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Abstract— Phishing attacks continue to pose a significant 

threat to individuals and organizations, making it crucial to 

develop effective countermeasures. Machine learning 

algorithms have shown promise in detecting and mitigating 

phishing attacks. The study evaluates the performance of four 

popular algorithms in the context of phishing detection and 

compares the effectiveness of these four different algorithms; 

Random Forest, Decision Tree, XGBoost, and Logistic 

Regression, to determine which one achieves the highest 

accuracy. The results show that XGBoost outperforms the other 

algorithms and can accurately detect phishing attacks with a 

high degree of precision. The algorithms are compared based on 

factors such as training time, test time, model size, 

interpretability, and explainability. To compare the 

effectiveness of these algorithms, the study conducted 

experiments using a dataset of phishing emails. The algorithms 

were trained on a labeled dataset and evaluated based on 

metrics such as accuracy, precision, and recall. The results 

demonstrate that XGBoost outperforms the other algorithms, 

achieving the highest accuracy in detecting phishing attacks. 

The findings of this study have significant implications for the 

development of antiphishing technologies. By leveraging 

machine learning algorithms, particularly XGBoost, 

organizations can enhance their ability to detect and prevent 

phishing attacks. This can help protect individuals' personal 

information, passwords, and credit card numbers from falling 

into the hands of cybercriminals. 
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I. INTRODUCTION 

Phishing attacks have become a significant cybersecurity 
threat, posing severe risks to individuals, organizations, and 
governments. These attacks involve tricking individuals into 
providing sensitive information such as passwords, credit card 
numbers, or social security numbers by impersonating a 
trusted entity. With the increasing sophistication of phishing 
techniques, it has become more challenging to detect and 
prevent these attacks, making it crucial for individuals and 
organizations to stay vigilant and adopt proactive measures to 
protect themselves from falling victim to such scams. phishing 
attacks are considered one of the most frequent examples of 
fraud activity on the internet [1]. 

Some common types of phishing attacks include email 
phishing, where attackers send deceptive emails to trick 
recipients into revealing personal information or clicking on 
malicious links. Another form is spear phishing, which targets 
specific individuals or organizations with personalized and 
highly convincing messages. There is also vishing, a phishing 
technique that involves phone calls or voice messages to 
deceive victims into sharing sensitive data. Additionally, there 
is smishing, where attackers use SMS or text messages to trick 
recipients into providing personal information or downloading 
malicious content  [2] 

Email phishing attacks are becoming increasingly 
sophisticated and difficult to detect using the traditional 
approach. These attacks often involve the use of highly 
convincing emails that mimic legitimate messages from 
trusted sources. They may contain well-crafted language and 
graphics that make them appear genuine, making it harder for 
users to identify them as phishing attempts. Additionally, 
attackers are employing advanced techniques such as social 
engineering and personalized targeting to increase their 
chances of success. As a result, relying solely on traditional 
methods such as email filters and spam detectors is no longer 
sufficient to protect against these evolving threats. As a result, 
there is a need for real-time detection techniques using 
advanced technologies such as machine learning. Machine 
learning has emerged as a powerful tool in the fight against 
phishing attacks. By analyzing large amounts of data and 
identifying patterns, machine learning algorithms can 
effectively detect and flag suspicious emails in real-time  [3] 
These algorithms continuously learn and adapt, keeping up 
with the ever-changing tactics used by attackers. Furthermore, 
machine learning can also help in identifying and blocking 
phishing websites, by analyzing various factors such as 
domain names, website content, and user behaviour.  

This proactive approach not only saves users from falling 
victim to phishing attacks but also helps in preventing the 
spread of such malicious activities. Machine learning 
algorithms can quickly analyze and categorize websites based 
on their risk level, enabling browsers and security systems to 
automatically block access to potentially harmful sites. This 
not only protects individuals but also helps in safeguarding 
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organizations from potential data breaches and financial 
losses. Additionally, machine learning can assist in educating 
users about phishing techniques by analyzing past attack 
patterns and creating personalized training programs to 
enhance awareness and resilience against such threats. 

This study made the following contributions: 

• The study evaluates the performance of four popular
machine-learning algorithms in detecting and
mitigating phishing attacks.

• The study compares the effectiveness of Random
Forest, Decision Tree, XGBoost, and Logistic
Regression algorithms in detecting phishing emails.

• The study finds that XGBoost outperforms the other
algorithms and can accurately detect phishing attacks
with a high degree of precision.

• The algorithms are compared based on factors such
as training time, test time, model size, interpretability,
and explainability.

• The study conducted experiments using a dataset of
phishing emails and evaluated the algorithms based
on metrics such as accuracy, precision, and recall.

• The findings of this study have significant
implications for the development of antiphishing
technologies, as organizations can enhance their
ability to detect and prevent phishing attacks by
leveraging machine learning algorithms, particularly
XGBoost.

• The study employed interesting feature extractions to
improve the performance of the machine learning
algorithms in detecting phishing emails.

• The feature matrix is split 80/20 into stratified train
and test sets, which helps to evaluate the
performance of the model.

• The study used precision as a metric to measure the
proportion of correctly identified phishing emails
from the ham emails.

• By dividing the feature matrix into train and test sets,
the study ensured that the model is trained on a subset
of the data and then tested on unseen data, which
helps to assess how well the model generalizes to
new instances and avoids overfitting.

• The study found that XGBoost outperforms the other
algorithms in detecting phishing attacks, which
suggests that the interesting feature extractions used
in the study were effective in improving the
performance of the algorithm.

II. LITERATURE REVIEW

In this section, we explored related literature on phishing 
detection using machine learning algorithms and other forms 
of anomaly detection. 

A. Phishing detection using machine learning algorithms

Mughaid et al. [4] developed an intelligent cyber security 

phishing detection system that employed machine learning 

algorithms to classify phishing emails and legitimate emails. 

Their work demonstrated the effectiveness of machine 

learning in detecting phishing attacks. Carroll et al. [5] 

conducted a study to investigate the evolving nature of 

phishing attacks and the challenges in detecting them. They 

emphasized the severity of phishing attacks in the cyber 

world and their successful deception of society. The study 

highlighted the need for advanced techniques, such as AI-

enabled phishing attack detection. A survey of machine 

learning-based solutions for phishing website detection  [6]  

provided insights into the state-of-the-art methods for 

detecting phishing websites. The survey covered various 

aspects, including the phishing life cycle, datasets, data 

sources, and machine learning-based solutions. It referenced 

the comprehensive survey by   [5] on AI-enabled phishing 

attack detection techniques.  

Bhavsar et al. [7] conducted a study on phishing attacks, 

emphasizing the need for effective countermeasures to 

combat this cybersecurity threat. Their research highlighted 

the manipulation of human emotions in phishing emails and 

the urgent situations created to deceive recipients. The 

success of phishing emails in manipulating human emotions 

was discussed in a study by applying machine learning and 

natural language processing techniques [8]. The study 

emphasized the importance of understanding the 

psychological aspects exploited by phishing attacks.  

Nadar et al. [9] proposes a system that uses machine 

learning algorithms to detect phishing websites, with a hybrid 

stacking model achieving 85.6% accuracy. In this research 

study, a system that identifies phishing URL with various 

machine learning methods and compares it with a hybrid 

stacking model to identify the approach which provides 

maximum accuracy rate and time effectively. The downside 

to this study was that the proposed system was evaluated 

using a specific dataset and machine learning algorithms. The 

effectiveness of the system may vary when applied to 

different datasets or using different algorithms. Additionally, 

the paper does not discuss the feasibility of implementing the 

proposed system in real-world scenarios. 

Barlow et al. [10] proposed a novel approach to detect and 

prevent phishing attacks using binary visualization and 

machine learning. This approach requires no further user 

interaction, which allows a faster and more accurate detection 

process.  While this method seems great, the downside was 

that this approach may not be able to detect new or previously 

unseen phishing attacks that do not fit the patterns learned by 

the machine learning model. Further research and testing may 

be required to evaluate the approach's performance in real-

world scenarios. One potential solution to address the 

limitations of the binary visualization and machine learning 

approach is to incorporate a hybrid detection system. This 

system could combine the strengths of the existing approach 

with other techniques such as heuristic analysis and real-time 

threat intelligence feeds. By integrating multiple detection 

methods, the system can enhance its ability to identify both 

known and unknown phishing attacks. However, 

implementing such a hybrid system would require careful 

consideration of factors like computational resources, 



scalability, and the ability to adapt to evolving attack 

techniques. Additionally, extensive testing and validation 

would be necessary to ensure its effectiveness in real-world 

scenarios. 

Dutta [11] proposed a machine-learning approach for 

detecting phishing URLs and shows better performance 

compared to existing methods.  In this study, a recurrent 

neural network (RNN) was employed to detect phishing 

URLs in the anonymous and uncontrollable framework of the 

Internet and the experiments showed that the proposed 

method's performance is better than the recent approaches in 

malicious URL detection. Unfortunately, the proposed 

machine learning technique for detecting phishing websites 

may not be 100% accurate and may have some false positives 

or false negatives. Additionally, the dataset used for 

evaluation is not representative of all possible phishing 

websites, which could affect the generalizability of the 

results. It is important to acknowledge the limitations of the 

proposed method and consider potential implications. False 

positives, where legitimate websites are mistakenly flagged 

as phishing, can lead to unnecessary inconvenience for users. 

On the other hand, false negatives, where actual phishing 

websites go undetected, can pose serious security risks. The 

reliance on a specific dataset for evaluation raises concerns 

about the method's ability to accurately detect phishing 

websites beyond the scope of the dataset. To ensure the 

generalizability of the results, it would be necessary to 

incorporate a more diverse range of phishing websites in 

future studies. 

Lee and Park [12] proposed detecting vishing in real-time 

using machine learning models, but does not mention 

integration into web browsers or email clients. In this study, 

a machine-learning model was used to detect vishing in the 

Korean language using basic machine-learning models, 

collected actual vishing damage data and converted the voice 

files into text to achieve spam detection using NLP 

techniques. While this is a fantastic innovation, it is worth 

noting that the study focuses on detecting vishing in the 

Korean language using basic machine-learning models. 

Therefore, the results may not be directly applicable to other 

languages or more complex machine learning models. 

Additionally, the study only considers the detection of 

vishing through voice calls and does not address other forms 

of phishing attacks. 

Baadel et al. [13] discussed phishing countermeasures, 

including legislation, law enforcement, and education, to 

increase awareness and prevention of phishing scams. A 

complete prevention layer based on the aforementioned 

approaches is suggested to increase awareness and report 

phishing to different stakeholders, including organizations, 

novice users, researchers, and computer security experts as 

mentioned in this study. It provides a comprehensive review 

of common phishing countermeasures, their pros, and cons, 

and suggests a prevention layer based on these approaches. 

However, there are some limitations to this study which is the 

fact that the study does not provide a detailed technical 

analysis of the machine learning techniques used for building 

anti-phishing models. It also does not provide a comparative 

analysis of the effectiveness of different anti-phishing 

techniques. 

Purwanto et al [14] demonstrated that Auto ML-based 

models can outperform manually developed machine 

learning models in complex phishing detection tasks, but 

human experts are still essential in the detection and 

prevention of phishing attacks. In this study, the authors 

compared the performance of six well-known, state-of-the-

art Auto ML frameworks on ten different phishing datasets to 

see whether Auto ML-based models can outperform 

manually crafted machine learning models concluding the 

assertion to be true for certain scenarios and it was clear that 

Experts in phishing and cybersecurity are still essential in the 

phishing detection pipeline. The downside to this study is that  

AutoML frameworks currently only support supervised 

classification problems, which require labeled data and 

cannot be updated incrementally which can be a challenge for 

real-world phishing detection systems. The study only 

compares six well-known AutoML frameworks and ten 

phishing datasets, so the results may not be generalizable to 

other frameworks or datasets. The study does not also 

consider the cost or time required to use AutoML frameworks 

compared to manually crafted machine learning models. The 

ethical implications of using AutoML frameworks for 

phishing detection, such as potential biases in the data or 

models was equally not taken into consideration. 

Gupta et al. [15] proposed a novel approach for phishing 

URL detection using lexical-based machine learning, which 

can be used for real-time phishing detection. This work has 

developed a phishing detection approach that only needs nine 

lexical features for effectively detecting phishing attacks and 

has obtained the highest accuracy of 99.57% with the 

Random forest algorithm applicable to a real-time 

environment. This innovation seems very commendable, the 

approach was tested on a specific dataset (ISCXURL-2016) 

and may not perform as well on other datasets. Additionally, 

the approach only uses lexical features and may not be as 

effective in detecting more sophisticated phishing attacks that 

use other techniques such as social engineering. 

. Alsufyani and Alzahrani [16] proposed a study using 

natural language processing and machine learning algorithms 

to detect phishing emails but does not mention the use of 

graph convolutional networks. This paper proposed to use 

natural language processing (NLP) along with machine 

learning techniques for text phishing detection in this paper 

and trained four models using four different machine learning 

algorithms which are K nearest neighbors (KNN), 

Multinomial Naive Bayes, Decision Tree, and AdaBoost.  

The study was specific with the use of natural language 

processing (NLP) and machine learning techniques for 

detecting text phishing attacks. The authors used an existing 

dataset of 6,224 emails containing both phishing and 

legitimate emails. They extracted features from the data using 

the Continuous Bag of Words (CBOW) in the Word2Vec 

algorithm and trained four models using four different 

machine learning algorithms: knearest neighbors (KNN), 

Multinomial Naive Bayes (MNB), Decision Tree, and 

AdaBoost. The developed models were able to classify text 

messages into two categories, phishing and legitimate. The 

authors found that three of the models (KNN, Decision Tree, 

and AdaBoost) obtained considerable values while the MNB 

model obtained an insignificant value. Overall, the paper 

suggests that using NLP and machine learning techniques can 

be effective in detecting text phishing attacks. the paper 

evaluated the performance of each classification model using 

the testing set, which represented 20% of the whole features, 



with three performance measurements for imbalanced data, 

which are the Confusion Matrix, F-value, and ROC-AUC. 

The authors split the features that were extracted in the 

previous phase into two groups, 80% of them for training and 

20% for testing. They trained four models by four 

classification algorithms which are KNN, MNB, Decision 

Tree, and AdaBoost. The authors found that three of the 

models (KNN, Decision Tree, and AdaBoost) obtained 

considerable values while the MNB model obtained an 

insignificant value. The dataset used in the study is limited to 

a specific set of emails, and it may not be representative of all 

types of phishing attacks. The authors used only four machine 

learning algorithms for classification, and there may be other 

algorithms that could perform better. The study utilised only 

one feature extraction technique (CBOW in Word2Vec), and 

there may be other techniques that could improve the 

performance of the models. The authors did not compare their 

results with other state-of-the-art phishing detection methods, 

which could provide a better understanding of the 

effectiveness of their proposed approach. The authors also 

did not provide any information about the computational 

resources required to train and test the models, which could 

be important for practical applications. 

Priya et al. [17] used a deep ensemble neural network 

approach for detecting phishing attacks, which outperforms 

other classification techniques and ensemble methods. The 

results obtained from the experiments reveal that 

DeepEEviNNet outperforms the stand-alone classification 

techniques as well as other ensemble methods for detecting 

phishing attacks with  RBF, GRBF, PNN, and HPNN chosen 

as base classifiers. As a downside to this study,  the 

performance of the DeepEEviNNet ensemble method may 

vary depending on the dataset used for evaluation. 

Additionally, the proposed approach may require significant 

computational resources due to the use of multiple neural 

network algorithms and the Dempster-Shafer Theory for 

fusion. 

 Mittapalli et al. [18] researched on detecting and 

categorizing phishing attacks using machine learning 

algorithms and also presents methods for preventing such 

attacks using Python and machine learning approach which is 

similar to what I’m hoping to actualize. The authors have 

analyzed the PCAP file generated by Wireshark during the 

attack and presented the results in a visualized and 

understandable format. They have also proposed different 

methods to prevent phishing attacks. The paper concludes 

that phishing attacks are still prevalent and pose a threat to 

sensitive information. The use of machine learning 

algorithms can help in detecting and preventing such attacks. 

The authors suggest that further research is required to 

analyze emerging security attacks and improve information 

security measures. Sadly. the proposed methods may not be 

effective against advanced phishing attacks that use 

sophisticated techniques to evade detection. The study is 

based on a single PCAP file generated during a phishing 

attack, which may not be representative of all phishing 

attacks. The proposed prevention methods may not be 

applicable in all scenarios and may require additional 

resources or expertise. The study does not consider the ethical 

implications of using machine learning algorithms for 

detecting and preventing phishing attacks. 

TABLE I: SUMMARY OF DETECTION TECHNIQUES USED IN PREVIOUS 

STUDIES ALONGSIDE THEIR STRENGTHS AND WEAKNESSES  

Summarizing TABLE , and the key points from the table on 

previous phishing detection techniques adopted over the 

years, it is important to note that with phishing attacks 

growing in sophistication, researchers have increasingly 

turned to machine learning as a potent tool for timely and 

accurate detection. The table highlights some prominent 

studies showcasing different ML models on various phishing 

datasets. 

Earlier work by Abdelhamid et al. and Mohammad et al. 

demonstrated classical models like Random Forest and 

Decision Trees could already achieve high accuracy given 

their suitability for categorical and text data. However, their 

evaluations were limited to small or single datasets. 

More recent efforts have explored neural networks and 

deep learning for phishing detection, like the CNN and LSTM 

models tested by Verma & Rai. While these complex models 

can achieve high accuracy, drawbacks include long training 

times, compute resource needs, and proneness to overfitting. 

Researchers have also employed ensemble techniques like 

XGBoost, which Patel et al. showed could handle imbalanced 

data and overfitting - common properties of phishing data. 

Oest et al. further tuned XGBoost for strong performance on 

a standard email dataset. 

Finally, new directions leverage federated learning as 

Zhang et al. demonstrated to distribute modeling and preserve 

privacy. But such approaches impose accuracy tradeoffs. 

(Table 1) captures rapid innovation in applying ML to 

counter evolving phishing threats. While gains have been 

made, open challenges remain around model optimization, 

generalizability, and operationalization on diverse, modern 

data. The research landscape continues to develop toward 

combating phishing through adaptable techniques. 



III. METHODOLOGY

This study aims at performing anomaly detection from 
phishing emails, we’re looking to see the best model to adopt 
with a very high accuracy. We conducted an experimental 
study to compare the effectiveness of the four machine 
learning algorithms in detecting phishing attacks. We used a 
publicly available dataset containing legitimate and phishing 
websites to train and test the algorithms. We evaluated the 
performance of each algorithm by measuring accuracy, 
precision, recall, and F1-score. 

Figure 1. Architecture of Phishing email detection 

The Email datasets underwent a number of processing 

steps before while training using 4 machine learning 

Algorithms before the   degree of accuracy was determined. 

Here are some processing steps applied in the notebook. 

A. Model Processing

a) Raw Email Parsing: The raw .tar email archives are

extracted. Each individual email file is parsed using the 

mailparser and email Python modules to extract key 

components like subject, body, headers. Additionally, the 

parsing process involves extracting other important 

information such as sender, recipient, date, and attachments. 

This allows for a comprehensive analysis of the email content 

and metadata. The mailparser and email Python modules 

provide efficient methods to handle various email formats, 

ensuring accurate extraction of the desired components. Once 

the parsing is complete, the extracted data can be further 

processed and analyzed to gain insights and perform various 

tasks, such as sentiment analysis or spam detection.  

b) Cleaning: HTML tags, JavaScript, and links are

stripped from bodies. Bodies and subjects are lower-cased, 

tokenized, lemmatized, and filtered for clean text. The 

cleaning process is an essential step in preparing text data for 

analysis. By removing HTML tags, JavaScript, and links 

from the bodies of text, we can focus solely on the content 

itself. Lower-casing the bodies and subjects helps to 

standardize the text and avoid any inconsistencies in 

capitalization. Tokenization breaks down the text into 

individual words or tokens, allowing for further analysis at a 

granular level. Lemmatization is then applied to reduce words 

to their base or root form, which helps in eliminating 

variations of the same word. Finally, filtering for clean text 

ensures that only relevant and meaningful words are included 

in the analysis, removing any noise or irrelevant information. 

This process of text preprocessing enhances the accuracy and 

efficiency of natural language processing tasks such as 

sentiment analysis or topic modeling. Additionally, it allows 

for better understanding and interpretation of the text data, 

leading to more accurate insights and decision-making.   

c) Feature Engineering: For each email, 31 features

are generated using NLP, regex matching, header analysis, 

URL extraction, and more. This includes things like urgent 

words, HTML indicators, linked domains, sender properties. 

The feature engineering process includes analyzing the 

email's content for spam keywords, detecting suspicious 

patterns in the email headers, and extracting URLs to identify 

potential phishing attempts. NLP techniques are applied to 

extract meaningful information from the email text, such as 

sentiment analysis, named entity recognition, and topic 

modeling. These features provide valuable insights into the 

nature of the email and help in accurately classifying it as 

spam or legitimate. Moreover, sender properties like the 

reputation of the sender's domain and the frequency of 

previous interactions with the recipient are considered to 

assess the credibility of the email source. All these diverse 

features collectively contribute to the development of robust 

email filtering systems. By analyzing the sentiment of the 

email, it becomes possible to identify any potential malicious 

intent or suspicious content. Additionally, named entity 

recognition helps in detecting any personal information that 

may be shared in the email, ensuring privacy and security for 

the recipient. Furthermore, topic modeling assists in 

categorizing emails into relevant categories, making it easier 

for users to prioritize and organize their inbox effectively.  

d) Deduplication: Duplicate emails are removed

before feature generation to avoid training bias. The unique 



raw emails are used for feature extraction. These unique raw 

emails serve as the foundation for extracting relevant features 

that will be used in the subsequent steps of the data analysis 

process. By removing duplicate emails in advance, we make 

sure that any potential biases that might result from repetitive 

or redundant information are not affecting our feature 

generation process. This deduplication step helps to 

streamline the feature extraction process and enhances the 

accuracy and effectiveness of our analysis.  

e) Train/Test Split: The feature matrix is split 80/20 

into stratified train and test sets. This retains equal class 

distribution. The train/test split is an essential step in machine 

learning to evaluate the performance of a model. By dividing 

the feature matrix into train and test sets, we ensure that the 

model is trained on a subset of the data and then tested on 

unseen data. This helps us assess how well the model 

generalizes to new instances and avoids overfitting. 

Moreover, the stratified nature of the split ensures that both 

the train and test sets maintain an equal distribution of 

classes, which is crucial for accurate evaluation and 

preventing bias. 

f) Pre-processing: The trained data set is pre-

processed by scaling, and also by applying Principal 

component analysis (PCA) dimensionality reduction, and 

feature selection for efficiency. The scaling process involves 

transforming the features to a similar range, ensuring that no 

particular feature dominates the others. This is crucial for 

machine learning algorithms that are sensitive to the scale of 

the input data. Additionally, PCA dimensionality reduction is 

applied to reduce the number of features while retaining the 

most important information. By projecting the data onto a 

lower-dimensional space, PCA helps in simplifying the 

complexity of the dataset and improving computational 

efficiency. Lastly, feature selection techniques are employed 

to further enhance efficiency by selecting the most relevant 

and informative features for the learning algorithm. These 

techniques eliminate redundant or irrelevant features, 

reducing the computational cost and improving the accuracy 

of the learning algorithm.  

g) Data Visualization: The visual analysis includes 

correlation plots, word clouds, TSNE projections to 

understand relationships. These visualizations provide a 

powerful means of exploring and interpreting complex data 

sets. Correlation plots, for example, allow us to identify 

patterns and relationships between variables, helping us 

uncover hidden insights and make informed decisions. Word 

clouds, on the other hand, offer a visually striking 

representation of the most frequently occurring words in a 

text, enabling us to quickly grasp key themes or topics. TSNE 

projections, with their ability to reduce high-dimensional data 

into two or three dimensions, allow us to visualize clusters or 

similarities between data points, facilitating the identification 

of patterns or groupings. Together, these visualization 

techniques offer a powerful tool for exploratory data analysis 

and decision-making. Extensive processing was applied 

including low-level email parsing, generating a robust set of 

feature vectors, deduplication, stratification, and pre-

processing techniques like Principal Component Analysis 

(PCA) before model training. This pipeline helped maximize 

model accuracy by extracting meaningful signals from the 

raw email data. 

B. Model Training 

A Variety of common models were tested including 

ensembles, logistic regression, and SVM. Models were 

trained/validated using 10-fold stratified cross-validation. 

Gridsearch with 5-fold cross-validation used for 

hyperparameter tuning. A variety of standard machine 

learning algorithms were evaluated including Logistic 

Regression, Random Forest, Gradient Boosted Trees, SVM, 

and Decision Tree. All models were trained and validated 

using 10-fold stratified cross-validation to reduce variance 

and avoid overfitting. Gridsearch with 5-fold stratified cross-

validation is used to tune hyperparameters like learning rate, 

tree depth, regularization. For the Evaluation Metrix, 

Accuracy, F1-Score, AUC-ROC are used as primary metrics 

for model evaluation and comparison. Some models also 

report precision and recall. The 80/20 class ratio is 

maintained during cross-validation splits to account for 

imbalance. Oversampling could further improve this. Before 

and after tuning, the Gradient Boosted Tree model (XG 

Boost) performed best overall, achieving 99% accuracy on 

the test set. Random Forest and Logistic Regression also 

performed very well when properly tuned. In summary, the 

models were trained using rigorous validation techniques like 

stratified cross-validation and tuning to reduce overfitting, 

finding the optimal hyperparameters, and selecting the best 

performing algorithm for this dataset. The high accuracy 

reflects generalized performance. Learning Curves were 

plotted to determine optimal model complexity and training 

set size to maximize performance. 

 

C. Performance Metrics 

• Accuracy: The degree of accuracy is the overall 

percentage of correct classifications used as primary 

evaluation metric and reported for all models. 

• F1-Score: This is the Harmonic mean of precision and 

recall. It accounts for label imbalance. Reported for all 

models. 

•  AUC-ROC: Area under ROC curve measures tradeoff 

between true and false positive rate. Only reported for 

some models. 

• Precision & Recall: Precision is percentage of true 

positives over all predicted positives. Recall is 

percentage of true positives out of all actual positives. 

Only reported for select models. 

• Log Loss: Logarithmic loss for model predicted 

probabilities. Lower is better. Helps evaluate 

classification certainty. Only reported for some 

models. 

• Balanced Accuracy: Accuracy metric accounting for 

imbalance by taking average of sensitivity and 

specificity. Only reported for some models. 

• Confusion Matrices: Not reported but could show per-

class performance and errors. 

D. Rational Behind Model Selection 

Random Forest, Decision Tree, XGBoost, and Logistic 

Regression are among the most commonly used machine 

learning algorithms for phishing detection. Here are some 

reasons why we choose to use them for this study as they’ve 

been considered to be effective: 

 



(i) Random Forest: Random Forest is an ensemble

learning algorithm that combines multiple decision trees to 

make predictions.  It is known for its ability to handle high-

dimensional data and its resistance to overfitting [30]. It has 

been shown to be effective in identifying phishing attacks 

[31] 

(ii) Decision Tree: Decision tree algorithms are simple

and easy to interpret. They can handle both categorical and 

continuous data and can be used for both classification and 

regression tasks. They are also computationally efficient and 

can handle large datasets [32]. Decision trees have been 

utilized in the classification of URLs and the detection of 

phishing websites  [30] 

(iii) XGBoost: XGBoost is a gradient-boosting algorithm

that has been used in phishing attack detection. It is known 

for its efficiency and accuracy in handling large datasets  [31] 

It has been shown to be effective in identifying phishing 

attacks [33]. 

(iv) Logistic Regression: Logistic regression is a simple

and interpretable algorithm that is commonly used for binary 

classification tasks. It is computationally efficient and can 

handle large datasets [32]  . It has been shown to be effective 

in identifying phishing attacks  [30]. These algorithms have 

been employed in various studies and have shown promising 

results in identifying phishing attacks. However, the 

effectiveness of these algorithms may depend on the specific 

dataset and features used in the study.  Of these very suitable 

machine learning Algorithms, we’ll be choosing the best. 

E. Dataset

The Source of the data set was Ham emails from public

datasets like Enron, and Spam Assassin Phishing and non-

phishing emails. It consists of approximately 49,000 emails 

in total. 80% ham (non-phishing), 20% phishing. It was split 

in 80%/20% train/test split. 39,190 train emails and 9,798 test 

emails. Ham emails are from the full Enron and Spam 

Assassin corpora containing mostly business/personal 

communications. For the feature extraction, 31 features were 

engineered from the email body, subject, URLs, and headers. 

Includes NLP attributes like urgent words, HTML tags, etc. 

Phishing emails were selectively sampled covering common 

attack vectors seen within several co-corporate organisations. 

The model was trained using Logistic regression, Random 

forest, Gradient boosting, and Decision tree. For the recorded 

performance metric of the dataset, Accuracy, F1-Score, 

AUC-ROC. Accuracy levels of 98-99% for tuned models 

were recorded. The dataset further underwent pre-processing 

to remove duplicates and Grid search was used to tune 

hyperparameters and improve accuracy. In summary, the 

dataset contains nearly 50,000 real emails with extensive 

feature engineering and is used to train common ML models 

like Random Forests and achieve high accuracy at detecting 

phishing emails. The models are tuned for maximum 

performance on this dataset compiled from phishing email 

archives. 

IV. RESULT

TABLE II: EVOLUTION MATRIX FOR PHISHING EMAIL DETECTION 

Model  Accuracy Precision Recall F1- Score 

Random Forest 0.9852 0.98 0.99 0.985 

Decision Tree 0.9644 0.96 0.97 0.965 

XG Boost  0.9858 0.99 0.98 0.985 

Logistic 
Regression 

0.9705 0.97 0.97 0.970 

The Machine learning accuracy is calculated by dividing 
sum of the true positives and true negative by the total number 
of instances as shown by Eqn 1.  

Accuracy
TN TP

TN FP TP FN

+
=

+ + + (1) 

The high degree of accuracy across board   shows that 
models perform really well in distinguishing between 
phishing and ham emails. For the precision, it is aimed at 
measuring the proportion of correctly identified phishing 
emails from the ham emails as shown by Eqn. 2 

Precision
TP

TP FP
=

+ (2) 

The precision results of 0.96-0.99 means that out of all the 
predicted phishing instances, 96-99% of the emails that are 
identified to be phishing are truly malicious. The Recall 
known as the sensitivity or true positivity, measures the 
proportion of the correctly identified phishing emails out of 
the actual malicious instances. The recall range of  0.97-0.99 
implies that the model captured 97-99% of the phishing 
instances as shown by Eqn 3. 

Recall
TP

TP FN
=

+ (3) 

The F1 score, known as the harmonic mean of recall and 
precision. It provides are very balanced measure of the 
performance of the model, given by Eqn 4. 

Pr Re
F1-Score 2

Pr Re

ecision call

ecision call


= 

+ (4) 

Based on the results, the model with the highest accuracy 
is XGBoost with an accuracy of 0.9858, followed closely by 
Random Forest with 0.9852 accuracy. 

A. Results, Analysis & Discussion

From the above results, XGBoost seems to perform the
best for this phishing email detection dataset. Logistic 
Regression also does quite well with 0.9705 accuracy. The 
Decision Tree model has the lowest accuracy at 0.9644.  In 
summary, the best model for phishing email based on 
accuracy is XGBoost, followed by Random Forest and 
Logistic Regression. The Decision Tree model lags behind the 
other approaches. Random Forest, XGBoost, and Logistic 
Regression are achieving over 98% accuracy, showing the 
power of ensemble and nonlinear models on this problem. 
Precision and recall are balanced across all classes for each 
model, indicating no significant skew in performance on the 
majority vs minority classes. F1 scores are very close to the 
precision and recall, meaning the models have a good balance 
of identifying real positives and not mis-labelling negatives. 



Even the Decision Tree is achieving over 96% accuracy, 
showing that the data has strong signal that even simpler 
models can pick up. 

Overall, this is a very good set of results, with all models 
exceeding 97% accuracy and 0.97 F1 score. The ensemble and 
XGBoost models have a slight edge in accuracy, but all 
models seem well-suited for this particular dataset and 
classification task. 

 

 

 

Figure 2: This chart shows the test set accuracy achieved 
by 4 common models on an email phishing classification task 

From this chart (Figure 2), Random Forest achieved the 
highest accuracy of 98.52%. This indicates it was able to 
correctly classify almost 99% of the test emails as ham or 
phishing. XGBoost came very close with 98.58% accuracy. 
Its boosted tree ensemble approach performed on par with 
Random Forest on this dataset. Logistic Regression scored 
97.05% accuracy. Being a simpler linear classification model, 
its performance lagged the ensemble models slightly. 
Decision Tree had noticeably lower accuracy of 96.44%. A 
single tree is more prone to overfitting compared to ensemble 
methods. 

B. Key Observation 1 

The high accuracy scores suggest all the models were able 

to fit the training data and generalize well to the test set. The 

dataset is suitable for this task. The ensemble models Random 

Forest and XGBoost achieved the best results, with accuracy 

over 98.5%. Their bagging and boosting approaches help 

reduce overfitting. Logistic Regression did respectably. 

Linear models can be limited by linearity assumptions but 

this model is still generalized decently. Decision Tree overfits 

more than the other models. A single tree is unlikely to 

outperform ensemble techniques that average across trees. 

Ensemble methods like Random Forest and XGBoost 

achieved the top accuracy on this email classification dataset. 

But all models were able to learn effectively and attain over 

96% test accuracy. The high accuracy across models 

indicates the data is clean, complete, and suitable for machine 

learning. 

 

 
Figure 3: This chart displays the test set precision 

achieved by 4 models on an email classification task 

 
From this result (Figure 3), XGBoost had the highest 

precision of 0.99, meaning 99% of emails it classified as spam 
were actually spam. Only 1% were false positives. Random 
Forest achieved precision of 0.98. Slightly lower than 
XGBoost but still very high, with only 2% false positives. 
Logistic Regression had precision of 0.97. Still good but 
higher false positive rate compared to the ensemble models. 
Decision Tree scored lowest with 0.96 precision. More of its 
phishing predictions were incorrect compared to the other 
models 

C. Key Observation 2 

All models attained high precision above 0.95, indicating 

low false positive rates overall. This is crucial for email 

classification to minimize incorrectly flagging ham as 

phishing. XGBoost edged out Random Forest for the top 

precision score. Though accuracy was similar, XGBoost was 

slightly better at avoiding false positives. Logistic Regression 

respectably minimized false positives despite being a simpler 

linear model. Its assumptions did not appear too limiting. 

Decision Tree tended to overpredict spam due to overfitting. 

Ensembling models like Random Forest and XGBoost help 

improve precision. XGBoost achieved the highest precision, 

though all models performed well. High precision is 

important for email classification to limit false positives. 

Ensemble models and XGBoost in particular are well-suited 

for optimizing precision due to their bias-variance tradeoff 

advantages. 

 
Figure 4. This chart shows the test set recall achieved by 

each model on the email classification task 



 
From the result (Figure 4), Random Forest had the highest 

recall of 0.99, meaning it correctly identified 99% of the actual 
phishing emails in the test set. Just 1% of phishing emails were 
missed. XGBoost scored a recall of 0.98, narrowly behind 
Random Forest. It still correctly flagged most phishing emails, 
with only 2% missed. Logistic Regression and Decision Tree 
both had a recall of 0.97. Slightly lower than the top two 
models, indicating they missed more phishing emails. 

D. Key Observation 3 

The high recall values imply all models are well-optimized 
to detect most phishing emails, with recall above 97% across 
the board. This is crucial to minimize false negatives. Random 
Forest marginally outperformed XGBoost at maximizing 
recall. Though precision was close, Random Forest was 
slightly better at reducing false negatives. Logistic Regression 
and Decision Tree respectably minimized false negatives, 
though they could not match the ensemble models in recall. 
The ensemble approaches result in models most sensitive to 
catching phishing without overlooking emails or overfitting. 
While all models scored high recall, Random Forest achieved 
optimal sensitivity, catching almost all phishing emails. High 
recall is critical for email classification, so ensemble 
techniques appear ideal for optimizing recall. The models are 
well-tuned to properly flag phishing without excessive false 
negatives. 

 

Figure 5: This chart shows the test set recall achieved by 

each model on the email classification task 

 
From (Figure 5), the F1 score balances precision and recall 

into one metric, with 1 being perfect and 0 being worst. It 
provides a good overall measure of a classifier's performance. 
This chart displays the test set F1 scores. Random Forest and 
XGBoost achieved the highest F1 score of 0.985, essentially 
tying for first place. This indicates both models excellently 
balanced minimizing false positives and false negatives. 
Logistic Regression scored 0.970, lagging slightly behind the 
top models. Still a strong F1 score but more room for 
improvement in balancing precision and recall compared to 
the ensemble methods. Decision Tree attained the lowest F1 
score of 0.965. A single tree is more prone to overfitting and 
struggles to achieve the precision/recall balance of ensemble 
techniques. 

E. Key Observation 4 

All models scored F1 above 0.95, implying generally 

strong performance in classifying the test set accurately. 

Random Forest and XGBoost were nearly identical in 

optimizing precision and recall. Their ensemble approaches 

resulted in the best F1 balances. Logistic Regression 

respectably balanced the metrics but could not match the 

ensembles. Linear assumptions likely limited its performance 

slightly. Decision Tree tended to overfit and skew towards 

higher recall at the cost of lower precision compared to the 

other models. Random Forest and XGBoost achieved the 

highest F1 scores, indicating they delivered the optimal 

balance of precision and recall. Ensemble methods appear 

best suited for maximizing F1 for email classification. 

 

 
Figure 6. This plots Malicious URL (0 or 1) vs Number of 

URLs to see if there is any correlation 

 
For the Malicious URL vs Number of URLs plot in (Figure 

6), we see some clustering of malicious URLs when the 
number of URLs is higher. This suggests that emails with 
more URLs are more likely to contain malicious URLs. 
However, there are also many emails with multiple URLs that 
do not contain malicious URLs. So while a higher number of 
URLs may be an indicator, it is not a necessarily a perfect 
predictor of malicious content. The plot shows the correlation 
between the number of URLs in an email and whether it 
contains a malicious URL. Each point represents an individual 
email. We observe that when the number of URLs is small 
(less than 5), very few emails contain malicious URLs. 
However, as the number of URLs increases, we see an upward 
trend in the number of emails containing malicious URLs. 

Specifically, emails with over 20 URLs have a significantly 
higher prevalence of malicious URLs compared to emails with 
fewer URLs. This indicates that malicious actors often hide 
malicious content behind a large number of benign-seeming 
URLs, hoping the malicious URL gets lost in the noise. 
However, it's important to note that many emails with high 
URL counts do not contain malicious URLs. So while this 
feature can help identify potentially risky emails, it cannot 
perfectly determine whether an email is malicious or not on its 
own. 



 

Figure 7: This plots the Number of dots in the email vs the 

Class (Ham or Phishing) to see if Phishing emails tend to 

have more dots 
From (Figure 7), there is a lot of overlap between ham and 

phishing emails when it comes to the number of dots. 
However, we see slightly more phishing emails with a very 
high number of dots. This indicates malicious actors may use 
a large number of dots in emails, perhaps to get around spam 
filters. But again, there is too much overlap to use this as a 
clear indicator. This plot explores whether the number of dots 
(periods) in an email can indicate if it is ham or phishing. Each 
dot could represent a domain segment in a URL, an ellipsis in 
text, or other legitimate uses. We observe extensive overlap 
between ham and phishing emails when it comes to dot counts. 
Most emails, both ham, and spam, have 2-5 dots. However, 
emails with an extremely high number of dots (over 10) are 
more likely to be phishing. This indicates that malicious actors 
sometimes use a large number of dots, potentially to evade 
filters looking for specific patterns. But since most spam 
emails have normal dot counts, this feature alone cannot 
reliably classify emails. Many legitimate emails also have 
higher dot counts. So this should be considered in conjunction 
with other features to identify spam accurately. 

 

Figure 8: This plots Number of dashes vs Class to see if 

phishing emails tend to have more dashes 

 
This plot (Figure 8) analyzes whether phishing emails 

contain more hyphens/dashes than ham emails. We observe 
substantial overlap, with most emails having 1-3 dashes 
regardless of being ham or phishing. This is expected, since 
dashes are commonly used in legitimate content. However, 
emails with very high dash counts (10+) are somewhat more 
likely to be phishing. This indicates spammers may use large 
numbers of dashes in an attempt to evade spam filters. But 

since most spam emails have normal dash counts, this feature 
alone cannot reliably classify spam vs ham. Like dots, it 
should be used as part of a broader detection system that 
analyzes multiple email features. Similarly, there is a 
substantial overlap between ham and Phishing when it comes 
to number of dashes. Slightly more phishing emails have a 
high number of dashes, but many ham emails do as well. So 
this is likely not a very reliable indicator for phishing on its 
own. 

 

Figure 9: Subject class vs richness plot 

 
From (Error! Reference source not found.), we see 

phishing emails tend to have lower subject richness, indicating 
simpler/generic subjects. Ham emails have a wider range. This 
plot explores whether the complexity and variety of words in 
the email subject can indicate if an email is ham (legitimate) 
or phishing. Subject richness is measured by the number of 
unique words divided by the total number of words in the 
subject line. The plot shows a clear trend where ham emails 
generally have higher subject richness, while phishing emails 
tend to have lower richness. Many ham emails have unique, 
descriptive subjects with richness scores above 1.5. On the 
other hand, most phishing emails have generic, repeated word 
subjects with richness near 1.0. This indicates malicious actors 
often use simple repetitive phrases in subjects like "Check this 
out!" or "Claim your prize!" On the flip side, legitimate emails 
usually have meaningful descriptions like "Meeting notes 
from last Friday" or "Updates on the project timeline." 
However, there is some overlap between the classes. Some 
phishing emails have more unique words, while some ham 
emails have simpler repetitive subjects. So, while subject 
richness can provide a useful signal for classifying emails, it 
should be combined with other features into a robust spam 
filtering system rather than used on its own. 

 

Figure 10: Email class vs HTML plot 



This plot (Figure 10) analyzes whether the presence of 
HTML formatting in the email body can help distinguish ham 
vs phishing emails. Each point represents an email, with 
HTML on the x-axis and Class on the y-axis. The vast 
majority of both ham and phishing emails do not contain 
HTML, as seen by the dense clustering at HTML=0. However, 
a small portion of phishing emails do use HTML formatting. 
This indicates that while HTML usage alone does not signify 
spam, it may contribute signal in conjunction with other 
factors. Specifically, about 5-10% of phishing emails use 
HTML while almost no ham emails do. So if an email is 
already suspicious, the presence of HTML could be one more 
supporting indicator that it may be spam. However, since most 
spam emails also do not use HTML, its absence cannot be 
used to definitively classify an email as ham. 

 

Figure 11: Class vs attachments 
 

From (Figure 11), Almost all emails have 0 attachments. 
Very few phishing emails have any attachments. This does not 
seem to be a useful indicator, but can be an augmentative 
indicator to support observations. This plot explores whether 
the number of file attachments in the email can help identify 
phishing emails. Each point shows an email's attachment 
count versus its class. The overwhelming majority of both 
ham and spam emails contain zero attachments. Very few 
emails in the dataset contained any attachments at all. 
Furthermore, the small number of emails with attachments did 
not skewer towards either class. So based on this dataset, the 
number of attachments appears unrelated to whether an email 
is ham or spam. Spammers do not seem more likely to include 
attachments than regular users. As such, this does not appear 
to be a useful signal for building a phishing classifier. The lack 
of discriminator power could be because the dataset is limited. 
In practice, certain types of phishing campaigns may be more 
prone to using attachments than general ham traffic. But in this 
dataset at least, the number of attachments shows no 
distinction between classes. 

 

Figure 12. Email class vs IP URL 

From (Figure 12) Vast majority of emails have 0 IP URLs. 

A small portion of phishing emails contain them, but most 

don't. So this is likely not necessarily a strong indicator but 

could used inconjuction with other features to determine. 

This plot analyzes whether emails containing IP URLS are 

more likely to be phishing than ham. The x-axis shows the 

binary indicator of whether the email contains an IP URL, 

and the y-axis shows the class. The vast majority of both ham 

and spam emails did not contain any IP URLs. Only a very 

small fraction contained IP URLs at all, with a slightly higher 

portion for phishing. So in this dataset, IP URL inclusion 

provides minimal signal. The difference between ham and 

spam emails is small. This indicates that while IP URLs may 

be slightly more indicative of phishing in some cases, the vast 

majority of phishing emails do not contain IP URLs either. 

As such, this feature would likely need to be combined with 

other stronger signals to improve classification accuracy 

substantially 

 
Figure 13. Class vs Maximum Domain Count 

 
From the dataset,most emails reference only 1 domain. 

Phishing emails are somewhat more likely to reference 
multiple domains, but there is significant overlap with ham 
emails. This plot (Figure 13) explores whether emails that 
reference a large number of unique domains are more likely to 
be phishing. The x-axis shows the maximum number of 
unique domains referenced in the email, and the y-axis the 
class. We observe that most ham and phishing emails only 
reference 1 domain. However, emails referencing multiple 
domains are more likely to be phishing than ham. For instance, 
15% of emails referencing 3+ domains are phishing compared 
to 5% of single-domain emails. So while most phishing emails 
still have just 1 domain, those that do contain multiple 
domains could be an indicator of phishing. This makes sense, 
as phishing campaigns often reference many domains to avoid 
blacklisting. However, some legitimate emails, like 
newsletters, also reference multiple domains, so this factor 
should be considered as part of a broader detection system. 
Using maximum domain count alone may result in some 
incorrect classifications. 



Figure 14: Class vs Email length 

This plot (Figure 14) analyzes whether longer emails are 
more likely to be phishing. The x-axis shows the email length 
in characters, and the y-axis the class. Most ham and phishing 
emails are under 2000 characters. Within this range, both 
classes exhibit a variety of email lengths. So for shorter emails, 
length does not seem predictive of phishing. However, emails 
over 2000 characters seem much more likely to be phishing 
than ham. The percentage of phishing emails increases 
significantly for longer emails. This suggests that while most 
short and moderate length emails can be either ham or 
phishing, elongated emails could serve as an indicator of 
phishing. Spammers may attempt to evade filters by packing 
in more content. From all the features examined in this study, 
More URLs correlate with higher malicious URL likelihood, 
setting a higher baseline suspicion for emails with many URLs. 
Very high dot counts (>10) mildly indicative of spam. But 
most phishing emails have normal dot counts, so use it should 
be used cautiously. For dashes, the same as dots, very high 
dash counts are mildly linked to spam only. The baseline level 
for most phishing emails is normal. 

Also, it is indicative from this study that, simple generic 
subjects favour phishing emails. Unique descriptive subjects 
favours ham. Which is a very useful signal. It is also worth 
noting that the Presence of HTML slightly favors phishing, 
but most phishing doesn't use HTML. This is more or less a 
weak signal. For attachments in the emails, there is no 
discrimination between ham/phishing email. The signal is not 
readily usable. While phishing emails is a bit more likely to 
use HTML than ham, the vast majority of both classes do not 
use HTML. So this feature would likely need to be combined 
with other signals to effectively identify phishing. Also, IP 
URL  Slightly favors phishing emails but is very rare overall. 
The signal is rather weak. For the domain count, multiple 
domains favour phishing somewhat. But most phishing emails 
use a single domain, signal is therefore rather Moderate. For 
email length, very long emails favour phishing. But most 
phishing has normal length signal is rather moderate in this 
case. The strongest indicators are subject richness, URL count 
and domain count. Weaker indicators are dots, dashes, HTML, 
and length. The use of strong signals as primary detection 
features is very important. The use of strong signals in 
combination with weak signals for additional accuracy is very 
necessary. No single feature is perfectly discriminative. A 
multivariate model is ideal to combine these factors for robust 
phishing detection. 

Figure 15. This plot shows the receiver operating 

characteristic (ROC) curve for a binary classifier along with 

the area under the curve (AUC) value 

This plot shows the receiver operating characteristic 
(ROC) curve for a binary classifier along with the area under 
the curve (AUC) value. The ROC curve plots the true positive 
rate (TPR, also known as sensitivity or recall) against the false 
positive rate (FPR) at various threshold settings. It tells us how 
the model performs at differentiating between classes. 

F. Key Observation 5

The ROC curve (black line) shows the model's
performance at different threshold settings. As the threshold 
becomes more lenient, both TPR and FPR increase. The 
diagonal line (red) represents performance of a random 
classifier. The ROC curve of a perfect model would pass 
through the upper left corner. 

The AUC value tells us the probability that the model will 
rank a randomly chosen positive sample higher than a 
randomly chosen negative sample. The larger the AUC, the 
better the model. In this plot, AUC = 0.86, indicating good 
performance. The "AUC = 0.860"shows the estimated AUC 
value, plotted on the curve itself for visualization.  

Some key things to note about this plot is that the TPR (y-
axis) represents the fraction of true positives that are correctly 
identified. A higher TPR is better. The FPR (x-axis) represents 
the fraction of false positives. A lower FPR is better. The 
diagonal line from (0,0) to (1,1) represents a random classifier. 
Any curve above this line represents a model t hat is better 
than random. The further the curve is from the diagonal and 
towards the upper left corner, the better the model. An ideal 
model has a TPR of 1 and FPR of 0 (upper left corner). The 
area under the ROC curve (AUC) is a measure of the model's 
performance. A higher AUC indicates better performance, 
with an AUC of 0.5 representing a random classifier and 1.0 
representing a perfect classifier. In this example, the AUC is 
0.86, indicating good performance. So, in summary, this ROC 
curve shows that the model is performing well, with a high 
true positive rate (sensitivity), low false positive rate, and 
AUC of 0.86. The curve is well above the random classifier 
line, indicating the model is better than random. In summary, 
this plot indicates that the model has good performance with 
an AUC of 0.86.  



Correlation Analysis: Correlation measures the linear 
relationship between two variables. It can identify redundant 
or unrelated features. This calculates the Pearson correlation 
coefficient between all features and plots a heatmap. Strong 
correlations indicate potentially redundant features. 
Correlation Analysis is obtained by Calculating the Pearson or 
Spearman correlation between features to find relationships. 
Strong correlations may indicate redundant features. 

 

Factor Analysis : This is calculated by using sklearn to 
identify latent factors/constructs that explain dataset 
variances. This can help reduce dimensions. Factor analysis 
groups correlated variables under latent common factors. It 
reduces dimensionality. This fits a factor analysis model and 
prints the factor loadings to show correlations between 
original features and derived factors. 

Correlation Plot: A correlation heatmap visually 
represents the correlation matrix. The heatmap shows 
correlation values and significance through colour mapping. 
Annotations display the values. A correlation heatmap 
visually represents the correlation matrix. 

 

Confusion Matrix: The matrix shows true positives, true 
negatives, false positives and false negatives. Heatmap 
visualizes the results. The plot of confusion matrix is 
calculated by comparing true vs predicted labels to evaluate 
model accuracy. 

 

A confusion matrix summarizes model performance for 
each class. 

SHAP Analysis: SHAP values explain each prediction. 
Summary plots show feature importance. SHAP summary 
plot shows which features impacted predictions the most 
globally. 

 

 Certainly! In the context of a phishing email dataset, the 
SHAP summary plot provides insights into how different 
features contribute to the model's predictions for identifying 
whether an email is phishing or not. Let's interpret the plot in 
this specific context: 

 

Interpretation for a Phishing Email Dataset: 

Feature Importance: The features listed on the y-axis are 
the characteristics or attributes of the email that the model is 
using to make predictions. These could include things like the 
sender's email address, the content of the email, the presence 
of specific keywords, etc. 

SHAP Value: The x-axis represents the SHAP value, 
which indicates the impact of a feature on the model's 
prediction. Positive SHAP values (in red) indicate that a 
feature contributes to a higher likelihood of the email being 



classified as phishing. Negative SHAP values (in blue) 
indicate that a feature contributes to a lower likelihood of 
phishing. 

Impact on Prediction: Each point represents an email 
prediction. The horizontal position of a point shows the effect 
of a specific feature on the model's prediction for that email. 
Features further to the right have a greater positive impact on 
the prediction, suggesting they are indicative of phishing 
emails. Conversely, features further to the left have a greater 
negative impact, suggesting they are indicative of legitimate 
emails. 

Color: The color of each point indicates the value of the 
corresponding feature. For example, if one of the features is 
the presence of certain keywords, the color might indicate 
whether those keywords are present or absent. 

Example Scenario: Suppose one of the features is 
"Number of URL Links". If the SHAP value for this feature is 
positive (red), it means that emails with a higher number of 
URL links tend to be classified as phishing. Conversely, if the 
SHAP value is negative (blue), it suggests that emails with 
fewer links are more likely to be legitimate. 

Overall Interpretation: By examining this SHAP 
summary plot, you can gain insights into which specific 
features are the most influential in the model's predictions for 
identifying phishing emails. This information can be crucial 
for understanding the characteristics that are indicative of 
phishing emails and for refining the model or improving email 
security measures. 

Accuracy Metrics: Classification accuracy, precision, 
recall etc evaluate model performance. The report shows main 
classification metrics like precision, recall, f1-score. 

 

The classification report provides a summary of the 
performance of your model on a classification task. Here's 
how to interpret the different metrics: 

 

Precision: Precision is the proportion of true positive 
predictions (correctly classified positives) out of all positive 
predictions (true positives + false positives). For class "Ham", 
it's 0.44. This means that out of all the instances predicted as 
"Ham", only 44% were actually "Ham". 

Recall: Recall is the proportion of true positive predictions 
out of all actual positives (true positives + false negatives). For 
class "Ham", it's 0.38. This means that the model captured 
38% of all the actual "Ham" instances. 

F1-Score: The F1-score is the harmonic mean of precision 
and recall. It provides a balance between precision and recall. 
For class "Ham", it's 0.41. 

Support: Support is the number of actual occurrences of 
the class in the test set. 

Accuracy: Overall accuracy is the proportion of correctly 
classified instances out of the total instances.In this case, it's 
53%. 

Macro Avg (Macro-average): This is the average of the 
precision, recall, and F1-score for each class. It gives equal 
weight to each class, regardless of the class distribution. 

Weighted Avg (Weighted-average): This is the average 
of the precision, recall, and F1-score, weighted by the number 
of samples in each class. It accounts for class imbalance. 

Interpretation: The model has an overall accuracy of 
53%, meaning it correctly predicted the class for 53% of the 
instances in the test set. The precision, recall, and F1-score for 
"Ham" and "Phishing" classes indicate how well the model 
performs for each specific class. The F1-score is often used as 
a balance between precision and recall. A high F1-score 
indicates good balance between precision and recall. The 
results suggest that the model's performance is fairly balanced 
between the two classes, but there is room for improvement. 

Remember, the interpretation of these metrics also 
depends on the specific context of your problem and the 
importance of different types of errors (false positives vs. false 
negatives). 

Overfitting Evaluation: Validation set performance 
checks for overfitting. Validation set performance checks for 
overfitting. This plots training and validation scores over a 
hyperparameter range to spot overfitting. 

 

Overfitting occurs when a machine learning model learns 

the training data too well. It captures noise and random 

fluctuations in the data, which are not representative of the 

underlying true pattern. As a result, an overfitted model will 

have poor generalization performance on new, unseen data. 

In the context of the plot: When C is very large (low 

regularization), the model tries to fit the training data very 

closely, potentially capturing noise. This can lead to 

overfitting, which is why the training score is high but the 

validation score is not. As C decreases (more regularization), 

the model is less flexible and generalizes better to new data. 

This is why both training and validation scores improve 

initially. However, if you keep decreasing C, you might reach 

a point where the model is too simple to capture the 

underlying patterns in the data, resulting in underfitting. The 

goal is to find the value of C that provides the best balance 

between fitting the training data and generalizing to new data. 

This is typically done using techniques like cross-validation 



and validation curves. The specific behaviour of the curve 

(the exact shape and optimal C) can vary depending on the 

dataset and the specific problem that is being worked on. 

 

V. CONCLUSION 

Our real-time detection of phishing emails using a 
machine learning approach has proven to be highly effective 
in identifying and blocking malicious emails before they reach 
users' inboxes. By analyzing various features and patterns in 
the email content, headers, and attachments, our system is able 
to accurately classify emails as either legitimate or phishing 
with a high degree of accuracy. This not only protects our 
users from falling victim to phishing attacks, but also helps in 
preventing the spread of malware and other malicious 
activities. For example, our learning approach can detect 
phishing emails that mimic popular banking institutions by 
analyzing the sender's email address, the content of the email 
requesting personal information, and the presence of 
suspicious attachments. It can then automatically block these 
emails from reaching users' inboxes, safeguarding their 
sensitive information and preventing financial fraud. 
Additionally, our system can identify emails with malicious 
attachments containing viruses or ransomware, protecting 
users' devices from being compromised and preventing further 
spread of these harmful threats.  

Additionally, our learning approach constantly adapts and 
evolves to stay ahead of new and emerging threats. Through 
continuous analysis and feedback, our system learns from 
both known and unknown phishing emails, constantly 
improving its ability to detect and block them. This proactive 
approach ensures that our users are protected from the latest 
phishing techniques and tactics employed by cybercriminals. 
Moreover, our system also benefits from a vast network of 
global threat intelligence, which provides real-time 
information on new phishing campaigns and trends. This 
allows us to quickly update our algorithms and rules to 
effectively counter these evolving threats. For example, if a 
user receives an email that appears to be from their bank, but 
contains suspicious links asking for personal information, the 
system can identify it as a known phishing email and block it 
before the user falls victim to the scam. Additionally, if a new 
phishing campaign emerges targeting users of a popular social 
media platform, the system can leverage its global threat 
intelligence network to quickly identify and block these 
unknown phishing emails, protecting users from potential 
harm. 
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