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Abstract

Microarray statistical analysis involves thousands of hypothesis tests to con-
sider at the same time. Empirical Bayes methods which are well-suited for
large scale inference problems seem to be the most appropriate approach for
microarray data. In this thesis we describe and compare Efron’s ([3],[1],[4])
nonparametric empirical statistical analysis and Newton’s and Kendziorski’s
([12]) parametric empirical statistical analysis on microarray data. Both
methods estimate Efron’s ([3],[1],[4]) local false discovery rate, which iden-
tifies interesting genes and provides information about the power of the ex-
periment.
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Chapter 1

Introduction

1.1 Technical foundations for DN A microar-
ray technology

Medical researchers have always sought new technologies and tools in order
to be as precise as possible in diagnosis and to personalize medical care. This
appeared likely to happen after the discovery of a vast amount of information
about the DNA sequence of the human genome and the emergence of DNA
microarray technology.

These two advances both in knowledge and technology encouraged biomed-
ical research concerning the study of gene expression and also helped to dis-
cover the connection between particular genes and specific diseases. Through
the compilation of knowledge about the DNA sequence novel genes could be
identified and studied.

However, the great importance of the revelation of the DNA sequence,
could not have been realized without the corresponding technological devel-
opment. The great amount of information about the DNA sequence should
be organized in such a way that the genes would be as quickly as possible
classified and identified. DNA microarray technology measures the amount
of transcription of a large number of genes and consequently helps to this
process of classification and identification of hundreds or thousands genes.

1.2 What is DNA

All the instructions for making the structures and materials the body needs
to function are included in DNA. Most living cells encode in their nucleus
DNA.



Scientifically DNA is a molecule which consists of two long strands of
nucleotides. There are four kinds of nucleotides which make up DNA: adenine
(A), thymine (T), guanine (G) and cytosine (C). Each strand of DNA is
made up from these nucleotides, linked together end to end; for example, a
fragment of a single strand of DNA could be: A T C C T G. When a single
strand finds its complement they hybridize; for example, the complement of
the above DNA fragment is: T A G G A C.

An important process that reveals unique properties of a cell is the tran-
scription of DNA information into messenger RNA (mRNA). mRNA is a
chemical found in the cytoplasm of a cell and more rarely in its nucleus,
similar to DNA, which is responsible for the transmission of DNA informa-
tion in the cell and for protein synthesis. The scientific name for the process
of the transmission of information contained in DNA into mRNA is “ gene
expression”. In other words, the abundance and the kind of mRNA in a cell
reveals which genes are expressed.

1.3 What is a DNA microarray?

DNA microarray technology was introduced in 1996 [9]. It was revolutionary
because it allowed scientists to analyse expression of many genes in a single
experiment and could be efficient when the sample of living cells to be studied
was small. A microarray experiment is used to measure gene expression
within a single sample or to compare gene expression among samples.

A DNA microarray could be either a plastic or a glass slide, often one by
three inches long, on which single stranded molecules of DNA are arranged
at different locations and every spot includes thousands of copies of a DNA
strand. A microarray measures gene expression by exploiting the ability of
messenger RNA (mRNA) to hybridize, ie to find its complementary single
stranded DNA on the chip.

Suppose that a drug company wants to determine whether the painkiller,
which is about to be introduced to the market, is harmful for the stomach.
This issue could be examined by comparing gene expression activity in stom-
ach cells on which the drug has been applied and stomach cells on which it
hasn’t, using DNA microarrays.

Necessary for the experiment is to construct or buy a microarray (or chip)
and to obtain two samples of stomach cells. The drug should be applied to
one of the two samples of stomach cells and not applied to the other sample.
In what follows we will call the former treated cells and the latter untreated.

From both samples, treated and untreated, messenger RNA (mRNA) is
extracted, which is the substance that makes up gene expression.



mRNA from the two samples is transcribed into cDNA. mRNA is used
as a template to generate more stable complementary cDNA. Fluorescent
labels are added to cDNA from treated and ¢cDNA from untreated cells.
cDNA from treated cells is labelled, say with red, and cDNA from untreated
cells is labelled, say with green.

The mixture of the red and green labelled ¢cDNA is applied to the DNA
microarray. When cDNA from the sample finds its complementary sequence
of bases on the chip, there is hybridization. Of course not all genes are
always expressed. The DNA microarray is scanned and a special computer
programme is used to calculate the red to green fluorescent ratio at each
spot and to analyse results. This ratio estimates any possible changes in
gene activity caused by the drug.

1.4 Application of microarray analysis

Microarray analysis, although revolutionary for microbiology and medical di-
agnosis, produces enormous amounts of data, that make statistical analysis
complicated using traditional techniques. Empirical Bayes methods seem to
be very effective in high dimensional inference problems and for this reason
they are likely to be an effective approach for statistical analysis of microar-
rays.

Empirical Bayes methods, in contrast to other statistical techniques, do
not apply statistical inferences for every gene separately but take advantage
of a kind of information sharing among genes. Inference for each component
is influenced by data from other components. This is what Robbins meant
by the term “borrowing information”[10].

1.5 Empirical Bayes methods

In microarray analysis, researchers intend to measure gene expression of a
vast amount of genes simultaneously. This can be done by using empirical
Bayes methodology. Empirical Bayes methods take into account the common
parameters and information shared by genes to make inferences about each
gene in terms of this shared information.

For example, let’s presume that y = (y1,...,ys) are measured expression
levels for every gene j, where j = 1,...,J and u = (p,...,py) is a vector
of the corresponding mean expression levels for every gene j, ie a hypothet-
ical profile. Suppose that mean expression level u; depends on an unknown
parameter A. In a classical Bayesian formulation p will be treated as ran-



dom with prior distribution 7(u|A), where the parameter )\ is assumed to
be specified or elicited without reference to the data y. We write f(y|u) for
distribution of y given u. Thus, in the Bayesian method, A would be assumed
known and posterior inference about u would be based on:

_ flylw)m (e N)
PUy: ) = TR N d

In contrast with the above analysis, Empirical Bayes methods regard A
as unknown and estimate it using the whole dataset y. To be more specific
A is estimated by maximizing the marginal likelihood

(1.1)

muN) = [ SN (12)
In this case inference about u is based on the estimated posterior distribution
< f 7 A
p(uly, §) = LT (19
m(y|A)

where ) is the maximum marginal likelihood estimate of A.

Empirical Bayes methods can be either parametric [8] or nonparamet-
ric [10]. In the parametric case, it is supposed that the prior 7(u|)\) has a
known parametric form, which means that the posterior distribution of u
can be easily calculated having estimated A. On the other hand, in the non-
parametric case the prior is not specified. Then, for example, the posterior
mean is expressed in terms of the unknown prior and the data are used to
estimate the posterior mean directly. We will see in chapter three reference
to Efron’s work in which essentially he estimates the numerator and denomi-
nator of (1.1) nonparametrically when each {45, corresponds to expressed and
non-expressed genes.
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Chapter 2

Parametric empirical Bayes
methods

In statistical analysis of microarrays, it is intended to describe gene expression
levels using a probability distribution for measurements. We will see that this
distribution describes each gene’s behaviour, depending on information given
from the other genes. This could involve the comparison between genes from
two possible conditions or a more complicated situation for more than two
cellular conditions. In what follows, we borrow the notation and method
used by Newton and Kendziorski [12].

2.1 Two conditions

Let x; = (z;1,%j2, ..., ;1) denote I expression measurements taken on gene
J, on either the original or on logarithmic scale. They are considered to be
independent random deviations from a gene mean value y;, arising from an
observation distribution

fobs(' |:u])

In the case where the gene expression measurements describe two different
conditions, the vector of observed expression values is partitioned into two
subsets s1, s2 where s, contains the indices from group k. If the distribution of
mean expression measurements is not affected by this grouping, then there is
equivalent expression EE; for gene j. In the opposite case there is differential
expression DE; for gene j.

Regardless of whether we are comparing two or more conditions, the null
hypothesis always refers to equivalent expression within genes.

Concentrating on the simple case of two conditions, the measurement

’ 11



distribution for equivalently expressed genes is given by

folas) = [ ([ ool

where 7(p) is the probability distribution of the true expression level ; of
any gene j. The corresponding distribution for differentially expressed genes
can be written

fi(z;) = fo(z41) folz;2)

where z;; are the measurements for group & = 1,2. The proportion of
differentially expressed genes is given by the unknown fraction p and the
remainder, 1 — p, describes the proportion of equivalently expressed genes.

It is clear that the marginal distribution of the data is a mixture of equiv-
alently and differentially expressed genes given by

pfi(z;) + (1 —p) fo(z;)

Inference about the proportion of differentially expressed genes is based on
the posterior probability that gene j is differentially expressed:

pfi(z;)
pfi(z;) + (1 - p) fo(z;)

Notice that this posterior distribution will depend on the other genes because
their measurements will be used to estimate unknown parameters in w(x) and

P

2.2 Multiple conditions

Usually research concerns comparison among multiple patterns of mean ex-
pression. Although it is more difficult to deal with, the process of depicting
data through a marginal distribution is quite similar with the simple case
of two cellular conditions. The gene patterns will not be just two, EE and
DE, but could be m distinct patterns. The null hypothesis in every situation
refers to the equivalent expression of genes. When the analysis concerns m
distinct patterns, marginal distribution is expressed by

Zpkfk(l'j)
k=0

12



where py is the proportion of pattern k& in the data and fi(z;) is the prob-
ability distribution of measurements for each pattern of expression. Inference
about expression pattern £ is based on the posterior of k pattern given by

N Prfu(z;)
plklz;) = > peo Prfr(z;)

2.3 Gamma-Gamma model

One parametric application of the general mixture model is the Gamma
Gamma model. The observation component is a Gamma distribution having
shape parameter o > 0 and a mean value p;, with scale parameter A = %
Az Lexp (—Az)
s\T|t5) =
fOb ( IN’J) F(Oé)

for measurements z > 0. The coefficient of variation in this case is La taken
to be constant across genes. The mean effect of gene j is distributed according
to m(u;) which in this case is an inverse Gamma. This means that with o
taken as fixed, A has Gamma distribution with shape parameter oy and
scale parameter v. Therefore the unknown parameters will be 8 = (a, ag, v).
The distribution for an equivalently expressed gene j in the Gamma-Gamma
model, of the measurements z; = (%1, 2j2,...,2;7) is:

(H{=1 ;)
(v + Tiy @) feteo)

_ vl (la+ ag)
(F(a))T(ao)
which is a specification of the general form

fo(il?],fEQ,.. . ,Zl?[) = k)

I
fole) = [ (L Festmtu)as

(The proof for the above expression is given in the Appendix.)

2.4 Log-normal-Normal model

In this model the observation component is distributed according to the log-
normal model and the mean expression of gene 7, 41, is normally distributed

13



with mean yg and variance 7¢. The coefficient of variation will be constant
and equal to \/exp (62) — 1 on the raw scale.

The density for fo(z1,z2,...,z;) will become Gaussian with mean vector
(Ko, fo, - - -, )" and covariance matrix equal to

E[ =0'2I[+T02J1

where I; is the I x I identity matrix and J; is the I x J matrix of ones.
(The proof for the above expression, restricted to one-dimension is given in
the Appendix).

2.5 EM algorithm

In order to obtain estimates of the proportion p and the parameters § =
(r, ap, v) for the Gamma-Gamma model and 6 = (g, 02, 7¢) in case of Log-
normal-Normal model, we use an EM algorithm.

The EM algorithm is used to calculate maximum likelihood estimates,
‘ignoring’ missing or unknown data. This algorithm involves two steps, the
E-step and the M-step.

In the E-step the conditional expectation of missing data, in our case
¢ = (91,P,,...,D,), is calculated given the observed components z =
(%1,22,...,2;) and current estimates of § and p, where ®; = 1 when gene j
is differentially expressed or 0 when gene j is equivalently expressed.

In the M-step a new value of € is estimated using maximum likelihood
based on the estimate of ® in the E-step. This process is iterated until
convergence.

More specifically, in microarray analysis the null hypothesis refers to
equivalent expression. The proportion p of equivalently expressed genes is
unknown. In order to estimate this proportion and the parameter 8, an EM
algorithm is used.

Initially, a pattern indicator ®; is defined. ®; = 1 when gene j is differen-
tially expressed and P(® = 1|p) = p and ®; = 0, when gene j is equivalently
expressed with P(®; =0[p) =1 —p.

The joint distribution of (z;, ®;) for gene j will be

P(z;,®;|0,p) = P(x;|®;,6,p)P(®;]6, p)

Writing f1(z;|0) for the probability distribution of measurements for a differ-
entially expressed gene given 6, and correspondingly fo(z;]6) the probability
distribution for an equivalently expressed gene given 6, the joint distribution

14



is given by

_ pfi(x;]6), for ; = 1
P(ZBj,‘I’jw,p)— { (1_;))]0;(:1:]'9)’ for (I)j:O

which can be written P(x;, ®;|6,p) = [pfi(z;]0)]%[(1 — p) fo(x;]0)]*~%. The
log-likelihood of 8, p given z and ® is

I
log(P(z, ®|6,p)) = ) _[®;(log f1(=;10)+log p)+(1—®;)(log fo(z;16)+log (1 — p))]

i=1

The E-step is performed to estimate 6, p as follows. The conditional
expectation of log (P(z, ®|6,p)) given x is:

E(log P(z, ®|0,p)|z) =

Z E(®j|z;,0,p)(log fi(z;]0) + logp) + (1 — E(®;|x;,6,p))(log fo(z;160) + log(1 — p))

(2.1)

where

pfi(z;|6)
pfi(z;0) + (1 — p) fo(z;]0)

Given current estimates %), p® for # and p we estimate E(®;|z;,0,p) by

_ P f1(z;|0®)
P f1(z5100) 4 (1 — p®) fo(z;|6®)

In the M-step we replace E(®;|z;,0,p) with <I>§-t) in (2.1) and find the
next estimate of 6, 8¢+ which maximizes

E(®;|z;,0,p) = P(®; = 1|z;,6) =

<I>§.t) = E(®;|z;,00,pM)

E(log P(z,® = 9(0,p = p®)|z)

Maximizing (2.1) with respect to p leads to the next estimate of p

I
1
(t+1) _ ®)
D = E (I’j
i=1

This process is repeated until convergence.

~l
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Chapter 3

Nonparametric empirical Bayes
methods

Nonparametric Empirical Bayes methods are very effective for statistical
analysis of microarray data. In this chapter it is intended to describe the
application of nonparametric methods using an example of microarray ex-
periment.

3.1 Example of nonparametric analysis

In order to demonstrate nonparametric statistical analysis, an example of a
microarray experiment will be presented. The following example is from [2].
The study concerns the comparison of gene expression levels between 24
patients with more aggressive stomach cancer (Type 2) and 24 patients with
less aggressive stomach cancer (Type 1). The aim of the study is to identify
those genes that were more active or less active across the two conditions.48
microarrays were used, one for every patient and 2640 genes were measured
for every microarray. A small part of those data is given in Table 5.1.
Assuming that the underlying data are approximately normally distributed,
the most appropriate way of testing gene expression levels for every gene i be-
tween the two conditions, Type 1, Type 2 would be by using the two sample
t-statistic. Taking that into account, it can be presumed that for every gene i
there will be a corresponding two sample t-statistic, y;. As in the parametric
Empirical Bayes analysis, in the nonparametric case the statistical analysis
is based on a simple hypothesis. Genes are divided in two categories: genes
that are interesting (differentially expressed) and genes that are uninterest-
ing (equivalently expressed). The former sometimes will be called non-null
and the latter called null. The proportion of “non-null” genes is p; and

16



the proportion of “null” is py = 1 — p; with prior densities f,(y) and fo(y)
respectively. The mixture density of y is :

f(W) = pr1fi(y) + pofo(y)

It is important to determine the posterior probability of “non-null” genes
given the data, which is given by:

P(“non-null”|y) = nfi(y) —1 - pofo(y)

f) f)

In contrast with the parametric model where the densities fy(y), f(y) and
the proportion of “non-null” and “null” genes p;, po can be easily estimated
using maximum likelihood, in the nonparametric model p;, po, fo(y), f(y) are
unknown and have to be estimated using more complicated methods.

In the example, to estimate the distribution f(y), a smooth curve is fitted
to the histogram of the 2640 y; values using a Poisson GLM fit (Figure 6.1).
This process is explained in sections 3.2 and 3.3.

The prior density of “null” genes, fo(y) is assumed to be a Student’s
t-distribution with 46 degrees of freedom. The appropriateness of the t-
distribution for fo(y) can be checked by using permutation methods (see
2)).

Finally, important for the estimation of the proportion of non-null genes
given the y values, is to estimate the proportion of “non-null” and “null”
genes py,po. P1,po are difficult to estimate without parametric assumptions
about the densities fo(y), f(y). However, taking into account that the pos-
terior probability of a non-null gene should be above or equal to zero, p; can
be restricted to:

[
Pzl fo(y)
for all y, or equivalently )
fly
Po = fo(y)

In conclusion, having estimated the densities f(y), fo(y) and the pro-
portion of “non-null” and “null” genes p;, py, the posterior probability of a
“non-null”gene can be estimated from:

pofo(y)
f(y)

P(“non-null”|y) =1 —

17



3.2 Poisson regression for density estimation

Estimates of probability densities such as f(y) can be constructed using max-
imum likelihood when the parametric family is specified or by nonparametric
methods such as the kernel density estimation. These two methods can be
combined by putting an exponential family through a kernel estimator. To
be exact, in order to obtain the estimator of a probability density f(y), ex-
ponential families are used and the probability density estimate will be of
the form:

f5(y) = foly) exp (Bo + But(y))

This formula includes two parts; an exponential term exp (G + f1t(y)) and
fo(y) a carrier density. The estimated probability density will be equal to:

£39) = folw) exp (fo + ut(w))

where fg(y) is a normal kernel density estimator, ¢(y) is the sufficient statistic
and [, B, are estimated by maximizing the likelihood [T’ fs(y:). Calcula-
tions concerning these specially constructed exponential families are usually
based to Poisson regression models introduced by Lindsey, (1974a, b). In
other words, Poisson regression is an effective way of fitting specially de-
signed exponential families by using generalized linear model software, such
as the glm function in R.

3.3 Example of Poisson regression estimation

The following example is from Efron and Tibshirani, 1996 [5]. Suppose that
y = (y1,...,Ye7) is a vector of 67 pain scores obtained from a questionnaire
administered to 67 women after an operation. y; with i = 1,2,...,67 runs
from 0 to 4 ie y; € [0, 4] where 0 = no pain and 4 = worst pain.

To estimate the probability density f (y), Poisson regression methods are
applied. Particular fitted densities fo(y) and f (y) are demonstrated in Figure
6.2.

The sample space [0, 4] is partitioned into 40 cells and every cell’s length is
0.1. The respective counts in each cell represented in Table 4.2 are s1, s, . . . , 549.
For example s; is the number of counts in [0,0.1], s, is the number of counts
in [0.1,0.2], etc.

It can be observed, that the sum of all counts is the total number of pain
scores ie 330 s; = 67. I Y = [0,4], ¥ = U2, V; and {fo(y),0e0} is a
family of probability densities on ) then the probability of observing y; on j
cell is 7;(0) = fyj foly)dy.

18



In other words, the number of counts at every cell s; can be thought as
s; ~ Py(pj(v,0)), where u;(7y,0) is the expected number of counts at cell j
ie pj(7y,0) = ym;(0), where v is a positive parameter.

Taking into consideration that s; ~ Py(u;(7y,0)) and using the specially
designed exponential formula f5(y) = fo(y) exp (Bo + Sit(y)), ui(7, 6) can be
written as

115(8) = 13 exp (Bo + but;)
where y; is proportional to 7} = fyj fo(y)dy and t; = t(y(;), is the value of
the sufficient statistic at the centre point y;) of interval j and v = exp (5)
is a free parameter.

If u;(8) is expressed in the log-scale, log u;(3) = Bo+ it +log 14§ which is
a formula for the general linear model. It can be observed that log us = X
(ignoring the term log u®), where X is the 40 x 2 matrix.

1 ¢
X=|:

=[]

In order to estimate fo(y) and f(y) it is necessary to estimate p;(3) =
u? exp (B, + Bit;) and B8 = (Bo,51), which are calculated using maximum
likelihood equations for every parameter. In this case these equations will be
summarised in:

The parameter vector is

X'[s — u(B)] =0
where
51
§ =
S40

and ,u(ﬁ) is the vector with j-th component equal to ,u? exp (xJB) (The proof
of the above statement can be seen in the Appendix)
To complete the estimation we calculate ,&? which is equal to:

i) = M(\)s

where s is the 40 x 1 vector



and M(X) is a 40 x 40 smoothing matrix. The ki element of M()) is

M) = o (1010

where y) = k“lg"" is the midpoint of cell ); and ¢ is the standard gaussian

density. Note that the larger A is the smoother will be the kernel estimate of
fo- In this particular case, A = 1 and ¢ is a positive constant, corresponding
to midpoint y), chosen to make M,,, the normal kernel smoother M for
the total s; = 67 counts, equal to 1. Having estimated ll? and g, it is very

simple to estimate fy(y) and f(y). fo(y) is nothing else but ﬂ? plotted as a
function of y; and f (y) is fi1; plotted as a function of y;) calculated from

fij = i1 exp{fo + fit;}

when t; = (y(j),y?j)), X is a 40 x 3 matrix for f(y), because in this case 3
has three components.

3.4 The local false discovery rate

An interesting approach to large scale inference problems is Efron’s approach
through local false discovery rate ([3], [1}, [6]). Initially, it is presumed that
the N genes in a microarray experiment are divided in two categories: “non-
null” genes and “null” genes. As we discussed before, pg is the prior for the
“null” genes and p; is the prior for the “non-null” genes. fo(y) and fi(y)
are the densities for the null and non-null genes, respectively. The mixture
density is:

fy) =pofoly) +p1fi(y)

and the local false discovery rate is defined to be the posterior probability of
being “null” given data y

pofo(y)
fly) -

The local false discovery rate is a useful tool for identifying non-null genes
or more generally interesting cases. Normally, the majority of genes in a
microarray experiment are null genes and the non-null genes are a small
proportion of the total cases. This means that py is near 1 (usually py > 0.90),

so that
o o(y)
fy)

fdr(y) = P{nullly} =

fdr(y)

20




Then it can be concluded, that cases with small fdr, usually are reported as
interesting. Efron ([1]) chooses the cutoff point to be 0.2; ie fdr(y) < 0.2.
When fdr(y) < 0.2, we can bound the posterior odds ratio as follows:

phly) LU 1-fhy) | 1-02  1-fdy)
pofo(y) "O_ff("% fdr(y) — 0.2 fdr(y) —

Taking into account that pg > 0.90 the prior odds ratio will be

pl

po 9
From the above, the density ratio

fi (y)
Toly) = %0

in favor of the “non-null” cases. On the contrary, if we take

and the prior ratio still

the Bayes factor will be only

f1(y)
fo(y) =

in favour of “non-null” cases. In applications, we will need to estimate
fo(y), f(y) and po to estimate fdr(y). Poisson regression will be used to
estimate f(y), but (as we will see in chapter 4) estimation of fy(y) and py is
more subtle and depends initially on the prior assumption that py is close to
1 and that the number of genes N is large.




Chapter 4

Nonparametric versus
parametric statistical analysis

Although parametric and nonparametric empirical Bayes methods are dif-
ferent, their application to microarray analysis depends on the same simple
assumption: genes are either differentially expressed or they are equivalently
expressed.

In this chapter, it is intended to clarify the differences between the two
methods and also to make them more comprehendable through their appli-
cation to data from a particular microarray experiment.

4.1 Application of nonparametric methods to
a microarray experiment

The following example is taken from Efron [1]. The methodology used is
called a “nonparametric Empirical Bayes method”.

In this microarray experiment, using the simple mixture model, genes
are divided in two categories, genes that appear to be interesting (differ-
entially expressed) and genes that appear to be uninteresting (equivalently
expressed). The former sometimes will be called non-null and the latter
called null. The proportion of null genes will be py and the proportion of
non-null genes will be p; = 1 —pg. The null density and non-null density will
be respectively fo(z) and fi(z). The mixture density from (3.1) is

f(2) = pofo(2) + p1f1(2)

with subdensities po fo(z) and pi f1(z), written as fi (2) and f;F(2). As it has
been stressed previously, this research focuses on estimating the probability
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of genes being null given the data. Efron ([3], [1], [6]) refers to this posterior
probability as the local false discovery rate, fdr,

_ pofo(2) [ (2)
(=) = 27 + pofo®) ~ S (@) (4.1)

In the example studied and discussed by Efron, 8 microarrays are used,
4 from HIV infected cells and 4 from uninfected cells. The total number
of genes being measured is 7680. For the comparison of HIV infected and
uninfected cells, every gene yields a two sample t-statistic ¢;, 7 = 1,. .., 7680,
each with 6 degrees of freedom. Let Fg(t;) denote the cumulative distribution
function of ¢;. The two sample t-statistic ¢; can be transformed to a z score

7 = O (Fg(t:)) (4.2)

where ® is the cumulative distribution function of a standard normal variable.
The histogram of the 7680 z-values of the microarray experiment is depicted
in Figure 6.3. Two curves have been fitted to the histogram. The beaded
curve estimates the null density fy(2) and the solid curve the mixture density
f(z). The null density fo(z) should be N(0,1) if ¢; has a t-distribution with
6 degrees of freedom under the null hypothesis. Unfortunately this is not
always the case. In some microarray experiments, as in the HIV experiment,
the theoretical null does not satisfactorily represent the density for the null
genes. In such cases an empirical null distribution should be fitted instead.
In the HIV experiment the empirical distribution for the null genes is taken
to be N(u,0?), where p and o is estimated from Efron [1] to be 0.10 and
0.74 respectively.

The estimation of an empirical null distribution is based on the “zero”
assumption, that null genes are concentrated mainly at the central peak of
the histogram where the z values are approximately zero. Normally, null
genes are the vast majority of the total of genes in a microarray experiment;
that is, we expect py to be large, usually above 0.9. Thus, null genes usually
concentrate at the central peak of the histogram of z-values, whereas the
non-null genes are at the extremes. Under-expressed genes appear on the
left of zero, while over-expressed appear to the right.

As it has been noted before, it is important to estimate the posterior
probability of null genes, the local false discovery rate, fdr. The process of
estimating fdr involves the estimation of the mixture density f(z) and the
estimation of the subdensity fJ(z). As discussed in sections 3.2, 3.3, the
mixture density f(z) may be estimated using Poisson regression methods.
The subdensity fi (2) is more challenging to estimate.

To estimate the subdensity fif (z) we will assume that fo(2) is N(g,0?)
and use the log of the estimated mixture density f(z) of the histogram of
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Figure 6.3. Taking into account that null cases are concentrated at the central
peak of the histogram, a quadratic curve can be fitted to log f (z) around
z = 0 to give estimates of pg, ;x and o2. This assumes that log f () around
z = 0 is approximately equal to log f0+ (z) (Figure 6.4). In other words, py,
p, o* are chosen to quadratically approximate the histogram counts near
z = 0 (Figure 6.3), because fy(z) is taken to be the density of some normal
distribution N(u,0?). The estimates of u,o? indicate whether or not the
theoretical null N(0,1) is suitable for a particular microarray experiment.
Of course in the case where it is assumed that fy(2) is N(0,1) it is only
necessary to select py to quadratically fit the histogram heights near zero.

In the HIV microarray experiment the theoretical null N(0,1) was not
suitable to describe the behaviour of null genes. This can be concluded from
Figure 6.4 and from the impossible value of p; = 1.15 which was estimated
from the quadratic approximation of Efron [1] to the histogram counts near
z = 0. In Figure 6.4 it can be observed that log f0+(z) when fp is N(0,1) is
even more dispersed than log f (2), which should not happen as f;" < f.

Taking into consideration that the theoretical null is not suitable for the
HIV microarray experiment and using the methodology discussed above, py is
estimated to be 0.917 and the empirical null is estimated to have probability
density function

fo(z) = ¢-010074(2) (4.3)
where
it (a=mY
(p”)a(Z)— We p( 2( o ) > (44)

denotes the N(u,o?) density.

According to Efron (1], the assumption that null genes should be con-
centrated near z = 0 is more valid when pg exceeds 0.90 because then the
percentage of 0.10 or less of non-null genes only has a small effect on the
estimate f;(z) of the numerator of the fdr.

The solid curve in Figure 6.5 is the estimated fdr curve for the HIV data
and the dashed curve, which estimates the effect size density for the non-
null cases [1], will be discussed later in this section. As it has been noted
in section 3.4, non-null genes are reported when the estimated fdr < 0.2.
The estimated proportion of non-null genes is p; = 1 — 0.917 = 0.083 which
means that we would expect 0.083 x 7680 = 637 non-null genes to be reported
from the experiment. However, only 71 genes on the left of zero, those with
z; £ —2.34, have fdr < 0.2 and only 115 genes on the right of zero, those
with z; > 2.17, have fdr < 0.2. This means that although we expect to
identify 637 non-null genes, only 186 are identified as such. We consider this
observation in more detail in section 4.3.
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4.2 Estimation of the effect size density

Questions concerning the power of a test procedure, i.e the ability of the
experiment to identify non-null cases and whether or not it is necessary
to increase the experiment’s size can be sufficiently answered through the
estimation of the effect size density gi(x). Suppose that the expected z-
values or true scores p are randomly generated in two varieties: the null true
scores and the non-null true scores. The effect size density of null scores is
go(1) and the effect size density of non-null scores is g; (11). To describe more
clearly the estimation of g;(u) it will be assumed that null true scores and
non-null true scores are generated from a one group model:

p~g(p) and  zlp~ N(u,0f) (4.5)

with o3 fixed. Using the above model, the mixture density of z-scores can be
expressed as f(z) = g * N(0,02) where * stands for the convolution of the
two distributions. This will be the case if we can write 2 = yu+ ¢ when u and
€ are independent with p ~ g;(u) and € ~ N(0,02). The mixture density of
z-scores is f(z) = fi(2) + f'(2), s0 fif (2) = f(2) — f¢ (2) and g1() can be
obtained by inverting the subdensity f;(z) or by inverting fi(z) considering
that fi(z) = f_t: f(zlu)g1(n)dp. Efron [1] applied to f(z), Brown’s [11]
and Stein’s [7] formula for the posterior mean function E(y|z) under the one
group model described above

ulz ~ (2 + o5l (2), 05 (1 + 03l"(2))) (4.6)

where I(z) = log f(z) and !, I” indicate first and second derivatives. (The
proof of 4.6 is described in the Appendix). When the above formula is applied
to fi(z), li(z) = log fi(2), the posterior mean function and the posterior
standard deviation function of u are :

a(z) = z + a2li(2) b(z) = oo(1 + 02l!(2))?
The posterior density of y given z for a non-null gene is

(1) (2)
gilulz) = fi(2)

Assuming that f(u|z) is N(a(z),b%(2)), a first guess for g (u) is

0 oo
aO(p) = /_ J1(2)Pa(z) b0 () dz (4.7)

o0
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To accept ¢\* (1) it is important that O = ¢V« N (0,02) is close to fi.

To test this Efron uses the following measure of discrepancy from fi:

+o0 _ ¢(0) 2))2
D(fl,ffo))=/_ (fl(z)fl(;) G, (4.8)

When fl(o) = g§0) * N (0,02) is not equal to f), g§°) is updated to gfl) and then
it is checked whether fl(l) = ggl) * N(0,02) is close to f,. Using ggo)(,ulz) =

(0)
R e ('?off")’ ©) we update ¢ to g{" by noting that
3 z

400
o () = / 00 (ul2) f(2)dz (4.9)

and /" = gi") ¥ N(0,03)

This process is iterated until f™(z) = ¢/ « N (0,02), where n is the
number of iterations, is approximately f; or in other words the distance,
D(f, 1(")) between fl(") and f; is small. Beginning with estimates of f;, g§°’
and fl(o) and iterating the procedure of updating g{") and estimating fl(") =
g§") * N(0, 03) several times is how the effect size density g;(u) in Figure 6.5
was computed by Efron.

Although the above procedure was efficient in estimating the effect size
density g1(u) Efron’s 2005 study [4] describes easier techniques to estimate
the non-null density f;(z), which we now discuss. Important for both meth-
ods that he describes as applied to the data from the HIV experiment is to
divide the 2-value sample space into 79 bins, each of width A = 0.1. The bin
counts $i, 82,...,57 sum to 7680, the total number of z-values in the HIV
experiment. If the probability density of z-values is f(z), the probability
density at midpoint z() of bin k will be f(2(x)) = fi and the respective local
false discovery rate fdr(z()) = fdry. As it was noted in section 3.3, the sy
may be regarded as independent Poisson counts

SkNP()(,uk) k=1,2,...,79

where p;, = 7680 x 0.1 x f is the expected number of cases in bin k. The non-
null density fi(z) can be estimated using the fdry, fi estimations for every
bin or by fitting a regression curve to what Efron calls thinned counts, and
will be explained later in this section. The first method uses the following
facts:

FH(2) = () = (1= fdx(2)) £ (2) (4.10)
n= [ fEde= [ ) (4.11)
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so that

) (1= () (2

fi(z (4.12)
h
Using the notation above, we can approximate p; by
79
pr=Y (1—fdre)fi (4.13)
k=1
and fl(z(k)) by
1—
fup = L Hr ;drk)f : (4.14)
1

where p; is the proportion of non-null cases and fi, is the non-null probability
density at midpoint z() of bin k.

Estimating fi, for every bin separately is how the non-null density f;(z)
was drawn at Figure 6.6. However, this procedure involves the fitting to all
7680 cases, something that is not necessary if Poisson regression methods
can be used to estimate f;(z).

Efron [4], uses Poisson regression methods to fit a regression curve to
what he calls thinned counts. Thinned counts estimate the number of non-
null cases in each histogram bin. The thinned count for bin k is equal to
S1k = (1 —fdrg) sk which can be easily explained when we note that (1 —fdry)
is the probability of a non-null case in bin k and s, is the number of cases in
bin k. For each of the 79 bins there are s11, 812, ..., S179 respective non-null
cases which, as we explained before, are assumed to be independent Poisson
counts

sk ~ Po(pk)

where pi; is the expected number of non-null cases, or the expected thinned
counts in bin &, which is approximately 7680 x 0.1 x fix, where 7680 is the
total of 2-values in the HIV experiment, 0.1 is the width of every bin and fi
is the non-null density at midpoint zy of bin k. For the HIV experiment it is
supposed that log p1 is a cubic polynomial function, i.e log i, = Z?:o B;27.
Using the Poisson regression methodology described in section 3.3, a regres-
sion curve is fitted to the thinned counts representing the over-expressed
non-null genes; see Figure 6.6. The same methodology can be used to fit a
regression curve to the under-expressed non-null genes.

4.3 Power estimation
An important issue is the power of a microarray experiment to identify non-

null cases. In the HIV example we would expect that the proportion of non-
null genes to be identified is p; = 0.083. In other words, 0.083 x 7680 = 637
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genes are estimated to come from g¢;(u). However, only 186 non-null genes
are reported. This suggests poor power for the experiment.

Initially the low power of the experiment can be explained from the graphs
in Figure 6.5 through the heavy curve of fdr and the dashed curve of g;(u).
As it was said before, genes with fdr < 0.2 are reported as non-null. In
Figure 6.5 it can be observed that the total of non-null genes with fdr < 0.2
are only 186. Although 637 genes are estimated to come from g;(u), the two
modes of g;(p1), the mode of under-expressed genes and the mode of over-
expressed genes, correspond to fdr values exceeding 0.4, which is too large
for identifying non-null genes.

The power of a microarray experiment can be assessed not only graphi-
cally but can also be estimated. A simple measure of the power of an exper-
iment is “Efdr”, the expectation of local false discovery rate for the non-null
genes, given by

+oo
Efdr :/ fdr(2) f1(2)dz (4.15)
where, as before .
10 = | ozl (416)

Large values of Efdr suggest low power while small values lead to the conclu-
sion that the ability of the experiment to track non-null cases is satisfactory.
If it is considered that fdr < 0.2 indicates non-null genes, it can be quite clear
why small values of Efdr indicate substantial power whereas large values of
Efdr suggest low power. For example if Efdr = 0.4, forty percent of the genes
that appear to be interesting are actually null genes. This value indicates the
low ability of the experiment to identify “non-null” cases. We will discuss
how Efdr may be estimated later in this section.

Another way to measure the power of the experiment is to check whether
under-expressed and over-expressed genes appear on the list of genes having
fdr < 0.2. This can be done by estimating the probability of under-expressed
genes having fdr < 0.2 and separately estimating the same probability for the
over-expressed genes, the non-null genes of the right mode of g;(y). For ex-
ample in the HIV experiment the estimated probability of an under-expressed
gene appearing on the list of genes having fdr < 0.2 is

[ o (=222 a1 (wa

|7 ot

P(z < —2.34|Non-null) = (4.17)

which is equal to 0.210 and the respective probability for an over-expressed
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gene is
tO 217
I (=5 1) g1 () dp
P(z > 2.17|Non-null) = =2———
Io g1(p)du

which is 0.43. Both results suggest the low power of the HIV experiment. The
number 0.210 for the left mode of g;(u), suggests that only twenty-one per-
cent of the under-expressed genes have fdr < 0.2 and 0.43 for the right mode
indicates that only forty-three percent of over-expressed genes have fdr < 0.2.
This is the reason that although the total of non-null genes is estimated to
be 637, only 186 are identified. Observe that (1 — (0.21 + 0.43)) 637 ~ 229
which is close to the 186 identified as non-null.

Efron’s 2005 research [4] applies improved methods to estimate the power
of a microarray experiment and also investigates how an increase in the total
number of subjects in the HIV study would improve its ability to track non-
null cases. Both subjects are explained later on.

As discussed in section 4.2, fy, is the non-null probability at midpoint (k)
of bin k and fdry is the local false discovery rate at z). Using the notation
given in section 4.2, it can be concluded that the expected false discovery
rate can be approximated as

(4.18)

Efdr = Z fdry fi = Zfd fdr’“)f L (4.19)

by considering (4.5). As stated previously, small values of Efdr suggest sub-
stantial power and large values of Efdr indicate that the experiment’s ability
to identify non-null genes is not satisfactory.

Moreover, in order to answer to the question whether an increase in the
number of subjects in the HIV experiment would improve its power, Efron
assumes that for gene i, the mean and variance of z;|p is (11;, &) where o2 does
not vary with the true score ;v (homoskedastic model). z;|u has expectation
p = 0 for the null cases and consequently z]|u is (0,02). For the non-null
cases 4 has empirical mean and variance (o, 3?). The respective marginal
mean and variance of z for non-null cases is (A4, B%) = (a, 3% + 02), (The
proof of this statement is given in the Appendix).

Suppose that [ is the number of independent replicates of z;|u. Then
considering the new variable [ the model for z]|u values will be

_ ; 7; (4.20)
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with mean and variance (v/Iy;,0). (This has been proved in Appendix).
Considering ! in the new model, the distribution of the null cases will still
be (0,08). The marginal mean and variance of z* for non-null cases will be
(A*, B¥?) = (Vla, 3%+ ¢2). The non-null marginal mean and variance of z*
can be estimated using Efron’s formula

2 =VIA+d(z - A), P=l-(1-12 (4.21)

(The proof of the above statement is given in Appendix). The marginal mean
and variance (A, B?) in the above formula are estimated using the thinned
counts that we have explained in section 4.2. How the variable [ affects non-
null z-values on the right-side of the heavy curve f;(z) in Figure 6.6 and how
it affects non-null z-values on the left-side of the f(z) curve, is estimated
using the thinned counts on the right-side and on the left-side respectively.
To be more specific, the empirical mean and variance (A, B?) are estimated
separately for non-null z-values at the right-side of curve f;(2) in Figure 6.6
and for non-null 2-values on the left-side of this curve, using the respective
thinned counts. For example, using the right-side thinned counts, i.e the
ones that express the number of over-expressed genes in bin k, the empirical
mean and variance of the right-side non-null z-values are:

Z2 S
A= Z_g(?ﬂ and B?= L Fpsie A2 (4.22)
1k 2. Sk

Of course sy is the sum of the thinned counts which correspond only to
the bins at the right-side of the f; curve. The same applies for the left-side
calculations. The empirical mean and variance for the right-side of non-null
cases in the HIV example are estimated to be A = 2.23 and B? = 0.872.
Having estimated A, B? and assuming that o2 = 0.7352 we can estimate
the right-side non-null z*-values for [ = 1,1.5,2... using the formula 2* =
VIA+d(z— A). The process is the same for estimating the left-side non-null
2",

The above calculations allow us to assess how large an experiment should
be to have effective power (see Efron [4]).

4.4 Application of parametric statistical anal-
ysis

Parametric statistical analysis is based on the same two group model as
the nonparametric statistical analysis. The basic difference between the two
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methods is that in the former both the observation component z|u and the
mean component y have a known parametric form. The parameters’ esti-
mates are obtained either directly using maximum likelihood of the known
mixture density or indirectly using EM algorithm.

Initially we used maximum likelihood to obtain estimates of the param-
eters in the HIV experiment, assuming that z|u is N(u,0?). For under-
expressed genes p is N(gy,0%), for null genes p is N(uz,02) and for over-
expressed genes g is N(us,03). The distribution of under-expressed genes
is fi(z) which is N(uy,0? 4+ o?), for null genes is f2(z) which is N(ug, 02 +
0?) and for over-expressed genes the distribution function is f3(z) which is
N (u3, 0% + 0%) (The proof of this statement is given in the Appendix). The
mixture density at z is:

f(2) = p1fi(2) + p2fa(2) + p3fs(2) (4.23)

where p1, po, ps are the proportions of under-expressed, null and over-expressed
genes respectively.
The log-likelihood (based on J genes) for 6 = (w1, pa, u3, 02, 02, o) and

/ iq
p = (p1,D2,p3), where o = 02 + 02, 0! = 0% + 0% and 0 = 0} + o2 is:

J
log P(z]0,p) = Zlog f(z) (4.24)

The initial estimates we used for 6 = (u1, g, u3, 072, 02, 0%2) and for p =

(p1, P2, p3) were 00 = (—2,0,2,1,1,1) and p@ = (0.1,0.8,0.1) respectively.
The function optim in R provided updated estimates that maximize the
likelihood P(z|6,p). The estimates of § and p converged to:

(—1.5597,—-0.077,1.935919,0.7388,0.75288, 1.267787) and (0.065649, 0.9010,
0.0333), respectively. However, by comparing Figure 6.7 with Figure 6.5 we
see that the results using the above parametric model for the HIV data do not
agree with Efron’s results. According to Efron the probability of genes being
null given the data (local fdr) is approximately 1 for z close to zero and the
respective percentages of under-expressed and over-expressed genes in that
area are approximately zero. This can be observed from the shape of the solid
curve of fdr and the beaded curve of g, (1) around zero in Figure 6.5. In Figure
6.7 we notice that both the blue and red curves, which are the probability
of under-expressed genes given the HIV data and the probability of over-
expressed genes given the HIV data, respectively, are minimized around zero
for a smaller area than the one that appears in Efron’s Figure. Moreover,
according to Efron’s results, the probability of under-expressed genes given
the data is much larger compared to the probability of over-expressed genes
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given the data, as is evident when the mode of the former is compared with
the latter and vice versa in Figure 6.5. In Figure 6.7 the probability of
under-expressed and over-expressed genes given the data does not differ.
Assuming the same one group model for z-values, we apply EM algorithm
to obtain parameters’ estimates. The likelihood based on a single z-value is:

(PLf1(2) % (P2fa(2))* (D3 fa(2)) ™ (4.25)

where ® = (@, ®3, ®3), &y + ®3 + ®3 = 1 and ®;, P, P3 = 1 when the gene

J is under-expressed, null or over-expressed respectively. The full complete

log-likelihood (based on J genes) for 6 = (u1, ua, 3, 0%, 0%,02,0?%) and for

P = (p1,p2, p3) is:

log P(z, |6, p) =
J

= ) (@1;logp1fi(2) + Ba;log pafa(z) + Ba;log ps fa(2))

j=1
J
= Z(‘Dlj log f1(z) + @2 log fo(2) + @35 log f3(2))

Jj=1

+J(®; log py + P, log py + P3log ps) (4.26)
Differentiating with respect to pi, po, ps, 0%, o and o? separately, the
estimates of uy, ug, uz are:

J J J
D T D D Y- R _ 21 %7

= 7 = o= —7 —— M3 N
Zj:l (I)lj Zj:l (1)21' Zj:l <I)31'

the estimates of of?, 0%2 and 0% are:

J J J
s > i1 P12 — n)? s > e Daj(z5 ~ pa)? 57 > =1 L3 (25 — pa)?
- -

2 3 —
Yo @ PR ¥ Y i1 Psj
(4.28)

fin (4.27)

if the values of the ®;; are known, which they are not. (The proofs of these
results are given in the Appendix). As we have discussed at section 2.5, the
conditional expectation of log P(z, ®|6,p) given z is computed (E-step) and
maximum likelihood estimation is performed (M-step) in order to produce
the estimates of ®,, ®,, ®35. Following the above procedure given current
estimates ), p® of § and p, the estimates of ®,, ®,, ®5 for gene j are:

() 19®
. z;|0
(I)lj = E((I)ljlzj;e(t)7p(t)) = P(q)lj = 1|z]’0(t)) = Z%;),)
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t
by = E(Dy525,60,p1) = P(®g; = 1]2;,60) = P fal516)
f(z)
_ P fa(z109)
/()
so the estimated proportions of under-expressed, null and over-expressed
genes will be:

J ~
~ Zj:l (DIJ
p==5—

(i)gj = E(<I>3j|zj, H(t),p(t)) = P((I)3]' = 1|Zj,9(t)) (429)

DT YR Srig 2
g RET T RET

The above procedure was repeated until there was convergence in the
estimates.

The estimates of # and p obtained using the EM algorithm were:
(—1.9034, —0.1159, —0.4693,0.4184, 0.7364212, 1.6144) and (0.0312,0.8655,
0.1033). These estimates agree with Efron’s results, except for the over-
expressed genes. Similarly, the fdr and the probability of under-expressed
genes given z agree with Efron’s results, whereas the corresponding proba-
bilities for over-expressed genes differ.

Assuming the same one group model, except for the null genes where we
suppose that p is N(u2,0), the distributions of null, under-expressed and
over-expressed genes are respectively N(ug,0?), N(u1,0) and N(us, o).
The assumption that the distribution of null true scores u is N(us,0), ex-
presses an ideal situation very close to the “zero assumption” in the non-
parametric analysis. The reason for this is that, as in Efron’s nonparameric
analysis, all z-values close to us are considered as null cases with variation
equal to zero.

Using the above model we applied maximum likelihood to the mixture
density of z-values and also the EM algorithm starting from the initial esti-
mates 60 = (—1.9,0,2,0.6324, 1,0.9487) and p© = (0.1,0.86, 0.04).

The function optim in R provided estimates that maximized the mixture
density likelihood. The updated estimates of # and p were respectively:
(—1.3177,-0.0659, 1.7658, 0.3276,0.7482, 1.1952) and (0.0893, 0.8721, 0.0386).
Although there was convergence with the initial values, the optim results were
clearly incorrect using the above model: the local fdr is approximately 1 not
only for z close to 0 but also for z close to -3, something which is impossible
if we consider the assumption that null genes correspond to z-values close to
2, which is taken to be equal to zero.

For the same one group model for z-values, we applied the EM algorithm
to obtain the following estimates for # and p
(—0.9840, —0.088,1.280,0.5911, 0.8319, 1.0455) and (0.0656, 0.9082, 0.0262)

(4.30)
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after a small number of iterations. However, as the number of iterations
increased the estimates of 6 and p got worse. Neither EM algorithm nor
optim gave satisfactory results for the above model. These results indicate
that the assumption that z-values close to uy correspond to null genes is not
acceptable.
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Chapter 5

List of tables

Gene 1 1 1 1 2 2 2 2 tval | pval

1 -0.22 |1 -0.13 | -1.23 | 0.13 | -0.80 | -0.36 | -0.31 | 0.38 | 1.550 | 0.128

-0.83 1-0.01 | -0.50 | -1.69 | -1.89 | 0.33 | -1.12 | -0.27 | 0.850 | 0.400

-0.14 | 0.69 | -0.86 | 0.27 | 0.67 | 1.10 | 0.42 | -0.96 | -0.310 | 0.758

0.03 | 0.25 | 0.34 | 0.97 |-0.43 | 0.10 | 0.03 [-1.03 | -1.852 | 0.070

0.66 | 0.68 | 0.22 | 0.58 | -0.04 | -0.09 | -0.04 | 1.11 | -2.226 | 0.031

-0.64 | -0.36 | 0.66 | 0.01 | 0.18 | 0.31 | 0.57 [ -0.53 | 0.356 | 0.723

0| ~J| O U] W= | WO

-0.02 | -0.15 | 0.84 | -0.13 | -0.56 | -0.24 | -0.39 | -0.43 | -0.020 | 0.984

9 0.71 | -0.29 | 0.48 | -0.03 | -0.56 | -0.78 | -0.34 | 0.27 | 0.460 | 0.648

10 | 0.16 | -0.04 | -0.55 | -1.83 | -0.90 | -0.41 | 0.56 | -0.04 | 1.914 | 0.062

Table 5.1: (From B Efron, [1]) Expression levels for the first 10 genes in
the stomach cancer microarray example. The total number of genes is 2640,
48 microarrays are being used : 24 for Type 1 and 24 for Type 2 tumors.
tval stands for the two sample t-statistic comparing Type 2 with Type I;
pval(p-value) is the two sided significance level of tval, with 46 degrees of
freedom

3171611233175
414111335011 (0]0
212(0[{0|0|1|0]|0O|1]|1
1/0{0|0|0|0O(0|0O|O]|O

Table 5.2: (After Efron and Tibshirani,[5]) Counts of the pain score data
y;e[0, 4] partitioned into 40 cells of length 0.1
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Chapter 6

List of Figures

Figure 6.1: (After Efron,[2]) The histogram depicts the distribution of the

~

2640 two-sample statistics y;; this is much wider than fo(y) ; solid curve f(y)
is a smooth fit to the histogram and it is fitted using Poisson regression.
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Chapter 7

Conclusion

Empirical Bayes methodology is an efficient way of dealing with enormous
data sets and that is one reason which makes it useful for statistical analysis
of microarrays.

Although in individual hypothesis tests it is intended to reject the null, in
large scale testing and particularly in microarrays the aim of the statistical
analysis is to identify a small percentage of interesting cases. In microarrays,
these interesting cases concern differential gene expression. This small per-
centage of interesting cases may give important information for the behaviour
of these genes during a disease or during a drug application.

Empirical Bayes methods and false discovery rate are applied by dividing
the data into two categories: genes that are equivalently expressed and genes
that are differentially expressed. When the probability densities have been
specified and they have an exact parametric form the process of calculating
the posterior distribution of differential expressed genes is simple.

On the other hand, in nonparametric empirical Bayes analysis, Poisson
regression fitting methodology is used to estimate the probability density for
non-null cases and the mixture density of the whole data set. The density
for null cases is based on the assumption that the proportion of such cases
is expected to be close to one. After this estimation the small percentage of
differentially expressed genes can be inferred.

A crucial part of both methods parametric and nonparametric is the
local false discovery rate assessment, based on empirical Bayes analysis of
the simple two group model described above. The local false discovery rate
does not only help to identify non-null cases but also provides information
about the power of the experiment and whether it is necessary to increase
the experiment’s size.
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Appendix

Section 2.3

Proof for the Gamma Gamma model:

Jo(z1, 2o, ...,2) =

dA

_ /( ()\aza“lexp(—)\x) v %L exp (—Av)
B [(a) [(ao)

g I I
= m/(g xi)a—lA1a+ao—1 exp (—)\(Zl x; + ’U)) dA

_ v (Ta + ao)(l‘[ile ;)
(F(@)) T (a0) (2L, 2 + )iaras
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(H{=1 ;)

=k 7
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Section 2.4

Proof for the Log-normal Normal model:

)2 - 2
exp (— bl )] exp (—&-t9))
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Section 3.3

Proof of X'[s — u(B)] = 0:
S
(81,82, -, 840180, B1, Y1), Y(2)» - - - » Y(a0)) = H —Lets

85 ~ P(u;(8)), n;(B) = ujexp{fBo + But;}

To make the solution more obvious it is presumed that pg-’ = 1. Then

J (eﬁ0+ﬂ1tj )Sj

1(81, e ,840|,50, B, Yay, - - - ,y(40)) = _&,—ew(eﬁo+ﬂ11j)
j=1 7
B eLi=1 Sj(ﬂ0+'81tj)n_(eﬁo+ﬁlfj)
[oJsi!
J
= L(s1,- -, 80080, B, 90y, - ¥a0) = > 5;(Bo + But;)
j=1

J J
— Z ePotbiti _ Jog H s;!
j=1 j=1

dL
Eﬁ- = Z;,]=1 8 — EjZI eﬁo+ﬂ1tj =0
0
=
dL
IB— = Zj:l S]t] - Z_;]=l tjeﬁO'l'ﬂltj _ 0
1
J J ‘
A 2j=1 8j Z]’:l ePo+Prt;
Xls—plp)=| - _ 0
Ej:l Sjtj Zj:l tj€ﬁ°+ﬁ1tj

Which means that the maximum likelihood equations can be summarized
using:

X'[s — p(B)) =0
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Section 4.2

Proof of Brown’s [11] and Stein’s [7] formula:

plz ~ (z 4+ agl'(2), 05(1 + ojl"(2))
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Section 4.3

1. The marginal mean and variance for p ~ (o, %), z|u ~ (u, o)
z~ (a,% + ad).

The mean and variance of z; given y; is (V1 od).

{
. Qi1 %

2. =

' Vi

l- E Zij
Bz |p) = % = \/Zﬂi

l
= Vi)
Vi(z ) = M = 0p

2. The marginal mean and variance of z* can be estimated using Efron’s formula
in (4.8).

V() =dV(z) = B
= IB*— (- 1)o}
= I8*+ 1ot + ol
= 8%+ 3}
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Section

4.4

(a) Assuming that z|u is N(u, 0?) and that for under-expressed genes
pis N(py,0%), for null genes p is N(ps, 02) and for over-expressed
genes p is N(us, 02), the distribution of under-expressed genes is
N(p1,0} + o?), for null genes is N(ugz,02 + 02) and for over-
expressed genes the distribution function is N(us, 02 + 0?).

(1)

z|p is N(p, 0?) and for under-expressed genes y is N (i, 0?).
The distribution of under-expressed genes is N(u1, 0% + o?):

E(z) = E(E(z|p)) = E(p) = m

V(z) = E(V(z|p)) + V(E(z|p)) = 0® + o}

The fact that Normality is preserved is a standard argument
in statistics.

z|p is N(u,0?) and for null genes p is N(uy,02). The dis-
tribution of null genes is N(u2, 02 + 02):

E(z) = E(E(z|p)) = E(p) = p2

V(z) = E(V(2|p)) + V(E(2ln) = 0® + 03

The fact that Normality is preserved is a standard argument
in statistics.

zlp is N(p,0?) and for over-expressed genes p is N(us, o3).
The distribution of over-expressed genes is N(us, 0% + o2):

E(z) = E(E(z|p)) = E(u) = ps

V(z) = E(V(2lw)) + V(E(2ln)) = 0 + o3

The fact that Normality is preserved is a standard argument
in statistics.

(b) Differentiating with respect to wy, ua, ps, 0%, o2 and o2 sepa-
rately, we estimate:

=

1

J J J
g o0 iy = > =1 P2y fy = D _i=1 P32
= =7 T 2= T o M=
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and 072, 0 and of
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(¢) z|pis N(u,0?) and for null genes u is N (uy,0). The distribution

of null genes is N(us, 0?):

() E(E(z|n) = E(p) = pa

(2) = E(V(2|n)) + V(E(2ln)) = 0 + 0
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