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Abstract 
 

In the last few years research has identified Photonic Crystals (PhCs) as 

promising material that exhibits strong capability of controlling light propagation in a 

manner not previously possible with conventional optical devices. PhCs, otherwise 

known as Photonic Bandgap (PBG) material, have one or more frequency bands in 

which no electromagnetic wave is allowed to propagate inside the PhC. Creating 

defects into such a periodic structure makes it possible to manipulate the flow of 

selected light waves within the PhC devices outperforming conventional optical 

devices. As the fabrication of PhC devices needs a high degree of precision, we have 

to rely on accurate numerical modelling to characterise these devices. 

There are several numerical modelling techniques proposed in literature for 

the purpose of simulating optical devices. Such techniques include the Finite 

Difference Time Domain (FDTD), the Finite Volume Time Domain (FVTD), and the 

Multi-Resolution Time Domain (MRTD), and the Finite Element (FE) method 

among many others. Such numerical techniques vary in their advantages, 

disadvantages, and trade-offs. Generally, with lower complexity comes lower 

accuracy, while higher accuracy demands more complexity and resources. 

The Complex Envelope Alternating Direction Implicit Finite Difference Time 

Domain (CE-ADI-FDTD) method was further developed and used throughout this 

thesis as the main numerical modelling technique. The truncating layers used to 

surround the computational domain were Uniaxial Perfectly Matched Layers 

(UPML). This thesis also presents a new and robust kind of the UPML by presenting 

an accurate physical model of discretisation error. 
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This thesis has focused on enhancing and developing the performance of PhC 

devices in order to improve their output. An improved and new design of PhC based 

Multiplexer/Demultiplexer (MUX/DEMUX) devices is presented. This is achieved 

using careful geometrical design of microcavities with respect to the coupling length 

of the propagating wave. The nature of the design means that a microcavity 

embedded between two waveguides selects a particular wavelength to couple from 

one waveguide into the adjacent waveguide showing high selectivity. 

Also, the Terahertz (THz) frequency gap, which suffers from a lack of 

switching devices, has been thoroughly investigated for the purpose of designing and 

simulating potential PhC based switching devices that operate in the THz region. 

The THz PhC based switching devices presented in this thesis are newly 

designed to function according to the variation of the resonant frequency of a ring 

resonator embedded between two parallel waveguides. The holes of the structures are 

filled with polyaniline electrorheological fluids that cause the refractive index of the 

holes to vary with applied external electric field. Significant improvements on the 

power efficiency and wavelength directionality have been achieved by introducing 

defects into the system. 
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Chapter 1  

Introduction 

 

 

 

1.1 Photonic Crystals 

The Photonic Crystal (PhC) is a periodic arrangement of a dielectric or metallic 

structure. It is a new material that has gained much attention amongst researchers due to 

its ability to control the propagation of optical waves. This ability is made possible 

through what is known as the Photonic Bandgap (PBG) [1]. The PBG is a frequency 

range in which electromagnetic (EM) wave is not permitted to propagate inside the 

PhCs.  

Photonic crystal devices are in the nm – µm range. This minute size requires 

complex fabrication techniques that depend on highly accurate simulations of realistic 

performances of PhC devices. Hence, realistic simulations that accurately predict the 
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performance of the PhC devices are of major importance. There are many benefits of 

these simulations, some include; 

1. Saving time and cost of re-fabrication. 

2. Accurate analytical simulations leading to modifications and enhancements of 

the PhC device that in turn leads to better developed designs. 

 

1.2 �umerical Techniques 

There are several techniques for modelling PBG structures. One of the 

techniques highly appreciated for its robustness is the Complex Envelope Alternating 

Direction Implicit Finite Difference Time Domain (CE-ADI-FDTD) method [2]. The 

advantage of this method is that it overcomes the Courant limitations in stability 

problems without sacrificing in the accuracy of the results, as well as saving simulation 

running time. In this method there exists the Perfectly Matched Layer (PML) boundary 

conditions that maintain uniform physical parameters such as the permittivity (ε), 

permeability (µ) and electric conductivity (σ). However, this research presents new 

additions and contributions to the CE-ADI-FDTD PML by introducing gradual profile 

attenuation that results in overall better performance of the system. 

 

1.3 Motivations 

A Photonic Crystal Waveguide (PCW) can be constructed by creating linear 

defects in the PBG structures. PCWs permit directed light transmission for frequencies 

inside the PBG. PBG waveguides are of interest because of their potential ability for 

strongly controlling the propagation of light, with the prospect of the design and 
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development of PBG-based directional couplers for multiplexing/demultiplexing 

(MUX/DEMUX) applications [3].  

As it stands now, fabrication of PhC devices require ultra-high degree of 

precision in addition to highly complicated laboratory facilities. Therefore, modelling 

looks as the most reliable tool to rely on when designing such devices: in the range of 

µm even nm dimensions. 

Recently, Obayya et al., have developed the versatile and powerful CE-ADI-

FDTD which has a number of advantages: 

1. It is unconditionally stable. 

2. It has no limit on time-step size. 

3. It is numerically efficient. 

However, one drawback that still exists is the truncation of computational 

domain. Starting from this point, the main aim of the thesis was drafted around the 

development of a new perfectly matched layer CE-ADI-FDTD technique, and apply it to 

design a number of various photonic switches. 

To meet this aim, the following milestones have been set: 

1. Create new PML-CE-ADI-FDTD. 

2. Numerical assessment of the PML-CE-ADI-FDTD through comparisons 

with results in literature. 

3. New designs of PhC switching devices that are highly efficient in their 

transmission and crosstalk. The assessed new PML-CE-ADI-FDTD was 

used as the numerical modelling technique. 

4. Investigation of ring resonator performance in the Terahertz (THz) range. 
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5. Suggest and demonstrate a novel design of THz switch based on PhCs. 

 

1.4 Outline of the Thesis  

This thesis presents the outcomes of thorough investigations carried out with a 

two-fold focus; using existing photonic crystal technology to create high performance 

optimised optical devices, and the simulation of such devices with existing or enhanced 

numerical modelling techniques. Such improved numerical techniques and photonic 

crystal designs have been extensively investigated with careful attention to the accuracy 

of simulation results, the computational burden or resources required, as well as the 

sensitivity of those designs. In order to do so, the thesis has been organised as follows. 

In chapter 2 the features of the photonic crystal technology are described and 

their many benefits explained. This covers all the necessary mathematical, physical, and 

material properties which are all well established in literature. The optical properties of 

PhCs are gradually analysed – starting with forms of a one-dimensional (1D) crystal, 

that is useful for understanding the properties of photonic crystal structures such as the 

bandgap phenomenon. Also, electromagnetic derivations based on the one-dimensional 

photonic crystal can be extended and applied in the analysis of more complex structures 

including the two-dimensional (2D) photonic crystals. The end of this chapter, emphasis 

is placed upon defects in the PhC structure; this includes point defects, cavities, and line 

defects, waveguides. Cavities and waveguides can be easily designed by engineering a 

defect inside the geometry of a periodic lattice.  

Chapter 3 gives an in depth and comprehensive investigation of the 

computational techniques used. The emphasis here is on the Finite-Difference-Time-
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Domain (FDTD), its advantages and main drawbacks. After this, existing solutions to 

these drawbacks are covered through the Alternating-Direction-Implicit FDTD (ADI-

FDTD) and the CE-ADI-FDTD techniques. 

In chapter 4, analytical Absorbing Boundary Conditions (ABCs) and PML ABCs 

are reviewed. The emphasis here is on the Uniaxial PML (UPML) boundary conditions 

for the CE-ADI-FDTD. Since many electromagnetic interaction problems modelled 

using FDTD are defined in regions where the spatial domain of the computed field is 

unbounded in one or more coordinate directions, and computers cannot store an 

unlimited amount of data. Therefore, boundary conditions are introduced at the outer 

lattice boundary to simulate the extension of the lattice to infinity. In the end of this 

chapter, a new PML technique that accounts for error discretisation is introduced with 

comprehensive analysis on the implementation of this technique in the CE-ADI-FDTD 

method. 

In chapter 5 several examples have been analysed in order to assess the new 

formulation of the PML boundary conditions for the CE-ADI-FDTD in the context of 

optical slab waveguide devices. 

Chapter 6 presents and investigates novel designs of PhC based switching devices. 

These switches perform multiplexing and demultiplexing upon the selected frequencies 

of the signal excited into the structure. These switches are based on careful geometrical 

design of cavities with respect to the coupling length of the required output wave. 

In chapter 7, ring resonator switches based on a PhC structures in the Terahertz 

(THz) range are presented. In particular, this chapter investigates the enhancement of 

existing optical THz region PhC based devices. The numerical technique used here is 
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CE-ADI-FDTD method. 

Finally, in Chapter 8, conclusions and final remarks of the presented research are 

drawn, and a view of the potential future topics is given.   
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Chapter 2 

Photonic Crystals 

 

 

2.1 Introduction 

This chapter gives a rigorous overview of the photonic crystals, otherwise known 

as photonic bandgap structures, and their properties. The chapter covers some essential 

background theory, and Maxwell’s equations, which in turn shed light on the origin of 

the bandgap. The properties of the one and two dimensional PhCs are presented, as well 

as the case of the PhC slab and creating defects in PhC structures. 
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2.2 Background 

Over the last two decades, ever since the pioneering work of Yablonovitch in the 

late 1980’s [1], photonic crystals have gained much attention and have been 

comprehensively investigated. These photonic bandgap structures started off as eligible 

candidates to enhance the material properties of spontaneous light-emitters. However, it 

did not take long before their dispersive properties and strong capability for selecting 

specific wavelengths were identified and implemented in optical communications. 

The periodicity of the refractive index along one or more directions of the 

photonic crystal structure gives it a photonic bandgap. This photonic bandgap is a 

frequency range in which no electromagnetic wave is allowed to propagate. It has a 

similar effect as an electronic bandgap has on electrons, which gives electrical 

semiconductors their properties [4]. From a practical point of view, photonic crystals are 

an excellent base system to build compact, integrated optical circuits, as the PBG 

confines and directs light and thus has many potential applications in optical 

communications and computing, including, but not limited to, devices with sharp bends 

[5], filters [6-7], cavities [8-9], and lasers [11], [12].  

Such a medium, impenetrable by light, enables the manipulation of the 

lightwaves by creating channels in the material that act as optical “wire”, or making 

cavities in the middle of the crystal that act as optical “wells” where light modes 

resonate. 

Photonic crystals exist in nature, producing the iridescent colours of soap 

bubbles, butterfly wings, seashells, and some gemstones. This occurs as a direct effect 

of an alternation of layers of two substances, or two arrangements of the same substance 
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in the surface material of the object. However, this alternation is only periodic in one 

direction, that is, 1D photonic crystals, as shown in Fig. 2.1. Such cases in nature 

usually have a narrow bandgap, and as the angle of view changes, the periodicity in that 

direction also changes causing different colours to be reflected producing shimmering 

light [4]. 

 

Figure 2.1    Schematic diagram of a 1D PhC with alternating dielectric layers represented by 

orange and blue 

 

2.3 Maxwell’s Equations 

This section will review the main manner by which an electromagnetic wave 

travels through a dielectric medium. This review focuses on the properties of Maxwell’s 

equations, and the Bloch-Floquet theorem in order to better discuss the origin of the 

bandgap in photonic crystals, which follows in the next section. 

There are four electromagnetic field vectors that govern the electromagnetic 
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phenomena. These four electromagnetic vectors are functions of both position r [m] and 

time t [s] [12]. The electromagnetic field can be described by electric flied E [V/m], 

magnetic field H [A/m], electric flux density D [C/m
2
], and magnetic flux density B 

[Wb/m2]. These electromagnetic field vectors all conform to the Maxwell’s equations as 

follows 

 Gauss’ law for the electric field:                    ∇ • D = ρ (2.1) 

 Gauss’ law for the magnetic field:                 ∇ • B = 0 (2.2) 

 
Faraday’s law:                                               0=

∂
∂

+×∇
t

B
E  

(2.3) 

 

Ampere’s law:                                               
J

t

D
H =

∂
∂

+×∇
 

(2.4) 

 Constitutive relationships:                              B = µ0H (2.5) 

                                                                         D = ε0εrE (2.6) 

Here, J [A/m
2
] is the electric current density, and ρ [C/m

3
] is the charge density 

of free space [13]. 

The above equations can fully describe the electromagnetic wave propagation 

through any medium, including dielectric materials, which are of special interest in this 

research. As the research is primarily dedicated to photonic crystal waveguides, the 

focus here is on electromagnetic wave propagation in dielectric medium, especially in a 

two-dimension photonic crystal waveguide. These PCWs will be discussed in detail later 

in this chapter. 

In optical communication the importance is usually only in cases where no free 

charge densities or free current densities are included, ρ = 0, and J = 0. Then, combining 

equations (2.1) – (2.6) leads to the wave equation 
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 ( )( ) ( )[ ] ( ) ( )rE
c

rE
c

rrE ⋅=⋅⋅−+×∇×∇
2

2

2

2

1
ωω

ε  (2.7) 

where c is the speed of light in vacuum. It can be noticed that this formula is 

very similar to Schrödinger’s equation from quantum mechanics [4].  

Since this medium is not ferromagnetic, Eq. (2.7) can be solved for the magnetic 

field, H, as follows 

 )()(
)(

1
2

rH
c

rH
r

⋅






=×∇×∇
ω

ε
 (2.8) 

Eq. (2.8) is known as the master equation as it, alongside the divergence 

equations (2.5) and (2.6), fully describes the magnetic field for a given problem. It 

should be noted here that the eigenvectors H(r) are the spatial patterns of the harmonic 

modes. The eigenvalues ��
� ��

 are proportional to the squared frequencies of those 

modes, and is the solution to the eigenvalues problem with an Hermitian operator 

∇ × �
	 ∇ ×. Consequently, the eigenvalues are real, and the magnetic field modes are 

orthogonal and can be categorised according to the symmetry properties [4, 14]. 

The periodic dielectric constant, ε(r), with period R can be written as 

 ε(r) = ε(r + a) (2.9) 

This periodicity means that the Bloch-Floquet theorem can be applied. The 

Bloch-Floquet theorem simply shows that Hermitian eigen problems with operators that 

are periodic functions of position have solutions that are always from the periodic 

function ( ),, ru kn  A corollary of the Bloch-Floquet theorem is that the wavevector 
�� is a 

conserved quantity, and therefore, propagating waves with a fixed 
�� cannot scatter, and 

as another consequence of the Bloch-Floquet theorem is that the solutions are periodic 
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as a function of the wavevector, 
�� [4]. 

Hence, applying the Bloch-Floquet theorem for a periodic ε, the master equation, 

Eq. (2.8), becomes 

 ( ) ( ),,, ruerH kn

rjk

kn

⋅=  (2.10) 

where un,k has the periodicity of the crystal lattice. 

k is repeated outside the Brillouin zone causing the angular frequency, ω, to fold 

back into the Brillouin zone when it reaches the edges. The angular frequency, which is 

a function of the wavevector, is organised as bands that are described by index n. 

Consequently, all modes are described in the first Brillouin zone by the wavevector k, 

and the integer index n.  

Expanding the Bloch modes and the inverse of the dielectric into Fourier series 

on the reciprocal vector of the lattice, G, leads to an explicit solution of the master 

equation Eq. (2.8). 

 ( )
( ) ∑ ⋅==

G

rjk

Ge
r

r η
ε

η
1

, where ai •bj = 2πδij, with ai = G, and bj = a (2.11) 

 ( ) ∑ ⋅+=
G

rGkjkn

Gkn eurH
)(,

,

r
 (2.12) 

 Then, appropriately substituting the Fourier series into Eq. (2.8) gives a set of 

infinite linear eigenvalue equations 

 ( ) ( )[ ] ( )
,' ,

'2

2

,

'

kn

G

G

nkn

GGG u
c

k
uGkGk∑ =×+×+−

ω
η

  

for all G’ (2.13) 

 The mode that corresponds to vector k is exactly the same as the mode at k + G 

that corresponds to an increment of G • a at multiple integers of 2π. This occurs as a 

result of the translational symmetry property of the periodic structure [15]. Hence, k can 
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be investigated within a finite range of values where non redundant modes are obtained. 

This range is called Brillouin zone and is 

 
a

k
a

ππ
≤<−  (2.14) 

 

2.4 Origin of the Bandgap 

A photonic bandgap is a range of frequencies, ω, into which there intrude no 

propagating solutions, real k, for any vector k and is surrounded by propagation states, 

ω(k), above and below the prohibited gap. Such bandgaps can be incomplete or 

complete bandgaps, where incomplete bandgaps refer only to specific wavevectors k, 

polarisations and/or symmetries. Whereas a complete, or omnidirectional, bandgap is 

one in which gaps at all k points overlap for a given frequency range. Nevertheless, the 

idea behind the origin of various bandgaps is still the same and can be made clear by 

considering periodicity in a simple one-dimensional system. 

2.4.1 One-dimensional photonic crystal 

Looking closely at a one-dimensional uniform system, as in Fig. 2.2, where ε = 

1, in which ω(k) = ck are the planewave eigensolutions as shown in Fig. 2.3. The 

periodicity of this uniform system is a trivial periodicity a, where a ≥ 0 at which point, a 

= 0 gives the usual unbounded dispersion. In the case that a ≠ 0 Bloch’s theorem with 

artificial periodicity a such that 
a

k
π

>  means that bands are folded into the first 

Brillouin zone, which is expressed by the dashed line in Fig. 2.3 [15]. In this figure, it 

can be noticed that the result of the artificial period is that 
a

k
π

−=  mode is equivalent to 
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a
k

π
=  mode. This can be expressed by the following linear combinations 

 






 ⋅
=

a

x
xe

π
cos)(  (2.15) 

 






 ⋅
=

a

x
xo

π
sin)(  (2.16) 

where ω = π / a as in Fig. 2.4. 

 

 

Figure 2.2 One-dimensional photonic crystal known as multilayer film or Bragg mirror. It is 

composed of infinitely extended layers of two types of dielectric material repeated 

in the z-direction with a period a.  
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Figure 2.3   Dispersion relation, ω vs. k, for a uniform 1D structure with artificial periodicity a 

(on the left), and with actual periodicity a (on the right). Folding can be seen when 

adding the periodicity in Bloch’s theorem by the dashed lines on the left while on 

the right the gap due to the split degeneracy at ak π±=  is seen.  
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Figure 2.4 Schematic origin of the bandgap in 1D. The degenerate k = ± π/a planewaves of a 

uniform medium are split into cos(πx/a) and sin(πx/a) standing waves by a 

dielectric periodicity, forming the lower and upper edges of the bandgap, 

respectively—the former has electric-field peaks in the high dielectric (nhigh) and so 

will lie at a lower frequency than the low dielectric (nlow) that lies at a higher 

frequency. 

 

For a periodic function ε with period a, sinusoidal or square wave like in shape, 

as shown on the right in Fig. 2.3 there exists an oscillating “potential”. This oscillating 

potential causes the accidental degeneracy between the waves e(x) and o(x) to be 

broken. This happens when ∆ > 0, e(x) field concentrates inside the dielectric of higher 

ε. Thus, it lies at the lower frequencies, whereas for o(x) the opposite occurs, as shown 

in Fig. 2.4. This shift of the bands causes the formation of a bandgap as shown on the 
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right side in Fig. 2.3. It should be noted here that in one-dimensional photonic crystals 

the bandgap always appears for any index contrast as soon as ε1 ≠ ε2. This relationship is 

proportional; the smaller the contrast, the smaller the bandgap size [14].  

2.4.2 Evanescent modes in photonic bandgaps 

If an external source is used to excite a 1D photonic crystal with an 

electromagnetic wave, and the frequency of the electromagnetic wave is within the 

range of the photonic bandgap of that particular crystal, then the EM wave will not 

propagate inside the crystal but will decay exponentially. These modes are known as 

evanescent and can be represented as 

 ( ) ( ) krikr eruerH −=  (2.17) 

These evanescent modes are categorised as Bloch modes, expressed by Eq. 

(2.10). However, the wavevector is a complex quantity and not real. The imaginary 

component of the wavevector, k + jκ, causes the decay of the mode at a rate of 1 / κ. The 

origin of these evanescent modes can be explained approximating the second band near 

the gap, shown on the right in Fig. 2.3, by expanding ω2(k ) in powers of k about the 

zone edge 
a

k
π

= . Because of time-reversal symmetry [14–18], the expansion cannot 

contain odd powers of k, giving  

 ( ) ( )2

2

22 k
a

k
a

k ∆=






 −≈






−=∆ α
π

α
π

ωωω  (2.18) 

where α is a constant that depends on the curvature of the band (i.e. the second 

derivative). For frequencies higher than the top of the gap, ∆ω > 0, ∆k is real and the 

modes are within the second band. However, for ∆ω < 0, ∆k = jk which is an imaginary 

quantity that leads to the states decaying exponentially, and the modes are within the 
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bandgap. The variation of κ throughout the gap is displayed in Fig. 2.5. Derivations can 

be made to show that larger gaps usually result in larger κ at the centre and thus less 

light can propagate into the crystal. Although evanescent modes are genuine solutions of 

the eigenvalue problem, they diverge as z goes to ∞± . In an ideal crystal of infinite 

dimensions, there is no physical way to excite one of these modes. Then again, the 

existence of a defect in an otherwise pure crystal may break this exponential growth and 

sustain a mode. If the geometry and symmetry of the defect is compatible with one of 

these evanescent modes then a state can be localised at the centre of the gap much more 

tightly than modes near to the edge of the gap [14], and [18]. Examples of defects that 

can be placed in a one−dimensional photonic crystal are shown in Fig. 2.6. 
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Figure 2.5    Schematic illustration of the complex band structure of a multilayer film. The upper 

and lower blue lines correspond to the edges of band 2 and band 1, respectively. 

The possible evanescent states in the red band.   
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Figure 2.6    a) Defect for a 1D PhC by changing the width of one of the layers. 

b) Defect created by changing the dielectric constant in one of the layers.  

 

In Fig. 2.6 a, the defect has been created by varying the thickness of one of the 

layers of the photonic crystal. Whereas, in Fig. 2.6 b, the defect was created by 

introducing a layer of dielectric material with a different dielectric constant then that of 

the dielectric material used to make the crystal. In both cases it is possible to localise a 

mode in the defect, with respect to the geometry of the defect and the frequency range of 

the bandgap of the crystal. 

 

2.5 Two-Dimensional Photonic Crystals 

For a two-dimensional photonic crystal the periodicity is along two directions, 

while it is homogeneous along the third. This type of structure makes manipulating the 

direction of the propagation of light along a plane possible. A classic layout is shown in 

Fig. 2.7 for a 2D square lattice of dielectric pillars in air.  
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Figure 2.7    2D PhC square lattice of dielectric pillars with radius r in air with period a. The 

inset on the right displays the in-plane view of the structure where the unit cell is 

highlighted in red. 

 

The key to understanding photonic crystals in two dimensions is to understand 

that the components in 2D can be split into two polarisations according to their 

symmetry: Transverse Magnetic (TM), where the magnetic field is in the xy - plane and 

the electric field is perpendicular in the z - direction; and Transverse Electric (TE), 

where the electric field is in the plane and the magnetic field is perpendicular. These two 

polarisations usually correspond to different topologies of 2D PhCs, as depicted in Fig. 

2.8; high index rods surrounded by low index (a) and low-index holes in high index (b).  
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Figure 2.8 Topology of 2D PhCs: (a) Pillars of high index, nhigh, in low index material, nlow. 

                 (b) Holes of low index, nlow, placed in high index, nhigh  material. 

 

In Fig. 2.8, a hexagonal lattice is used, there are many advantages of having such 

lattices; they enjoy the highest symmetry in comparison with other lattices, such as 

square lattices, and the Brillouin zone is a hexagon, with almost a circular shape. As a 

result of the circular shape, the crystal shows a high degree of isotropy. The higher 

isotropy means that they show better appearance of omnidirectional bandgaps. This 

means that the lattice provides the largest bandgaps. That is because a photonic bandgap 

requires that the electric field lines run along thin veins, thus, the rods are best suited to 

TM light where the electric field are parallel to the rods, while the holes are best suited 

to TE light where the electric field runs around the holes. This can also be seen clearly 

in the band diagrams, shown in figures 2.9 and 2.10, where the rods, Fig. 2.9, and holes, 

Fig. 2.10, have a strong TM and TE bandgap, respectively.  
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Figure 2.9 Bandgap diagram of a hexagonal lattice of high dielectric rods (nhigh = 3.46, r = 0.2a) 

in air. TE modes are the blue dashed lines and the TM modes are the red solid lines. 

It is clear that dielectric rods produce a gap for TE polarisation. 
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Figure 2.10 Bandgap diagram of a hexagonal lattice of air holes in high dielectric (nhigh = 3.46, r 

= 0.3a). TE modes are the blue dashed lines and the TM modes are the red solid 

lines. It is clear that holes in dielectric produces a gap for TM polarisation. 

 

The frequencies, ω, are conventionally represented in units of acπ2 , which 

correspond to λa  where λ is the wavelength in vacuum. Conveniently, Maxwell’s 

equations are scale-invariant, that is, they are characterised by the discrete translational 

symmetry that means their solutions are invariant under translations of distances that are 

multiples of a constant (the lattice constant a), [15]. A simple example, for a central 
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bandgap frequency with normalised units at 0.36, to have it correspond to λ = 1.55 µm, 

one would use mma µµ 56.055.136.0 =⋅= .  

The Brillouin zone (a hexagon) is displayed in the inset of figures 2.9 and 2.10 

with the irreducible zone shaded in grey. The vertices of this zone signify specific 

directions: Γ corresponds to k = 0, K represents the direction of the minimum distance 

with the adjacent cell, and M is the next one among these minimum distances. So, M-Γ 

and K-Γ are the directions in which the source can be injected and the whole bandgap 

can be studied. The Brillouin zone is a 2D section of wavevectors, so the bands ωn(k) 

are in fact surfaces, however, in practice the outermost band usually occur along the 

boundaries of the irreducible zone (i.e. the high-symmetry directions). Therefore, it is 

conventional to plot the bands along the zone boundaries in order to identify the 

bandgap, as done in Fig. 2.10 [15]. 

For certain topologies, holes in dielectric material, a complete photonic bandgap 

can be created that holds for both the polarisations, TE and TM. This can occur if the 

holes are large enough, almost touching. This causes the narrow veins between the holes 

to create a bandgap for the TM polarisation, while the intervals existing between groups 

of three holes realise a structure very similar to the one with pillars in air, thus a 

bandgap for TE can be created that overlaps the TM modes in frequency. 

 

2.6 Photonic Crystal Slab 

Two dimensional photonic crystals of finite length are the simplest way to realise 

three dimensional photonic crystals, this is known as photonic crystal slabs as it is 

shown in Fig. 2.11.  
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Fig. 2.11 Two dimensional photonic crystal of finite thickness and air holes in a dielectric slab. 

 

The photonic crystal slab structure in Fig. 2.11 confines light inside it along the 

vertical direction through the index guiding effect, which generalises the total internal 

reflection technique. In such a structure, the 2D periodicity means that the two-

dimensional Bloch wavevector //k
r

 is a conserved quantity. This means that the projected 

band diagram of the all states in the bulk substrate/superstrate versus their in-plane 

wavevector components produces the map of what states can radiate vertically. A simple 

example is having the slab surrounded by air, which leads to the eigensolutions 

 ⊥+⋅= 2
2

// kkc
r

ω  (2.18) 

when plotted in a diagram versus //k
r

, as shown in Fig. 2.12, forms the continuous light 

cone //kc
r

⋅≥ω , shaded in grey in Fig. 2.12. 
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Figure 2.12 Band diagram of finite thickness (0.5 a) where PhC slab is made of air holes in 

dielectric. The light cone, in grey, corresponds to all the states that can radiate 

vertically in air. Whereas, the dashed blue lines, and solid red lines correspond to 

the guided modes trapped inside the PhC slab by the guided modes. These guided 

modes have TE- and TM-like polarisations, respectively. A bandgap for the TM-

like guided modes occurs only.  

 

The bands under the shaded region are guided, that is, they are confined to the 

PhC slab and do not couple to any of the vertical radiating modes. The solid red lines in 
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Fig. 2.12 clearly indicate to the sole existence of a bandgap for TM-like modes only. In 

spite of this, the bandgap is not complete as frequencies in the light cone radiate modes 

at each value of ω. This is the reason behind the strong vertical radiation losses that 

occur when the translational symmetry is completely broken, by inserting a resonant 

cavity or a bend in a waveguide or a resonant cavity. Nevertheless, lossless guiding can 

be realised if the defect affects one direction only, e.g. line defect waveguide. 

For such photonic crystal slabs, the bandgap critically depends on their 

thickness; if the slab is too thin, the guided modes are weakly guided. However, if the 

slab is too thick, the higher-order modes appear inside the bandgap. The optimum slab 

thickness is around half a wavelength, in Fig. 2.12 the thickness used is 0.5 a.   

 

2.7 Photonic Crystal Defects 

2.7.1 Introduction 

Some of the most interesting phenomena occur when the crystal is broken by 

introducing defects. A defect is anything that interrupts the normal periodicity of the 

crystal, causing a localised state to resonate inside the bandgap, which by definition no 

frequency can propagate freely inside it. 

Most typically, defects can be classified into one of two classes: point defects, 

which create resonant cavities, and line defects, which create waveguides. Both defects 

can be illustrated as in Fig. 2.13. The key point is that a defect has the capability of 

supporting modes that are within the bandgap range of the crystal, and that these modes 

are localised within the defect. Generally there are two ways to create states in the gap: 

either pulling a localised state down from the upper band by increasing the dielectric 
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constant or to push a localised state up from the lower band by decreasing the dielectric 

constant. 

A point defect is simply a defect of finite extent in all directions, and supports a 

resonant cavity mode, or modes, with a discrete sequence of frequencies. A line defect is 

a defect that extends periodically with infinite extent in one axial direction and with 

finite extent in the lateral directions. Because of the periodicity in one-dimension, a line 

defect forms a waveguide, and introduces a guided mode band that has a one-dimension 

Bloch wavevector and which is localised in the lateral directions [19]. 

 

Figure 2.13  Schematic diagram of a 2D PhC structure with a point defect and line defect. 

 

Such defects can be created by changing the radius or the dielectric constant of a 

hole/rod, thereby disturbing the periodicity of the structure and breaking the 
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translational symmetry of the lattice. This phenomenon enables localised modes to occur 

at certain frequencies within the gap. 

2.7.2 Localised modes, defects, and breaking the periodicity 

Once the translational symmetry of a photonic crystal structure is broken, by the 

presence of a defect, the modes cease to be categorised by an in-plane wavevector. This 

means that states, with frequencies in the range of the bandgap, may localise within the 

defect. Such localised states decay exponentially as they leave the defect and are known 

as evanescent states. Nevertheless, there may exist certain frequencies in which, even 

though the periodicity of a lattice is disrupted by the presence of a defect, it remains 

possible for such frequencies to support extended states inside the entire crystal [14 - 

15], and [18]. Such frequencies can be determined through observing the band diagram 

of the crystal. Fig 2.14 illustrates both extended and evanescent states, the latter can be 

described by 

 ( ) ( )[ ] kx

k

jkx

k exfexH −=  (2.19) 

where the decay factor can be approximated by 

 ( ) ( )2

00 kkk −+= αωω  (2.20) 

where α is a positive number, k is considered to be limited to 1D, and frequencies near 

ω0 are described by 

 
α
ω∆

±= jkk 0  (2.21) 

where the imaginary component describes the exponential decay.  
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Figure 2.14 Frequency range divided into extended states, in yellow, and evanescent states, in 

grey. The blue line represents a localised mode that can exist within the bandgap 

region, where only evanescent modes are allowed, by a defect 

 

The perturbation of the dielectric constant and the geometry of the defect are 

what determine the states that can be introduced in the forbidden gap. Increasing the 

refractive index of the defect or decreasing its size causes modes to be pushed up from 

the lower band into the gap. Similarly, decreasing the refractive index of the defect or 

increasing its size causes the modes to be pulled down from the upper band into the gap. 

This effectively causes states to localise at higher or lower frequencies, respectively. It 

should be noted here that the most eligible frequency to be confined with the defect is 

always the one at the centre of the bandgap, which is the strongest to be confined within 

the defect.  
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2.7.3 Point defects: cavities 

As illustrated in Fig. 2.13, a microcavity, otherwise known as a point defect, can 

be introduced into a photonic crystal structure by removing a hole/rod from the periodic 

structure. This causes the microcavity to harness the light within it, creating a resonant 

mode, as displayed in Fig. 2.15, where the light is confined in the cavity and the mode 

resonates. 

Figure 2.15 Field profile of a resonant mode in a point defect 

 

Not only have such microcavities, in two dimensional photonic crystal 

structures, opened the doors to creating high quality devices at telecommunication 

frequencies, they have also prove to be suitable for implementing on the microchip, 

specifically with semiconductor materials of III-V group, e.g. Gallium Arsenide (GaAs),  

[20], and [21]. One of the key properties of cavities in a photonic crystal is the ability to 

tune a cavity to resonate at specific frequency within the bandgap and change the mode 
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symmetry by carefully modifying the defect [20], and [21]. Fig. 2.16 illustrates the four 

main types of point defect in a 2D PhC structure; this includes a point defect that is 

created by introducing a larger or smaller hole/rod into the otherwise periodic lattice, or 

by completely removing a hole/rod, or even introducing a hole/rod with a different 

dielectric constant than that used to construct the lattice.  

 

Figure 2.16 Schematics of 2D PhC structures with point defects, hole/rod: (a) defect where rdefect 

> r, where r is the radius of the hole/rod, (b) hole/rod removed, (c) defect where 

rdefect < r, (d) defect, hole/rod has different dielectric constant. 

 

The effectiveness of a cavity is based on its characteristics, which are defined by 

two major parameter; quality factor Q, and the β factor. The βm factor, where m is the 
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mode, corresponds to the amount of spontaneous emission in comparison to the other 

modes resonating in the cavity. The former, Q factor, can be described by 

 
γ
ω

=Q  (2.22) 

where ω is the mode frequency and γ is the number of photons lost by the mode per 

second [14].  

2.7.4 Line defects: waveguides 

As illustrated in Fig. 2.14, a line defect can be introduced into a photonic crystal 

structure by modifying a line of holes/rods the periodic structure. These photonic crystal 

waveguides managed to overcome the major issue of bends in waveguides, which 

proved to be the weak point of other waveguide techniques such as total internal 

reflection. 

Total internal reflection depends on the high contrast between core and cladding 

indices to guide the beam, which suffers from high losses when the radius of the bend is 

comparable to the wavelength. Whereas, photonic crystal waveguides overcome this 

limit as they guide light in a different manner, this is important in integrated optical 

circuits [22 - 25]. The line defect inserted into the photonic crystal structure allows 

certain modes to resonate within the forbidden gap. These modes propagate within and 

along the direction of the defect without escaping into the periodic lattice, as illustrated 

in Fig. 2.17, where the lightwave propagates along the waveguide. 
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Fig. 2.17 Field profile of the propagating mode along a line defect 

 

Line defects in photonic crystals are highly efficient in their transmission, up to 

almost 100% transmission for bends of 90 degrees [15], and [26]. Hence, photonic 

crystal waveguides alongside microcavities have become the building block of various 

optical devices, take for example, channel drop filters [27 - 28], and 

multiplexers/demultiplexers [29 - 30]. 

 

2.8 Summary 

This chapter has covered the essential background theory of photonic crystals. 

This included highlighting their capability to manipulate the flow of light. The origin of 

the PBG was explained starting from Maxwell’s equations, and then the 1D, 2D, and 
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slab PhCs were presented. The phenomena of capturing and controlling the flow of light 

through creating defects in the PhC structure were covered. 

In order to successfully model and simulate these PhC structures the CE-ADI-

FDTD numerical modelling method was used. This technique is presented in detail in 

chapter 3. 
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Chapter 3  

Complex Envelope - Alternating 

Direction Implicit - Finite Difference 

Time Domain 

 

 

3.1 Introduction 

Since 2D PhCs have complicated structures and cannot be analysed using simple 

techniques, several numerical methods have been developed for such complicated 

electromagnetic structures. Therefore, this chapter aims at reviewing the techniques and 

methods behind the numerical analysis and modelling of Maxwell’s partial differential 
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equations of electromagnetic systems, with a detailed emphasis on the method of 

interest, CE-ADI-FDTD. 

 

3.2 Background 

There are two main computational techniques by which Maxwell’s equations in 

an electromagnetic system can be analysed; frequency-domain, and time-domain. The 

frequency-domain includes methods such as beam propagation, and finite element 

frequency domain methods. These techniques have showed significant progress [31], 

however even the most advanced frequency-domain techniques are exhausted by 

numerous volumetrically complex structures of interest. On the other hand, time-domain 

methods such as; finite element time-domain, multi-resolution time-domain, and finite 

difference time-domain [32], hold many advantages over their frequency-domain 

equivalent. One of the main advantages is that one simulation of a PhC in time-domain 

results in a big range of frequencies to study. Hence, this research is mainly concerned 

with the time-domain computational techniques and in particular the FDTD. This 

method is one of the most widely used numerical methods for the computation of the 

electromagnetic propagation. 

The FDTD algorithm is used, as a computer code is developed and enhanced to 

analyse the propagation characteristics of PhC structures. The following section gives a 

detailed review of the FDTD. After that, a more sophisticated method that branches out 

from the FDTD will be presented, this is known as the CE-ADI-FDTD method [33]. 
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3.3 Finite Difference Time Domain 

3.3.1 Yee lattice 

The FDTD method was introduced by Yee in 1966 [34] in which the basis of the 

FDTD technique for solving Maxwell’s equations in the time-domain on a space grid 

was described. Steps in time are taken at regular intervals, where the time variation of 

the field components is calculated at each cell based on the discretised equations derived 

from Maxwell’s equations for electromagnetic propagation theory, as expressed below 
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The method progresses cell by cell and step by step, such that, each iteration is 

completed in both time and space for new values based on the field distribution 

calculated in the previous step. The iterations are applied until the simulation reaches 

steady state condition. This results in a set of findings that represent the field 

development inside the investigated structure obtained in time domain. 
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The FDTD method sets up the medium on a cubic grid cell with Cartesian 

coordinates as shown in Fig. 3.1. This simple, yet effective and robust technique has the 

FDTD lattice set up such that each electric field component is evaluated at the edges of 

the Yee lattice, and surrounded by four magnetic field components that are evaluated at 

the centre of the sides of the Yee lattice [32], and [34]. The electric field and magnetic 

field components are arranged in space in so that every E component is surrounded by 

four circulating H components and every H component is surrounded by four E 

components in the same way. 

 

Figure 3.1 Yee Lattice [33] 

 

In Fig. 3.1 the discretisation in space is performed on the Yee cell. This 

technique applies a finite-difference grid on a simulated electromagnetic field that 
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propagates inside a continuous space. The fields are sampled at discrete locations on 

each cell of this finite-difference grid.  

3.3.2 Leapfrog 

The leapfrog, illustrated in Fig. 3.2, defines how the adjacent field components 

are related to one another in order to generate other field components as time is 

marching on.  

 

Figure 3.2 Leapfrog as time is marching [32] 

 

In Fig. 3.2 the discretisation in time is obtained following the leapfrog 

arrangement where components are arranged in time such that all the E components at a 

particular point in time are calculated by using the H values computed from the previous 
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step, and all the new H components are similarly calculated by using the E values 

computed, and so on, until time-stepping is concluded at the end of the simulation.  The 

geometry of the Yee lattice is set such that it has a dimension of ∆x, ∆y, and ∆z of the 

grid size. ∆t denotes the time step from one lattice point to the next lattice point. 

There are several advantages of using the Yee algorithm as opposed to other 

methods; it solves for both electric and magnetic fields in time and space using the 

coupled Maxwell’s curl equations, rather than the electric field alone as is the case when 

using the wave equation. This leads to an explicit scheme that is relatively easy to 

implement. As seen in Fig. 3.1, the Yee lattice sets up the grid such that there is an 

interlinked array of Faraday’s law and Ampere’s law contours. As illustrated in Fig. 3.2, 

Yee’s lattice centres the electric and magnetic components in time in a fully explicit 

leapfrog time-stepping manner, hence avoiding the need to solve equations 

simultaneously or use matrix inversions.  

3.3.3 Finite-difference notation of Maxwell’s equations 

The finite-difference-time-domain expressions for Maxwell’s equations in 3-

Dimensions (3D) are as follows [32]: 
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In the above equations (3.7 - 3.12), the symbols used are defined as follows: 

 E: electric field 

 H: magnetic field 

 εr: relative permittivity 

 µr: relative permeability 

 µo: free-space permeability 

 σ: electric conductivity 

 σ*: equivalent magnetic loss 

It should be noted here that equations (2.1 - 2.4) are Maxwell’s Equations, in 

differential form, while the above equations (3.7 - 3.12) are the FDTD equations in 

discretised form. 

3.3.4 Lumerical dispersion and stability 

The main concerns over the FDTD method are the constraints upon its space and 

time discretisation parameters. The constraints upon the space discretisation are set in 

place to overcome the unavoidable side effect of the nature of every numerical method 

that is based on a discretised mesh, in this case the FDTD. This is because the numerical 

medium in which the fields interact is an artificial medium with properties very close to, 

but not exactly the same as, those in vacuum. In other words, applying the FDTD 

algorithms on Maxwell’s equations can cause nonphysical dispersion of the simulated 
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waves in a free-space computational lattice [35]. This means that the phase velocity of 

numerical wave modes can differ from the speed of light. This variation depends on the 

wavelength of the propagating wave, the direction of propagation in the grid, and the 

grid discretisation [35]. 

As for the constraints set upon the time discretisation, they are put in place so as 

to avoid numerical instability that can cause the computed results to increase without 

limit as time-marching continues. Thus, the FDTD algorithms for Maxwell’s equations 

require that the time-step ∆t has a specific bound relative to the lattice space increments 

∆x, ∆y, and ∆z [35]. 

This section focuses on laying out the method used in this work to avoid 

numerical instability and minimise the unavoidable numerical dispersion. 

3.3.4.1 Numerical dispersion 

Numerical dispersion has to be taken into account in order to avoid delays or 

phase errors propagating into the structure that may lead to non-physical results. This 

can be achieved by choosing proper dimensions for the cell grid. To analyse numerical 

dispersion in FDTD, the numerical dispersion equation for Yee’s scheme in the three-

dimensional case is considered. Then, it is compared to the ideal case which has grid 

resolution defined on the base of examples available in literature. Yee’s algorithm 

brings to [35] 
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The dispersion relation for the ideal case of plane wave in lossless medium states 
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Taking into account the following well known limit property 

 lim�→� �sin �
� � = 1 (3.15) 

Comparing Eq. (3.13 - 3.14), for ∆x, ∆y, ∆z, and ∆t that simultaneously tend to zero, the 

two equations are found to be the same. This means that the increments in space and 

time need to be very small compared to the structure dimensions, in other words a very 

fine mesh helps in reducing the effects of numerical dispersion and thus ensures 

accuracy of the results. It can be noted that with a grid resolution of ∆ = λ / 20 the 

variation of the normalised phase velocity is reduced to 0.3% which can be considered 

as a lower bound in order to get accurate results [18]. 

3.3.4.2 Numerical stability 

It has been shown in the above that careful selection of ∆ and ∆t can affect the 

wave propagation characteristics and substantially reduce numerical dispersion. 

Similarly, bounding ∆t can ensure numerical stability. FDTD equations impose a 

specific limit on the choice of the time increment ∆t that is related to the dimensions of 

the unit cell in the grid ∆x, ∆y, and ∆z [35].  

 
ctzyx ⋅∆

≤
∆

+
∆

+
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2111
2

222
 (3.16) 

From Eq (3.16), the criteria that bounds the choice of ∆t is derived as 

 

( ) ( ) ( )222

111

1

zyx
c

t
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+

∆
+

∆

≤∆  
(3.17) 

In the specific case of a cubic cell having ∆x = ∆y = ∆z = ∆, the criteria is written as 
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follows 
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(3.18) 

It can be easily seen that in the two-dimensional case, for a square cell, the relation 

becomes 

 
2⋅

∆
≤∆

c
t  (3.19) 

This means that as the space discretisation increases so does the Courant time 

limit, and thus sets an important constraint upon the stability of the method. The validity 

of Eq. (3.18) is adequate to warrant the stability of the numerical scheme for an 

indefinite numbers of time steps. However, the stability of the FDTD scheme is not only 

influenced by carefully applying Eq. (3.18). Other aspects can jeopardise the stability of 

the FDTD method, such as boundary conditions applied to the computational domain, 

the employment of non-uniform meshes for the discretisation of the computational 

domain, dispersive media, nonlinear media, and media with loss [18]. Nevertheless, 

having raised these concerns, an enormous amount of simulation results for these cases 

in literature has shown that the FDTD method can be successfully applied. The scheme 

shows numerical stability for at least the number of time steps necessary to extract all 

the essential information from the simulations, although not for an indefinite number of 

time steps [34]. 

In optical devices it is recommended in literature that ∆ ≈ 
�

�� [35]. This sets a 

tight constraint upon ∆t, for example, in telecommunications, substituting λ = 1.55 µm 

into Eq. (3.19) where ∆ ≈ 
�

�� leads to ∆t ≤ 0.243727 fs. This time constraint ensures the 
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numerical stability of the method, yet is very restrictive. In order to relax this constraint 

the alternating direction implicit technique is used. 

 

3.4 Alternating Direction Implicit Finite Difference Time Domain 

Although the FDTD method has the ability to simulate a wide range of devices 

for a large range of frequency, from microwave to optical, for certain problems, such as 

resonant cavities with very high quality factor Q and structures with geometrical 

features very small compared to the shortest wavelength involved, the requirement of 

computational resources of the FDTD method can be unreasonable, especially since the 

time step employed in FDTD simulation is bounded by Eq. (3.18).  

The Alternating-Direction-Implicit (ADI) [36 - 40] is a technique when applied 

to the FDTD method it enables simulations to go beyond the Courant limit without 

incurring instability. This means that the time-step size in the ADI-FDTD method is not 

bounded by the Courant criterion expressed by Eq. (3.18). This feature greatly reduces 

the number of time-steps needed to complete a single simulation, which in turn reduces 

the demand on computational resources. Unfortunately, the time-step size affects the 

numerical accuracy of the ADI-FDTD method, setting a limit on the size of the larger 

time-steps [37 - 38]. 

The ADI-FDTD method is a semi implicit solving technique, where the field 

component, such as the electric field, is solved implicitly in the first half time step and 

explicitly in the second half time step [41]. This means that the EM field components 

are arranged in space according to the Yee lattice, as shown in Fig. 3.1. However, in 

time, the EM field components do not follow the leapfrog arrangement. In the ADI-
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FDTD method a single time step is divided into two halves in which the EM field 

components are collocated and not staggered as in the conventional FDTD method. The 

following equations are obtained from equations (3.1 - 3.6) for the first half time step 
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It should be noted here that in equations (3.20 - 3.25) some of the electric and 

magnetic field components are collocated in time and thus cannot be explicitly updated. 

Each electric, or magnetic, field component has a tri-diagonal system of equations that 
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can be solved. After the tri-diagonal system is solved, the remaining electric, or 

magnetic, field components are explicitly updated. As for the second half time-step, the 

equations to be solved are as follows 
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Here, a similar procedure as applied on the first half time-step is applied on the 

second half time-step. Time stepping for the ADI-FDTD is by the repetition of the two 

previous procedures in time. 
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The unconditional stability of the ADI-FDTD method is due to the semi-explicit 

nature of the technique [36], [39 – 40]. This allows for time step sizes larger than the 

limit imposed by Eq. (3.17) in the conventional FDTD method. However, the downside 

to the ADI-FDTD method is that it suffers from high numerical dispersion when using a 

high Courant number [42]; the larger the time step size used the larger the numerical 

dispersion [37 - 38]. Nevertheless, the ADI-FDTD produces accurate results with highly 

reduced demands on the computational resources for time step sizes up to 8 times larger 

than the Courant criterion [37 - 38] and can be extended up to 400 times the Courant 

criterion for signals with narrow frequency bandwidths [43]. 

 In order to reduce the numerical dispersion caused by the ADI-FDTD, the 

complex envelope technique can be used [44] where all electromagnetic field 

components are assumed to satisfy the Slowly-Varying Envelope Approximation 

(SVEA), as explained in detail in the following section. 

 

 

3.5 Complex Envelope Alternating Direction Implicit Finite Difference Time 

Domain 

As mentioned in the previous section of this chapter, FDTD has proven to be one 

of the most popular modelling techniques due to its high ability to deal with a wide 

range of photonic devices. Being such an explicit technique that depends heavily on 

field update at each step without the need of matrix inversions make it attractive to use 

when modelling extremely complicated structures on desktop computers. The main 

drawback of conventional FDTD is the high demand it has upon computational 
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resources due to the Courant criterion, which sets the bounds of the time-step size so as 

to avoid numerical instability [2]. In order to circumvent the Courant criterion 

limitation, several techniques have been proposed. Among these techniques is the 

method proposed by Rao et al. in [45], known as CE-ADI-FDTD. This method is quite 

popular for photonic simulations due to its low numerical dispersion, reduction of 

required computational resources, and highly accurate results in comparison with the 

conventional ADI-FDTD algorithm. Hence, CE-ADI-FDTD uses larger time steps, 

meaning, less computational burden, yet provides high accuracy. Using the formulated 

method in [2] eliminates the stability problem that arises in Rao’s method because of the 

employment of perfectly matched layer. This method is based upon applying an 

alternating forward and backward difference to the calculation of the derivatives of the 

coefficient of the PML equations, allowing better performance in when considering the 

absorption of impinging waves on PML [2].  

The following equations are discretised in space based on the unit cell of the Yee 

space lattice allowing the grid to be non-uniform. While discretisation in time is 

obtained by following the procedure in [31], the space cells are non-uniform so as to 

allow more accurate and flexible representation of the photonic device. In the CE-ADI-

FDTD method all electromagnetic field components are assumed to satisfy the slowly-

varying envelope approximation as illustrated in Fig. 3.3. 
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Figure 3.3 Slowly-varying envelope approximation [46] 

where φ(x,y,z,t) is the field component, φenv(x,y,z,t) is the slowly-varying 

amplitude, e
-jωct

 is the fast varying carrier, and ωc is the angular frequency of the carrier. 

The idea behind this alternating-direction mechanism is that the time step is split into 

two halves. One half time-step is selected to perform the explicit extraction of the 

magnetic field, while the other half step uses the technique of implicit extraction. The 

explicit method simply relies on obtaining the magnetic field of time step n + 1 from 

previous values of the electric field at time step n. While the implicit method involves 

solving a system of equations for the magnetic field at n + 0.5 by substituting the 

electric field value at time step n + 0.5 with the electric field at n and the magnetic field 

at n + 0.5 and thus solving the system implicitly. 

The alternating-direction provides implicit solving of a system of equations, 

which in turn provides higher stability beyond the Courant limit. 

The following set of equations for the 1
st
 half time step are shown below [2] 
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while for the 2
nd

 half time step, the following set of equations are obtained 
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where 
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where ∆t is the time step, ∆xi and ∆yj are the discretised steps along x- and y- 

directions, respectively, and hxi and hyj are defined as 
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where Lx and Ly are the total number of  cells of the computational domain along 

x- and y- direction, respectively. The updating process of the 1
st
 half time step starts with 

the explicit update of Eq. (3.32) in order to obtain the new values of the magnetic field 

component Hxa. As can be seen, Eq. (3.33) cannot be explicitly solved. Substituting 

(3.34) into (3.33) and solving the derived equation for Hya, a system of equations can be 

derived in [2], whose coefficients form a tridiagonal matrix which can be efficiently 

solved in order to obtain the new values of the magnetic field component Hya inside the 

computational domain. Once the magnetic field component Hya has been calculated, Eza 

can be explicitly updated using Eq. (3.34). A similar procedure can be followed on 2
nd

 

half time step for equations (3.35 - 3.37) [2]. 

 

3.6 Excitation Methods 

3.6.1 Hard source and soft source 

Two types of internal sources can be used with FDTD to excite the 

electromagnetic propagation inside the simulated structure: hard source and soft source. 

Setting up a hard source means simply to assign the value of the E- or H- field at one or 

more FDTD grid points in space equal to a desired function of time. It becomes like the 

initial condition of an electromagnetic problem in which the E- or H- field is known at a 

point and the values of the radiated fields at the other grid points need to be calculated. 

Depending on how many points values are assigned in space, the source can be 
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pointwise or a plane wave. As example, in a 1D system, with propagation in x-direction, 

a pointwise hard source can be imposed as follows 

 ( )tnfEE
n

iz
source

∆= 00 2sin π  (3.45) 

where a sinusoidal hard source (continuous wave, CW) Ez is assigned at the grid point 

isource and it starts at the time step n = 0. As a result, the wave will propagate in both the 

directions back, -x, and forward, +x, from the starting point.  

Another commonly used wave source is the low-pass Gaussian pulse that is 

centred in time at the step n0 and has 1/e characteristic decay of a number ndecay of time 

steps 
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This function presents a finite direct current component and its Fast Fourier Transform 

(FFT) is centred at frequency f0. 

An important aspect of hard source condition is that for a source like the 

Gaussian, after a total simulation time greater than (n0 + ndecay), the hard source acts as 

an electric mirror or Perfect Electric Conductor (PEC); the total tangential E-field is 

equal to zero. Therefore, it cannot take into account the movement of reflected waves 

through the input section isource. Also, in the case of a CW, when the tangential E-field 

value at the excitation does not come to zero at a certain time, it is demonstrated that a 

spurious and nonphysical back-reflection of the waves toward the +x direction of 

propagation is caused. This happens in any kind of imposed time function because at the 

source section a particular value of E-field is specified without considering in any way 



Chapter 3|  Complex Envelope – Alternating Direction Implicit – Finite Difference Time Domain 

57 

 

the effect of an incident field eventually occurring at the same section. A way to avoid 

this effect can be to switch off the hard source after its time function has decayed to zero 

by replacing the equation at isource with the standard FDTD update equations. However, 

this strategy can be adopted only in case of pulse wave forms that evolve in time only 

for a certain interval and not for continuous interacting sources such as a sinusoidal 

wave.  

Alternatively, a soft source consists in the introduction of an electric current. It 

adds the value of the source time function at the FDTD current value of the field at the 

point isource. As a result, the effect of the radiated propagating fields at the source 

interface will be considered and spurious reflections avoided. The soft source is imposed 

through the following 

 ,
1 nn

iz

n

iz sourceEE
sourcesource

+=
−

  for every n, (3.47) 

An existing problem with soft source is that it generates a nonzero DC 

component in the solution. This variation on the amplitude of the fields has to be 

considered in order to achieve correct results. A solution of this problem has been 

proposed by Furse et al. in 2000, [47]. It consists in applying a modified source function 

as  

 ( ) ( )ttr ωsin  (3.48) 

where r(t) represents a turn-on function defined by  
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where T representing the period of the time-harmonic source and α=1/2, 3/2, 5/2, … 

 

3.7 Summary 

This chapter has covered the essential numerical techniques with their 

derivations, starting from the Yee lattice, looking at the leapfrog, and the FDTD. 

Numerical dispersion and numerical stability constraints were discussed, and the 

appropriate method to overcome the Courant time constraint was presented in the form 

of the ADI-FDTD. Following that, the numerical dispersion caused by the ADI-FDTD 

was circumvented through implementing the complex envelope technique where all 

electromagnetic field components satisfy the slowly-varying envelope approximation. 

Finally, the source excitation methods were categorised as hard and soft sources, and 

these sources were discussed. 

Since these numerical methods are applied to electromagnetic wave interaction 

in optical waveguides with infinitely extended computational domains, it is important to 

apply boundary conditions surrounding the computational domain to emulate free space 

in computer simulations. These boundary conditions are presented in detail in chapter 4. 
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Chapter 4  

Absorbing Boundary Conditions and 

Perfectly Matched Layers 

 

 

4.1 Introduction 

This chapter discusses the boundary conditions applied around computational 

domains. First it covers perfectly matched layer boundary conditions, looking at the 

basic principles and representing these principles in the form of equations. Then, the 

uniaxial perfectly matched layer absorbing boundary conditions, and the perfectly 

matched layer parameters. Next, the chapter presents PML boundary conditions for CE-

ADI-FDTD. Finally, the newly suggested PML formulation is presented. 
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4.2 Perfectly Matched Layer Boundary Conditions 

Electromagnetic wave interaction problems in optical waveguides are usually 

defined in unbounded spatial domains of their computational fields in one or more 

coordinates otherwise known as open regions or infinitely extended regions. However, 

computers are limited in their storage capacity and they can only process computational 

domains that are limited in size. Therefore, much research effort has been put into 

finding a way to simulate an infinitely extended computational domain using computers.  

4.2.1 Basic principles 

Literature shows that the most sensible way to overcome this problem is by 

using a computational domain large enough to surround the structure of interest, and set 

appropriate boundary conditions (BCs) on the outer limits of the domain in order to 

simulate the structure’s extension to infinity. Such boundary conditions can be set in two 

main categories; Analytical Boundary Conditions [48 − 53] and Absorbing Boundary 

Conditions [54]. Mur in [49] proposes an analytical boundary conditions method highly 

utilised for its accuracy on the simulation of the outgoing waves from the computational 

domain. While Berenger in [54] presents highly effective absorbing-material boundary 

conditions method known as the PML which is widely used [55 - 59]. 

Berenger terminates the outer boundary of the space lattice in a non-physical 

absorbing material medium. This non-physical layer is ideally a few lattice cells thick, 

and is reflectionless as it has the ability to absorb all impinging electromagnetic waves 

on the full frequency spectrum. This particular layer assured that plane waves with any 

polarisation and for all angles of incidence were matched at boundary.  

Berenger’s derivations for the PML are based on splitting the electromagnetic 
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field components of Maxwell’s equations in such a way that each component is split in 

two orthogonal components. Maxwell’s curl equations are also suitably split, and then 

appropriate loss parameters consistent with a dispersionless medium are set to each 

component [35]. To establish a foundation for the discussion of PML absorbers based on 

Berenger’s technique, the derivation of the properties of this non-physical medium is 

shown in this section and can be found in full detail in [35]. In order to do so, a 2D 

space is considered as shown in Fig. 4.1. 

 

Figure 4.1 2D schematics of a plane wave with TEz polarisation propagating between two media 

  

Fig. 4.1 is an illustration of a 2D media that is split into two regions; region 1, 

where x < 0, is lossless, while region 2, where x > 0 is lossy. In region 1 the electric 

permittivity and the magnetic permeability are ε1 = ε0 and µ1 = µ0, respectively. 

Whereas, in medium 2 the electric permittivity, magnetic permeability, electric 
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conductivity, and magnetic loss are ε2, µ2, σ, and σ*, respectively.  

4.2.2 Basic equations 

When an incident uniform plane wave with TEz polarisation propagates from 

region 1 to region 2 the wave can be described as 

 z
yjxj

inc ueHH
i
y

i
x )(

0

ββ +−=  (4.1) 

where Hinc is the incident magnetic field, H0 is the amplitude of the magnetic field, βx
i 

and βy
i
 are the propagation constant components of the plane wave along x and y 

direction, respectively, and uz is the unit normal vector of z axis. As the plane wave 

crosses from region 1 into region 2 it is partially reflected back into region 1 and the 

remainder of the plane wave is transmitted into region 2, the total fields in region 1 can 

be described as in equations (4.2 – 4.3) 
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where E1 is the electric field, ω is the frequency of the plane wave, Γ is the reflection 

coefficient, and ux and uy are the unit normal vectors of the x and y axes, respectively.  

Considering the part of the TEz plane wave that is transmitted into region 2 

Maxwell’s curl equations in time-harmonic form can be expressed as 
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where the electric conductivity σ and the magnetic loss σ* are normalised with respect to 

the electric permittivity ε0 and the magnetic permeability µ0 , respectively. With some 

mathematical manipulation and knowing that  

 zyzxz HHH +=  (4.7) 
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equations (4.4 - 4.6) can be expressed as 
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 Differentiating equations (4.10) and (4.11) by y and x, respectively, then 

substituting the expressions for 
���
��  and 

���
�  from equations (4.12) and (4.13), 

respectively, leads to 
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Adding equations (4.14) and (4.15) leads to the wave equation 
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which supports the solution 
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with the dispersion relationship 
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Substituting Eq. (4.17) into equations (4.10 - 4.11) leads to the following 

equations for the electric field components 
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Enforcing the continuity of the tangential electromagnetic fields at the interface 

(x = 0), where sy = sy* = 1, or equivalently, σy = 0 = σy*, this yields the phase-matching 

condition "�� = "�� = 
�&'(). Further, the magnetic field reflection and transmission 

coefficients can be expressed as 
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From Eq. (4.21) it can be noted that if ε1 = ε2, and sx = sx*, then βx = βx
i
. This 
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means that the reflection coefficient is Γ = 0 and the transmission coefficient is T = 1, 

which is true for all incident angles θ. Since sx = sx*, this implies that σx / ε0 = σx* / µ0. 

The transmitted field on region 2 is 
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Within the above matched region 2 medium, the transmitted wave propagates at 

the same speed and direction as the impinging wave from region 1. The wave also, 

simultaneously, experiences attenuation along the x-axis normal to the interface between 

regions 1 and 2. The attenuation factor σxη1cos(θ) is independent of frequency and these 

properties are valid for all angles of incidence. 

The TMz polarised plane waves can similarly be derived. However, the splitting 

of the electromagnetic field components is applied to the electric field Ez = Ezx + Ezy . In 

which Γ = 0 and T =1 as a result of sx = sx*, and σx / ε0 = σx* / µ0. Again all these 

properties are valid for all angles of incidence. 

From the above analysis the FDTD grid can use PMLs to greatly reduce outer-

boundary reflections. These layers of non-physical and absorbing medium with 

absorbing properties are in turn backed by PEC walls to terminate the whole 

computational domain, as shown in Fig. 4.2 for a 2D case. 
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Figure 4.2   Schematics of a 2D computational domain surrounded by 4 layers of PML 

BCs. 

 

 

4.3 Uniaxial Perfectly Matched Layer Absorbing Boundary Conditions 

Berenger established the split-field PML technique as a theoretical non-physical 

medium that is based on a mathematical model. The nature of the loss terms of the 

impinging electromagnetic wave make this region anisotropic perfectly matched 

medium. For a single interface the anisotropic medium is uniaxial, having a composition 

of both electric and magnetic permittivity tensors. This new approach by Sacks et al. 

[60] leads to absorbing layers called uniaxial perfectly matched layers. This UPML 

material avoids the non-physical field splitting while maintaining performance as well 

as Berenger’s PML [35].  
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In Fig. 4.1 above, if we consider a TEz polarised plane wave propagates from a 

lossless region 1 into an uniaxial medium in region 2, where the two regions are 

separated by the interface at 0=x , whose electric and magnetic tensors are given by 

[35] s2εε =  , s2µµ =  where 
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here 
xs  is defined as in equations (4.8) and (4.9), 2ε  and 2µ  are the electric permittivity 

and the magnetic permeability of the uniaxial medium in region 2, respectively. No 

reflection is generated, and the plane wave is completely transmitted into the uniaxial 

region for all angles of incidence θ. Since the reflection coefficient is 0=Γ  and the 

transmission coefficient is T = 1, the transmitted electromagnetic field components can 

be expressed as 
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where 
iθ  in the angle of incidence relative to x axis. Equations (4.26 - 4.28) show that 

regions 1 and 2 are perfectly matched such that the transmitted wave in region 2 

propagates at the same speed and direction as the impinging wave from region 1. The 

wave also, simultaneously, experiences attenuation along the x-axis normal to the 

interface between regions 1 and 2. The attenuation factor σε1cos(θi) is independent of 
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frequency and these properties are valid for all angles of incidence. Comparing 

equations (4.26 - 4.28) with (4.22 - 4.24), it is noted that Berenger’s split-field PML and 

the UPML have identical propagation characteristics, since both result in the same wave 

equation. The tangential electric and magnetic field components, Hz and Ey, of the two 

methods are identical, while the normal component, Ex, differs by a factor
xs . The two 

methods also show that the normal components of the transmitted field differ. That is, 

for the PML formulation the Ex component is continuous at 0=x , whereas in the 

UPML formulation Ex is discontinuous with Dx = εsx
-1

Ex continuous. This difference in 

continuity of the normal component is because the two techniques use two different 

formulations of the divergence theorem. However, these two formulations still produce 

the same matching and absorbing properties for the transmitted waves. 

From Fig. 4.2 it can be noticed that there are four corner regions that the UPML is 

not uniaxial in, because the corner regions are a superposition of different UPML layers. 

In this case, the expression of the tensor that multiplies the electric permittivity and 

magnetic permeability for this medium is given by 
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 (4.29) 

with 
xs  and ys  defined as in equations (4.8) and (4.9).  
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4.4 Perfectly Matched Layer Parameters 

The performance of the PML can be analysed by applying the transmission line 

concept upon the PML formulation [54]. The performance of the PML is affected 

primarily by the parameters that set the absorption rate of any impinging wave upon the 

PML, the electric and magnetic conductivity, σ and σ *, respectively. Each layer of PML 

is backed by a layer of PEC, the propagating wave is reflected of the PEC and back into 

the computational domain affecting the accuracy of the simulation. The reflection 

coefficient is 

 ( ) ( )θσηεθ cos2 dreR
−=  (4.30) 

where θ  is the angle of incidence, d is the width of the PML layer, η is the impedance, 

and σ is the electric conductivity of the PML layer. Eq. (4.30) shows that the reflection, 

R, from the PML exponentially decreases as the width and the conductivity increases. 

Increasing the width of the PML layer is not an option, as that would exhaust more 

computational resources. This means that the selection of the appropriate conductivity σ 

is of utmost importance to ensure low reflections in the PML. This leads to a trade-off 

between high values of electric and magnetic conductivities σ  and *σ  inside the PML 

that provide good absorption, and between the accuracy of the results jeopardised by the 

high levels of discontinuity at the interface separating the computational domain and the 

PML layer that are caused by these high values of σ and σ *.  

 The work in [35] and [54] has overcome this problem by adopting a variation of 

the electric and magnetic conductivity profiles along the transverse direction. Such that, 

a geometrical scaling of the electric conductivity along the transverse direction x gives 
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 ( ) xxgx ∆= 0σσ  (4.31) 

where 
0σ  is the electric conductivity at the interface x = 0, g is the scaling factor, and 

x∆  is the space discretisation. Applying this variation on Eq. (4.30) the reflection error 

becomes 

 ( ) ( ) ( ) ( )ggx L

eR
lncos12 0 θησθ −∆−=  (4.32) 

where L is the number of cells of the PML layer. This leads to the value of the electric 

conductivity at x = 0
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r gx
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ηε
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 Usually the maximum reflection error at normal incidence ( )0R  and the scaling 

factor g are fixed and then the value 
0σ
 
is computed. After that the scaling of the 

electric conductivity σ is performed inside the PML layer using Eq. (4.31). 

 

4.5 PML Boundary Conditions for CE-ADI-FDTD 

The work carried out in this thesis uses the CE-ADI-FDTD technique to simulate 

the photonic crystal devices. As such, the necessary mathematical derivations for the 

PML boundary conditions applied to the CE-ADI-FDTD method are shown here. These 

derivations are based on the work previously proposed in [2], [18], and [60] in the 

context of the ADI−FDTD algorithm. For TEz polarisation, the 2D Maxwell’s equations 

can be written as 
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Applying the complex-envelope formulation on the above equations gives 
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 After that, the PML formulation is applied on Eqs. (4.37 - 4.39) in which the 

envelope of the electric field Eza is split as follows 

 zayzaxza EEE +=  (4.40) 

Substituting Eq. (4.40) in equations (4.37 - 4.39) gives 
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Then, the ADI-FDTD discretisation is applied to equations (4.41 - 4.44), and the 

1
st
 half time step reads as 
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Using forward or backward differencing approximation, as apposed to the 

conventional liner approximation, the coefficients of the PML equations can be found. 

This procedure means the field component on the left hand side of the equation and the 

field component on the right hand side of the equation can be collocated at the same 

time step. The coefficients for the 1
st
 half time step become 
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 Appling the same technique, the coefficients of the PML equations for the 2nd 

half time step become 

 

tj

tj

c

r

x
c

jixe ∆+

∆







+−

=
ω

εε
σ

ω

α
4

24

|
0

,
 

(4.47a) 

 

tj

tj

c
r

y

c

jixh

∆









++

∆−
=+

0

*2/1,

24

4
|

µµ

σ
ω

ω
α  

(4.47b) 

 

tj

tj

r

y

c

c

jiye

∆







++

∆−
=

0

,

24

4
|

εε

σ
ω

ω
α  

(4.47c) 

 

tj

tj

c

r

x
c

jiyh ∆+

∆







+−

=+ ω

µµ
σ

ω

α
4

24

|
0

*

,2/1
 

(4.47d) 

 

( ) xirc

jixe
htj

t

0

,
4

2
|

εεω
β

∆+
∆

=  
(4.47e) 



Chapter 4|  Absorbing Boundary Conditions and Perfectly Matched Layers 

74 

 

 

jr

r

y

c

jixh

ytj

t

∆













∆










++

∆
=+

0

0

*
2/1,

24

2
|

µµ
µµ

σ
ω

β  
(4.47f) 

 

yjr

r

y

c

jiye

htj

t

0

0

,

24

2
|

εε
εε

σ
ω

β











∆








++

∆
=  

(4.47g) 

 

( ) irc

jiyh
xtj

t

∆∆+
∆

=+
0

,2/1
4

2
|

µµω
β  

(4.47h) 

The extensive work in [2] and [18] shows that this particular setup for the CE-

ADI-FDTD equations with PML boundary condition has a stable algorithm for large 

Courant numbers, which is very beneficial for this work, as it substantially reduces the 

computer computational burden. 

 

4.6 �ewly Suggested PML Formulation 

Lopez-Villegas and Vidal successfully presented in [61] an accurate physical 

model of discretisation error in one-dimensional PML using the FDTD method. The 

idea behind the model in [62] is based on the concept of the effective wave impedance 

of the PML. This concept implies that the wave impedance of the PML in the discretised 

space changes, with respect to the continuous value, when absorption takes place [61].  

When considering normal losses in PML the absolute value of Direct Reflection 

Losses (DRL) is given by |DRL| =  e
-2αd

, where d is the thickness and α is the 

attenuation per unit length, and can be expressed as α = (σσ∗)0.5. Where σ is the electric 

conductivity (S/m) and σ* (Ω/m) is the magnetic losses. When looking at this from an 

impedance matching point of view, then these parameters must satisfy the matching 



Chapter 4|  Absorbing Boundary Conditions and Perfectly Matched Layers 

75 

 

condition σ∗/σ = ηPML
2
 where ηPML is the PML wave impedance [61]. In the case of 

discretised FDTD space, the electric and magnetic fields are staggered by half the size 

of the unit cell (n) or discretisation step (∆x). Hence, the electric and magnetic field 

computational locations alternate every ∆x/2 as illustrated in Fig. 4.3a. In a lossless 

medium the steady state values of the electric and magnetic field amplitudes do not 

change throughout the simulation domain as shown in Fig. 4.3b and the wave 

impedance is simply 
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where |En| is the amplitude of the electric field at the electric node, while |Hn+1/2| 

is the amplitude of the magnetic field at the magnetic node, and |Hn| is the amplitude of 

the magnetic field at the electric node. Taking into account the exponential decay due to 

absorption in the PML medium, the magnetic field amplitude is underestimated in 

comparison to its electric counterpart as shown in Fig.4.3c and can be expressed as in 

Eq.4.49 [61]. 

 |Hn+1/2|=|Hn|e
-α∆x/2

 (4.49) 

Thus the concept of effective wave impedance of the PML, η*PML can be 

expressed as follows 
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(4.50) 

Obviously in equations (4.49 - 4.50), when the wave propagates in the opposite 

direction, then the magnetic field amplitude becomes overestimated when comparing it 

with its electric counterpart, and thus the sign of the exponential changes. 
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Figure 4.3 Spatial distribution of the electric and magnetic fields: 

a) time dependent fields for a given time t. 

b) steady state values of the field’s amplitude in a lossless medium. 

c) Steady state values of the field’s amplitude in the 1D PML [61]. 
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Hence from the above, the reflection coefficient of the PML resulting from 

impedance mismatching can accurately represent the Discretisation Error Losses (DEL) 
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Eq. 4.51 successfully relates DEL with PML parameters and simulation 

conditions, α and ∆x respectively. This brings us to the following relationship 

 2
x

PML e
∆

=
α

ηη
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(4.52) 

Thus from Eq. 4.50 effective impedance η∗
PML=η and using 4.51 DEL = 0 

meaning a PML that is discretisation error free. The impedance shaping of 4.52 can be 

changed as follows 
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(4.53) 

where ε and µ are the electric permittivity and the magnetic permeability in the 

computational domain, while where εPMLand µPML are the electric permittivity and the 

magnetic permeability in the computational domain but change (are not constant) 

throughout the PML region. K is the scale factor, for K = 1 the propagation velocities in 

the computational domain and in the PML region are equal [61]. 

From the above derivations, it can be noticed that εPML and µPML are not constant 

throughout the PML, but change by a factor of exponential attenuation. 

 

4.7 Summary 

This chapter has presented an overview of the absorbing boundary conditions 

and PML, with a detailed look at PML boundary conditions, UPML absorbing boundary 
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conditions, and PML parameters. After that, the chapter explained the specific case of 

how to implement PML boundary conditions for CE-ADI-FDTD. Finally, the newly 

suggested PML formulation based on minimising discretisation error was presented. 

In order to assess the performance of the suggested PML technique, an optical 

slab waveguide is presented in chapter 5 as an example for numerical assessment of the 

technique.  
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Chapter 5 

�umerical Assessment of �ewly 

Suggested Perfectly Matched Layer  

 

 

5.1 Introduction 

This chapter makes extensive use of the literature review covered in the previous 

chapters, by applying this review and suggested techniques in new designs and 

simulating these designs. The chapter presents the work accomplished in modelling and 

minimising the discretisation error of PML in optical slab waveguides using CE-ADI-

FDTD. Also, the results of the simulations that study this design with the newly 

implemented techniques are presented. 
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5.2 Slab-Optical Waveguide: Example for �umerical Assessment 

The idea behind this experiment was to implement the impedance matching 

theory used in microwaves and shown in chapter four on optical waveguides. The inset 

in Fig. 5.1 is a schematic representation of the slab or planar waveguide used for these 

simulations. 

All numerical simulations have been carried out using self built MATLAB code 

and Microsoft Visual Studio C++. The geometry of the 2D planar waveguide in hand is 

as shown in Fig. 5.1 while the simulation parameters had a fixed discretisation in space 

of 0.1 µm and ten cells of PML layer are used to truncate the computational domain on 

all sides of the planar waveguide, providing the necessary environment of PML to study 

the discretisation error using the new model. The permittivity in vacuum εo = 8.854 × 

10
-12

 F/m, and the permeability µo = 4π × 10
-7

 H/m, while the effective index in the core 

ncore = 2.5 and in the cladding ncladding = 1.0. Using the Courant criterion formula and the 

discretisation steps for x-direction and y-direction utilised for this simulation, the 

maximum time step that is possible to use ∆tCL =  0.2358 fs. The source used to excite 

the domain is the mode profile, and the angular frequency ωc of the source was fixed to 

1.256 x 10
15

 rad/s (λ = 1.5 µm). The electric permittivity εPML and the magnetic 

permeability µPML used in this system are as displayed in Fig. 5.1 and Fig. 5.2 below. 
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Figure 5.1 Permittivity in the computational region and PML region. Inset is the schematic diagram of 

the slab waveguide 
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Figure 5.2 Permeability in the computational region and the PML region. Inset is the schematic diagram 

of the slab waveguide 

 

The affect upon the electrical conductivity (in S/m) is as illustrated in Fig. 5.3 
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Figure 5.3  Electrical conductivity in the computational region and the PML region. Inset is the 

schematic diagram of the slab waveguide 

 

The soft-source technique has been used to deploy the source in the 
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computational domain [2], [35], and [44]. The soft-source technique depends on adding 

the value of the source at each computational domain point to the value of the electric 

field at the same point; this is repeated for every time step. The effective index method 

was used to obtain the mode profile of this particular planar waveguide. In the TE 

modes for guided modes the formulae are 

 ( )[ ] xhhxEE ccy <−−= , exp γ
          (cover)

 (5.1) 

 ( ) hxkEE sfxfy <<−= 0, cos φ             (film)
 

(5.2) 

 ( ) 0, exp <= xxEE ssy γ                  (substrate) (5.3) 

where h is the thickness of the core [62].  

The results from the model based on the concept of effective wave impedance of 

the PML are presented. PML is affected mainly by the cell size and the absorption 

properties that potentially would considerably improve the reflection characteristics of 

the PML within optical range. In order to test the effectiveness of the newly 

implemented PML boundary conditions, a 15 × 4 µm planar waveguide structure, in the 

x- and y-directions, respectively, is simulated. The structure consists of dielectric core 

with refractive index ncore = 2.5 and air cladding. Ten cells of PML layer have been used 

to truncate the computational domain on all sides of the planar waveguide [35], as 

previously shown in the inset of Fig.5.1. First, the geometric grading parameters that 

affect the PML and matching impedance were varied and tested on the newly 

implemented PML. This was in order to investigate the effect these parameters — which 

include scaling factor g [35], scaling factor K [61], and the theoretical reflection error R0 

[53]— have on the overall performance of the newly modelled PML. Before looking at 

the effect of these parameters it should be noted here that the discretisation step was 
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fixed to 0.1 µm and the source was fixed to 1.256 × 10
15

rad/sec (λ = 1.5 µm). The 

fundamental mode profile has been used to excite the waveguide. The time-step size was 

fixed to 3 times the Courant Limit. The time domain variation of the E-field was 

recorded using a line detector set at the centre of the core in the y-direction running 

along the direction of propagation, that is, the x-direction. The first parameter to be 

investigated is the theoretical reflection error R0.  

5.2.1 Investigating the theoretical reflection error R0 

The theoretical reflection error is varied for the purpose of investigating its effect 

upon the newly modelled PML, while fixing the scale factors K = 1.00 and g = 2.00. 

Fig.5.4 illustrates the investigated results.  

 

Figure 5.4 Effect of Ro theoretical reflection error on the newly modelled PML for K = 1.0, and g = 2.0 
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Fig. 5.4 shows that as the theoretical reflection error increases, the actual 

reflection error decreases. However, at R0 = e
-16

 the system reaches a peak, and then as 

the theoretical reflection error continues to increase beyond R0 = e
-16

  the actual 

reflection error in the system increases. Therefore, R0 = e-16  is found to be the optimum 

value for the newly implemented PML. 

5.2.2 Investigating the metric scale factor g 

The metric scale factor g parameter must be small to minimise the discretisation 

error by governing the rate of increase of the conductivity within the PML [35]. Again, 

the other parameters are all fixed at set values R0 = e
-16

, and K = 1.00 while g is varied to 

obtain the optimum effect on the PML. Fig.5.5 shows the results obtained when varying 

the scale factor g in the newly modelled PML.  

 

Figure 5.5 Effect of scale factor g on the New PML 

 

 Fig. 5.5 shows that as the scaling factor g increases, the actual reflection error 

decreases, however, at g = 2.0 the system reaches a peak, and then as the scaling factor g 

increases, the reflection error increases and thus the optimum performance is for g = 

2.00. 
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5.2.3 Investigating the scale factor K 

The scaling factor K represents the propagation velocity in the simulation space 

and in the PML. This investigation is done by fixing the theoretical reflection error to a 

set value of R0 = e-16, the scaling factor g = 2.00, and varying the scale factor K from its 

suggested value K = 1.00 [61].  

 

Figure 5.6 Effect of scale factor K on the New PML. 

 

 Fig. 5.6 shows that as the scaling factor K increases, the reflection error 

decreases, however, at K = 1.5 the system reaches a peak, and then as the scaling factor 

K increases, the reflection error increases and thus the optimum performance is for K = 

1.5. 

From observing figures 5.4 – 5.6 it is found that for R0 = e
-16

, g = 2.00, and K = 

1.5 respectively, the newly modelled PML exhibits overall optimum performance.  

5.2.4 Investigating the optimum number of PML cells 

A study was carried out on the effect of increasing the number of PML cells. By 

using the optimum results obtained above, keeping all the parameters fixed and only 

varying the number of PML cells. The mode profile was used as the source of 
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excitation. The reflection coefficient was then measured for each case of varied number 

of PML cells. The study was performed by surrounding the computational domain with 

three different numbers of total PML cells, 10, 20 and 30. For each setting, a simulation 

was carried out which consisted in sending an electromagnetic pulse, centred at 

wavelength 1.5µm and with the fundamental mode profile of the slab waveguide, at the 

input section of the waveguide. A detector was inserted at the output section of the 

waveguide in order to store the time domain variation of the incident and reflected 

electric field. Using the FFT of both incident and reflected field, for each case the 

reflection coefficient was calculated and the results were recorder in Table 5.1 for the 

wavelength 1.5µm 

Table 5.1 Effect of no. of PML cells on the reflection coefficient 

No. Of Cells in PML 10 20 30 

Reflection Coefficient 0.0005907 0.0003178 0.0002245 

 

From Table 5.1, it can be clearly observed the excellent performance of the 

proposed PML formulation. For all three simulations the reflected field was always less 

than 0.06% of the incident field with a minimum of about 0.02% obtained using 30 

PML cells. However, it has to be mentioned that the computational burden increases as 

the number of PML cells increases. Therefore, using 10 cells of PML is considered to be 

the best choice in terms of high absorption performance and low computational burden. 

 

5.2.5 Comparing conventional PML and the newly suggested PML 

Comparing the performance of the conventional PML and the newly 

implemented PML in terms of reflection coefficient Γ. The standing wave ratio results 
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were obtained using a continuous wave centered at a frequency f0 = 200 × 10
12

 Hz, and 

the reflection coefficient from the incident waves reflected by the PML was extracted 

using the reflection coefficient formula as in Eq.5.4. The obtained reflection coefficient 

is illustrated in Fig. 5.7. 

 minmax
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Figure 5.7 Standing wave of newly modelled PML vs. conventional PML 
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The standing wave pattern in Fig. 5.7 shows a considerable improvement of 

almost 6 dB in the value of E-field in favour of the newly implemented PML over the 

conventional PML. It should be noted here that from Eq. 4.53 it is clear with simple 

substitution of the value of α that the geometric grading of the PML loss parameters are 

reset to default for α = 0. 

 

5.3 Summary 

This chapter has presented a detailed numerical assessment of the newly 

suggested PML that minimises discretisation error.  The assessment was carried out on a 

slab-optical waveguide with emphasis on investigating the key factors affecting PML, 

theoretical reflection error, scaling factors, and the number of cells used for the PML 

structure. After that, a comparison was made between conventional PML and the newly 

suggested PML in terms of reflection coefficient. It was found that the newly suggested 

PML outperforms the conventional PML by several dB.  

Since the newly suggested PML has been assessed on optical waveguides, it will 

be used in the design and analysis of the photonic crystal switches in the following 

chapters, where in chapter 6 MUX/DEMUX photonic crystals devices are presented, 

and in chapter 7 THz photonic crystal ring resonators are investigated. 
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Chapter 6  

Photonic Crystal Based Multiplexer -

Demultiplexer 

 

 

 

6.1 Introduction 

Having established the effectiveness in terms of absorptions of the proposed 

PML scheme, this PML scheme is then used in conjunction with the CE-ADI-FDTD 

method for the analysis of a new design of PhC based MUX/DEMUX. This chapter 

presents the main principles of MUX/DEMUX design, then three MUX/DEMUX 

optical switches are presented and their performance is investigated. 
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6.2 Multiplexer / Demultiplexer: Implementation and Design Principles 

In optical communications, the optical fibre has huge bandwidth, which, unless 

utilised correctly, would be wasted on a single channel being sent across the fibre. This 

is where multiplexers and demultiplexers are useful. The technology is based on 

separating the light in the optical fibre into distinctive channels according to the colour 

of light, in other words, distinctive wavelength channels. The idea is that every channel 

transmits the same amount of data as a single fibre that has not been multiplexed.  

The basic idea of the MUX/DEMUX can be illustrated by Fig.6.1. The 

innovation of this PhC based MUX/DEMUX design resides in the exploitation of the 

coupling length concept which is used for the separation of different signals in different 

channels.  

 

 

Figure 6.1  a) schematic of a multiplexer with several input signals and one output signal, b) 

schematic of a demultiplexer with a single input carrying several channels, and 

several output lines. 

 

Within an optical communication system there is a transmitter and receiver, 

multiplexer and demultiplexer, respectively. The transmitter takes several signals and 

sends them across a single channel, while the receiver separates these signals into 

distinctive channels. Ideally, such a system would have a switching device that 
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simultaneously transmits and receives signals. 

The main advantage of the multiplexing technique in telecommunication is that 

it allows the capacity of the network to be increased without the need of changing the 

backbone of the fibre network. This is made possible through implementing switching 

devices and deploying optical amplifiers throughout the optical network. This capacity 

increase is achieved by upgrading the transmitters and receivers of the network, thereby 

allowing for many generations of technological advancement in the optical 

infrastructure without laying more fibre.  

The optical spectrum is divided into several distinct wavelengths that do not 

overlap, and each wavelength corresponds to a single communication channel. Thus, 

providing several multiplexing channels on the same fibre, and greatly utilising the 

fibre’s huge bandwidth. 

 

6.3 2 × 1 MUX/DEMUX: Design Principles 

6.3.1 Setup 

The idea here is to design a 2 × 1 MUXDEMUX that operates according to the 

coupling length of the wave travelling across the photonic crystal waveguide. Therefore, 

an investigation is carried out on the coupling length of a particular wave in a specific 

PhC device. In order to achieve this, a PhC structure is designed based on the PhC 

lattice geometry used in [30].  

The structure is selected to enable direct comparison between the design results 

in this paper and those in [30]. Also the PBG range includes wavelengths of particular 

interest such as λ = 1.55 µm. Thus, the PhC structure consists of dielectric rods arranged 
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in a triangular lattice with lattice constant a = 0.601 µm, radius r = 0.2a, and with 

refractive index n = 3.464 in air (n = 1) is considered. In the proposed structure the 

length of the rods is considered to be long enough that the light will be reasonably 

confined to the transversal plane and losses will be minimal.  

In this structure two adjacent waveguides have been created removing two rows 

of rods separated by a single row of rods, as shown in the inset of Fig.6.2.  

6.3.2 Coupling length and cavity length 

If a signal is inserted in one of the two waveguides it couples with the other one 

after propagating for a fixed distance. The length the wave travels within the waveguide 

before coupling is known as the coupling length L, measured here per number of rods. 

A series of simulations were carried out on the range of normalised frequency 

0.290 < a / λ < 0.479 and the corresponding coupling length of each wavelength was 

determined, with the range of interest plotted in Fig. 6.2. 

In order to do so, a source with Gaussian profile in space expressed below, was 

used such that each simulation was fixed to a particular wavelength. 
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(6.1) 

where x0 and X0 are the displacement and the width of the Gaussian pulse along 

x-direction, respectively, and y0 and Y0 are the displacement and the width of the 

Gaussian pulse along y-direction, respectively. For all simulations, x0 was set at the 

input port of the input waveguide, while y0 was set to the coordinates of the centre of the 

input waveguide, X0 and Y0 were fixed to a / 6. 
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Figure 6.2 Coupling length vs. normalised frequency. 

 

It can be observed from Fig.6.2 that the value of the coupling length L increases 

to infinity at the normalised frequency fnorm = 0.41 = a / λ, which implies that the optical 

wave at this frequency propagates without crossing into the adjacent waveguide. In 

order to filter or control the frequencies at the output of WG2 a cavity is inserted. 

Exploiting the concept of the coupling length when designing the MUX/DEMUX, the 

wave propagation and coupling between waveguides can be engineered and specific 

frequencies can be selected to couple to the output waveguide. This is achieved by 

inserting a total of three rows of separating rods between WG1 and WG2, with a cavity 

embedded in the middle row of separating rods. It should be noted that the cavity is 
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carefully geometrically designed such that the length of the cavity along the direction of 

propagation is equal to the coupling length for the selected wavelength (λ = 1.55 µm). 

The schematics of the PhC 2 × 1 MUX/DEMUX with a single cavity is illustrated in 

Fig.6.3.  

 

Figure 6.3  Schematic diagram of the MUX/DEMUX with a rectangular cavity embedded within 

three rows of rods separating the two waveguides. 

 

6.3.3 Cavity study 

In order to investigate the operation of the cavity and its selectivity for L = 12, 

the cavity was individually isolated, and a Gaussian shape profile was placed in the 

center of the cavity and modulated by a Gaussian pulse in time. This Gaussian pulse in 

time covered the entire range of frequencies in the device’s PBG. Line detectors were 

used in order to record the time domain variation of the EM field. The FFT was used to 
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monitor the modes propagating in the simulated structure. The Gaussian pulse was 

centered at λ = 1.55 µm for the large cavity. Fig. 6.4 shows the spectrum of the resonant 

modes in the cavity.  

 

Figure 6.4 Light spectrum in cavity with the length L = 12, for a pulse centered at λ = 1.55 µm 

 

The results illustrated in Fig. 6.4 show the robustness and reliability of the 

design at λ1 = 1.55 µm for L = 12, as well as the strong feature of wavelength selectivity, 

as the modes are distinctive and can be easily isolated. Compared to point defect 

cavities, cavities tailored to the coupling length offer optimum performance at required 

frequencies, and flexibility in mode design due to their multi mode nature. 

 



Chapter 6|  Photonic Crystal Based Multiplexer - Demultiplexer 

98 

 

6.3.4 Cavity effect in switching devices 

To demonstrate the effect of the cavity upon the PhC structure three tests were 

carried out with different conditions and bearing different results. All simulations were 

set to a total of 7000 time steps, with the time step size fixed to 3 time the Courant limit 

for a total of t = 2476.586 fs time simulated. Also, all simulations had line detectors 

strategically inserted on the waveguides in order to store the time domain variation of 

the electromagnetic field.  

In the first of the three tests a Gaussian shaped profile in space modulated by 

continuous wave source in time with wavelength fixed to λ = 1.55 µm as described in 

(6.1) above, was used to excite the structure in the inset of Fig.6.2. The signal 

propagated in the structure such that the wave coupled back and forth between the two 

waveguides, WG1 and WG2 as illustrated in the snapshot of Fig.6.5.a. Next, the same 

source was used a second time to excite the PhC structure in Fig.6.3, which contains the 

embedded cavity, with cavity length L = 12, designed to select that particular 

wavelength, λ = 1.55 µm. The signal propagated in the structure such that the wave 

coupled into the adjacent output waveguide, WG2 as illustrated in the snapshot of 

Fig.6.5.b. Then, a Gaussian shaped profile placed at the input of WG1 modulated by a 

continuous wave source in time with wavelength fixed to λ = 1.48 µm as described in 

(6.1) above, was used to excite the PhC structure in Fig.6.3, which contains the 

embedded cavity, L = 12 designed to select a wavelength λ = 1.55 µm. As expected, the 

signal propagated in the structure such that the wave did not couple into the adjacent 

output waveguide, but in fact propagated only along the input waveguide WG1 as 

illustrated in the snapshot of Fig.6.5.c. 
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Figure 6.5 a) Selected frequency (fnorm = 0.387) propagates in both waveguides WG1 and WG2, 

b) selected frequency (fnorm = 0.387) propagates in only in waveguide 2,                    

c) other frequencies, (fnorm = 0.406) only propagate in waveguide 1. 

 

6.3.5 2 × 1 MUX/DEMUX performance: single cavity 

The Cavity Length (CL), as mentioned above, was carefully selected to be equal 

to the coupling length, L = 12 rods. In order to verify the setting CL = L as optimum, 

simulations similar to that used to extract the propagating wavelengths with the inserted 

cavity were carried out varying only the number of rods removed inside the cavity. 

Fig.6.6 shows the transmission of the signal at the output port in WG2 with respect to 

varying the number of rods in the embedded cavity 
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Figure 6.6 Cavity length selection 

 

In order to achieve this, the time domain data, through the use of FFT, were used 

for the calculation of the transmission rates of the simulated structures which were 

computed as the power ratio between the input power P1 inserted in waveguide 1 and 

output power P2 extracted from waveguide 2. The results of this procedure are measured 

by the transmission of the signal at the output port. The transmission from Fig.6.3 can 

be expressed as 

 *+,(&-'&&'.( =  /2
/1 (6.2) 

where P2 is the output in WG2, and P1 is the input in WG1. The crosstalk, 

which is the power ratio between output ports WG2 : WG1, can be expressed as 

 3+.&&4,5
 =  /2
/3 (6.3) 

 

where P1 is the input in WG1. The high performance in terms of crosstalk 
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(crosstalk = 22.07dB) is seen also in the transmission rate which is calculated to be 

92.7%. The excellent performance in terms of crosstalk and transmission rate of the 

proposed structure shows to be very competitive when compared with other designs 

suggested in literature [30] where a MUX/DEMUX structure is designed as shown in 

Fig.6.7. 

  

Figure 6.7 Schematic structure in [30] 

 

The main drawback of the proposed design is that there are only three rows of 

rods separating WG1 and WG2 which means that there is still the potential for direct 

coupling to exist between the two waveguides. 

6.3.6 Dual cavity 

To overcome this shortcoming an additional two rows of rods of radius r are 

added to separate waveguide 1 and waveguide 2, bringing the total amount of separation 

to a total of five rows of rods while the embedded cavity is still at the same place as the 
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previous design. However, with the extra rows of rods added between the cavity and 

waveguide 2 the percentage of transmission is easily predicted to fall rapidly. In order to 

circumvent this drawback, another identical cavity is carefully placed adjacent to the 

first one with a single row of rods separating them. The addition of a second cavity, C2, 

is believed to improve the coupling between the two waveguides increasing the overall 

performance of the designed structure. Nevertheless, an additional study on the position 

of this second cavity with respect to the first has been conducted in order to investigate 

the effect of the second cavity position on the performance of the structure in terms of 

crosstalk. Simulations have been done for different positions of the second cavity. The 

results demonstrate that the configuration illustrated in Fig.6.8 presents the best 

performance with a crosstalk calculated to be equal to 15.75 dB. 

 

Figure 6.8 Schematic design of the two rectangular cavity PhC MUX/DEMUX. 

 

In Fig.6.9, a snapshot of the propagating electromagnetic field in steady state 
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regime is shown from which the coupling between waveguide 1 and waveguide 2 can be 

clearly seen. Although this design ensures minimum direct coupling between the two 

waveguides, which implies a more reliable and far more robust design, its performance 

in terms of a transmission of 85.97% between waveguide 1 and waveguide 2 is not as 

impressive as its single cavity counterpart. 

 

Figure 6.9 PhC MUX/DEMUX electric field propagation with two rectangular cavities. 

 

6.3.7 Improving the cavity coupling 

Different solutions can be implemented in order to improve the coupling 

between the two waveguides. In [30] and [64] dielectric rods with different refractive 

index have been used in order to improve trapping photons and controlling the 

lightwave. However, this solution requires the use of a different dielectric material 

which can be quite difficult to realise practically. 

A different approach for increasing the coupling between the two waveguides is 
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proposed here. For the optimisation of the structure, all the rods adjacent to the first 

cavity were replaced by rods with larger radii with respect to the rods of the unperturbed 

PhC structure, ranging from rd = 0.202a to 0.230a. This range of radii has been 

considered in order to not significantly modify the band structure of the PhC. The results 

of this investigation are summarised in Fig.6.10. Changing the radius of the rods around 

the cavity enhances the tuning capabilities of the PhC structure. 

 

Figure 6.10 Crosstalk and transmission vs. radius of rods (r = a) 

 

The results of this case study presented in Fig. 6.10 clearly indicate that there is a 

peak at which the PhC structure reaches its optimum levels of crosstalk and transmission 

rate. The peak occurs at rd = 0.208a with crosstalk calculated to be 25dB, and a 

transmission of 98.7%. 

6.3.8 Second cavity optimisation 

In order to show that the new size of the rods does not impact the performances 

obtained from the optimisation process of the position of second the cavity, a similar 
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case study is performed with the new cavity. It should be noted here that the placement 

cases of the adjacent cavity ranged from placement 0 to placement 9, where placement 0 

represents Cavity 1 (C1) and Cavity 2 (C2) in perfect alignment, while placement 1 has 

C2 shifted by one rod in the direction of propagation (x-direction), and so forth until 

placement 9, as schematically shown in the inset of Fig.6.11.  

 

Figure 6.11 Crosstalk vs. Placement of cavity 2, inset, schematic structure of placing cavity 2 

 

The results summarised in Fig.6.11 clearly show that the position of the second 

cavity obtained from the previous optimisation process is the optimum one and any 

other setup results in the degradation of the overall performances of the proposed 

structure in term of crosstalk and transmission rate. 
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The results of this design compare favourably with the results obtained using 

other designs, such as the MUX/DEMUX in [30] as shown in Fig.6.7. At λ = 1.55 µm, 

transmission = 97.4% in [30], while as shown above, the transmission using this new 

design is 98.7%. 

 

6.4 3 × 1 MUX/DEMUX: Principle of Design 

In this section, a 3 × 1 MUX/DEMUX PhC based structure is presented. This is 

achieved by carefully following the design method described in the sections above. This 

is by carefully considering the coupling length of the propagating wave and accurately 

engineering the geometrical design of the microcavities. The design is highly selective, 

such that, a microcavity embedded between two waveguides selects a particular 

wavelength to couple from one waveguide into an adjacent waveguide. The difference 

between this design and the designs mentioned in the previous sections of this chapter is 

the fact that this design enables more than one wavelength to be coupled to its 

appropriate output port. The numerical technique used for the designs throughout this 

design is again the CE-ADI-FDTD. 

The suggested 3 × 1 PhC MUX/DEMUX design with the appropriate coupling 

length and embedded microcavities have been simulated in order to assess the 

effectiveness of the wavelength selectivity of the device. This simulated design uses the 

concept of the coupling length [65]. Coupling, which is the mutual interaction of the 

propagating light wave between two or more defects, occurs here between the central 

waveguide and the adjacent waveguides via the imbedded cavities. These embedded 

cavities have been carefully placed with respect to the coupling length of the particular 

wavelength of interest. This coupling length is the length at which the propagating light 
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wave moves from one waveguide to the adjacent waveguide.  

The MUX/DEMUX is based on a PhC structure consisting of dielectric rods 

arranged by a triangular lattice with lattice constant a = 0.601 µm, radius r = 0.2 a, with 

refractive index n = 3.464, in air (n = 1). The PBG ranges from the normalised 

frequency units 0.290 to 0.479 [30]. 

In this structure three adjacent waveguides have been created by removing three 

rows of rods. Each waveguide is separated from the adjacent waveguide(s) by five rows 

of rods. Four cavities are placed such that two cavities are within each block of five 

rows of rods separating any two adjacent waveguides as in Fig.6.12 

 

Figure 6.12 Schematic design of 3 × 1 PhC MUX/DEMUX 

 

As illustrated in Fig.6.12, there is a central waveguide with two adjacent 

waveguides, one on each side of the central waveguide. On the bottom there is WG1 and 

on the top there is WG2. The selectivity of each waveguide depends on the cavities 

placed between any two waveguides. The cavities are carefully designed such that the 

cavities adjacent to WG1 are optimised for a particular frequency to couple from the 

input of the central waveguide to the output of WG1. These cavities are tuned to a 
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coupling length L = 16 rods, which is optimum for a wavelength of λ = 1.417 µm. The 

second block of cavities placed adjacent to WG2 are particularly tuned to a coupling 

length L = 12 rods, which corresponds to a wavelength λ = 1.55 µm. 

6.4.1 Large cavity characteristics 

In order to investigate the operation of the cavity and its selectivity, the large 

cavity, L = 16 was individually isolated, and a Gaussian shape profile was placed in the 

center of the cavity and modulated by a Gaussian pulse in time. This Gaussian pulse in 

time covered the entire range of frequencies in the device’s PBG. Line detectors were 

used in order to record the time domain variation of the EM field. The FFT was used to 

monitor the modes propagating in the simulated structure. The Gaussian pulse was 

centered at λ1 = 1.417 µm for the large cavity. The second cavity, L = 12 has the same 

characteristics as mentioned in the 2 × 1 MUX/DEMUX. Fig. 6.13 shows the spectrum 

of the resonant modes in the large cavity. That is, the results illustrated in Fig.6.13 show 

the robustness and reliability of the design at λ1 = 1.417 µm for the large cavity, as well 

as the strong feature of wavelength selectivity, as the modes are distinctive and can be 

easily isolated.  

 



Chapter 6|  Photonic Crystal Based Multiplexer - Demultiplexer 

109 

 

 

Figure 6.13 Light spectrum in cavity with the length L = 16, for a pulse centered at λ1 = 1.417 

µm 

 

6.4.2 Transmission characteristics 

After studying the cavities in isolation, the entire 3 × 1 MUX/DEMUX structure 

was further investigated. The source used to excite the structure was a Gaussian shaped 

profile placed at the input of the central waveguide modulated by a continuous wave 

source in time with wavelength fixed to λ1 = 1.417 µm for the first simulation and λ2 = 

1.550 µm for the second simulation. Each simulation used a total of 7000 time steps with 

a time step size fixed to 3 times the Courant Limit. Line detectors were inserted on all 

waveguides in order to record the time domain variation of the EM field. The FFT was 
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used to extract the necessary information from the time domain data in order to calculate 

the crosstalk and selectivity of the simulated structure. As a result of this procedure, the 

performance of this 3 × 1 MUX/DEMUX exhibits an excellent crosstalk of 14 dB 

difference between the output at WG1 and the output at WG2. 

In Fig.6.14 and Fig.6.15 a snapshot of the propagating EM field in steady state 

region is shown for wavelength λ1 = 1.417 µm and λ2 = 1.55 µm, respectively. From the 

figures, the very good performance of the proposed device is clearly shown as most of 

the signal inserted in the central waveguide is completely coupled to its associated 

output waveguide; λ1 = 1.417 µm couples to WG1, and λ2 = 1.55 µm couples to WG2. 

 

Figure 6.14 EM-field propagation of a continuous wave at λ1 = 1.417 µm in a 3 × 1 

MUX/DEMUX 
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Figure 6.15 EM-field propagation of a continuous wave at λ2 = 1.55 µm in a 3 × 1 

MUX/DEMUX 

 Next, the study of transmission at the output ports of WG1 and WG2 was carried 

out. Variation of the transmission with normalised frequency, when the central 

waveguide and WG2 are separated by five rows of rods to prevent unwanted back and 

forth coupling between the adjacent waveguides, with two embedded microcavities, is 

shown in Fig.6.16. Transmission in the output ports of WG1 (P1), and WG2 (P2) are 

shown with dotted, and solid curves, respectively.  
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Figure 6.16 Transmission coefficient variation in output ports against normalised frequency 

 

It can be observed that in port I transmission is very low when the normalised 

frequency is around 0.3877 a / λ and the optical power is transferred to WG2. However, 

when the normalised frequency is increased to 0.4241 a / λ complete power is 

transferred to port I. Similar behaviour is observed in port II, transmission is very high 

when the normalised frequency is at 0.3877 a / λ, while it is very low when the 

normalised frequency is increased to 0.4241 a / λ and the optical power is transferred to 
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WG1. For the normalised frequency of 0.3877 a / λ the transmission in port II increases 

to its maximum of 82.3%, shown with a solid curve.  

This phenomenon can be explained by the strong coupling between the 

microcavities and the selected wavelength. Transmission in port I increases substantially 

as the normalised frequency is increased to 0.4241 a / λ up to its maximum of 70.6%, 

shown with a dotted curve. The output power rations at f1 = 0.3877 a / λ and f2 = 0.4241 

a / λ are 14 and 8 dB, respectively. The output power ration of this newly designed 3 × 1 

MUX/DEMUX is much higher than other multiple output ports devices reported in 

literature [30], and [65], and [66]. The optical efficiency and wavelength directionality 

of the 3 × 1 MUX/DEMUX is strongly dependant on the geometric parameters of the 

microcavities, and the position they are placed in with respect to the adjacent 

waveguides and the wavelength of particular interest. 

 

6.5 Summary 

In this chapter the successful novel designs of MUX/DEMUX photonic crystal 

structures that utilise the coupling length of the waveguide to enhance performance and 

increases selectively of the device have been presented. The MUX/DEMUX PhC design 

can be used as a basic building block for more complicated structures. This building 

block was extensively investigated in isolation, 2 × 1 MUX/DEMUX, and a more 

complex design, 3 × 1 MUX/DEMUX, and has proven to be extremely competitive with 

other work in literature [30], such that certain wavelengths can be selected from an input 

signal using the concept of coupling length and taking it into account when designing 

the appropriate imbedded microcavities. 
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Photonic crystal switching devices have proven to live up to their high potential, 

especially in optical wavelengths. Here, they have been used to design and implement 

MUX/DEMUX devices, however, they have rarely been explored in the THz range, the 

following chapter looks at investigating THz ring resonators based on photonic crystals. 
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Chapter 7  

Photonic Crystal Terahertz Ring 

Resonator 

 

 

7.1 Introduction 

This chapter describes terahertz waves and the use of PhCs in the THz region. 

Some applications of PhC THz wave devices will be introduced and discussed in detail 

in this chapter. These devices include cavities, and ring resonators separating two 

waveguides such that input signals propagate along the input waveguide, couple into the 

ring resonator and then through to the output waveguide, for a selected wavelength, at 

the selected output port. The numerical technique used for the design is the CE-ADI-
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FDTD with PML boundary conditions. 

 

7.2 THz Background 

Terahertz waves are electromagnetic waves with frequency between the 

microwave and infrared regions of the spectrum. It is not visible, yet, THz warmth can 

be felt as it is adjacent to the far-infrared radiation on the spectrum. Although THz 

waves are naturally available, their electromagnetic spectrum has not been investigated 

as heavily as adjacent regions on the spectrum, microwave and infrared [67]. This is 

largely because of the practical difficulties required in manufacturing THz sources and 

detectors that are highly efficient and tightly compact, which lead to it been otherwise 

known as the THz gap [68]. The manufacturing difficulties are mainly due to the lack of 

natural materials with appropriate response properties at THz frequency ranges. 

Nevertheless, researchers have recently invested much resources and attention into this 

technological gap, potential applications include security screening, military detection, 

medical diagnosis, biological sensing, radio astronomy, and high speed communication 

[69 - 72]. 

In order for THz gap to diminish, it is necessary to develop components and 

devices that respond appropriately in the THz range. This gap means that significant 

devices have not yet been fabricated, nor even designed. Such devices include switches, 

modulators, phase shifters, and multiplexers/demultiplexers [73]. 

This THz range/gap is where the optics and electronics meet. Below the gap are 

electronic technologies and above the gap are photonics and optics. 
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7.3 Terahertz Applications and Properties 

7.3.1 THz applications 

The THz spectral range of 30 µm to 3 mm has many special features associated 

with fundamental physical processes such as rotational transitions of molecules, where 

the electromagnetic field exerts a torque on the molecule, molecular vibrational motions 

of organic compounds known as vibrational spectroscopy, which measures transitions 

from one molecular vibrational energy level to another, lattice harmonics in solids, and 

intraband transitions or intersubband absorptions in semiconductors and quantum wells 

[67]. 

THz waves show very high atmospheric opacity, where the main cause of THz 

attenuation in the atmosphere is water vapour. Fig. 7.1 displays the spectral range that 

THz occupies, and shows the atmospheric effects upon the spectrum. 
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Figure 7.1THz range in the electromagnetic spectrum, and the corresponding atmospheric 

transmission, data from [69]  

  

7.3.2 THz properties 

In general, a waveguide is a transmission instrument used to carry 

electromagnetic waves from the source to the destination with insignificant losses. As 

explained in chapter 2, a waveguide in photonic crystals is particularly designed by 

inserting a line of defects within the periodic lattice. 

The conventional waveguide used near the lower THz range, in the microwave 

range, is the hollow metal pipe, while optical fibre is the dominant means of wave 

guiding in optical communication. Such technologies have been researched and 
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investigated for the purposes of implementing in the THz range. However, these 

techniques use unsuitable materials that cause high absorption of the THz waves, 

therefore, artificial materials have been explored. These artificial materials mainly 

include metamaterials [74], photonic crystals [73], and plasmonics [75]. Due to the 

nature of this research, and the many attributes of photonic crystals in channelling 

electromagnetic waves, these PhCs have been heavily investigated for the purpose of 

designing, modelling, and simulating THz waveguide switching devices that are highly 

efficient in transmission and tightly compact in design. 

 

7.4 THz Ring Resonator Cavity 

The two-channel ring resonator based on a PhC waveguide coupler considered in 

this study consists of a background dielectric of Silicon Oxide (SiO2) with periodic 

holes in a square lattice. The SiO2 used in the structure has refractive index 1.5 in THz 

range with negligible absorption [71]. All holes were filled with electrorheological 

fluids, which have a phenomenon that fluidity of liquids such as silicon oil can be 

modified by application of an electric field. Electrorheological fluids using polyaniline 

have a refractive index that varies from 4.848 to 4.393 at THz range by applying an 

external electric field of 2.8 V/mm with a response time of 100 µs [71]. 

The radii of the polyaniline holes is r = 0.185a where a is the lattice constant, a 

= 68.75µm. The PBG ranges from the normalised frequency units (a/λ) 0.20 to 0.29, 

where λ is the wavelength in vacuum. The design of the two-channel PCRR in [76] is 

investigated. This structure has been initially reported by Maleki et al. [76], where the 

waveguide coupler consists of two parallel photonic crystal waveguides, WG1 and 
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WG2, separated by a 5 × 5 square ring resonator, the ring resonator is as shown in 

Fig.7.2. Since the square ring has sharp corners, there is a counter propagating mode 

resulting from back reflection. In order to minimise this effect, an extra hole is added at 

the centre of the unit cell in each corner creating a semi-square ring.  
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Figure 7.2 Schematic diagram of a 5 × 5 

 

All the resonant modes in this photonic crystal ring resonator can be excited as 

reported in [73] by inserting a modulated Gaussian pulse with spectrum covering the 

entire PBG inserted in an asymmetric direction of the structure. With several detectors 

placed in the ring resonator, the electric field can be monitored at any time step, and at 

Photonic Crystal Terahertz Ring Re

Schematic diagram of a 5 × 5 square ring resonator 

All the resonant modes in this photonic crystal ring resonator can be excited as 

reported in [73] by inserting a modulated Gaussian pulse with spectrum covering the 

entire PBG inserted in an asymmetric direction of the structure. With several detectors 

ced in the ring resonator, the electric field can be monitored at any time step, and at 
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All the resonant modes in this photonic crystal ring resonator can be excited as 

reported in [73] by inserting a modulated Gaussian pulse with spectrum covering the 

entire PBG inserted in an asymmetric direction of the structure. With several detectors 

ced in the ring resonator, the electric field can be monitored at any time step, and at 
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the end the fast Fourier transform of the received signal can be derived, the electric field 

propagation and spectrum are shown in Figures 7.3 and 7.4, respectively. 

 

Figure 7.3 Electric field propagation in the 5 × 5 photonic crystal semi square ring resonator 
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Figure 7.4 Spectrum of the 5 × 5 photonic crystal semi square ring resonator 

 

It can be noticed from figures 7.3 and 7.4 that the resonant modes are supported 

by the PBG and that the spectral response has many peaks that are the resonant 

frequencies of the structure. In comparison with point defects, such a structure has 

multi-modes therefore offering more flexibility in mode design. 
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7.5 THz Ring Resonator Switch

The WG coupler that consists of two parallel photonic crystal waveguides, WG1 

and WG2, separated by a 5 × 5 

shown in Fig.7.5. 

Figure 7.5 5 × 5 Photonic crystal semi square ring resonator switching device

 

This structure was selected to enable direct comparison between the design 

results here and those recorded in [73]. 

A Gaussian shaped profile was modulated by a continuous wave source i

with the wavelength fixed to 
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The WG coupler that consists of two parallel photonic crystal waveguides, WG1 

and WG2, separated by a 5 × 5 semi-square ring resonator, the ring resonator is as 

5 × 5 Photonic crystal semi square ring resonator switching device

This structure was selected to enable direct comparison between the design 

results here and those recorded in [73].  

A Gaussian shaped profile was modulated by a continuous wave source i

with the wavelength fixed to λ = 268.55 µm. This source was used to excite the structure 
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The WG coupler that consists of two parallel photonic crystal waveguides, WG1 

square ring resonator, the ring resonator is as 

 

5 × 5 Photonic crystal semi square ring resonator switching device 

This structure was selected to enable direct comparison between the design 

A Gaussian shaped profile was modulated by a continuous wave source in time 

. This source was used to excite the structure 
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in Fig.7.5.  The signal propagated in the structure, such that the wave coupled from the 

input waveguide to the output waveguide via the ring resonator. Fig.7.6 illustrates the E-

field propagation in the structure that confirms the results in [73]. 

 

Figure 7.6 Electric field propagation without external electric field 

 

In order to demonstrate the switching performance of the structure of Fig.7.5, the 

electric field distribution at steady state without applied external electric field is as 
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shown above in Fig.7.6, while the electric field distribution at steady state with applied 

external electric field is as illustrated in Fig.7.7. 

 

Figure 7.7 Electric field propagation with external electric field applied 

 

It is clear that at normalised frequency of 0.256, which is the resonant frequency 

of the ring resonator, the input lightwave is coupled to the output at port II. However, 

when a suitable voltage is applied to the electrodes of the electro-optic switch the 

lightwaves of the output at port II are switched to output at port I. 
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7.6 Improved Design of THz Ring Resonator Switch 

In order to improve on the performance and coupling between the two 

waveguides of this structure, which was reported to have a transmission of 83.38%, 

several solutions can be implemented. In [30] and [64] dielectric holes/rods with 

different refractive index have been used in order to improve trapping photons and 

controlling the lightwave. However, this solution requires the use of different dielectric 

material which can be difficult to realise practically. The optimisation approach taken in 

this study was to introduce defects in order to better trap photons and enhance 

controlling the lightwave. Several defects were introduced with careful geometrical 

consideration so as to optimised the efficiency of the device in terms of the ratio of the 

output signals port II to port I. Five tests were carried out in order to thoroughly 

investigate the effect of inserting defects into the system 

 7.6.1 Four-sided wall cavity 

First, the radius of the holes around the parameter of the semi square ring 

resonator was varied from its original value of r  = 0.185a to selected radii values 

ranging from r = 0.16a to r = 0.20a, Fig.7.8 illustrates the schematics of this switch. 

Then, the continuous wave used above was inserted into the structure and the efficiency 

of the output signal ratio of port II to port I was recorded. The results are displayed in 

Fig. 7.9. 
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Figure 7.8 Schematics of the PCRR with the holes around the RR varied in radius

 

Physically, the size of th

and then replacing it with a new smaller hole from the same material.
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Schematics of the PCRR with the holes around the RR varied in radius

Physically, the size of the hole can be changed by removing the original holes 

and then replacing it with a new smaller hole from the same material.
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Schematics of the PCRR with the holes around the RR varied in radius 

by removing the original holes 

and then replacing it with a new smaller hole from the same material. 
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Figure 7.9 Radius of the holes surrounding the ring resonator is varied. 

 

Fig. 7.9 shows the effect of the defects inserted into the ring resonator structure 

illustrated in Fig. 7.8. The performance, which is in terms of efficiency, clearly indicates 

that as the size of the defect rods varies, the efficiency changes such that the optimum 

output occurs at r = 0.18 a, producing an efficiency eff = 99.65 %. 

 7.6.2 Two-sided wall cavity 

In the second test, the radius was again varied, but this time, only the holes 

separating the ring resonator and the adjacent waveguides were changed. Again, the 

radius range was between r = 0.16a to r = 0.20a, Fig.7.10 illustrates the schematics of 

this switch. Then, the same continuous wave was inserted into structure and the 

efficiency of the output signal ratio of port II to port I was recorded. The results are 

displayed in Fig. 7.11. 
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Figure 7.10 Schematics of the PCRR with the holes separating the R

varied in radius
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varied in radius 
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Schematics of the PCRR with the holes separating the RR and the waveguides 
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Figure 7.11 Radius of the holes separating the ring resonator and the waveguides is varied. 

 

Fig. 7.11 shows the effect of the defects inserted into the ring resonator structure 

illustrated in Fig. 7.10. The performance, which is in terms of efficiency, clearly 

indicates that as the size of the defect rods varies, the efficiency changes such that the 

optimum output occurs at r = 0.18 a, producing an efficiency eff = 99.6 %. 

 7.6.3 Single-sided wall cavity 

In the third test, the radius was again varied, such that the holes separating the 

ring resonator and the adjacent output waveguide were changed. Again, the radius range 

was between r = 0.16a to r = 0.20a, Fig.7.12 illustrates the schematics of this switch. 

Then, the same continuous wave was inserted into structure and the efficiency of the 

output signal ratio of port II to port I was recorded. The results are displayed in Fig. 

7.13. 
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Figure 7.12 Schematics of the PCRR with the holes separating the RR and

varied in radius
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Schematics of the PCRR with the holes separating the RR and the output waveguide 
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Figure 7.13 Radius of the holes separating the ring resonator and the output waveguide is varied. 

 

Fig. 7.13 shows the effect of the defects inserted into the ring resonator structure 

illustrated in Fig. 7.12. The performance, which is in terms of efficiency, clearly 

indicates that as the size of the defect rods varies, the efficiency changes such that the 

optimum output occurs at r = 0.18 a, producing an efficiency eff = 99.8 %. 

 7.6.4 Corners cavity 

In the fourth test, the radius was again varied. The holes at the corners of the ring 

resonator were changed. Again, the radius range was between r = 0.16a to r = 0.20a, 

Fig.7.14 illustrates the schematics of this switch. Then, the same continuous wave was 

inserted into structure and the efficiency of the output signal ratio of port II to port I was 

recorded. The results are displayed in Fig. 7.15. 
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Figure 7.14 Schematics of the PCRR with the corner holes of the RR varied in radius
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Schematics of the PCRR with the corner holes of the RR varied in radius 
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Figure 7.15 Radius of the holes at the corners of the ring resonator is varied. 

 

Fig. 7.15 shows the effect of the defects inserted into the ring resonator structure 

illustrated in Fig. 7.14. The performance, which is in terms of efficiency, clearly 

indicates that as the size of the defect rods varies, the efficiency changes such that the 

optimum output occurs at r = 0.18 a, producing an efficiency eff = 98.9 %. 

 7.6.5 Single-sided wall and single corner cavity 

In the fifth and final test, the radius was again varied such that a combination 

was used where the holes separating the ring resonator and the output waveguide were 

changed as well as the corner hole at the transition point between the input waveguide 

and the ring resonator. Again, the radius range was between r = 0.16a to r = 0.20a, 

Fig.7.16 illustrates the schematics of this switch. Then, the same continuous wave was 
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inserted into structure and the efficiency of the output signal ratio of port II to port

recorded. The results are displayed in Fig. 7.1

Figure 7.16 Schematics of the PCRR with the holes separating the RR and the output waveguide 

as well as the far corner hole near the input waveguide varied in radius
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inserted into structure and the efficiency of the output signal ratio of port II to port

recorded. The results are displayed in Fig. 7.17. 

Schematics of the PCRR with the holes separating the RR and the output waveguide 

as well as the far corner hole near the input waveguide varied in radius
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inserted into structure and the efficiency of the output signal ratio of port II to port I was 

 

Schematics of the PCRR with the holes separating the RR and the output waveguide 

as well as the far corner hole near the input waveguide varied in radius 
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Figure 7.17 Radius of the holes separating the ring resonator and the output waveguide as well 

as the corner hole at the transition point between the input waveguide and the ring 

resonator is varied. 

 

It should be noted here that the defect is introduced inside the 2D photonic 

bandgap structure on the crossing point between the input waveguide and the adjacent 

ring resonator. Also, on the far side of the ring resonator, the row of holes between the 

ring resonator and the output waveguide, defects are also inserted. Other holes were also 

investigated in terms of the optical efficiency, however, these particular holes illustrated 

in Fig.7.17, showed a better performance of the power efficiency compared to other 

holes, particularly, at r = 0.18 a, with an efficiency eff = 99.9 %.  
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7.7 Transmission Characteristics 

 7.7.1 Transmission in switch without added cavities 

After that, the study of transmission at each port of the device with four ports 

(input port, port I, port II, and port III) was carried out, the transmission is the ratio of 

the selected output port to the input port. Variation of the transmission with normalised 

frequency, when two photonic crystal waveguides are separated by a 5 × 5 semi-square 

ring resonator in its original reported form in [73] is shown in Fig.7.18.  

 

Figure 7.18 Transmission in the structure without defects. 

 

In Fig. 7.18 the transmission in port I, port II, and port III are shown with green 
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dashed, blue solid, and red solid curves, respectively. It can be observed that in port I 

transmission is very low and the optical power is transferred to the output waveguide.

 7.7.2 Transmission in switch with single-sided wall and single corner cavity 

The transmission across the three ports with the inserted defects from Fig.7.16 

was as shown in Fig.7.19.  

 

Figure 7.19 Transmission in the structure with inserted defects 

 

In Fig. 7.19 the transmission in port I, port II, and port III are shown with green 

dashed, blue solid, and red solid curves, respectively. It can be observed that in all ports 
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there is substantial transmission

transferred to the selected

7.7.3 Transmission in switch with defects and only two output ports

Fig.7.20 illustrates the structure with the defects and port III removed, this 

structure with the removed port is based on the work reported in Chein 

that the backward coupled wave can merge with the forward wave through constructive 

interference at a merging point in order to obtain maximum output power.

Figure 7.20 Schematics of the PCRR with port III removed

The corresponding E

structure with the inserted defects where po

and 7.21, respectively.
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transmission that subsequently affects the overall 

selected output port. 

Transmission in switch with defects and only two output ports

illustrates the structure with the defects and port III removed, this 

structure with the removed port is based on the work reported in Chein 

that the backward coupled wave can merge with the forward wave through constructive 

ference at a merging point in order to obtain maximum output power.

Schematics of the PCRR with port III removed 

The corresponding E-field propagation and transmission of ports I and II for the 

structure with the inserted defects where port III is removed are shown in f

, respectively. 
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that subsequently affects the overall optical power 

Transmission in switch with defects and only two output ports 

illustrates the structure with the defects and port III removed, this 

structure with the removed port is based on the work reported in Chein et al. [77] such 

that the backward coupled wave can merge with the forward wave through constructive 

ference at a merging point in order to obtain maximum output power. 

 

field propagation and transmission of ports I and II for the 

III is removed are shown in figures 7.20 
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Figure 7.21 Contour map of electric field propagation in the structure with port III removed 
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Figure 7.22 Transmission with inserted defects and removed port III 

 

 

In Fig. 7.22 the transmission in port I, and port II are shown with solid and 

dashed curves, respectively. It can be observed that the optical power is transferred to 

the output waveguide at the selected output port is optimum as port I shows almost zero 

transmission at the selected wavelength. 

Table 7.1 below holds a direct comparison between all three structures and their 

performances in terms of transmission and efficiency, which can both be expressed as in 

the equations below 

Transmission = (Input Port / Output Port) × 100 
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Efficiency     = (Port I / Port II) × 100 

Table 7.1 THz structure performance comparison 

Structure Transmission Efficiency 

Without defect 83.38 % 98.77% 

With defect 97.00% 99.90 % 

With defect, and port III removed 98.67% 99.97% 

 

From Table 7.1, it is observed that the new design, that includes the inserted 

defect and has port III removed, is the optimum design, surpassing the other two 

competitive designs including the structure reported in [73]. 

 

7.8 Summary 

 A new photonic crystal ring resonator design with a single line defect has been 

proposed to improve the demultiplexing efficiency and wavelength directionality. The 

CE-ADI-FDTD has been employed to analyse and optimise the performance of a new 

ring resonator based on photonic crystals. Mode selection operation has been 

numerically investigated by using 2D CE-ADI-FDTD. It has been demonstrated that the 

complete power transfer from one port to another can be achieved. The output power 

ratio has been significantly improved by introducing the line defect at the crossing point 

between the ring resonator and the WG2. By using CE-ADI-FDTD method waveguide 

parameters have been optimised to control and manipulate the flow of light in the THz 

range. 
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Chapter 8  

Conclusions and Future Research 

Directions 

 

 

 

8.1 Conclusions 

The work presented in this thesis is concerned with the properties and 

applications of photonic crystals. Accordingly, the numerical modelling in time domain 

of PhC based devices for MUX/DEMUX applications has been studied. Three designs 

in the photonic range and five in the THz range have been considered and compared to 

counterparts in literature. In Chapter 4, comparisons are made between PML and UPML 

in the context of the CE-ADI-FDTD technique. This is followed by introducing the 
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concept of accounting for error discretisation in PML boundaries; this provides rigorous 

truncation of the computational grid with a gradual attenuation.  

Chapter 5 presented an in depth assessment of the newly implemented PML that 

takes into account the error discretisation. Simulations results have proved the 

robustness, accuracy, and improvement of the new PML, where reflection coefficient 

from the boundary of a planar waveguide has been calculated to show the effectiveness 

of scheme.  

In consideration of existing switches based on PhC structure, enhanced 

alternative designs based on careful geometric tailoring of microcavities have been 

presented in Chapter 6 to improve the transmission, and sensitivity of such devices.  

 Chapter 7 has presented the improvement of existing THz region PhC based 

switches. This was achieved by introducing geometrically tailored defects between an 

output waveguide and an embedded ring resonator. All simulations were carried out 

based on the CE-ADI-FDTD method. 

 

8.2 Future Research Directions  

The recent burst in telecommunications and their technological advancement has 

led to a surge in demands for high quality, efficient electronic and optical systems that 

are extremely fast.  

The objective in the near future is two-fold; the development from 2D to 3D 

photonic crystal switching devices in order to include the analysis of radiation loss and 

polarisation conversion. Secondly, follow up this research by making use of the 

properties and characteristics of these designs in surface plasmonic dielectrics [78 - 81]. 
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Research related with PhCs and their performance can be carried out upon surface 

plasmonic dielectrics in the view of adapting the CE-ADI-FDTD code at hand in order 

to cope with dispersion within the field. This can then be followed by bridging the gap 

between PhCs and surface plasmonic dielectrics through validating the work with 

simulations of an elementary Surface Plasmonic Photonic Crystal (SP-PhC) structure, 

and designing SP-PhC device applications that are ready for fabrication. The aims and 

milestones set at the beginning of this project have been met, and the main contributions 

to knowledge generated in this work can be summarised as follows 

 

1. Became thoroughly familiar with the CE-ADI-FDTD numerical modelling 

technique and developed numerical technique for minimising discretisation error 

in PML boundary conditions, successfully implemented them within the CE-

ADI-FDTD method, and made a full assessment of its performance. 

 

2. Created novel design MUX/DEMUX photonic crystal based switches for the 

purpose of optical communication. 

 

3. Carried out the analysis of THz photonic crystal based ring resonators. 

 

4. Offered new highly competitive and highly efficient designs of PhC based THz 

switches. 
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