, i = 1, . . . , n. This linear approximation
of the test-statistic can be established by applying our general central limit
Theorems 7 and 8 under the assumption that the null hypothesis H0 : ψ0 = 0
is true. That gives that ψn is a Martingale asymptotically linear estimator of
ψ0 so that the corresponding ”t-statistic” T (n) =

√
nψn/σn is approximately a

discrete univariate martingale: T (n) = 1√
n

∑n
i=1D(Oi, Zi)/σn+oP (1) for some

D specified in our theorems.
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By the multivariate martingale central limit Theorem 17 it follows that,
if H0 is true, then (T (n1), . . . , T (nk)) is multivariate normal with mean zero
and a certain covariance matrix. Since T (nj) converges to a marginal normal
distribution with mean zero and variance 1 it follows that the diagonal elements
of the covariance matrix are all equal to 1. In addition, the covariance elements
of the covariance matrix follow from the fact that for l < m, we have

E(T (nl)T (nm)) =
1

σnl
σnm

√
nl
√
nm

nl∑
i=1

ED(Oi, Zi)
2

≈ 1

σnl
σnm

√
nl
√
nm

nlσ
2

≈
√
nl/nm =

√
pl/
√
pm.

So, (T (n1), . . . , T (nk)) converges to a multivariate normal distribution with

mean vector 0 and covariance matrix Σ with Σ(j, j) = 1 and Σ(l,m) =
√
pl/pm.

We will state this result as a theorem.

Theorem 11 (Sequential testing at fixed sample sizes) Consider the
sequence in n of data generating mechanisms for (O1, . . . , On) ∼ PQ0,g in
an adaptive design defined by g = (g1, . . . , gn), where the density pQ0,gn is
defined in (3). Consider a corresponding sequence of test statistics T (n) based
on O1, . . . , On for testing the null hypothesis H0 : ψ0 = Ψ(Q0) = 0 for a
univariate parameter ψ0. Suppose that one tests the null hypothesis at sample
sizes n1 = p1n, . . . , nk = pkn based on T (n1), . . . , T (nk), respectively, where
0 < p1 < . . . < pk ≤ 1 are fixed a priori set proportions. Assume that the test
statistic T (n) is such that, if H0 : ψ0 = 0 is true, then

T (n) =
1√
n

n∑
i=1

D(Oi, Zi)/σn + op(1),

where
∑
iD(Oi, Zi) is a univariate discrete martingale and σ2

n (e.g., σ2
n =

1
n

∑n
i=1D(Oi, Zi)

2)) is a consistent estimator of the variance of 1/
√
n
∑
iD(Oi, Zi)

as n→∞ (under H0). Specifically, if ψ0 = 0, then E(D(Oi, Zi) | O1, . . . , Oi−1) =
0, i = 1, . . . , n. This martingale linear approximation of the test-statistic can
be established by applying our general central limit Theorems 7 and 8 under the
assumption that the null hypothesis H0 : ψ0 = 0 is true: thus the conditions of
these theorems provide sufficient conditions.

Then, (T (n1), . . . , T (nk)) converges to a multivariate normal distribution
with mean vector 0 and covariance matrix Σ with Σ(j, j) = 1 and Σ(l,m) =√
pl/pm.
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Consider now a vector (α1, . . . , αk) of positive numbers so that
∑k
j=1 αj =

α. Each such a vector of αj-values defines now a sequential testing procedure
asymptotically controlling the Type-I error at level α, by sequentially setting cj
so that

P (Zj > cj, Zl > cl, l = 1, . . . , j − 1) = αj, j = 1, . . . , k,

where Z ∼ N(0,Σ), and using the sequential testing procedure ”if T (nj) > cj
reject H0, j = 1, . . . , k”.

The above result can be easily generalized to the case that at nj a j-
specific test statistic Tj(nj) is used. For example, if the data O1, . . . , Onj

is
right-censored by a fixed censoring variable Ej (i.e., the time at which the
nj-th experiment is carried out or finalized). This generalization is obtained
by assuming that the j-th test statistic Tj(nj) is such that, if H0 : ψ0 = 0 is
true, then

Tj(nj) =
1√
n

n∑
i=1

Dj(Oi, Zi)/σjn + op(1),

where
∑
iDj(Oi, Zi) is a univariate discrete martingale and σ2

nj (e.g., σ2
nj =

1
n

∑n
i=1Dj(Oi, Zi)

2)) is a consistent estimator of the variance of 1/
√
n
∑
iDj(Oi, Zi)

as n → ∞ (under H0), j = 1, . . . , k. Again, the derivation of the influence
curves Dj would be implied by our general asymptotic linearity Theorems 7
and 8 for an estimator ψjnj

of ψ0 based on (e.g., the right-censored by Ej
versions) of O1, . . . , Onj

.

25.2 Sequential testing at random sample sizes.

Consider a univariate test statistic T (n) being a specified function ofO1, . . . , On,
such as a standardized t-statistic T (n) =

√
nψn/σn based on an estimator ψn

of a univariate parameter ψ0, for testing the null hypothesis H0 : ψ0 = 0. Sup-
pose that one wishes to test the null hypothesis at k random sample sizes 0 <
N1, . . . , Nk ≤ n between 0 and n. It is assumed that 1) Nj = nj(Ō(Nj−1), n)
is a deterministic function of the data O1, . . . , ON(j−1) available at the pre-
vious testing sample size N(j − 1) and n, j = 1, . . . , k, and 2) N1 = n1 is
non-random. In addition, these deterministic functions are such that with
probability 1 Nj > Nj−1 for j = 2, . . . , k, and lim supn→∞N1/n > 0: i.e., the
random sample sizes Nj converge to infinity at the same rate as n converges
to infinity.

We wish to use a sequential testing procedure based on the sequential test
”if T (Nj) > cj, then reject H0”, j = 1, . . . , k, (thus, it stops at the first j

192

http://biostats.bepress.com/ucbbiostat/paper232



for which T (Nj) > cj or it stops at Nk), with the cut-offs cj chosen so that
the probability of falsely rejecting H0 in this sequential testing procedure is
smaller or equal than α. We note that the probability of falsely rejecting H0

can be decomposed as:

P (Reject H0) = P (T (N1) > c1) + P (T (N2) > c2, T (N1) < c1)

+ . . .+ P (T (Nk) > ck, T (Nl) < cl, l = 1 . . . , k − 1)

=
k∑
j=1

P (T (Nj) > cj, T (Nl) < cl, l = 1, . . . , j − 1).

Consider now a vector (α1, . . . , αk) of positive numbers so that
∑k
j=1 αj = α.

Each such a vector of αj-values defines now a sequential testing procedure
controlling the Type-I error at level α, by sequentially setting cj so that

P (T (Nj) > cj, T (Nl) < cl, l = 1, . . . , j − 1) = αj, j = 1, . . . , k.

Such a sequential testing procedure requires knowing the marginal distribu-
tion of T (N1) at the first test, the bivariate distribution of (T (N1), T (N2)) at
the second test, and, in general, it requires knowing the joint distribution of
(T (N1), . . . , T (Nj)) at the j-th test, j = 1, . . . , k. A variety of such sequen-
tial testing procedures have been proposed in the literature based on such a
specification of αj-values. For example, a simple choice is to set the cut-offs
cj and α∗ so that α∗ = P (T (N1) > c1), P (T (N2) > c2 | T (N1) < c1) = α∗, . . .,
P (T (Nk) > ck | T (Nj) ≤ cj, j = 1, . . . , k − 1) = α∗, and

k∑
j=1

αj = α, where αj = (1−∑j−1
l=1 αl)α

∗.

To conclude, the requirement for an asymptotically valid class of sequential
testing procedure is that we can establish the k-variate limit distribution of
(T (N1), . . . , T (Nk)) as n→∞.

Assume that the test statistic T (n) is such that, if H0 : ψ0 = 0 is true,
then T (n) = Z(n) +R(n), with R(n) = oP (1), where

Z(n) =

1√
n

∑n
i=1D(Oi, Zi)√

1
n

∑n
i=1D(Oi, Zi)2

,

and E(D(Oi, Zi) | O1, . . . , Oi−1) = 0, i = 1, . . . , n, so that
∑
iD(Oi, Zi) is a

univariate discrete martingale.
This linear approximation of the test-statistic can be established by ap-

plying our general central limit Theorems 7 and 8 under the assumption
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that the null hypothesis H0 : ψ0 = 0 is true. That yields that ψn is an
asymptotically linear estimator of ψ0 so that the corresponding ”t-statistic”
T (n) =

√
nψn/σn is approximately a discrete univariate martingale: T (n) =

1√
n

∑n
i=1D(Oi, Zi)/σn +R(n) with R(n) = oP (1), and for some D specified in

our theorems.
We now note that

T (Nj) =
1√
Nj

Nj∑
i=1

D(Oi, Zi)/σNj
+R(Nj).

We have δn < Nj < n with probability 1. Thus limn→∞ | R(n) |= 0 a.s.
implies limn→∞ | R(Nj) |= 0 a.s. As a consequence of the almost sure repre-
sentation theorem applied to R(n) = oP (1), this implies now that, if H0 is true,
then R(Nj) = oP (1). This proves that, if ψ0 = 0, then (T (N1), . . . , T (Nk)) =
(Z(N1), . . . , Z(Nk)) + oP (1).

It remains to establish and characterize the multivariate normal distribu-
tion of (Z(N1), . . . , Z(Nk)). We define

Mj(n) =
n∑
i=1

I(i ≤ Nj)D(Oi, Zi) j = 1, . . . , k.

We note that the weak convergence of the random vector (Mj(n) : j) implies
the wished weak convergence of (Z(Nj) : j). Given O1, . . . , Oi−1, for each j,
the indicator I(i ≤ Nj) is known. Therefore,

E(I(i ≤ Nj)D(Oi, Zi) | O1, . . . , Oi−1) = I(i ≤ Nj)E(D(Oi, Zi) | O1, . . . , Oi−1) = 0.

This shows that Mj(n) is a discrete univariate martingale. Let Dj(Oi, Zi) ≡
I(i ≤ Nj)D(Oi, Zi) so thatMj(n) =

∑n
i=1Dj(Oi, Zi). DefineM(n) = (M1(n), . . . ,Mk(n)) =∑n

i=1
~D(Oi, Zi) as the multivariate martingale with j-th component Mj(n),

j = 1, . . . , k.
Let Σ(n)2 = E 1

n

∑n
i=1

~D2(Oi, Zi). Application of the multivariate martin-

gale Theorem 17 shows that, if ‖ ~D ‖∞<∞, lim inf λΣ(n)2λ > 0 for all λ (or
that Σ2 = limn→∞ Σ(n)2 exists and is a positive definite covariance matrix),
and that component wise

1

n

n∑
i=1

PQ0,gi
~D2 − E

1

n

n∑
i=1

PQ0,gi
~D2 → 0 (56)

in probability as n→∞, then

√
nΣ(n)−1Mn ⇒D N(0, I), as n→∞,
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and, if Σ2(n) → Σ2 for some positive definite covariance matrix Σ2, then

√
nMn ⇒D N(0,Σ2), as n→∞.

In addition, application of Theorem 18 teaches us that, under these same
conditions, we have that

1

n

n∑
i=1

~D(Oi, Zi)
2 − Σ(n)2 → 0 in probability, as n→∞,

and, if Σ2(n) → Σ2, as n → ∞, for a positive definite matrix Σ2, then this

also implies 1
n

∑n
i=1

~D(Oi, Zi)
2 → Σ2 in probability, as n→∞.

We note that the only substantial condition is the asymptotic stability
condition for the adaptive design gi defined by (56), as we assume in each of
our central limit theorems. That is, this condition is not adding any additional
restrictions as required for the analysis of the MLE or solutions of estimating
equations.

Thus, the covariance element Σ(n)2(l,m), l ≤ m, of the multivariate mar-
tingale M(n) can be consistently estimated with

Σ̂(n)
2
(l,m) =

1

n

Nl∑
i=1

D(Oi, Zi)
2,

and the corresponding correlations Σ(n)∗2(l,m) are consistently estimated as:

Σ̂(n)
∗2

(l,m) =

∑Nl
i=1D(Oi, Zi)

2√∑Nl
i=1D

2(Oi, Zi)
√∑Nm

i=1D
2(Oi, Zi)

=
√
Nl/Nm

√√√√ ∑Nl
i=1D

2
i /Nl∑Nm

i=1D
2
i /Nm

≈
√
Nl/Nm.

We conclude that (Z(N1), . . . , Z(Nk)) approximates in distributionN(0,Σ∗2(n))
as n → ∞, where Σ∗2(n) is the correlation matrix corresponding with Σ2(n),
and the (l,m)-off diagonal elements of Σ∗2(n) can be consistently estimated

with
√
Nl/Nm. As a consequence, (T (N1), . . . , T (Nk)) approximates in distri-

bution N(0,Σ∗2(n)) as n→∞.
We will state this result as a theorem.

Theorem 12 (Sequential testing at random sample sizes) Consider the
sequence in n of data generating mechanisms for (O1, . . . , On) ∼ PQ0,g in an
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adaptive design defined by g = (g1, . . . , gn), where the density pQ0,gn is defined
in (3).

Consider a corresponding sequence of test statistics T (n) based on O1, . . . , On

for testing the null hypothesis H0 : ψ0 = Ψ(Q0) = 0 for a univariate param-
eter ψ0. Suppose that one wishes to test the null hypothesis at k random
sample sizes 0 < N1, . . . , < Nk ≤ n between 0 and n. It is assumed that
Nj = nj(Ō(Nj−1), n) is a deterministic function of O1, . . . , ON(j−1) and n,
j = 1, . . . , k, and N1 = n1 is non-random. In addition, these deterministic
functions are such that with probability 1, Nj > Nj−1 for j = 2, . . . , k, and
lim supn→∞N1/n > 0: i.e., the random sample sizes Nj converge to infinity at
the same rate as n converges to infinity.

Assume that the test statistic T (n) is such that, if H0 : ψ0 = 0 is true, then
T (n) = Z(n) + oP (1), where

Z(n) =

1√
n

∑n
i=1D(Oi, Zi)√

1
n

∑n
i=1D(Oi, Zi)2

,

and E(D(Oi, Zi) | O1, . . . , Oi−1) = 0, i = 1, . . . , n, so that
∑
iD(Oi, Zi) is a

univariate discrete martingale. Define Dj(Oi, Zi) ≡ I(i ≤ Nj)D(Oi, Zi), ~D ≡
(D1, . . . , Dk), and the covariance matrix Σ(n)2 = E 1

n

∑n
i=1

~D2(Oi, Zi). Assume

‖ ~D ‖∞<∞, lim inf λΣ(n)2λ > 0 for all λ (or that Σ2 = limn→∞ Σ(n)2 exists
and is a positive definite covariance matrix), and that component wise

1

n

n∑
i=1

PQ0,gi
~D2 − E

1

n

n∑
i=1

PQ0,gi
~D2 → 0 (57)

in probability as n→∞.
We have, if ψ0 = 0, then (T (N1), . . . , T (Nk)) approximates a multivariate

normal distribution N(0,Σ∗2(n)) as n → ∞, where Σ2∗(n) is the correlation
matrix of Σ2(n).

We also have that

1

n

n∑
i=1

~D(Oi, Zi)
2 − Σ(n)2 → 0 in probability, as n→∞,

and, if Σ2(n) → Σ2, as n → ∞, for a positive definite matrix Σ2, then this

also implies 1
n

∑n
i=1

~D(Oi, Zi)
2 → Σ2 in probability, as n→∞.

Thus, the covariance elements Σ(n)2(l,m), l ≤ m, can be consistently
estimated with

Σ̂(n)
2
(l,m) =

1

n

Nl∑
i=1

D(Oi, Zi)
2,
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and the corresponding correlations Σ(n)∗2(l,m) are consistently estimated as:

Σ̂(n)
∗2

(l,m) =

∑Nl
i=1D(Oi, Zi)

2√∑Nl
i=1D

2(Oi, Zi)
√∑Nm

i=1D
2(Oi, Zi)

=
√
Nl/Nm

√√√√ ∑Nl
i=1D

2
i /Nl∑Nm

i=1D
2
i /Nm

≈
√
Nl/Nm.

Consider now a vector (α1, . . . , αk) of positive numbers so that
∑k
j=1 αj =

α. Each such a vector of αj-values defines now a sequential testing procedure
asymptotically controlling the Type-I error at level α, by sequentially setting cj
so that

P (Zj > cj, Zl > cl, l = 1, . . . , j − 1) = αj, j = 1, . . . , k,

where Z ∼ N(0,Σ∗2(n)), and carrying out the sequential testing procedure
”Reject H0 if T (N(j)) > cj, j = 1, . . . , k”.

26 Generalization to adaptive designs with un-

controlled (unknown) components.

In the methods presented so far it was assumed that the design mechanism gi
for experiment i, i.e., the conditional distribution of the design settings Ai for
experiment i, given Xi and O1, . . . , Oi−1, is known, i = 1, . . . , n. In many ap-
plications certain components of the mechanism gi are known (e.g., treatment
assignment) but other components (e.g., right censoring mechanism) are not
fully controlled by the design and thus unknown. We will assume that the un-
known controlled components of the mechanism gi can be correctly modelled
and thereby estimated with maximum likelihood estimation methodology. For
example, it might be known that the right-censoring for experiment i is inde-
pendent of the previous experiments, but depends on some covariates collected
in experiment i, and we might assume a logistic regression type of model.

Therefore, it is important to present the extension of our methodology for
unknown but modelled adaptive designs. Consider a model {gη,Zi

: η} ⊂ G so
that

gi(Ai | Xi) = gη0,Zi
(Ai | Xi)

for an unknown parameter η0. For example, consider the case that Ai has
two components (A1i, A2i), where A1i represents treatment assignment, and
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A2i represents a missing indicator (e.g., of the outcome), and we factorize the
design mechanism for experiment i as follows

gi(Ai | Xi) = gi1(A1i | Xi)gi2(A2i | A1i, Xi).

Suppose now that the treatment mechanism g1i is fully controlled by the exper-
imenter so that g1i is a known conditional distribution of A1i, given Ō(i−1), Xi,
but that gi2 is a missingness mechanism ruled by actions of the subject under
study not controlled by the experimenter (such as dropping out of the study).
With respect to modelling of this uncontrolled missingness mechanism, sup-
pose that there is no reason that the missingness for subject i is related to the
data collected in the previous i− 1 experiments, in which case we can assume
gi2(A2i | A1i, Xi) = g2(A2i | A1i, Xi) is a fixed design. One might now propose
a model for this missingness mechanism: g2 = g2η0 for some parametric model
{g2η : η}. This implies now a model for gi given by: gi = gi1g2η0 , where gi1 is a
known adaptive treatment mechanism (i.e., it responds to Ō(i− 1) in a spec-
ified manner), and g2η0 is a missingness mechanism indexed by an unknown
parameter η0. One could also imagine situations in which one expects that
the missingness in experiment i might be influenced on data from experiments
1, . . . , i− 1, and that one would model this dependence, in which case g2i is a
adaptive missingness mechanism indexed by an unknown parameter η0.

The likelihood for η0 is given by

η →
n∏
i=1

gη,Zi
(Ai | Xi)

so that the maximum likelihood estimator of the unknown parameters in the
adaptive design is given by

ηn = arg max
η

n∏
i=1

gη,Zi
(Ai | Xi),

but regularized MLE of η0 (e.g., using likelihood based cross-validation) can
be considered as well. In our example above in which g1i is known and g2i is
an unknown fixed design, this likelihood factors in two likelihoods with only
one depending on unknown parameter η, so that we have

ηn = arg max
η

n∏
i=1

g2η(A2i | A1i, Xi).

The score equation for ηn is thus given by

0 =
n∑
i=1

S(ηn)(Oi, Zi),
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where

S(η)(Oi, Zi) =
d

dη
log gη,Zi

(Ai | Xi).

Again, in our example above, we would have that

S(η)(Oi) =
d

dη
log g2η(A2i | A1i, Xi)

is only a function of Oi.
We have

PQ0,gη0,Zi

d
dη
gη,Zi

(Ai | Xi)
∣∣∣
η=η0

gη0,Zi
(Ai | Xi)

=
d

dη
PQ0,gη,Zi

1

∣∣∣∣∣
η=η0

= 0,

where PQ0,gη0,Zi
denotes the conditional expectation operator, givenO1, . . . , Oi−1,

which shows that S(η) is a Martingale estimating function: PQ0,gη0,Zi
S(η0) = 0

for all i = 1, . . ..
Targeted adaptive designs in the presence of unknown compo-

nents: Let’s now discuss how to construct targeted adaptive designs, since
this will require a slight generalization of our previously described methods
for constructing targeted adaptive designs. The construction of a targeted
adaptive design involves first defining an optimal fixed design for the con-
trolled components of the adaptive design, which one aims to learn during the
trial. This optimal fixed design for the controlled components will depend on
the Q0-factor of the likelihood, but it can also easily depend on the unknown
components of the design. As a consequence, the design function used to con-
struct an adaptive design for the controlled components will be a function of
both Q0 and the unknown parameters η0.

To be specific, consider the example above. In this example, one only
aims to adapt the treatment mechanism g1i. A fixed design data generating
distribution PQ0,g1,g2η0

is now indexed by a choice of treatment mechanism
g1 and the unknown missingness mechanism g2η0 . One might now define an
optimal fixed design for g1 by minimizing a criteria R(PQ0,g1,g2η0

) (e.g., the
variance of the efficient influence curve under fixed design data generating
distribution PQ0,g1,g2η0

for the causal effect of interest) over a set of fixed designs
G1 for the treatment mechanism:

g1η0Q0 ≡ arg min
g1∈G1

R(PQ0,g1,g2η0
).
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We note that this optimal fixed design for the treatment mechanism is now
indexed by both Q0 and the unknown parameter η0 of the missingness mech-
anism. This design function (Q0, η0) → g1Q0η0 defines now an adaptive design
g1i = g1ηi−1Qi−1

for the treatment mechanism by replacing Q0 and η0 by their
estimators based on the data O1, . . . , Oi−1 collected on the previous i− 1 ex-
periments. This corresponds with an adaptive design

gi = gη0ηi−1Qi−1
= g1ηi−1Qi−1

g2η0

indexed by an unknown η0 required to specify the missingness mechanism g2.
Therefore, in general, our design functions used to define a targeted adaptive
design for the whole gi will now be indexed by an unknown η0, and they
represent a mapping from both Q0 and some or all of the unknown parameters
η0:

(η,Q) → gη0,η,Q.

Generalizing the targeted MLE: We wish to also generalize the tar-
geted MLE of a parameter Ψ(Q0) as presented in Sections 12 and 13 to the
case that the adaptive design gη0i is unknown and thereby estimated. Firstly,
we recall that the targeted MLE ψn = Ψ(Qθn(εn)) for known adaptive de-
signs required solving a Martingale estimating equation 0 =

∑
iD(θn, gZi

)(Oi)
in θn and, given θn, solving 0 =

∑
iD(εn, θn, gZi

)(Oi) in εn, where we previ-
ously suppressed in the notation the dependence of the estimating functions
on the adaptive design gZi

since it was known. We now replace these two
estimating equations by three Martingale estimating equations 1) solving 0 =∑
i S(ηn)(Oi, Zi) = 0 in ηn, 2) given ηn, solving 0 =

∑
iD(θn, gηn,Zi

)(Oi) = 0 in
θn, and, 3) given ηn, θn, solving 0 =

∑
iD(εn, θn, gηn,Zi

)(Oi) in εn. These three
estimating functions stacked on top of each other correspond with a single
Martingale estimating function D(η, θ, ε) satisfying PQ0,gη0,Zi

D(η0, θ0, ε0) = 0
for all i, while the estimators solve

∑
iD(ηn, θn, εn)(Oi, Zi) = 0. As a con-

sequence, we can apply our Theorem 7 for estimators defined as solutions of
Martingale estimating equations, including the targeted MLE’s.

The resulting consistency and asymptotic linearity of the estimator ψn =
Ψ(Qθn,ηn(εn)) (in which the path Qθ(ε) in ε is now also indexed by η0, as
specified below!) will rely on correct specification of the model gi = gη0,Zi

,
i = 1, . . ., but, given this assumption, similar conclusions are achieved, with
the modification taking place in the limit covariance matrix of the normal limit
distribution of

√
n(ψn − ψ0) due to the estimation of η0. The next Theorem

13 presents the generalization of Theorem 8 to adaptive designs gi = gη0,i
indexed by unknown parameters, typically factored in terms of controlled and
uncontrolled unknown components.

200

http://biostats.bepress.com/ucbbiostat/paper232



Theorem 13 Consider the adaptive design experiment generating (O1, . . . , On) ∼
PQ0,gn ∈ {PQ,gn : Q ∈ Q}, as defined in (3). Here gn = (g1, . . . , gn),
gi = gZi

∈ G with probability 1, where Zi = Zi(O1, . . . , Oi−1) ∈ Z ⊂ IRk is a
k-dimensional summary measure for some fixed k, i = 1, . . . , n. Let Ψ : M→
IRm be path-wise differentiable at each PQ,g ∈ M = {PQ,g : Q ∈ Q, g ∈ G}
with efficient influence curve/canonical gradient D∗(Q, g).

Modelling and estimation of the adaptive design: Consider a model
{gη,Zi

: η ∈ Γ} ⊂ G so that

gi(Ai | Xi) = gη0,Zi
(Ai | Xi)

for an unknown parameter η0 ∈ Γ. Let ηn be an estimator of η0 solving a mar-
tingale estimating equation 0 =

∑n
i=1 S(ηn)(Oi, Zi) = 0 so that PQ0,gη0,Zi

S(η0) =

0 for all i = 1, . . .. For example, S(η)(Oi, Zi) = d
dη

log gη,Zi
(Ai | Xi).

A working model and initial estimator: Let Qw = {Qθ : θ ∈ Θ ⊂
IRd} ⊂ Q be a working model. Let θn be a solution in θ of a Martingale
estimating equation

1

n

n∑
i=1

D(ηn, θn)(Oi, Zi) = 0 or oP (1/
√
n),

so that for a fixed element θ0 of Θ

PQ0,gη0,i
D(η0, θ0) = 0 for i = 1, . . . , n. (58)

Design function: Let (η, θ) → gη0,η,θ ∈ G be a mapping into the set of
fixed designs possibly indexed by the unknown η0. It is recommended to chose
this design function (η, θ) → gη0,η,θ so that gn = gη0,ηn−1,θn−1 or that gn is
approximated by gη0,ηn−1,θn−1 as n→∞.

A targeted bias reduction path, and estimator: Consider a set
E ⊂ IRm containing 0. For each θ ∈ Θ, let {Qθ,g(ε) : ε ∈ E} ⊂ Q be a path so
that Qθ,g(0) = Qθ ∈ Q for all g ∈ G. Although not necessary for the conclu-

sions of this theorem, we recommend it to also satisfy d
dε

logQθ,g(ε)(O)
∣∣∣
ε=0

=

D∗(Qθ, g)(O). Given the design function (η, θ) → gη0,η,θ, and estimators ηn, θn,
let εn be a solution of

n∑
i=1

D∗(Qθn,gηn,ηn,θn
(εn), gηn,Zi

)(Oi) = 0 or oP (1/
√
n).

or

n∑
i=1

D∗(Qθn,gηn,ηn,θn
(εn), gηn,ηn,θn)(Oi)

gηn,ηn,θn(Ai | Xi)

gηn,Zi
(Ai | Xi)

= 0 or oP (1/
√
n).
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In the context that the efficient influence curve/canonical gradient D∗(Q, g)
is too complex too calculate, then one can replace D∗(Q, g) by any gradient
D(Q, g) instead, and the results below apply with D∗(Q, g) replaced by D(Q, g).

Given η0, θ0, let ε0 ∈ E be a fixed value satisfying

PQ0,gη0,i
D∗(Qθ0,gη0,η0,θ0

(ε0), gη0,i) = 0, i=1,. . . ,n.

Let D∗(η, θ, ε)(Oi, Zi) ≡ D∗(Qθ,gη,η,θ
(ε), gη,Zi

)(Oi), or
D∗(η, θ, ε)(Oi, Zi) ≡ D∗(Qθ,gη,η,θ

(ε), gη,η,θ)gη,η,θ(Ai | Xi)/gη,Zi
(Ai | Xi), i =

1, . . . , n.
A Martingale Estimating function: For each (η, θ, ε) ∈ Γ×Θ×E, we

define the martingale estimating function

D(η, θ, ε)(Oi, Zi) = (S(η)(Oi, Zi), D(η, θ)(Oi, Zi), D
∗(η, θ, ε)(Oi, Zi)).

By the above conditions, we have that (ηn, θn, εn) ∈ Γ×Θ× E solves

0 =
1

n

n∑
i=1

D(ηn, θn, εn)(Oi, Zi) = 0,

and (η0, θ0, ε0) ∈ Θ× E solves

0 = PQ0,gη0,i
D(η0, θ0, ε0) for all i.

Assume

Bounded estimating function: maxj supη∈Γ,θ∈Θ,ε∈E ‖ Dj(η, θ, ε) ‖∞<∞.

Consistency: Assume ‖ (ηn, θn, εn)− (η0, θ0, ε0) ‖ converges to zero in prob-
ability as n→∞.

By Theorem 5 it suffices to assume that 1) F ≡ {(o, z) → D(η, θ, ε)(o, z)−
PQ0,gη,zD(η, θ, ε) : η ∈ Γ, θ ∈ Θ, ε ∈ E} has a covering number N(δ,F , ‖
· ‖∞) w.r.t. to supremum norm bounded by O(δ−q) for a q > 0, and 2)
that,

E

(
1

n

n∑
i=1

PQ0,gη0,i
D(ηn, θn, εn)

)2

→ 0,

as n → ∞, implies ‖ (ηn, θn, εn) − (η0, θ0, ε0) ‖→ 0 in probability, as
n→∞.

Asymptotic stable design: Component wise

1

n

n∑
i=1

PQ0,gη0,i
D − E

1

n

n∑
i=1

PQ0,gη0,i
D → 0, in probability, as n→∞, (59)
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for the following choices of matrix functions D of (Oi, Zi):

D = {D(η0, θ0, ε0)}2

D =
d

d(η0, θ0, ε0)
D(η0, θ0, ε0).

Comment: If the design is a targeted design, gi = gη0,ηi−1,θi−1,εi−1
, then

this can be inferred from the asymptotic convergence of (ηn, θn, εn) to
(η0, θ0, ε0), as n→∞.

Differentiability: Assume

1
n

∑n
i=1 (D(ηn, θn, εn))(Oi, Zi)−D(η0, θ0, ε0)(Oi, Zi))

= 1
n

∑n
i=1

d
d(η0,θ0,ε0)

D(η0, θ0, ε0)(Oi, Zi)((ηn, θn, εn)− (η0, θ0, ε0))

+oP (‖ (ηn, θn, ε0)− (η0, θ0, ε0) ‖),

By the Kolmogorov LLN for martingale sums and the asymptotic stability
(59) of the design, we have

1

n

n∑
i=1

d

d(η0, θ0, ε0)
D(η0, θ0, ε0)(Oi, Zi)− An → 0 a.s., (60)

as n→∞, where An ≡ 1
n

∑n
i=1E0

d
d(η0,θ0,ε0)

D(η0, θ0, ε0)(Oi, Zi).

Invertibility of An: A
−1
n exists, and lim supn ‖ A−1

n ‖<∞.

Positive Definite Covariance Matrix: Let

Σ(n) ≡ E

(
1

n

n∑
i=1

PQ0,gη0,i
{D(η0, θ0, ε0)}2

)
.

Assume that for each vector λ ∈ IRd+m, we have lim infn→∞ λΣ(n)λ > 0,
or that Σ = limn→∞ Σ(n) exists and is a positive definite covariance
matrix.

Then

√
n((ηn, θn, εn)− (η0, θ0, ε0)) =

1√
n

n∑
i=1

A−1
n D(η0, θ0, ε0)(Oi, Zi) + oP (1), (61)

where PQ0,gη0,i
D(η0, θ0, ε0) = 0 for all i, so that the sum on the right hand

side is a Martingale satisfying the conditions of the Martingale central limit
theorem. In particular,

Σ(n)−1/2An(
√
n((ηn, θn, εn)− (η0, θ0, ε0)) ⇒d N(0, I), as n→∞.
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If Σ(n) → Σ for some positive definite matrix Σ, and An → A0, then this
implies √

n((ηn, θn, εn)− (η0, θ0, ε0)) ⇒d N(0, A−1
0 ΣA−1>

0 ). (62)

We also have that Σ(n) can be consistently estimated with

Σ̂(n) =
1

n

n∑
i=1

{
D(ηn, θn, εn)(Oi, Zi)−

1

n

n∑
i=1

D(ηn, θn, εn)

}2

.

Robustness w.r.t. ψ0: Suppose,

PQ0,gi
D∗(Q, gi) = 0 implies Ψ(Q)−Ψ(Q0) = 0, i = 1, . . . , n, (63)

or simply assume Ψ(Qθ0(ε0)) = ψ0. Then, the delta-method applied to f(η, θ, ε) ≡
Ψ(Qθ,gη,η,θ

(ε)), and the weak convergence (62) imply that
√
n(Ψ(Qθn,gηn,ηn,θn

(εn))−
Ψ(Q0)) converges in distribution to a multivariate normal distribution with
mean zero, and specified covariance matrix Σ∗

0 in terms of the gradient of f
and A−1

0 Σ0A0.
Asymptotic equivalence with optimal fixed design: Represent

D(η0, θ0, ε0)(Oi, Zi) =

(
d

dη0

log gη0,Zi
(Ai | Xi), D1(η0, θ0, ε0, gη0,Zi

)(Oi)

)

for some mapping (η, θ, ε, g) → D1(η, θ, ε, g). Given the design function (η, θ) →
gη0,η,θ used to define a targeted adaptive design gη0i = gη0,ηi−1,θi−1

, let D∞(η0, θ0, ε0)(Oi) =
( d
dη0

log gη0,η0,θ0(Ai | Xi), D1(η0, θ0, ε0, gη0,η0,θ0)(Oi)). Suppose that the adaptive
design is a targeted adaptive design, i.e., gη0,Zi

= gη0,ηi−1,θi−1
, and that it con-

verges to the fixed design gη0,η0,θ0 ∈ G for i→∞ so that

An → A0 = PQ0,gη0,η0,θ0

d

d(η0, θ0, ε0)
D∞(η0, θ0, ε0)

and

Σ(n) → Σ0 ≡ PQ0,gη0,η0,θ0
D∞(η0, θ0, ε0)

2, (64)

as n→∞. Then

√
n((ηn, θn, εn)− (η0, θ0, ε0)) ⇒ N(0, A−1

0 Σ0A0), (65)

where the latter normal limit distribution equals the limit distribution of the
targeted MLE under i.i.d. sampling from fixed design data generating distribu-
tion PQ0,g0η0

with η0 in g0η0 = gη0,η0,θ0 estimated with ηn = arg maxη
∏
i g0η(Ai |

Xi).
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Conservative asymptotic inference: The last statement teaches us that
we can also derive the asymptotic covariance matrix of the targeted MLE
Ψ(Qθn,gηn,ηn,θn

(εn)) of ψ0 by deriving its limit distribution under i.i.d. sampling
from the fixed design data generating distribution PQ0,g0η0

where g0η0 = gη0,η0,θ0
denotes the limit of the adaptive design gn = gη0,ηn−1,θn−1 as n → ∞, and
{g0η = gη,η0,θ0 : η} is a correctly specified model for g0η0 . By results in van der
Laan and Robins (2003) (Theorem 2.5) and van der Laan and Rubin (2006),
it follows that under i.i.d. sampling we would have that this targeted MLE ψn
is asymptotically linear with influence curve given by:

D∗(Qθ0,g0η0
(ε0), g0η0)− Π(D∗(Qθ0,g0η0

(ε0), g0η0) | T (g0η0)),

where Π(· | T (g0η0)) is the projection operator onto the tangent space of
{gη,η0,θ0 : η} at η0 (i.e., the closure of the linear span of the scores of η at
η0) in the Hilbert space L2

0(PQ0,g0η0
) endowed with inner product 〈f1, f2〉 =

EPQ0,g0η0
f1(O)f2(O). In particular, this teaches us that a conservative influ-

ence curve under i.i.d. sampling is given by D∗(Qθ0,g0η0
(ε0), g0η0). As a con-

sequence, we can base our statistical inference on the conservative Martingale
asymptotic linear approximation given by

ψn − ψ0 =
1

n

n∑
i=1

D∗(Qθ0,g0η0
(ε0), g0η0)

g0η0(Ai | Xi)

gη0,i(Ai | Xi)
+ oP (1/

√
n).

Thereby, we can consistently conservatively estimate the covariance matrix of
the normal limit distribution of ψn with

Σn =
1

n

n∑
i=1

{
D∗(Qθn,gηn,ηn,θn

(εn), gηn,ηn,θn)
gηn,ηn,θn(Ai | Xi)

gηn,i(Ai | Xi)

}2

.

Thus, for the sake of statistical inference we can work with the normal (conser-
vative) approximation ψn ∼ N(ψ0,Σn/n) to construct corresponding asymp-
totically conservative confidence intervals and test-statistics. To conclude,
statistical inference for adaptive designs gi = gη0,i, which are indexed by an
unknown parameter η0, can proceed as if η0 is known (and is given by the
maximum likelihood estimator ηn), just as in our presentation in the previous
sections for the case that gi is known, but by doing this one will obtain conser-
vative (first order) statistical inference. In order to carry out asymptotically
exact statistical inference, one will have to work with the limit covariance
matrix specified in the Theorem, which will take into account that one has
estimated η0.
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27 General Iterative Targeted Estimation.

In this section we present our most general presentation of iterative targeted
learning and estimation methodology. Let O1, . . . , On be a data set of n ob-
servations with some probability distribution P n

0 ∈Mn, where Mn denotes a
model for this probability distribution P n

0 of (O1, . . . , On).
Let Q0 represent a fixed (typically infinite dimensional) parameter of P n

0 in
the sense that there exists a mapping An : Mn → Q and An(P n

0 ) = Q0 for all
n = 1, . . . ,. For example, the data generating distribution P n

0 = P n
Q0,g

for an
adaptive design is determined by a Q0 representing the identifiable component
of the full data distribution, and a censoring mechanisn/design mechanism
g = (g1, . . . , gn), so that we can indeed represent Q0 as a fixed quantity in this
data generating experiment. In words, Q0 represents a fixed (in n) quantity the
true probability distribution of our data set O1, . . . , On behaves in accordance
with.

Let Q be a fixed (typically infinite dimensional) model for Q0. For exam-
ple, the model for adaptive designs is of the form Mn = {P n

Q,g : Q ∈ Q}.
In many cases, Q consists of elements representing one or more probability
distributions: e.g. in censored data models such as the sequential adaptive
design we have that Q0(a, l) = P (La = l) so that Q(a, ·) represents indeed a
probability distribution for each a.

Let Ψ : Q → IRd be a target feature mapping so that ψ0 = Ψ(Q0) represents
the target feature of the true Q0 we wish to estimate.

Consider now user supplied 1) empirical criteria for a candidate Q ∈ Q
measuring overall performance w.r.t. Q0, and 2( an empirical equation in
Q measuring a performance of Ψ(Q) w.r.t. ψ0. Specifically, let Ln : Q →
IR be the empirical criterion in Q. Thus Ln(Q) = L(Q | O1, . . . , On) is a
deterministic function of Q and the data O1, . . . , On. Let Fn(Q) = F (Q |
O1, . . . , On) be a vector valued function, typically chosen to have the same
dimension d as the target feature mapping, so that Fn(Q) = 0 represents an
empirical equation in Q whose solutions Q are considered targeted towards
the target feature: that is, given an overall good empirical performance of a
solution Q of Fn(Q) = 0, the estimator Ψ(Q) is a good estimator of ψ0.

For example, Fn(Q) might have the property that its expectationE0Fn(Q) =
Ψ(Q) − Ψ(Q0) so that solutions of Fn(Q) = 0 are clearly targeted towards
fitting Ψ(Q0). Off course, for a Euclidean norm ‖ · ‖, one can also view
‖ Fn(Q) ‖ as an empirical criterion for Q targeted towards the target feature.
We will refer to the equation Fn(Q) = 0 or its corresponding empirical criterion
‖ Fn(Q) ‖ as a target feature empirical equation or target feature empirical
criterion, respectively.
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Next, we wish to construct a mapping from a candidate Q, such as an
initial estimator Q̂ of Q0, into a targeted version Q∗

n(Q) which solves the target
feature empirical equation Fn(Q

∗
n(Q)) = 0. Thus, for any Q ∈ Q, we have that

Q∗
n(Q) solves Fn(Q

∗
n(Q)) = 0. We also wish that the empirical performance of

the modified Q∗
n(Q) is better than the empirical performance of Q:

Ln(Q) ≤ Ln(Q
∗
n(Q)) for all Q ∈ Q.

Given such a mapping, one can now carry out a sieve based estimation
methodology for estimating Q0. That is, given sub-models Qk ⊂ Q, one can
define candidate targeted estimators Q∗k

n = Q∗
n(Q

k
n), where

Qk
n = arg max

Q∈Qk

Ln(Q
∗
n(Q)),

or, in general, one could define Qk
n as the solution of an algorithm based on

criterion Q → Ln(Q
∗
n(Q)) and a sub-model Qk. Note that these candidate

targeted estimators Q∗k
n , k = 1, . . ., are all targeted in the sense that they

solve Fn(Q
∗k
n ) = 0.

Secondly, one needs to define a criterion for selecting k. For that purpose,
one might use the cross-validated empirical criterion

k → EBnLBn=1(Q
∗k
Bn=0)),

which is obtained by splitting the sample O1, . . . , On in a training sample
{j : Bn(j) = 0} and validation sample {j : Bn(j) = 1}, one computes the
candidate estimators Qk

Bn=0 based on the training sample, one computes the
corresponding targeted versions Q∗k

Bn=0 based on the training sample, one eval-
uates the empirical criterion of the obtained targeted estimator over the val-
idation sample (i.e., LBn=1(Q

∗k
Bn=0)), and finally, one averages the obtained

results across a number of splits in training and validation sample.
Finally, one selects the best among the targeted candidate estimators in-

dexed by:
kn = arg max

k
EBnLBn=1(Q

∗k
Bn=0)).

The final estimator of Q0 is now given by

Qn = Qkn
n ,

and the corresponding estimator of the target feature ψ0 is given by

ψn = Ψ(Qn).
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It remains to determine the targeted mapping Q → Q∗
n(Q). For this pur-

pose, we consider a stretching function Q(ε) so that {Q(ε) : ε} ⊂ Q is a
sub-model and Q(0) = 0. We wish to select the stretching function in such a
way so that

d

dε
Ln(Q(ε))

∣∣∣∣∣
ε=0

= Fn(Q), (66)

and, for that purpose, we assume that the choice of Ln and Fn is indeed such
that such a stretching function and corresponding sub-model exists. Given this
condition (66), we are now ready to present the iterative targeted estimation
algorithm in terms of an initial Q, the global criterion Ln(·), the targeted func-
tion and criterion Fn(), and the with Fn(·) corresponding stretching function.
Firstly, let Q0

n = Q, and Q1
n = Q0

n(ε
0
n), where

ε0n = arg max
ε
Ln(Q

0
n(ε)),

or ε0n is chosen in another way but so that Ln(Q
0
n(ε

0
n)) ≥ Ln(Q

0
n). One now,

iterates this process, by setting k = 0, Qk+1
n = Qk

n(ε
k
n), where

εkn = arg max
ε
Ln(Q

k
n(ε)),

or εkn is chosen in another way but so that

Ln(Q
k
n(ε

k
n)) ≥ Ln(Q

k
n), k = 1, 2, . . . .

Under the assumption that εkn → 0 for k → ∞ (e.g., Q → Ln(Q) is bounded
from above), it follows that Q∗

n(Q) = QK
n for K large enough solves (just use

that εKn ≈ 0 and that εKn solves the derivative of Ln(Q
K−1
n (ε)) w.r.t. ε)

Fn(Q
∗
n(Q)) = 0

up till user supplied precision. Note that indeed Ln(Q
∗
n(Q)) ≥ Ln(Q) and

F (Q∗
n(Q)) = 0.

It should be noted that, given an empirical criterion Q→ Ln(Q) on model
Q, and a target feature functionQ→ Fn(Q) onQ, we can not always construct
a path {Q(ε) : ε} ⊂ Q, through Q at ε = 0, so that the derivative of ε →
Ln(Q(ε)) at ε = 0 equals Fn(Q)? For example, if Ln(Q) is the log-likelihood
at Q, then Fn(Q) needs to be in the so called tangent space at Q defined as the

closure of the linear span of all scores d
dε
Ln(Q(ε))

∣∣∣
ε=0

generated by all possible

paths {Q(ε) : ε} ⊂ Q through Q at ε = 0. In general, Fn(Q) needs to be an
element of the closure of the linear span of all functions one can generate as
d
dε
Ln(Q(ε))

∣∣∣
ε=0

.
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Strategy for deriving path and target feature equation: Therefore
one particular sensible strategy is the following in which we constructively
derive a choice for the path Q(ε) and the corresponding target feature function
Fn(Q). Firstly, one determines a path-wise derivative of Ψ : Q → IRd in the
sense that for any path Qh(ε) indexed by or implying an element h ∈ H so
that

d

dε
Ψ(Qh(ε))

∣∣∣∣∣
ε=0

= 〈D(Q, g), h〉Q,g,

for some inner product 〈., .〉Q,g defined on Hilbert space H(Q, g), h ∈ H ⊂
H(Q, g), and element D(Q, g) ∈ H(Q, g), where these spaces and elements are
indexed by Q and a censoring/design mechanism g ∈ G. Typically, H(Q, g) =
L2

0(PQ,g) for some distribution PQ,g of a possibly reduced data structure Or of
O. We can call D(Q, g) a gradient of the path-wise derivative. We define the
sub-Hilbert space T (Q, g) of H(Q, g) generated by the closure and linear span
of H, i.e. the closure of the linear span of all elements h indexing the paths
Qh(). We will refer to T (Q, g) as a tangent space at Q. Let D∗(Q, g) ∈ T (Q, g)
be the unique gradient which is also an element of the tangent space T (Q, g) at
Q. This inner product representation of the path-wise derivative (as known to
exist by Riesz-Representation theorem, under weak conditions) of Ψ : Q → IRd

teaches us that:(
d
dε

Ψ(Qh(ε))
∣∣∣
ε=0

)2

〈h, h〉Q,g
=

〈D∗(Q, g), h〉2Q,g
〈h, h〉Q,g

≤ 〈D∗(Q, g), D∗(Q, g)〉Q,g〈h, h〉Q,g
〈h, h〉Q,g

= 〈D∗(Q, g), D∗(Q, g)〉Q,g.

Thus, the path which maximizes a normalized change in the target param-
eter is given by a {Qh(ε) : ε} with h = D∗(Q, g). Let {Q∗(ε) : ε} be this
optimal stretching/fluctuation function. We note that this optimal path is
indexed by the class of paths Qh(ε) indexed by h ∈ H, and the choice of inner
product 〈·, ·〉Q,g, so that this strategy corresponds with a class of such optimal
stretching/fluctuation functions.

Given the empirical criterion Ln(Q), we now simply define the target fea-
ture function at any Q as follows

Fn(Q) =
d

dε
Ln(Q

∗(ε))

∣∣∣∣∣
ε=0

.

We note that Ln(·) might itself be indexed by the same g as used in the optimal
path derivation above.

One now carries out the iterative targeted estimator described above in-
volving, given current fit Qk, constructing optimal stretching function Qk∗(ε),
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maximizing the wished global empirical criterion ε → Ln(Q
k∗(ε)) over ε to

determine the wished stretching amount εkn, and updating the current fit Qk

accordingly with Qk∗(εkn), k = 1, . . ..
We will now illustrate that our previously general iterative targeted esti-

mation methods can be shown to follow the last general approach.
IPCW-R-TMLE: We consider the IPCW-R-TMLE estimator of the tar-

get feature for fixed CAR designs/censoring mechanisms. Let O = (A,L =
LA) ∼ PQ0,g0 be the observed data on a single experimental unit, and let
Ψ : Q → IRd be the target parameter, so that Ψ(Q0) denotes the true target
parameter. One observes n i.i.d. copies of O.

Let Or = (A,LrA) ∼ P r
Qr

0,g
r be the reduced data structure under a CAR-

mechanism for this reduced data structure. Let Ψr : Qr → IRd represent the
target parameter in the sense that Ψ(Q) = Ψr(Qr) for all Q ∈ Q, so that
Ψr(Qr

0) denote the true value of target parameter. As before we note that Qr

is a deterministic function of Q so that Qr is implied by the model Q for Q0.
We can represent the path-wise derivative of Ψr at Qr along a path Qr(ε) as

d

dε
Ψr(Qr(ε))

∣∣∣∣∣
ε=0

= 〈D∗F (Qr)), s〉Qr

= 〈D∗r(Qr, gr), ArQr(s)〉Qr,gr ,

whereD∗F is canonical gradient in the full data model forXr, whileD∗r(Qr, gr)
is the canonical gradient of Ψr viewed as parameter on Mr(gr) at data gen-
erating distribution P r

Qr,gr . Thus, we observe that each choice of fixed de-
sign/censoring mechanism gr ∈ Gr gives a new representation of the path-wise
derivative of the target parameter in terms of an inner product in L2

0(P
r
Qr,gr).

(Recall that the classical path-wise derivative in efficiency theory requires that
the path-wise derivative at Q0 is expressed in terms of inner product in L2

0(P0)
with P0 representing the actual true data generating distribution)

Thus each choice gr defines now an optimal path Qr
gr(ε) through Qr with

the property that
d

dε
logQr

gr(ε)

∣∣∣∣∣
ε=0

= D∗r(Qr, gr).

A particular type of optimal path is to make the choice gr a function of the
data or a function of Qr. Consider an optimal path Qr

gr(ε) ∈ Qr through Qr

at ε = 0
Our next step is to determine a sensible empirical criterion for evaluating

the performance of a candidate Qr ∈ Qr w.r.t the true Qr
0. As we have shown
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such a criterion is given by the IPCW-reduced data log likelihood:

Qr → Lrn(Q
r) ≡

n∑
i=1

logQr(Or
i )
gr(Ai | Xr

i )

g0(Ai | Xi)
.

The optimal path Qr
gr(ε) for any Qr ∈ Qr, and the empirical criterion Qr →

Lrn(Q
r) now defines the iterative targeted estimator (i.e., the iterative-IPCW-

reduced data targeted MLE) of ψr0 = ψ0. The estimating equation this esti-
mator aims to solve is now given by:

0 = Fngr(Qr)

≡
n∑
i=1

D∗r(Qr, gr)(Or
i )
gr(Ai | Xr

i )

g0(Ai | Xi)
.

If one selects gr as a function of the data or as a function of the current fit Qr

(or both), then the iterative targeted estimator would solve Fngr
n
(Qr

n) = 0 or
FngnQr

n
(Qr

n) = 0.
Iterative T-MLE for Adaptive CAR Designs: LetO1, . . . , On ∼ P n

Q0,g

be data generated by a sequential CAR design. Let Ψ : Q → IRd be the target
parameter mapping, and let Ψ(Q0) denote the true target feature.

Let Or ∼ P r
Q0,g

be the data structure under a fixed design CAR-mechanism
g so that (Or

1, . . . , O
r
n) ∼ P n

Q0,g
are i.i.d. with common distribution PQ0,g.

We can represent the path-wise derivative as

d

dε
Ψ(Q(ε))

∣∣∣∣∣
ε=0

= 〈D∗F (Q)), s〉Q

= 〈D∗(Q, g), AQ(s)〉Q,g,

where D∗F is canonical gradient in full data model, while D∗(Q, g) is the
canonical gradient of Ψ viewed as parameter on M(g) at PQ,g. Thus, we
observe that each choice of fixed design g ∈ G gives a new representation of
the path-wise derivative of the target parameter in terms of an inner product
in L2

0(PQ,g). (The classical path-wise derivative in efficiency theory requires
that the path-wise derivative at Q0 is expressed in terms of inner product in
L2

0(P
n
0 ) with P n

0 representing true data generating distribution of O1, . . . , On)
Thus each fixed design g ∈ G defines now an optimal path Qg(ε) through

Q with the property that

d

dε
logQg(ε)

∣∣∣∣∣
ε=0

= D∗(Q, g).
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A particular type of optimal path is to make the choice g a function of the
data and/or a function of Q such as g = gQ. Consider an optimal path Qg(ε)
through Q ∈ Q at ε = 0.

Our next step is to determine a sensible empirical criterion for evaluating
the performance of a candidate Q w.r.t the true Q0. As we have shown such
a criteria is given by the IPCW-log likelihood:

Q→ Ln(Q) ≡
n∑
i=1

logQ(Oi)
g(Ai | Xi)

gi(Ai | Xi)
.

The optimal path Qg(ε) for any Q ∈ Q, and the empirical criterion Q→ Ln(Q)
now defines the iterative targeted maximum likelihood estimator for adaptive
designs (i.e., the iterative-IPCW-reduced data targeted MLE) of ψ0.

The estimating equation this estimator will solve in Q is now given by:

0 = Fng(Q)

≡
n∑
i=1

D∗(Q, g)(Oi)
g(Ai | Xi)

gi(Ai | Xi)
.

If one adapts the choice g to the data and/or the current fit Q, then the
iterative targeted MLE would converge to a solution Qn satisfying Fngn(Qn) =
0 or FngnQn

(Qn) = 0.
Our general methodology can be applied to many other empirical criterions

Ln(Q) of interest such as empirical criterions indexed by other loss functions
than the log-likelihood of a reduced or complete data structure, including
partial log-likelihoods, log-likelihood of marginal distributions, loss functions
for parameters of Q such as loss functions for regressions implied by Q, and
so on.

28 Discussion.

In this article we considered a sequence of n experiments whose starting points
are ordered over time and in which the underlying data of interest, X, is drawn
independently from a common probability distribution. One is concerned with
estimation and statistical inference for a scientific parameter of this common
probability distribution. The settings in the i-th experiment, as denoted with
Ai, determine what one observes about Xi, or, in other words, determines
the censoring/missingness of Xi, i = 1, . . . , n. The design for experiment i
is defined as the conditional probability distribution of Ai, given Xi, and the
previously collected observations O1, . . . , Oi−1, and an adaptive design for the
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n ordered experiments is defined by the collection of n of these conditional
distributions. We show that under a general coarsening at random assump-
tion the data generating distribution factorizes in the adaptive design and
the likelihood factor only depending on the distribution of X and this latter
likelihood factor is identical to what it would have been in a fixed design in
which Ai, given Xi, has to satisfy CAR for Xi, and Ai is independent (just like
Xi) of the previous experiments. As a consequence, the maximum likelihood
estimator is identical to what it would have been in the classical fixed design
case. These design distributions gi could be completely known, but, more gen-
erally, one will typically be able to factorize gi into controlled and unknown
uncontrolled components. In this article we defined a large class of targeted
adaptive designs which target optimal designs for the controlled components of
the design mechanism, only known if the full data distribution of X would be
known. These adaptive designs use the previously collected data to estimate
the unknown parameters of the full data distribution according to a working
model and set the design for the next experiment equal to the optimal target
design according to this working model at these estimated parameters. That
is, our proposed adaptive designs learn during the course of the trial the op-
timal design according to the working model. We prove generally applicable
theorems showing that the maximum likelihood estimator, targeted maximum
likelihood estimators, and, in general, estimators solving Martingale estimat-
ing equations are consistent and asymptotically normally distributed with a
limit distribution corresponding with the target the adaptive design converges
to as sample size n converges to infinity. As a consequence, our methods allows
one to learn from data the optimal design (e.g. for the purpose of estimating
the scientific parameter of interest) as well the parameter of interest.

We also presented a variety of adaptations one wishes to and should pur-
sue in clinical trials for which our theory and estimators apply, but we also
made clear that adaptations changing the scientific parameter of interest (e.g.,
changing sampling population) have to be treated with the utmost suspicion
and a safe way to still allow for them is to simply throw away the data used to
generate the wished scientific parameter (as has been common practice moving
from phase II to phase III trials).

We believe that this general toolbox for defining targeted adaptive designs
and the corresponding statistical tools for efficient and robust (i.e., targeted
maximum likelihood) estimation, and inference for the scientific parameter,
provides new powerful methods for designing, running, and analyzing clinical
trials. In our work we distinguished between 1) looks at data for the purpose of
testing and thereby possibly stopping the trial versus 2) looks at the data which
only serve the purpose of adapting the design. Our work shows that looking
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at the data (as in 2) during the trial is not wrong, but, on the contrary, it is
required to learn the wished optimal design: for example, if one targets a design
which maximizes the information in the data for the scientific parameter, then
the learning of the optimal design can result in much more precise estimators.

Beyond iterative targeted maximum likelihood estimators generalizing the
targeted maximum likelihood estimators for fixed designs (van der Laan and
Rubin (2006)), we also provided relatively simple to compute IPCW-Reduced
Data targeted MLE so that our targeted estimators are relatively easy to imple-
ment even for complex longitudinal data structures involving time dependent
design settings Ai = (Ai(t) : t). We also provided a whole new targeted em-
pirical Bayesian learning methodology which allows on to be a Bayesian w.r.t.
the parameter of interest without having to give up on the wished robustness
and efficiency properties of the frequentist targeted estimators.

One can put a sequential testing procedure (as in 1) on top of an adaptive
design, where the sample sizes at which testing occurs are either a specified
subset or random subset of the sample sizes at which one potentially adapts
the trial. We provided a class of such sequential testing procedures controlling
the type I error at level α, based on a simple to estimate multivariate normal
distribution of the vector of subsequent test statistics.

In future work we will implement various of the proposed targeted adaptive
designs, and corresponding proposed estimators, and establish their practical
performance and benefits based on simulated data imitating adaptive designs
the FDA is interested in.

Finally, we remark that we have not formally addressed efficiency of our
proposed estimators in this article: we addressed that targeted adaptive de-
signs can be used to achieve the efficiency of the optimal fixed (unknown)
design, but we have not shown that the targeted-MLE based on such a tar-
geted adaptive design or any other adaptive design is in fact asymptotically
efficient. We could use the efficiency theory for local asymptotic normal (LAN)
log-likelihoods (see, Chapter 8 Andersen et al. (1993)). The LAN-property of
the log-likelihood for adaptive designs follows from the fact that the scores of
our likelihood of the data On are asymptotically normally distributed, by the
Martingale CLT. Now, using the efficiency theory as nicely laid out in Chapter
8 of Andersen et al. (1993), we could define an efficient estimator and prove
that the MLE for a correctly specified parametric model, under the conditions
of our CLT Theorem 7, is asymptotically efficient. Similarly, we could prove
that our targeted MLE based on a parametric working model Qw within a
semi-parametric model Q for Q0, under the conditions of Theorem 8 is locally
efficient in the sense that it is asymptotically efficient if Q0 ∈ Qw ⊂ Q, while
it remains consistent and asymptotically linear for any Q0 ∈ Q.
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APPENDIX I: Basic building blocks for consis-

tency results.

In order to prove convergence of the discrete martingale sumMn(f) = 1/n
∑n
i=1 f(O1, . . . , Oi)

for a given function f satisfying E(f(O1, . . . , Oi) | O1, . . . , Oi−1) = 0 we can ap-
ply Kolmogorov Strong Law of Large Numbers for martingales (e.g., Theorem
2.4.2 in Sen and Singer (1993)). This theorem states that if T (n) =

∑n
i=1Xi,

E | Xi |p exists for all i with 1 ≤ p ≤ 2, and b(n) is an increasing se-
quence of positive numbers such that bn → ∞ so that

∑
n b

−p
n E(| Xn |p|

X1, . . . , Xn−1) < ∞ a.s., then b−1
n T (n) → 0 a.s. Application of this result

to b(n) = n, T (n) =
∑n
i=1 f(O1, . . . , Oi), p = 2 yields that Mn(f) → 0 a.s. for

any uniformly bounded function f .
In order to prove consistency of maximum likelihood estimators or estima-

tors defined as solutions of estimating equations based on O1, . . . , On we need
a uniform consistency result for Mn(f) uniformly in a class of functions F .
Specifically, we will rely on the following result.

Notation: ‖ f ‖p≡ (E | f(O) |p)1/p. We need in proof below that
A is finite. PQ0,gi

fθn = PQ0,gi
f(θ)|θ=θn

. G = {g(· | X) : g(A | X) =
h(A,X(A)) for some h}

Theorem 14 Consider a set of functions F so that Mn(f) = 1/n
∑
i f(Oi, Zi)

with E(f(Oi, Zi) | O1, . . . , Oi−1) = 0 for all i = 1, . . ., and Zi = Zi(O1, . . . , Oi−1) ∈
IRd is a d-dimensional summary measure of O1, . . . , Oi−1. Assume that this
class F of functions on (A,L, Z) satisfies supf∈F ‖ f ‖∞< ∞, and that the
covering number N(ε,F , ‖ · ‖∞) w.r.t. supremum norm is bounded by C 1

εV
for

some V <∞ and constant C <∞, uniformly in ε > 0. Then, for even p > q,

‖ sup
f,g∈F

|Mn(f)−Mn(g) |‖p≤
K

n1/p

∫ diam(F)

0
ε−q/pdε = O(n−1/p),

where diam(F) is the diameter of F w.r.t. to the supremum norm.
In particular, for such classes it follows that for any p ≥ 1, we have

‖ sup
f∈F

|Mn(f) |‖p→ 0,

and thus also

sup
f∈F

|Mn(f) |→ 0 in probability, as n→∞.

In order to prove this theorem we need the following lemma.
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Lemma 1 Let Mn(f) = 1
n

∑n
i=1 f(Oi, Zi), where Zi = Zi(O1, . . . , Oi−1) ∈ IRd

for some fixed dimension d. Let Z ⊂ IRd be such that P (Zi ∈ Z, i = 1, . . . , n) =
1. Assume E(f(Oi, Zi) | O1, . . . , Oi−1) = 0, ‖ f ‖∞< M < ∞. Then for
integer p < n, we have

EMn(f)p ≤ C1
1

n
‖ f ‖pp,Q0

,

where

‖ f ‖p,Q0≡
(∑
a∈A

EQ0 sup
z∈Z

| f(a,X(a), z) |p
)1/p

and C1 is a finite constant only depending on p. In particular, for even p < n,
we have

E |Mn(f) |p≤ C1
1

n
‖ f ‖pp,Q0

.

Thus, if we define the norm ‖Mn(f) ‖p≡ (E |Mn(f) |p)1/p, and norm d(f, g) ≡‖
f − g ‖p,Q0, then there exists a C < ∞ only depending on p so that for even
integers p < n

‖Mn(f) ‖p≤ C ‖ f

n1/p
‖p,Q0=

C

n1/p
‖ f ‖Q0,p .

Proof. For a given n-dimensional integer valued vector m ∈ {0, 1, . . . , p}n,
let j∗ = j∗(m) = max{j : m(j) > 0,m(i) = 0, i > j} be the index of the
last non-zero component, and m∗ = m∗(m) ≡ m(j∗) be the corresponding
component of m. Let B = {m ∈ {0, . . . , p}n :

∑
jm(j) = p}. Firstly, we note

that, if m∗ = 1, then

E
n∏
j=1

f(Oj, Zj)
m(j) = E

j∗−1∏
j=1

f(Oj, Zj)E(f(Oj∗ , Zj∗) | O1, . . . , Oj∗−1)

 = 0.

As a consequence,

EMn(f)p = E
1

np
∑
m∈B

n∏
j=1

f(Oj, Zj)
m(j)

= E
1

np
∑

m∈B,m∗>1

n∏
j=1

f(Oj, Zj)
m(j)

≤ 1

np
∑

m∈B,m∗>1

E
n∏
j=1

f ∗(Oj)
m(j),
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where
f ∗(Oj) ≡ sup

z∈Z
| f(Oj, z) | .

We also have

EQ0,gn

∏n
j=1 f

∗(Aj, Xj(Aj))
m(j)

=
∑
a

∫
x

∏n
j=1 f

∗(aj, xj(aj))
m(j)∏n

j=1 gj(aj | xj, ā(j − 1), x̄(j − 1))dF0(xj)
=
∑
{ai,xi:m(i)>0}

∏n
j=1 f

∗(aj, xj(aj))
m(j)×(∑

{ai,xi:m(i)=0}
∏n
j=1 gj(aj | xj, (al, xl), l ≤ j − 1)dF0(xj)

)
.

Now, we note that∑
{ai,xi:m(i)=0}

∏n
j=1 gj(aj | xj, (al, xl), l ≤ j − 1)dF0(xj)

= P ((xi, ai : mi > 0))
= P ((ai : mi > 0) | (xi : mi > 0))

∏
i:mi>0 dF0(xi)

≤ ∏
i:mi>0 dF0(xi),

where P ((xi, ai : mi > 0)) denotes the marginal probability/density of the
subvector (xi, ai : mi > 0) of (xi, ai : i = 1, . . . , n). As a consequence,

EQ0,gn

∏n
j=1 f

∗(Aj, Xj(Aj))
m(j)

≤ ∑
{(ai,xi):mi>0}

∏n
j=1 f

∗(aj, xj(aj))
m(j)∏n

j=1:m(j)>0 dF0(xj)

=
∏n
i=1,m(i)>0

(∑
ai

∫
xi
f ∗(ai, xi(ai))

m(i)dF0(xi)
)

=
∏n
i=1:m(i)>0

∑
a∈AEQ0 | f ∗(a,X(a)) |m(i) .

Now, we can use that for r ≤ p and a measure Q ‖ g ‖r= (
∫
| g |r dQ)1/r ≤

C ‖ g ‖p= (
∫
| g |p dQ)1/p for some C < ∞ only depending on p. Applying

this inequality to the Q representing the product measure of dF0(x)dµ(a) with
dµ being the counting measure on the finite set A yields

n∏
i=1:m(i)>0

∑
a∈A

E0 | f ∗(a,X(a)) |m(i) =
n∏

i=1:m(i)>0

‖ f ∗ ‖m(i)
Q0,m(i)

≤ C
n∏

i=1:m(i)>0

‖ f ∗ ‖m(i)
Q0,p

= C ‖ f ∗ ‖pQ0,p

= C

(∑
a∈A

EQ0 | f ∗(a,X(a)) |p
)

for some C <∞.
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So we have now shown that

EMn(f)p ≤ C
1

np
∑

m∈B,m∗(m)>1

‖ f ∗ ‖pQ0,p
≤ C1

n
‖ f ∗ ‖pQ0,p

.

This completes the proof of Lemma 1. 2

Proof of Theorem 14. We will apply Theorem 2.2.4 in van der Vaart and
Wellner (1996) with ψ(x) = xp, p an even integer, so that ‖ · ‖ψ= (E | f |p)1/p.
Lemma 1 proves

‖Mn(f)−Mn(g) ‖ψ≤ C
1

c(n)
‖ f − g ‖p,Q0 ,

with c(n) = n1/p. This Theorem 2.2.4 concludes that there exists a K < ∞
only depending on C so that

‖ sup
f,g∈F

|Mn(f)−Mn(g) |‖ψ ≤ K
∫ diamn(F)

0
ψ−1(N(ε,F , ‖ · ‖p,Q0 /c(n)))dε,

where the diameter of F is measured w.r.t. to the norm ‖‖p,Q0 /c(n). Let
diam(F) be the diameter measured w.r.t. to ‖ · ‖p,Q0 , which is thus bounded
by a constant times the diameter w.r.t to the supremum norm. We have
diamn(F) = diam(F)/c(n). We also have thatN(ε,F , ‖ · ‖ /c(n)) = N(εc(n),F , ‖
· ‖). Thus,

∫ diamn(F)

0
ψ−1(N(ε,F , ‖ · ‖p,Q0 /c(n)))dε =

∫ diam(F)/c(n)

0
ψ−1(N(εc(n),F , ‖ · ‖p,Q0))dε

=
1

c(n)

∫ diam(F)

0
ψ−1(N(ε,F , ‖ · ‖p,Q0))dε.

As a consequence, we can state the following result: for all even integers p < n
we have

‖ sup
f,g∈F

|Mn(f)−Mn(g) |‖p≤
K

n1/p

∫ diam(F)

0
(N(ε,F , ‖ · ‖p,Q0))

1/p dε.

Consider a class F of functions on (A,L, Z) so that the covering number
N(ε,F , ‖ · ‖∞) w.r.t. supremum norm is bounded by C 1

εq
for some q <∞ and

constant C <∞. Then, for even integers p > q,

‖ sup
f,g∈F

|Mn(f)−Mn(g) |‖p≤
K

n1/p

∫ diam(F)

0
ε−q/pdε = O(n−1/p).
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In particular, for such classes it follows that for any p ≥ 1, we have

‖ sup
f∈F

|Mn(f) |‖p→ 0,

as n→∞, and thus also

sup
f∈F

|Mn(f) |→ 0 in probability, as n→∞.

This completes the proof of Theorem 14. 2

APPENDIX II: Basic building blocks for cen-

tral limit theorem for solutions of martingale

estimating equations.

28.1 Central limit theorem for univariate martingale
sum.

We have the following result.

Theorem 15 Let M(n) =
∑n
i=1D(Oi, Zi), Zi = f1(O1, . . . , Oi−1), E(D(Oi, Zi) |

O1, . . . , Oi−1) = 0. Let s(n)2/n = 1
n

∑n
i=1ED(Oi, Zi)

2, and w(n)2/n = 1
n

∑n
i=1E(D(Oi, Zi)

2 |
O1, . . . , Oi−1) = 1

n

∑n
i=1 PQ0,gi

D2, where gi(Ai | Xi) ≡ gi(Ai | Xi, O1, . . . , Oi−1)
only depends on Ō(i− 1) through Zi, i = 1, . . . , n.

Assume ‖ D ‖∞<∞, lim inf s(n)2/n > 0, and

1

n

n∑
i=1

PQ0,gi
D2 − E

1

n

n∑
i=1

PQ0,gi
D2 → 0 (67)

in probability as n→∞.
Then w(n)2/s(n)2 → 1 in probability as n→∞, and

M(n)

s(n)
⇒D N(0, 1),

or equivalently, if we define σn =
√
s(n)2/n,

√
nM(n)

σn
⇒D N(0, 1).

The condition lim infn s(n)2/n > 0 holds if there exists a δ > 0 so that
lim infi→∞ED(Oi, Zi)

2 > δ. The condition (67) essentially requires that the
variance of Zi converges to zero for i→∞.
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28.2 Estimation of variance of martingale sum:

Note that the natural estimator of s(n)2/n = E 1
n

∑n
i=1 PQ0,gi

D2 is given by
1/n

∑n
i=1D(Oi, Zi)

2. The following result proves that this estimator is asymp-
totically consistent.

Theorem 16 Under the conditions stated in Theorem 15, we have that

1

n

n∑
i=1

D(Oi, Zi)
2 − s(n)2

n
→ 0

in probability as n→∞.

This result teaches us that we can estimate the limiting distribution of
√
nM(n)

by treating O1, . . . , On as independent draws from PQ0,gi
, treating gi as a given

fixed design in G, i = 1, . . . , n. In particular, one will have that the paramet-
ric or nonparametric bootstrap method ignoring the dependence structure of
O1, . . . , On consistently estimates the limiting variance s(n)2/n.

Proof of Theorem 16. Firstly, we note that

1

n

n∑
i=1

D(Oi, Zi)
2 =

1

n

n∑
i=1

(D2(Oi, Zi)− PQ0,gi
D2) +

1

n

n∑
i=1

PQ0,gi
D2.

Now note that the first term

M1(n) ≡ 1

n

n∑
i=1

(D2(Oi, Zi)− E(D2(Oi, Zi) | O1, . . . , Oi−1))

is a Martingale. As a consequence of Kolmogorov LLN for martingales, if
‖ D ‖∞< ∞, we have M1(n) → 0 almost surely as n → ∞. Thus, it remains
to show that 1

n

∑n
i=1 PQ0,gi

D2− 1
n

∑n
i=1EPQ0,gi

D2 converges to zero, as n→∞,
but that is guaranteed by assumption (67). This completes the proof. 2

28.3 Proof of Theorem 15.

We will apply the following Central Limit Theorem for discrete martingales
(Theorem 3.3.7. in Sen and Singer (1993)).

Lemma 2 Let T (n) =
∑n
i=1D(Xi), E(D(Xi) | X1, . . . , Xi−1) = 0, ‖ D ‖∞<

∞. Let σ2(i) = ED(Xi)
2, v2(i) ≡ E(D(Xi)

2 | X1, . . . , Xi−1), i = 1, . . . , n. Let
s2(n) ≡ ∑n

i=1 σ
2(i), and w2(n) ≡ ∑n

i=1 v
2(i).

Assume

(A) w2(n)/s2(n) → 1 in probability as n→∞,
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and

(B) for every ε > 0
1

s2(n)

n∑
i=1

E
(
D(Xi)

2I(| D(Xi) |> εs(n))
)
→ 0 as n→∞.

Then T (n)/s(n) converges in distribution to N(0, 1) as n→∞.

We apply this theorem with Xi = (Oi, Zi). Let’s first consider condition
(B). We assumed that lim infn s

2(n)/n > 0. Then (we assumed ‖ D ‖∞<
M < ∞), s2(n) converges to infinity at rate n. Thus, in this case we need to
verify that for every ε > 0, 1

n

∑n
i=1E [D(Oi, Zi)

2I(| D(Oi, Zi) |> ε
√
n)] → 0.

We assumed that ‖ D ‖∞< M < ∞. Thus for n > M2/ε2, we have that I(|
D(Oi, Zi) |> ε

√
n) = 0 for all i = 1, . . . , n with probability 1. Thus this proves

condition (B) under the condition that ‖ D ‖∞<∞ and lim infn s
2(n)/n > 0.

The latter condition is clearly not necessary, but in most applications it is a
condition which will hold.

We will state this as a lemma.

Lemma 3 Let M(n) =
∑n
i=1D(Oi, Zi), Zi = Zi(O1, . . . , Oi−1), E(D(Oi, Zi) |

O1, . . . , Oi−1) = 0, s2(n) =
∑n
i=1ED(Oi, Zi)

2. If ‖ D ‖∞< M < ∞, and
lim inf s2(n)/n > 0, then

(B) for every ε > 0
1

s2(n)

n∑
i=1

E
(
D(Oi, Zi)

2I(| D(Oi, Zi)) |> εs(n))
)
→ 0 as n→∞.

Regarding condition (A), we have

v2(i) = E(D(Oi, Zi)
2 | O1, . . . , Oi−1) = PQ0,gi

D2.

Thus,
w2(n)

n
=

1

n

n∑
i=1

v2(i) =
1

n

n∑
i=1

PQ0,gi
D2.

Since σ2(i) = Ev2(i) = EPQ0,gi
D2, we have s(n)2

n
= E 1

n

∑n
i=1 PQ0,gi

D2. So to
prove that w(n)2/n− s(n)2/n converges to zero as n→∞ is equivalent with
condition (67).

Finally, we note that

w(n)2

s(n)2
− 1 =

w(n)2/n

s(n)2/n
− 1 =

w(n)2/n− s(n)2/n

s(n)2/n
.

So if we also assume that lim infn→∞ s(n)2/n > 0, then condition (A) is proved.
We state this as a lemma.
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Lemma 4 Let M(n) =
∑n
i=1D(Oi, Zi), E(D(Oi, Zi) | O1, . . . , Oi−1) = 0,

Zi = Zi(O1, . . . , Oi−1). If ‖ D ‖∞< M <∞, lim inf s2(n)/n > 0, 1
n

∑n
i=1 PQ0,gi

D2−
E 1
n

∑n
i=1 PQ0,gi

D2 → 0 in probability, as n → ∞, then w(n)2/s(n)2 → 1 in
probability,.

28.4 Multivariate Central Limit Theorem for martin-
gale sum

The following theorem proves that the multivariateMn(D) = 1/
√
n
∑n
i=1D(Oi, Zi)

converges to a multivariate normal distribution with covariance matrix

Σ2 ≡ lim
n→∞

Σ2(n) ≡ lim
n→∞

E
1

n

n∑
i=1

PQ0,gi
DD>,

if one assumes this limit exists. If the latter does not hold, then one still
obtains that Σ(n)−1Mn(D) ⇒D N(0, I).

Theorem 17 Let Mn(D) =
∑n
i=1D(Oi, Zi), D = (D1, . . . , Dd), E(D(Oi, Zi) |

O1, . . . , Oi−1) = 0, and Zi = Zi(O1, . . . , Oi−1). Let Σ2
i ≡ ED(Oi, Zi)

2 ≡
ED(Oi, Zi)D(Oi, Zi)

> and V 2
i ≡ E (D(Oi, Zi)

2 | O1, . . . , Oi−1) = PQ0,gi
D2.

Let Σ2(n) ≡ 1
n

∑n
i=1 Σ2

i = E 1
n

∑n
i=1 PQ0,gi

D2 and W 2(n) ≡ 1
n

∑n
i=1 V

2
i = 1

n

∑n
i=1 PQ0,gi

D2.
Assume maxj ‖ Dj ‖∞< M < ∞, lim inf λΣ(n)2λ > 0 for all λ (or that

Σ2 = limn→∞ Σ(n)2 exists and is a positive definite covariance matrix), and
that component wise

1

n

n∑
i=1

PQ0,gi
D2 − E

1

n

n∑
i=1

PQ0,gi
D2 → 0 (68)

in probability as n→∞.
Then √

nΣ(n)−1Mn(D) ⇒D N(0, I), as n→∞,

and, if Σ2(n) → Σ2, as n → ∞, for some positive definite covariance matrix
Σ2, then √

nMn(D) ⇒D N(0,Σ2), as n→∞.

28.5 Estimation of limit covariance matrix of multivari-
ate martingale sum.

Note that the natural estimator of Σ2(n) = E 1
n

∑n
i=1 PQ0,gi

D2 is given by

Σ̂2(n) = 1
n

∑n
i=1D(Oi, Zi)

2. The following results proves that this estimator
of the covariance matrix of the multivariate margingale 1/n

∑
i{D(Oi, Zi) −

PQ0,gi
D} is indeed asymptotically consistent.
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Theorem 18 Under the conditions stated in Theorem 17, we have that

1

n

n∑
i=1

D(Oi, Zi)
2 − Σ(n)2 → 0 in probability, as n→∞,

and, if Σ2(n) → Σ2, as n → ∞, for a positive definite matrix Σ2, then this
also implies 1

n

∑n
i=1D(Oi, Zi)

2 → Σ in probability, as n→∞.

This result teaches us that we can estimate the limiting distribution of√
nM(n) by treating O1, . . . , On as independent draws from PQ0,gi

, treating gi
as a given fixed design in G), i = 1, . . . , n. In particular, one will have that
the parametric or nonparametric bootstrap method ignoring the dependence
structure of O1, . . . , On consistently estimates the covariance matrix Σ2(n).

Proof of Theorem 18. Firstly, we note that

1

n

n∑
i=1

D(Oi, Zi)
2 =

1

n

n∑
i=1

(D2(Oi, Zi)− PQ0,gi
D2) +

1

n

n∑
i=1

PQ0,gi
D2.

Now note that the first term

M1(n) ≡ 1

n

n∑
i=1

(D2(Oi, Zi)− E(D2(Oi, Zi) | O1, . . . , Oi−1))

is a multivariate Martingale. As a consequence of Kolmogorov LLN for mar-
tingales, if maxj ‖ Dj ‖∞< ∞, we have M1(n) → 0 almost surely as n → ∞.
Thus, it remains to show that 1

n

∑n
i=1 PQ0,gi

D2 − 1
n

∑n
i=1EPQ0,gi

D2 converges
to zero, as n→∞, but that is guaranteed by assumption (16). This completes
the proof of Theorem 18. 2

28.6 Proof of Theorem 17

We can prove this result as follows (see page 123, Sen and Singer (1993)).
Firstly, for each λ ∈ IRd, we can define the univariate Martingale Mn(λ) ≡
λ>Mn =

∑n
i=1 λ

>D(Oi, Zi) ≡
∑n
i=1Dλ(Oi, Zi). Now, we note that Mn(λ)

is also a Martingale and the conditions of Theorem 15 apply to prove that√
nMn(λ) converges to N(0, λ>Σλ). Thus, we can state the following lemma

to establish the CLT for λ>M(n) for each λ.

Lemma 5 Let Mn(D) =
∑n
i=1D(Oi, Zi), D = (D1, . . . , Dd), Zi = Zi(O1, . . . , Oi−1),

E(D(Oi, Zi) | O1, . . . , Oi−1) = 0. Let Σ2
i ≡ ED(Oi, Zi)

2 ≡ ED(Oi, Zi)D(Oi, Zi)
>

and V 2
i ≡ E (D(Oi, Zi)

2 | O1, . . . , Oi−1). Let Σ2(n) ≡ 1
n

∑n
i=1 Σ2

i and W (n)2 ≡
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1
n

∑n
i=1 V

2
i . For each λ ∈ IRd, let s(n, λ)2/n = 1/n

∑n
i=1 λ

>Σ2
iλ = λ>Σ2(n)λ,

w(n, λ)2/n = 1
n

∑n
i=1 λ

>V 2
i λ = λ>W 2(n)λ.

Assume, maxj ‖ Dj ‖∞< M <∞, lim infn s(n, λ)2/n = lim infn λ
>Σ2(n)λ >

0, and

λ>
(

1

n

n∑
i=1

PQ0,gi
D2 − E

1

n

n∑
i=1

PQ0,gi
D2

)
λ→ 0 (69)

in probability as n→∞.
Then w(n, λ)2/s(n, λ)2 → 1 in probability, and

λ>M(n)

s(n, λ)
⇒D N(0, 1).

Secondly, we apply the Cramér-Wold theorem (Theorem 3.2.4 in Sen and
Singer (1993)) which states that

√
nMn ⇒D Z in IRd if and only if for every

fixed λ ∈ IRd, we have λ>
√
nMn ⇒D λ>Z. This proves Theorem 17.
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