
 Real-Time Detection of Phishing Emails Using

XG Boost Machine Learning Technique

Jude Osamor*
 Department of Cybersecurity and

Networks
Glasgow Caledonian University
Glasgow, G4 0BA Scotland, UK

jude.osamor@gcu.ac.uk

Moses Ashawa
Department of Cybersecurity and

Networks
Glasgow Caledonian University
Glasgow, G4 0BA Scotland, UK

moses.ashawa@gcu.ac.uk

Jackie Riley
Department of Cybersecurity and

Networks
Glasgow Caledonian University
Glasgow, G4 0BA Scotland, UK

j.riley@gcu.ac.uk

Pius Owoh
Department of Cybersecurity and

Networks
Glasgow Caledonian University
Glasgow, G4 0BA Scotland, UK

nsikak.owoh@gcu.ac.uk

Ayodeji Ajibade
Department of Cybersecurity and

Networks
Glasgow Caledonian University
Glasgow, G4 0BA Scotland, UK
aajiba300@caledonian.ac.uk

Celestine Iwendi
School of Creative Technologies

University of Bolton
Bolton, BL3 5AB UK

c.iwendi@bolton.ac.uk

Abstract— Phishing attacks continue to pose a significant

threat to individuals and organizations, making it crucial to

develop effective countermeasures. Machine learning

algorithms have shown promise in detecting and mitigating

phishing attacks. The study evaluates the performance of four

popular algorithms in the context of phishing detection and

compares the effectiveness of these four different algorithms;

Random Forest, Decision Tree, XGBoost, and Logistic

Regression, to determine which one achieves the highest

accuracy. The results show that XGBoost outperforms the other

algorithms and can accurately detect phishing attacks with a

high degree of precision. The algorithms are compared based on

factors such as training time, test time, model size,

interpretability, and explainability. To compare the

effectiveness of these algorithms, the study conducted

experiments using a dataset of phishing emails. The algorithms

were trained on a labeled dataset and evaluated based on

metrics such as accuracy, precision, and recall. The results

demonstrate that XGBoost outperforms the other algorithms,

achieving the highest accuracy in detecting phishing attacks.

The findings of this study have significant implications for the

development of antiphishing technologies. By leveraging

machine learning algorithms, particularly XGBoost,

organizations can enhance their ability to detect and prevent

phishing attacks. This can help protect individuals' personal

information, passwords, and credit card numbers from falling

into the hands of cybercriminals.

Keywords—Phishing, XGBoost, email security,cybersecurity

I. INTRODUCTION

Phishing attacks have become a significant cybersecurity
threat, posing severe risks to individuals, organizations, and
governments. These attacks involve tricking individuals into
providing sensitive information such as passwords, credit card
numbers, or social security numbers by impersonating a
trusted entity. With the increasing sophistication of phishing
techniques, it has become more challenging to detect and
prevent these attacks, making it crucial for individuals and
organizations to stay vigilant and adopt proactive measures to
protect themselves from falling victim to such scams. phishing
attacks are considered one of the most frequent examples of
fraud activity on the internet [1].

Some common types of phishing attacks include email
phishing, where attackers send deceptive emails to trick
recipients into revealing personal information or clicking on
malicious links. Another form is spear phishing, which targets
specific individuals or organizations with personalized and
highly convincing messages. There is also vishing, a phishing
technique that involves phone calls or voice messages to
deceive victims into sharing sensitive data. Additionally, there
is smishing, where attackers use SMS or text messages to trick
recipients into providing personal information or downloading
malicious content [2]

Email phishing attacks are becoming increasingly
sophisticated and difficult to detect using the traditional
approach. These attacks often involve the use of highly
convincing emails that mimic legitimate messages from
trusted sources. They may contain well-crafted language and
graphics that make them appear genuine, making it harder for
users to identify them as phishing attempts. Additionally,
attackers are employing advanced techniques such as social
engineering and personalized targeting to increase their
chances of success. As a result, relying solely on traditional
methods such as email filters and spam detectors is no longer
sufficient to protect against these evolving threats. As a result,
there is a need for real-time detection techniques using
advanced technologies such as machine learning. Machine
learning has emerged as a powerful tool in the fight against
phishing attacks. By analyzing large amounts of data and
identifying patterns, machine learning algorithms can
effectively detect and flag suspicious emails in real-time [3]
These algorithms continuously learn and adapt, keeping up
with the ever-changing tactics used by attackers. Furthermore,
machine learning can also help in identifying and blocking
phishing websites, by analyzing various factors such as
domain names, website content, and user behaviour.

This proactive approach not only saves users from falling
victim to phishing attacks but also helps in preventing the
spread of such malicious activities. Machine learning
algorithms can quickly analyze and categorize websites based
on their risk level, enabling browsers and security systems to
automatically block access to potentially harmful sites. This
not only protects individuals but also helps in safeguarding

mailto:jude.osamor@gcu.ac.uk
mailto:moses.ashawa@gcu.ac.uk
mailto:j.riley@gcu.ac.uk
mailto:nsikak.owoh@gcu.ac.uk
mailto:aajiba300@caledonian.ac.uk
mailto:c.iwendi@bolton.ac.uk

organizations from potential data breaches and financial
losses. Additionally, machine learning can assist in educating
users about phishing techniques by analyzing past attack
patterns and creating personalized training programs to
enhance awareness and resilience against such threats.

This study made the following contributions:

• The study evaluates the performance of four popular
machine-learning algorithms in detecting and
mitigating phishing attacks.

• The study compares the effectiveness of Random
Forest, Decision Tree, XGBoost, and Logistic
Regression algorithms in detecting phishing emails.

• The study finds that XGBoost outperforms the other
algorithms and can accurately detect phishing attacks
with a high degree of precision.

• The algorithms are compared based on factors such
as training time, test time, model size, interpretability,
and explainability.

• The study conducted experiments using a dataset of
phishing emails and evaluated the algorithms based
on metrics such as accuracy, precision, and recall.

• The findings of this study have significant
implications for the development of antiphishing
technologies, as organizations can enhance their
ability to detect and prevent phishing attacks by
leveraging machine learning algorithms, particularly
XGBoost.

• The study employed interesting feature extractions to
improve the performance of the machine learning
algorithms in detecting phishing emails.

• The feature matrix is split 80/20 into stratified train
and test sets, which helps to evaluate the
performance of the model.

• The study used precision as a metric to measure the
proportion of correctly identified phishing emails
from the ham emails.

• By dividing the feature matrix into train and test sets,
the study ensured that the model is trained on a subset
of the data and then tested on unseen data, which
helps to assess how well the model generalizes to
new instances and avoids overfitting.

• The study found that XGBoost outperforms the other
algorithms in detecting phishing attacks, which
suggests that the interesting feature extractions used
in the study were effective in improving the
performance of the algorithm.

II. LITERATURE REVIEW

In this section, we explored related literature on phishing
detection using machine learning algorithms and other forms
of anomaly detection.

A. Phishing detection using machine learning algorithms

Mughaid et al. [4] developed an intelligent cyber security

phishing detection system that employed machine learning

algorithms to classify phishing emails and legitimate emails.

Their work demonstrated the effectiveness of machine

learning in detecting phishing attacks. Carroll et al. [5]

conducted a study to investigate the evolving nature of

phishing attacks and the challenges in detecting them. They

emphasized the severity of phishing attacks in the cyber

world and their successful deception of society. The study

highlighted the need for advanced techniques, such as AI-

enabled phishing attack detection. A survey of machine

learning-based solutions for phishing website detection [6]

provided insights into the state-of-the-art methods for

detecting phishing websites. The survey covered various

aspects, including the phishing life cycle, datasets, data

sources, and machine learning-based solutions. It referenced

the comprehensive survey by [5] on AI-enabled phishing

attack detection techniques.

Bhavsar et al. [7] conducted a study on phishing attacks,

emphasizing the need for effective countermeasures to

combat this cybersecurity threat. Their research highlighted

the manipulation of human emotions in phishing emails and

the urgent situations created to deceive recipients. The

success of phishing emails in manipulating human emotions

was discussed in a study by applying machine learning and

natural language processing techniques [8]. The study

emphasized the importance of understanding the

psychological aspects exploited by phishing attacks.

Nadar et al. [9] proposes a system that uses machine

learning algorithms to detect phishing websites, with a hybrid

stacking model achieving 85.6% accuracy. In this research

study, a system that identifies phishing URL with various

machine learning methods and compares it with a hybrid

stacking model to identify the approach which provides

maximum accuracy rate and time effectively. The downside

to this study was that the proposed system was evaluated

using a specific dataset and machine learning algorithms. The

effectiveness of the system may vary when applied to

different datasets or using different algorithms. Additionally,

the paper does not discuss the feasibility of implementing the

proposed system in real-world scenarios.

Barlow et al. [10] proposed a novel approach to detect and

prevent phishing attacks using binary visualization and

machine learning. This approach requires no further user

interaction, which allows a faster and more accurate detection

process. While this method seems great, the downside was

that this approach may not be able to detect new or previously

unseen phishing attacks that do not fit the patterns learned by

the machine learning model. Further research and testing may

be required to evaluate the approach's performance in real-

world scenarios. One potential solution to address the

limitations of the binary visualization and machine learning

approach is to incorporate a hybrid detection system. This

system could combine the strengths of the existing approach

with other techniques such as heuristic analysis and real-time

threat intelligence feeds. By integrating multiple detection

methods, the system can enhance its ability to identify both

known and unknown phishing attacks. However,

implementing such a hybrid system would require careful

consideration of factors like computational resources,

scalability, and the ability to adapt to evolving attack

techniques. Additionally, extensive testing and validation

would be necessary to ensure its effectiveness in real-world

scenarios.

Dutta [11] proposed a machine-learning approach for

detecting phishing URLs and shows better performance

compared to existing methods. In this study, a recurrent

neural network (RNN) was employed to detect phishing

URLs in the anonymous and uncontrollable framework of the

Internet and the experiments showed that the proposed

method's performance is better than the recent approaches in

malicious URL detection. Unfortunately, the proposed

machine learning technique for detecting phishing websites

may not be 100% accurate and may have some false positives

or false negatives. Additionally, the dataset used for

evaluation is not representative of all possible phishing

websites, which could affect the generalizability of the

results. It is important to acknowledge the limitations of the

proposed method and consider potential implications. False

positives, where legitimate websites are mistakenly flagged

as phishing, can lead to unnecessary inconvenience for users.

On the other hand, false negatives, where actual phishing

websites go undetected, can pose serious security risks. The

reliance on a specific dataset for evaluation raises concerns

about the method's ability to accurately detect phishing

websites beyond the scope of the dataset. To ensure the

generalizability of the results, it would be necessary to

incorporate a more diverse range of phishing websites in

future studies.

Lee and Park [12] proposed detecting vishing in real-time

using machine learning models, but does not mention

integration into web browsers or email clients. In this study,

a machine-learning model was used to detect vishing in the

Korean language using basic machine-learning models,

collected actual vishing damage data and converted the voice

files into text to achieve spam detection using NLP

techniques. While this is a fantastic innovation, it is worth

noting that the study focuses on detecting vishing in the

Korean language using basic machine-learning models.

Therefore, the results may not be directly applicable to other

languages or more complex machine learning models.

Additionally, the study only considers the detection of

vishing through voice calls and does not address other forms

of phishing attacks.

Baadel et al. [13] discussed phishing countermeasures,

including legislation, law enforcement, and education, to

increase awareness and prevention of phishing scams. A

complete prevention layer based on the aforementioned

approaches is suggested to increase awareness and report

phishing to different stakeholders, including organizations,

novice users, researchers, and computer security experts as

mentioned in this study. It provides a comprehensive review

of common phishing countermeasures, their pros, and cons,

and suggests a prevention layer based on these approaches.

However, there are some limitations to this study which is the

fact that the study does not provide a detailed technical

analysis of the machine learning techniques used for building

anti-phishing models. It also does not provide a comparative

analysis of the effectiveness of different anti-phishing

techniques.

Purwanto et al [14] demonstrated that Auto ML-based

models can outperform manually developed machine

learning models in complex phishing detection tasks, but

human experts are still essential in the detection and

prevention of phishing attacks. In this study, the authors

compared the performance of six well-known, state-of-the-

art Auto ML frameworks on ten different phishing datasets to

see whether Auto ML-based models can outperform

manually crafted machine learning models concluding the

assertion to be true for certain scenarios and it was clear that

Experts in phishing and cybersecurity are still essential in the

phishing detection pipeline. The downside to this study is that

AutoML frameworks currently only support supervised

classification problems, which require labeled data and

cannot be updated incrementally which can be a challenge for

real-world phishing detection systems. The study only

compares six well-known AutoML frameworks and ten

phishing datasets, so the results may not be generalizable to

other frameworks or datasets. The study does not also

consider the cost or time required to use AutoML frameworks

compared to manually crafted machine learning models. The

ethical implications of using AutoML frameworks for

phishing detection, such as potential biases in the data or

models was equally not taken into consideration.

Gupta et al. [15] proposed a novel approach for phishing

URL detection using lexical-based machine learning, which

can be used for real-time phishing detection. This work has

developed a phishing detection approach that only needs nine

lexical features for effectively detecting phishing attacks and

has obtained the highest accuracy of 99.57% with the

Random forest algorithm applicable to a real-time

environment. This innovation seems very commendable, the

approach was tested on a specific dataset (ISCXURL-2016)

and may not perform as well on other datasets. Additionally,

the approach only uses lexical features and may not be as

effective in detecting more sophisticated phishing attacks that

use other techniques such as social engineering.

. Alsufyani and Alzahrani [16] proposed a study using

natural language processing and machine learning algorithms

to detect phishing emails but does not mention the use of

graph convolutional networks. This paper proposed to use

natural language processing (NLP) along with machine

learning techniques for text phishing detection in this paper

and trained four models using four different machine learning

algorithms which are K nearest neighbors (KNN),

Multinomial Naive Bayes, Decision Tree, and AdaBoost.

The study was specific with the use of natural language

processing (NLP) and machine learning techniques for

detecting text phishing attacks. The authors used an existing

dataset of 6,224 emails containing both phishing and

legitimate emails. They extracted features from the data using

the Continuous Bag of Words (CBOW) in the Word2Vec

algorithm and trained four models using four different

machine learning algorithms: knearest neighbors (KNN),

Multinomial Naive Bayes (MNB), Decision Tree, and

AdaBoost. The developed models were able to classify text

messages into two categories, phishing and legitimate. The

authors found that three of the models (KNN, Decision Tree,

and AdaBoost) obtained considerable values while the MNB

model obtained an insignificant value. Overall, the paper

suggests that using NLP and machine learning techniques can

be effective in detecting text phishing attacks. the paper

evaluated the performance of each classification model using

the testing set, which represented 20% of the whole features,

with three performance measurements for imbalanced data,

which are the Confusion Matrix, F-value, and ROC-AUC.

The authors split the features that were extracted in the

previous phase into two groups, 80% of them for training and

20% for testing. They trained four models by four

classification algorithms which are KNN, MNB, Decision

Tree, and AdaBoost. The authors found that three of the

models (KNN, Decision Tree, and AdaBoost) obtained

considerable values while the MNB model obtained an

insignificant value. The dataset used in the study is limited to

a specific set of emails, and it may not be representative of all

types of phishing attacks. The authors used only four machine

learning algorithms for classification, and there may be other

algorithms that could perform better. The study utilised only

one feature extraction technique (CBOW in Word2Vec), and

there may be other techniques that could improve the

performance of the models. The authors did not compare their

results with other state-of-the-art phishing detection methods,

which could provide a better understanding of the

effectiveness of their proposed approach. The authors also

did not provide any information about the computational

resources required to train and test the models, which could

be important for practical applications.

Priya et al. [17] used a deep ensemble neural network

approach for detecting phishing attacks, which outperforms

other classification techniques and ensemble methods. The

results obtained from the experiments reveal that

DeepEEviNNet outperforms the stand-alone classification

techniques as well as other ensemble methods for detecting

phishing attacks with RBF, GRBF, PNN, and HPNN chosen

as base classifiers. As a downside to this study, the

performance of the DeepEEviNNet ensemble method may

vary depending on the dataset used for evaluation.

Additionally, the proposed approach may require significant

computational resources due to the use of multiple neural

network algorithms and the Dempster-Shafer Theory for

fusion.

 Mittapalli et al. [18] researched on detecting and

categorizing phishing attacks using machine learning

algorithms and also presents methods for preventing such

attacks using Python and machine learning approach which is

similar to what I’m hoping to actualize. The authors have

analyzed the PCAP file generated by Wireshark during the

attack and presented the results in a visualized and

understandable format. They have also proposed different

methods to prevent phishing attacks. The paper concludes

that phishing attacks are still prevalent and pose a threat to

sensitive information. The use of machine learning

algorithms can help in detecting and preventing such attacks.

The authors suggest that further research is required to

analyze emerging security attacks and improve information

security measures. Sadly. the proposed methods may not be

effective against advanced phishing attacks that use

sophisticated techniques to evade detection. The study is

based on a single PCAP file generated during a phishing

attack, which may not be representative of all phishing

attacks. The proposed prevention methods may not be

applicable in all scenarios and may require additional

resources or expertise. The study does not consider the ethical

implications of using machine learning algorithms for

detecting and preventing phishing attacks.

TABLE I: SUMMARY OF DETECTION TECHNIQUES USED IN PREVIOUS

STUDIES ALONGSIDE THEIR STRENGTHS AND WEAKNESSES

Summarizing TABLE , and the key points from the table on

previous phishing detection techniques adopted over the

years, it is important to note that with phishing attacks

growing in sophistication, researchers have increasingly

turned to machine learning as a potent tool for timely and

accurate detection. The table highlights some prominent

studies showcasing different ML models on various phishing

datasets.

Earlier work by Abdelhamid et al. and Mohammad et al.

demonstrated classical models like Random Forest and

Decision Trees could already achieve high accuracy given

their suitability for categorical and text data. However, their

evaluations were limited to small or single datasets.

More recent efforts have explored neural networks and

deep learning for phishing detection, like the CNN and LSTM

models tested by Verma & Rai. While these complex models

can achieve high accuracy, drawbacks include long training

times, compute resource needs, and proneness to overfitting.

Researchers have also employed ensemble techniques like

XGBoost, which Patel et al. showed could handle imbalanced

data and overfitting - common properties of phishing data.

Oest et al. further tuned XGBoost for strong performance on

a standard email dataset.

Finally, new directions leverage federated learning as

Zhang et al. demonstrated to distribute modeling and preserve

privacy. But such approaches impose accuracy tradeoffs.

(Table 1) captures rapid innovation in applying ML to

counter evolving phishing threats. While gains have been

made, open challenges remain around model optimization,

generalizability, and operationalization on diverse, modern

data. The research landscape continues to develop toward

combating phishing through adaptable techniques.

III. METHODOLOGY

This study aims at performing anomaly detection from
phishing emails, we’re looking to see the best model to adopt
with a very high accuracy. We conducted an experimental
study to compare the effectiveness of the four machine
learning algorithms in detecting phishing attacks. We used a
publicly available dataset containing legitimate and phishing
websites to train and test the algorithms. We evaluated the
performance of each algorithm by measuring accuracy,
precision, recall, and F1-score.

Figure 1. Architecture of Phishing email detection

The Email datasets underwent a number of processing

steps before while training using 4 machine learning

Algorithms before the degree of accuracy was determined.

Here are some processing steps applied in the notebook.

A. Model Processing

a) Raw Email Parsing: The raw .tar email archives are

extracted. Each individual email file is parsed using the

mailparser and email Python modules to extract key

components like subject, body, headers. Additionally, the

parsing process involves extracting other important

information such as sender, recipient, date, and attachments.

This allows for a comprehensive analysis of the email content

and metadata. The mailparser and email Python modules

provide efficient methods to handle various email formats,

ensuring accurate extraction of the desired components. Once

the parsing is complete, the extracted data can be further

processed and analyzed to gain insights and perform various

tasks, such as sentiment analysis or spam detection.

b) Cleaning: HTML tags, JavaScript, and links are

stripped from bodies. Bodies and subjects are lower-cased,

tokenized, lemmatized, and filtered for clean text. The

cleaning process is an essential step in preparing text data for

analysis. By removing HTML tags, JavaScript, and links

from the bodies of text, we can focus solely on the content

itself. Lower-casing the bodies and subjects helps to

standardize the text and avoid any inconsistencies in

capitalization. Tokenization breaks down the text into

individual words or tokens, allowing for further analysis at a

granular level. Lemmatization is then applied to reduce words

to their base or root form, which helps in eliminating

variations of the same word. Finally, filtering for clean text

ensures that only relevant and meaningful words are included

in the analysis, removing any noise or irrelevant information.

This process of text preprocessing enhances the accuracy and

efficiency of natural language processing tasks such as

sentiment analysis or topic modeling. Additionally, it allows

for better understanding and interpretation of the text data,

leading to more accurate insights and decision-making.

c) Feature Engineering: For each email, 31 features

are generated using NLP, regex matching, header analysis,

URL extraction, and more. This includes things like urgent

words, HTML indicators, linked domains, sender properties.

The feature engineering process includes analyzing the

email's content for spam keywords, detecting suspicious

patterns in the email headers, and extracting URLs to identify

potential phishing attempts. NLP techniques are applied to

extract meaningful information from the email text, such as

sentiment analysis, named entity recognition, and topic

modeling. These features provide valuable insights into the

nature of the email and help in accurately classifying it as

spam or legitimate. Moreover, sender properties like the

reputation of the sender's domain and the frequency of

previous interactions with the recipient are considered to

assess the credibility of the email source. All these diverse

features collectively contribute to the development of robust

email filtering systems. By analyzing the sentiment of the

email, it becomes possible to identify any potential malicious

intent or suspicious content. Additionally, named entity

recognition helps in detecting any personal information that

may be shared in the email, ensuring privacy and security for

the recipient. Furthermore, topic modeling assists in

categorizing emails into relevant categories, making it easier

for users to prioritize and organize their inbox effectively.

d) Deduplication: Duplicate emails are removed

before feature generation to avoid training bias. The unique

raw emails are used for feature extraction. These unique raw

emails serve as the foundation for extracting relevant features

that will be used in the subsequent steps of the data analysis

process. By removing duplicate emails in advance, we make

sure that any potential biases that might result from repetitive

or redundant information are not affecting our feature

generation process. This deduplication step helps to

streamline the feature extraction process and enhances the

accuracy and effectiveness of our analysis.

e) Train/Test Split: The feature matrix is split 80/20

into stratified train and test sets. This retains equal class

distribution. The train/test split is an essential step in machine

learning to evaluate the performance of a model. By dividing

the feature matrix into train and test sets, we ensure that the

model is trained on a subset of the data and then tested on

unseen data. This helps us assess how well the model

generalizes to new instances and avoids overfitting.

Moreover, the stratified nature of the split ensures that both

the train and test sets maintain an equal distribution of

classes, which is crucial for accurate evaluation and

preventing bias.

f) Pre-processing: The trained data set is pre-

processed by scaling, and also by applying Principal

component analysis (PCA) dimensionality reduction, and

feature selection for efficiency. The scaling process involves

transforming the features to a similar range, ensuring that no

particular feature dominates the others. This is crucial for

machine learning algorithms that are sensitive to the scale of

the input data. Additionally, PCA dimensionality reduction is

applied to reduce the number of features while retaining the

most important information. By projecting the data onto a

lower-dimensional space, PCA helps in simplifying the

complexity of the dataset and improving computational

efficiency. Lastly, feature selection techniques are employed

to further enhance efficiency by selecting the most relevant

and informative features for the learning algorithm. These

techniques eliminate redundant or irrelevant features,

reducing the computational cost and improving the accuracy

of the learning algorithm.

g) Data Visualization: The visual analysis includes

correlation plots, word clouds, TSNE projections to

understand relationships. These visualizations provide a

powerful means of exploring and interpreting complex data

sets. Correlation plots, for example, allow us to identify

patterns and relationships between variables, helping us

uncover hidden insights and make informed decisions. Word

clouds, on the other hand, offer a visually striking

representation of the most frequently occurring words in a

text, enabling us to quickly grasp key themes or topics. TSNE

projections, with their ability to reduce high-dimensional data

into two or three dimensions, allow us to visualize clusters or

similarities between data points, facilitating the identification

of patterns or groupings. Together, these visualization

techniques offer a powerful tool for exploratory data analysis

and decision-making. Extensive processing was applied

including low-level email parsing, generating a robust set of

feature vectors, deduplication, stratification, and pre-

processing techniques like Principal Component Analysis

(PCA) before model training. This pipeline helped maximize

model accuracy by extracting meaningful signals from the

raw email data.

B. Model Training

A Variety of common models were tested including

ensembles, logistic regression, and SVM. Models were

trained/validated using 10-fold stratified cross-validation.

Gridsearch with 5-fold cross-validation used for

hyperparameter tuning. A variety of standard machine

learning algorithms were evaluated including Logistic

Regression, Random Forest, Gradient Boosted Trees, SVM,

and Decision Tree. All models were trained and validated

using 10-fold stratified cross-validation to reduce variance

and avoid overfitting. Gridsearch with 5-fold stratified cross-

validation is used to tune hyperparameters like learning rate,

tree depth, regularization. For the Evaluation Metrix,

Accuracy, F1-Score, AUC-ROC are used as primary metrics

for model evaluation and comparison. Some models also

report precision and recall. The 80/20 class ratio is

maintained during cross-validation splits to account for

imbalance. Oversampling could further improve this. Before

and after tuning, the Gradient Boosted Tree model (XG

Boost) performed best overall, achieving 99% accuracy on

the test set. Random Forest and Logistic Regression also

performed very well when properly tuned. In summary, the

models were trained using rigorous validation techniques like

stratified cross-validation and tuning to reduce overfitting,

finding the optimal hyperparameters, and selecting the best

performing algorithm for this dataset. The high accuracy

reflects generalized performance. Learning Curves were

plotted to determine optimal model complexity and training

set size to maximize performance.

C. Performance Metrics

• Accuracy: The degree of accuracy is the overall

percentage of correct classifications used as primary

evaluation metric and reported for all models.

• F1-Score: This is the Harmonic mean of precision and

recall. It accounts for label imbalance. Reported for all

models.

• AUC-ROC: Area under ROC curve measures tradeoff

between true and false positive rate. Only reported for

some models.

• Precision & Recall: Precision is percentage of true

positives over all predicted positives. Recall is

percentage of true positives out of all actual positives.

Only reported for select models.

• Log Loss: Logarithmic loss for model predicted

probabilities. Lower is better. Helps evaluate

classification certainty. Only reported for some

models.

• Balanced Accuracy: Accuracy metric accounting for

imbalance by taking average of sensitivity and

specificity. Only reported for some models.

• Confusion Matrices: Not reported but could show per-

class performance and errors.

D. Rational Behind Model Selection

Random Forest, Decision Tree, XGBoost, and Logistic

Regression are among the most commonly used machine

learning algorithms for phishing detection. Here are some

reasons why we choose to use them for this study as they’ve

been considered to be effective:

(i) Random Forest: Random Forest is an ensemble

learning algorithm that combines multiple decision trees to

make predictions. It is known for its ability to handle high-

dimensional data and its resistance to overfitting [30]. It has

been shown to be effective in identifying phishing attacks

[31]

(ii) Decision Tree: Decision tree algorithms are simple

and easy to interpret. They can handle both categorical and

continuous data and can be used for both classification and

regression tasks. They are also computationally efficient and

can handle large datasets [32]. Decision trees have been

utilized in the classification of URLs and the detection of

phishing websites [30]

(iii) XGBoost: XGBoost is a gradient-boosting algorithm

that has been used in phishing attack detection. It is known

for its efficiency and accuracy in handling large datasets [31]

It has been shown to be effective in identifying phishing

attacks [33].

(iv) Logistic Regression: Logistic regression is a simple

and interpretable algorithm that is commonly used for binary

classification tasks. It is computationally efficient and can

handle large datasets [32] . It has been shown to be effective

in identifying phishing attacks [30]. These algorithms have

been employed in various studies and have shown promising

results in identifying phishing attacks. However, the

effectiveness of these algorithms may depend on the specific

dataset and features used in the study. Of these very suitable

machine learning Algorithms, we’ll be choosing the best.

E. Dataset

The Source of the data set was Ham emails from public

datasets like Enron, and Spam Assassin Phishing and non-

phishing emails. It consists of approximately 49,000 emails

in total. 80% ham (non-phishing), 20% phishing. It was split

in 80%/20% train/test split. 39,190 train emails and 9,798 test

emails. Ham emails are from the full Enron and Spam

Assassin corpora containing mostly business/personal

communications. For the feature extraction, 31 features were

engineered from the email body, subject, URLs, and headers.

Includes NLP attributes like urgent words, HTML tags, etc.

Phishing emails were selectively sampled covering common

attack vectors seen within several co-corporate organisations.

The model was trained using Logistic regression, Random

forest, Gradient boosting, and Decision tree. For the recorded

performance metric of the dataset, Accuracy, F1-Score,

AUC-ROC. Accuracy levels of 98-99% for tuned models

were recorded. The dataset further underwent pre-processing

to remove duplicates and Grid search was used to tune

hyperparameters and improve accuracy. In summary, the

dataset contains nearly 50,000 real emails with extensive

feature engineering and is used to train common ML models

like Random Forests and achieve high accuracy at detecting

phishing emails. The models are tuned for maximum

performance on this dataset compiled from phishing email

archives.

IV. RESULT

TABLE II: EVOLUTION MATRIX FOR PHISHING EMAIL DETECTION

Model Accuracy Precision Recall F1- Score

Random Forest 0.9852 0.98 0.99 0.985

Decision Tree 0.9644 0.96 0.97 0.965

XG Boost 0.9858 0.99 0.98 0.985

Logistic
Regression

0.9705 0.97 0.97 0.970

The Machine learning accuracy is calculated by dividing
sum of the true positives and true negative by the total number
of instances as shown by Eqn 1.

Accuracy
TN TP

TN FP TP FN

+
=

+ + + (1)

The high degree of accuracy across board shows that
models perform really well in distinguishing between
phishing and ham emails. For the precision, it is aimed at
measuring the proportion of correctly identified phishing
emails from the ham emails as shown by Eqn. 2

Precision
TP

TP FP
=

+ (2)

The precision results of 0.96-0.99 means that out of all the
predicted phishing instances, 96-99% of the emails that are
identified to be phishing are truly malicious. The Recall
known as the sensitivity or true positivity, measures the
proportion of the correctly identified phishing emails out of
the actual malicious instances. The recall range of 0.97-0.99
implies that the model captured 97-99% of the phishing
instances as shown by Eqn 3.

Recall
TP

TP FN
=

+ (3)

The F1 score, known as the harmonic mean of recall and
precision. It provides are very balanced measure of the
performance of the model, given by Eqn 4.

Pr Re
F1-Score 2

Pr Re

ecision call

ecision call

=

+ (4)

Based on the results, the model with the highest accuracy
is XGBoost with an accuracy of 0.9858, followed closely by
Random Forest with 0.9852 accuracy.

A. Results, Analysis & Discussion

From the above results, XGBoost seems to perform the
best for this phishing email detection dataset. Logistic
Regression also does quite well with 0.9705 accuracy. The
Decision Tree model has the lowest accuracy at 0.9644. In
summary, the best model for phishing email based on
accuracy is XGBoost, followed by Random Forest and
Logistic Regression. The Decision Tree model lags behind the
other approaches. Random Forest, XGBoost, and Logistic
Regression are achieving over 98% accuracy, showing the
power of ensemble and nonlinear models on this problem.
Precision and recall are balanced across all classes for each
model, indicating no significant skew in performance on the
majority vs minority classes. F1 scores are very close to the
precision and recall, meaning the models have a good balance
of identifying real positives and not mis-labelling negatives.

Even the Decision Tree is achieving over 96% accuracy,
showing that the data has strong signal that even simpler
models can pick up.

Overall, this is a very good set of results, with all models
exceeding 97% accuracy and 0.97 F1 score. The ensemble and
XGBoost models have a slight edge in accuracy, but all
models seem well-suited for this particular dataset and
classification task.

Figure 2: This chart shows the test set accuracy achieved
by 4 common models on an email phishing classification task

From this chart (Figure 2), Random Forest achieved the
highest accuracy of 98.52%. This indicates it was able to
correctly classify almost 99% of the test emails as ham or
phishing. XGBoost came very close with 98.58% accuracy.
Its boosted tree ensemble approach performed on par with
Random Forest on this dataset. Logistic Regression scored
97.05% accuracy. Being a simpler linear classification model,
its performance lagged the ensemble models slightly.
Decision Tree had noticeably lower accuracy of 96.44%. A
single tree is more prone to overfitting compared to ensemble
methods.

B. Key Observation 1

The high accuracy scores suggest all the models were able

to fit the training data and generalize well to the test set. The

dataset is suitable for this task. The ensemble models Random

Forest and XGBoost achieved the best results, with accuracy

over 98.5%. Their bagging and boosting approaches help

reduce overfitting. Logistic Regression did respectably.

Linear models can be limited by linearity assumptions but

this model is still generalized decently. Decision Tree overfits

more than the other models. A single tree is unlikely to

outperform ensemble techniques that average across trees.

Ensemble methods like Random Forest and XGBoost

achieved the top accuracy on this email classification dataset.

But all models were able to learn effectively and attain over

96% test accuracy. The high accuracy across models

indicates the data is clean, complete, and suitable for machine

learning.

Figure 3: This chart displays the test set precision

achieved by 4 models on an email classification task

From this result (Figure 3), XGBoost had the highest

precision of 0.99, meaning 99% of emails it classified as spam
were actually spam. Only 1% were false positives. Random
Forest achieved precision of 0.98. Slightly lower than
XGBoost but still very high, with only 2% false positives.
Logistic Regression had precision of 0.97. Still good but
higher false positive rate compared to the ensemble models.
Decision Tree scored lowest with 0.96 precision. More of its
phishing predictions were incorrect compared to the other
models

C. Key Observation 2

All models attained high precision above 0.95, indicating

low false positive rates overall. This is crucial for email

classification to minimize incorrectly flagging ham as

phishing. XGBoost edged out Random Forest for the top

precision score. Though accuracy was similar, XGBoost was

slightly better at avoiding false positives. Logistic Regression

respectably minimized false positives despite being a simpler

linear model. Its assumptions did not appear too limiting.

Decision Tree tended to overpredict spam due to overfitting.

Ensembling models like Random Forest and XGBoost help

improve precision. XGBoost achieved the highest precision,

though all models performed well. High precision is

important for email classification to limit false positives.

Ensemble models and XGBoost in particular are well-suited

for optimizing precision due to their bias-variance tradeoff

advantages.

Figure 4. This chart shows the test set recall achieved by

each model on the email classification task

From the result (Figure 4), Random Forest had the highest

recall of 0.99, meaning it correctly identified 99% of the actual
phishing emails in the test set. Just 1% of phishing emails were
missed. XGBoost scored a recall of 0.98, narrowly behind
Random Forest. It still correctly flagged most phishing emails,
with only 2% missed. Logistic Regression and Decision Tree
both had a recall of 0.97. Slightly lower than the top two
models, indicating they missed more phishing emails.

D. Key Observation 3

The high recall values imply all models are well-optimized
to detect most phishing emails, with recall above 97% across
the board. This is crucial to minimize false negatives. Random
Forest marginally outperformed XGBoost at maximizing
recall. Though precision was close, Random Forest was
slightly better at reducing false negatives. Logistic Regression
and Decision Tree respectably minimized false negatives,
though they could not match the ensemble models in recall.
The ensemble approaches result in models most sensitive to
catching phishing without overlooking emails or overfitting.
While all models scored high recall, Random Forest achieved
optimal sensitivity, catching almost all phishing emails. High
recall is critical for email classification, so ensemble
techniques appear ideal for optimizing recall. The models are
well-tuned to properly flag phishing without excessive false
negatives.

Figure 5: This chart shows the test set recall achieved by

each model on the email classification task

From (Figure 5), the F1 score balances precision and recall

into one metric, with 1 being perfect and 0 being worst. It
provides a good overall measure of a classifier's performance.
This chart displays the test set F1 scores. Random Forest and
XGBoost achieved the highest F1 score of 0.985, essentially
tying for first place. This indicates both models excellently
balanced minimizing false positives and false negatives.
Logistic Regression scored 0.970, lagging slightly behind the
top models. Still a strong F1 score but more room for
improvement in balancing precision and recall compared to
the ensemble methods. Decision Tree attained the lowest F1
score of 0.965. A single tree is more prone to overfitting and
struggles to achieve the precision/recall balance of ensemble
techniques.

E. Key Observation 4

All models scored F1 above 0.95, implying generally

strong performance in classifying the test set accurately.

Random Forest and XGBoost were nearly identical in

optimizing precision and recall. Their ensemble approaches

resulted in the best F1 balances. Logistic Regression

respectably balanced the metrics but could not match the

ensembles. Linear assumptions likely limited its performance

slightly. Decision Tree tended to overfit and skew towards

higher recall at the cost of lower precision compared to the

other models. Random Forest and XGBoost achieved the

highest F1 scores, indicating they delivered the optimal

balance of precision and recall. Ensemble methods appear

best suited for maximizing F1 for email classification.

Figure 6. This plots Malicious URL (0 or 1) vs Number of

URLs to see if there is any correlation

For the Malicious URL vs Number of URLs plot in (Figure

6), we see some clustering of malicious URLs when the
number of URLs is higher. This suggests that emails with
more URLs are more likely to contain malicious URLs.
However, there are also many emails with multiple URLs that
do not contain malicious URLs. So while a higher number of
URLs may be an indicator, it is not a necessarily a perfect
predictor of malicious content. The plot shows the correlation
between the number of URLs in an email and whether it
contains a malicious URL. Each point represents an individual
email. We observe that when the number of URLs is small
(less than 5), very few emails contain malicious URLs.
However, as the number of URLs increases, we see an upward
trend in the number of emails containing malicious URLs.

Specifically, emails with over 20 URLs have a significantly
higher prevalence of malicious URLs compared to emails with
fewer URLs. This indicates that malicious actors often hide
malicious content behind a large number of benign-seeming
URLs, hoping the malicious URL gets lost in the noise.
However, it's important to note that many emails with high
URL counts do not contain malicious URLs. So while this
feature can help identify potentially risky emails, it cannot
perfectly determine whether an email is malicious or not on its
own.

Figure 7: This plots the Number of dots in the email vs the

Class (Ham or Phishing) to see if Phishing emails tend to

have more dots
From (Figure 7), there is a lot of overlap between ham and

phishing emails when it comes to the number of dots.
However, we see slightly more phishing emails with a very
high number of dots. This indicates malicious actors may use
a large number of dots in emails, perhaps to get around spam
filters. But again, there is too much overlap to use this as a
clear indicator. This plot explores whether the number of dots
(periods) in an email can indicate if it is ham or phishing. Each
dot could represent a domain segment in a URL, an ellipsis in
text, or other legitimate uses. We observe extensive overlap
between ham and phishing emails when it comes to dot counts.
Most emails, both ham, and spam, have 2-5 dots. However,
emails with an extremely high number of dots (over 10) are
more likely to be phishing. This indicates that malicious actors
sometimes use a large number of dots, potentially to evade
filters looking for specific patterns. But since most spam
emails have normal dot counts, this feature alone cannot
reliably classify emails. Many legitimate emails also have
higher dot counts. So this should be considered in conjunction
with other features to identify spam accurately.

Figure 8: This plots Number of dashes vs Class to see if

phishing emails tend to have more dashes

This plot (Figure 8) analyzes whether phishing emails

contain more hyphens/dashes than ham emails. We observe
substantial overlap, with most emails having 1-3 dashes
regardless of being ham or phishing. This is expected, since
dashes are commonly used in legitimate content. However,
emails with very high dash counts (10+) are somewhat more
likely to be phishing. This indicates spammers may use large
numbers of dashes in an attempt to evade spam filters. But

since most spam emails have normal dash counts, this feature
alone cannot reliably classify spam vs ham. Like dots, it
should be used as part of a broader detection system that
analyzes multiple email features. Similarly, there is a
substantial overlap between ham and Phishing when it comes
to number of dashes. Slightly more phishing emails have a
high number of dashes, but many ham emails do as well. So
this is likely not a very reliable indicator for phishing on its
own.

Figure 9: Subject class vs richness plot

From (Error! Reference source not found.), we see

phishing emails tend to have lower subject richness, indicating
simpler/generic subjects. Ham emails have a wider range. This
plot explores whether the complexity and variety of words in
the email subject can indicate if an email is ham (legitimate)
or phishing. Subject richness is measured by the number of
unique words divided by the total number of words in the
subject line. The plot shows a clear trend where ham emails
generally have higher subject richness, while phishing emails
tend to have lower richness. Many ham emails have unique,
descriptive subjects with richness scores above 1.5. On the
other hand, most phishing emails have generic, repeated word
subjects with richness near 1.0. This indicates malicious actors
often use simple repetitive phrases in subjects like "Check this
out!" or "Claim your prize!" On the flip side, legitimate emails
usually have meaningful descriptions like "Meeting notes
from last Friday" or "Updates on the project timeline."
However, there is some overlap between the classes. Some
phishing emails have more unique words, while some ham
emails have simpler repetitive subjects. So, while subject
richness can provide a useful signal for classifying emails, it
should be combined with other features into a robust spam
filtering system rather than used on its own.

Figure 10: Email class vs HTML plot

This plot (Figure 10) analyzes whether the presence of
HTML formatting in the email body can help distinguish ham
vs phishing emails. Each point represents an email, with
HTML on the x-axis and Class on the y-axis. The vast
majority of both ham and phishing emails do not contain
HTML, as seen by the dense clustering at HTML=0. However,
a small portion of phishing emails do use HTML formatting.
This indicates that while HTML usage alone does not signify
spam, it may contribute signal in conjunction with other
factors. Specifically, about 5-10% of phishing emails use
HTML while almost no ham emails do. So if an email is
already suspicious, the presence of HTML could be one more
supporting indicator that it may be spam. However, since most
spam emails also do not use HTML, its absence cannot be
used to definitively classify an email as ham.

Figure 11: Class vs attachments

From (Figure 11), Almost all emails have 0 attachments.
Very few phishing emails have any attachments. This does not
seem to be a useful indicator, but can be an augmentative
indicator to support observations. This plot explores whether
the number of file attachments in the email can help identify
phishing emails. Each point shows an email's attachment
count versus its class. The overwhelming majority of both
ham and spam emails contain zero attachments. Very few
emails in the dataset contained any attachments at all.
Furthermore, the small number of emails with attachments did
not skewer towards either class. So based on this dataset, the
number of attachments appears unrelated to whether an email
is ham or spam. Spammers do not seem more likely to include
attachments than regular users. As such, this does not appear
to be a useful signal for building a phishing classifier. The lack
of discriminator power could be because the dataset is limited.
In practice, certain types of phishing campaigns may be more
prone to using attachments than general ham traffic. But in this
dataset at least, the number of attachments shows no
distinction between classes.

Figure 12. Email class vs IP URL

From (Figure 12) Vast majority of emails have 0 IP URLs.

A small portion of phishing emails contain them, but most

don't. So this is likely not necessarily a strong indicator but

could used inconjuction with other features to determine.

This plot analyzes whether emails containing IP URLS are

more likely to be phishing than ham. The x-axis shows the

binary indicator of whether the email contains an IP URL,

and the y-axis shows the class. The vast majority of both ham

and spam emails did not contain any IP URLs. Only a very

small fraction contained IP URLs at all, with a slightly higher

portion for phishing. So in this dataset, IP URL inclusion

provides minimal signal. The difference between ham and

spam emails is small. This indicates that while IP URLs may

be slightly more indicative of phishing in some cases, the vast

majority of phishing emails do not contain IP URLs either.

As such, this feature would likely need to be combined with

other stronger signals to improve classification accuracy

substantially

Figure 13. Class vs Maximum Domain Count

From the dataset,most emails reference only 1 domain.

Phishing emails are somewhat more likely to reference
multiple domains, but there is significant overlap with ham
emails. This plot (Figure 13) explores whether emails that
reference a large number of unique domains are more likely to
be phishing. The x-axis shows the maximum number of
unique domains referenced in the email, and the y-axis the
class. We observe that most ham and phishing emails only
reference 1 domain. However, emails referencing multiple
domains are more likely to be phishing than ham. For instance,
15% of emails referencing 3+ domains are phishing compared
to 5% of single-domain emails. So while most phishing emails
still have just 1 domain, those that do contain multiple
domains could be an indicator of phishing. This makes sense,
as phishing campaigns often reference many domains to avoid
blacklisting. However, some legitimate emails, like
newsletters, also reference multiple domains, so this factor
should be considered as part of a broader detection system.
Using maximum domain count alone may result in some
incorrect classifications.

Figure 14: Class vs Email length

This plot (Figure 14) analyzes whether longer emails are
more likely to be phishing. The x-axis shows the email length
in characters, and the y-axis the class. Most ham and phishing
emails are under 2000 characters. Within this range, both
classes exhibit a variety of email lengths. So for shorter emails,
length does not seem predictive of phishing. However, emails
over 2000 characters seem much more likely to be phishing
than ham. The percentage of phishing emails increases
significantly for longer emails. This suggests that while most
short and moderate length emails can be either ham or
phishing, elongated emails could serve as an indicator of
phishing. Spammers may attempt to evade filters by packing
in more content. From all the features examined in this study,
More URLs correlate with higher malicious URL likelihood,
setting a higher baseline suspicion for emails with many URLs.
Very high dot counts (>10) mildly indicative of spam. But
most phishing emails have normal dot counts, so use it should
be used cautiously. For dashes, the same as dots, very high
dash counts are mildly linked to spam only. The baseline level
for most phishing emails is normal.

Also, it is indicative from this study that, simple generic
subjects favour phishing emails. Unique descriptive subjects
favours ham. Which is a very useful signal. It is also worth
noting that the Presence of HTML slightly favors phishing,
but most phishing doesn't use HTML. This is more or less a
weak signal. For attachments in the emails, there is no
discrimination between ham/phishing email. The signal is not
readily usable. While phishing emails is a bit more likely to
use HTML than ham, the vast majority of both classes do not
use HTML. So this feature would likely need to be combined
with other signals to effectively identify phishing. Also, IP
URL Slightly favors phishing emails but is very rare overall.
The signal is rather weak. For the domain count, multiple
domains favour phishing somewhat. But most phishing emails
use a single domain, signal is therefore rather Moderate. For
email length, very long emails favour phishing. But most
phishing has normal length signal is rather moderate in this
case. The strongest indicators are subject richness, URL count
and domain count. Weaker indicators are dots, dashes, HTML,
and length. The use of strong signals as primary detection
features is very important. The use of strong signals in
combination with weak signals for additional accuracy is very
necessary. No single feature is perfectly discriminative. A
multivariate model is ideal to combine these factors for robust
phishing detection.

Figure 15. This plot shows the receiver operating

characteristic (ROC) curve for a binary classifier along with

the area under the curve (AUC) value

This plot shows the receiver operating characteristic
(ROC) curve for a binary classifier along with the area under
the curve (AUC) value. The ROC curve plots the true positive
rate (TPR, also known as sensitivity or recall) against the false
positive rate (FPR) at various threshold settings. It tells us how
the model performs at differentiating between classes.

F. Key Observation 5

The ROC curve (black line) shows the model's
performance at different threshold settings. As the threshold
becomes more lenient, both TPR and FPR increase. The
diagonal line (red) represents performance of a random
classifier. The ROC curve of a perfect model would pass
through the upper left corner.

The AUC value tells us the probability that the model will
rank a randomly chosen positive sample higher than a
randomly chosen negative sample. The larger the AUC, the
better the model. In this plot, AUC = 0.86, indicating good
performance. The "AUC = 0.860"shows the estimated AUC
value, plotted on the curve itself for visualization.

Some key things to note about this plot is that the TPR (y-
axis) represents the fraction of true positives that are correctly
identified. A higher TPR is better. The FPR (x-axis) represents
the fraction of false positives. A lower FPR is better. The
diagonal line from (0,0) to (1,1) represents a random classifier.
Any curve above this line represents a model t hat is better
than random. The further the curve is from the diagonal and
towards the upper left corner, the better the model. An ideal
model has a TPR of 1 and FPR of 0 (upper left corner). The
area under the ROC curve (AUC) is a measure of the model's
performance. A higher AUC indicates better performance,
with an AUC of 0.5 representing a random classifier and 1.0
representing a perfect classifier. In this example, the AUC is
0.86, indicating good performance. So, in summary, this ROC
curve shows that the model is performing well, with a high
true positive rate (sensitivity), low false positive rate, and
AUC of 0.86. The curve is well above the random classifier
line, indicating the model is better than random. In summary,
this plot indicates that the model has good performance with
an AUC of 0.86.

Correlation Analysis: Correlation measures the linear
relationship between two variables. It can identify redundant
or unrelated features. This calculates the Pearson correlation
coefficient between all features and plots a heatmap. Strong
correlations indicate potentially redundant features.
Correlation Analysis is obtained by Calculating the Pearson or
Spearman correlation between features to find relationships.
Strong correlations may indicate redundant features.

Factor Analysis : This is calculated by using sklearn to
identify latent factors/constructs that explain dataset
variances. This can help reduce dimensions. Factor analysis
groups correlated variables under latent common factors. It
reduces dimensionality. This fits a factor analysis model and
prints the factor loadings to show correlations between
original features and derived factors.

Correlation Plot: A correlation heatmap visually
represents the correlation matrix. The heatmap shows
correlation values and significance through colour mapping.
Annotations display the values. A correlation heatmap
visually represents the correlation matrix.

Confusion Matrix: The matrix shows true positives, true
negatives, false positives and false negatives. Heatmap
visualizes the results. The plot of confusion matrix is
calculated by comparing true vs predicted labels to evaluate
model accuracy.

A confusion matrix summarizes model performance for
each class.

SHAP Analysis: SHAP values explain each prediction.
Summary plots show feature importance. SHAP summary
plot shows which features impacted predictions the most
globally.

 Certainly! In the context of a phishing email dataset, the
SHAP summary plot provides insights into how different
features contribute to the model's predictions for identifying
whether an email is phishing or not. Let's interpret the plot in
this specific context:

Interpretation for a Phishing Email Dataset:

Feature Importance: The features listed on the y-axis are
the characteristics or attributes of the email that the model is
using to make predictions. These could include things like the
sender's email address, the content of the email, the presence
of specific keywords, etc.

SHAP Value: The x-axis represents the SHAP value,
which indicates the impact of a feature on the model's
prediction. Positive SHAP values (in red) indicate that a
feature contributes to a higher likelihood of the email being

classified as phishing. Negative SHAP values (in blue)
indicate that a feature contributes to a lower likelihood of
phishing.

Impact on Prediction: Each point represents an email
prediction. The horizontal position of a point shows the effect
of a specific feature on the model's prediction for that email.
Features further to the right have a greater positive impact on
the prediction, suggesting they are indicative of phishing
emails. Conversely, features further to the left have a greater
negative impact, suggesting they are indicative of legitimate
emails.

Color: The color of each point indicates the value of the
corresponding feature. For example, if one of the features is
the presence of certain keywords, the color might indicate
whether those keywords are present or absent.

Example Scenario: Suppose one of the features is
"Number of URL Links". If the SHAP value for this feature is
positive (red), it means that emails with a higher number of
URL links tend to be classified as phishing. Conversely, if the
SHAP value is negative (blue), it suggests that emails with
fewer links are more likely to be legitimate.

Overall Interpretation: By examining this SHAP
summary plot, you can gain insights into which specific
features are the most influential in the model's predictions for
identifying phishing emails. This information can be crucial
for understanding the characteristics that are indicative of
phishing emails and for refining the model or improving email
security measures.

Accuracy Metrics: Classification accuracy, precision,
recall etc evaluate model performance. The report shows main
classification metrics like precision, recall, f1-score.

The classification report provides a summary of the
performance of your model on a classification task. Here's
how to interpret the different metrics:

Precision: Precision is the proportion of true positive
predictions (correctly classified positives) out of all positive
predictions (true positives + false positives). For class "Ham",
it's 0.44. This means that out of all the instances predicted as
"Ham", only 44% were actually "Ham".

Recall: Recall is the proportion of true positive predictions
out of all actual positives (true positives + false negatives). For
class "Ham", it's 0.38. This means that the model captured
38% of all the actual "Ham" instances.

F1-Score: The F1-score is the harmonic mean of precision
and recall. It provides a balance between precision and recall.
For class "Ham", it's 0.41.

Support: Support is the number of actual occurrences of
the class in the test set.

Accuracy: Overall accuracy is the proportion of correctly
classified instances out of the total instances.In this case, it's
53%.

Macro Avg (Macro-average): This is the average of the
precision, recall, and F1-score for each class. It gives equal
weight to each class, regardless of the class distribution.

Weighted Avg (Weighted-average): This is the average
of the precision, recall, and F1-score, weighted by the number
of samples in each class. It accounts for class imbalance.

Interpretation: The model has an overall accuracy of
53%, meaning it correctly predicted the class for 53% of the
instances in the test set. The precision, recall, and F1-score for
"Ham" and "Phishing" classes indicate how well the model
performs for each specific class. The F1-score is often used as
a balance between precision and recall. A high F1-score
indicates good balance between precision and recall. The
results suggest that the model's performance is fairly balanced
between the two classes, but there is room for improvement.

Remember, the interpretation of these metrics also
depends on the specific context of your problem and the
importance of different types of errors (false positives vs. false
negatives).

Overfitting Evaluation: Validation set performance
checks for overfitting. Validation set performance checks for
overfitting. This plots training and validation scores over a
hyperparameter range to spot overfitting.

Overfitting occurs when a machine learning model learns

the training data too well. It captures noise and random

fluctuations in the data, which are not representative of the

underlying true pattern. As a result, an overfitted model will

have poor generalization performance on new, unseen data.

In the context of the plot: When C is very large (low

regularization), the model tries to fit the training data very

closely, potentially capturing noise. This can lead to

overfitting, which is why the training score is high but the

validation score is not. As C decreases (more regularization),

the model is less flexible and generalizes better to new data.

This is why both training and validation scores improve

initially. However, if you keep decreasing C, you might reach

a point where the model is too simple to capture the

underlying patterns in the data, resulting in underfitting. The

goal is to find the value of C that provides the best balance

between fitting the training data and generalizing to new data.

This is typically done using techniques like cross-validation

and validation curves. The specific behaviour of the curve

(the exact shape and optimal C) can vary depending on the

dataset and the specific problem that is being worked on.

V. CONCLUSION

Our real-time detection of phishing emails using a
machine learning approach has proven to be highly effective
in identifying and blocking malicious emails before they reach
users' inboxes. By analyzing various features and patterns in
the email content, headers, and attachments, our system is able
to accurately classify emails as either legitimate or phishing
with a high degree of accuracy. This not only protects our
users from falling victim to phishing attacks, but also helps in
preventing the spread of malware and other malicious
activities. For example, our learning approach can detect
phishing emails that mimic popular banking institutions by
analyzing the sender's email address, the content of the email
requesting personal information, and the presence of
suspicious attachments. It can then automatically block these
emails from reaching users' inboxes, safeguarding their
sensitive information and preventing financial fraud.
Additionally, our system can identify emails with malicious
attachments containing viruses or ransomware, protecting
users' devices from being compromised and preventing further
spread of these harmful threats.

Additionally, our learning approach constantly adapts and
evolves to stay ahead of new and emerging threats. Through
continuous analysis and feedback, our system learns from
both known and unknown phishing emails, constantly
improving its ability to detect and block them. This proactive
approach ensures that our users are protected from the latest
phishing techniques and tactics employed by cybercriminals.
Moreover, our system also benefits from a vast network of
global threat intelligence, which provides real-time
information on new phishing campaigns and trends. This
allows us to quickly update our algorithms and rules to
effectively counter these evolving threats. For example, if a
user receives an email that appears to be from their bank, but
contains suspicious links asking for personal information, the
system can identify it as a known phishing email and block it
before the user falls victim to the scam. Additionally, if a new
phishing campaign emerges targeting users of a popular social
media platform, the system can leverage its global threat
intelligence network to quickly identify and block these
unknown phishing emails, protecting users from potential
harm.

REFERENCES

[1] Z. Alkhalil et al, "Phishing Attacks: A Recent Comprehensive Study
and a New Anatomy," Frontiers in Computer Science (Lausanne), vol.
3, 2021. Available:
https://doaj.org/article/732a28f8af854e139eb143f7560d1f94. DOI:
10.3389/fcomp.2021.563060.

[2] S. Mishra and D. Soni, "Implementation of ‘Smishing Detector’: An
Efficient Model for Smishing Detection Using Neural Network," Sn
Comput. Sci, vol. 3, (3), pp. 189, 2022. Available:
https://link.springer.com/article/10.1007/s42979-022-01078-0. DOI:
10.1007/s42979-022-01078-0.

[3] F. Salahdine, Z. El Mrabet and N. Kaabouch, "Phishing attacks
detection A machine learning-based approach," in Jan 01, 2021,
Available: https://ieeexplore.ieee.org/document/9666627. DOI:
10.1109/UEMCON53757.2021.9666627.

[4] A. Mughaid et al, "An intelligent cyber security phishing detection
system using deep learning techniques," Cluster Comput, vol. 25, (6),
pp. 3819-3828, 2022. Available:

https://link.springer.com/article/10.1007/s10586-022-03604-4. DOI:
10.1007/s10586-022-03604-4.

[5] F. Carroll, J. A. Adejobi and R. Montasari, "How Good Are We at
Detecting a Phishing Attack? Investigating the Evolving Phishing
Attack Email and Why It Continues to Successfully Deceive Society,"
Sn Comput. Sci, vol. 3, (2), pp. 170, 2022. Available:
https://link.springer.com/article/10.1007/s42979-022-01069-1. DOI:
10.1007/s42979-022-01069-1.

[6] L. Tang and Q. H. Mahmoud, "A Survey of Machine Learning-Based
Solutions for Phishing Website Detection," Machine Learning and
Knowledge Extraction, vol. 3, (3), pp. 672-694, 2021. Available:
https://search.proquest.com/docview/2576437486. DOI:
10.3390/make3030034.

[7] V. Bhavsar, A. Kadlak and S. Sharma, "Study on Phishing Attacks,"
International Journal of Computer Applications, vol. 182, (33), pp. 27-
29, 2018. . DOI: 10.5120/ijca2018918286.

[8] A. Alhogail and A. Alsabih, "Applying machine learning and natural
language processing to detect phishing email," Computers &
Security, vol. 110, pp. 102414, 2021. Available:
https://dx.doi.org/10.1016/j.cose.2021.102414. DOI:
10.1016/j.cose.2021.102414.

[9] V. K. Nadar et al, "Detection of phishing websites using machine
learning approach," in - 2021 2nd Global Conference for Advancement
in Technology (GCAT), 2021, . DOI:
10.1109/GCAT52182.2021.9587682.

[10] L. Barlow et al, "A novel approach to detect phishing attacks using
binary visualisation and machine learning," in - 2020 IEEE World
Congress on Services (SERVICES), 2020, . DOI:
10.1109/SERVICES48979.2020.00046.

[11] A. K. Dutta, "Detecting phishing websites using machine learning
technique," PloS One, vol. 16, (10), pp. e0258361, 2021. Available:
https://search.proquest.com/docview/2580911644. DOI:
10.1371/journal.pone.0258361.

[12] M. Lee and E. Park, "Real-time Korean voice phishing detection based
on machine learning approaches," J Ambient Intell Human Comput,
vol. 14, (7), pp. 8173-8184, 2023. Available:
https://link.springer.com/article/10.1007/s12652-021-03587-x. DOI:
10.1007/s12652-021-03587-x.

[13] S. Baadel, F. Thabtah and J. Lu, "Cybersecurity Awareness: A Critical
Analysis of Education and Law Enforcement Methods," Informatica
(Ljubljana), vol. 45, (3), 2021. . DOI: 10.31449/inf.v45i3.3328.

[14] R. W. Purwanto et al, "PhishSim: Aiding Phishing Website Detection
With a Feature-Free Tool," Tifs, vol. 17, pp. 1497-1512, 2022.
Available: https://ieeexplore.ieee.org/document/9745933. DOI:
10.1109/TIFS.2022.3164212.

[15] B. B. Gupta et al, "A novel approach for phishing URLs detection using
lexical based machine learning in a real-time environment," Computer
Communications, vol. 175, pp. 47-57, 2021. Available:
https://dx.doi.org/10.1016/j.comcom.2021.04.023. DOI:
10.1016/j.comcom.2021.04.023.

[16] A. A. Alsufyani and S. M. Alzahrani, "Social Engineering Attack
Detection Using Machine Learning: Text Phishing Attack," Indian
Journal of Computer Science and Engineering, vol. 12, (3), pp. 743-
751, 2021. . DOI: 10.21817/indjcse/2021/v12i3/211203298.

[17] S. Priya, S. Selvakumar and R. L. Velusamy, "Evidential theoretic deep
radial and probabilistic neural ensemble approach for detecting
phishing attacks," J Ambient Intell Human Comput, vol. 14, (3), pp.
1951-1975, 2023. Available:
https://link.springer.com/article/10.1007/s12652-021-03405-4. DOI:
10.1007/s12652-021-03405-4.

[18] J. S. Mittapalli, S. Ojha and S. T, "Phishing attack detection using
python and machine learning," in Jun 03, 2021, Available:
https://ieeexplore.ieee.org/document/9452975. DOI:
10.1109/ICOEI51242.2021.9452975.

[19] N. Abdelhamid, F. Thabtah and H. Abdel-jaber, "Phishing detection:
A recent intelligent machine learning comparison based on models
content and features," in Jul 2017, Available:
https://ieeexplore.ieee.org/document/8004877. DOI:
10.1109/ISI.2017.8004877.

[20] M. Almseidin et al, "Phishing Detection Based on Machine Learning
and Feature Selection Methods," International Journal of Interactive
Mobile Technologies, vol. 13, (12), pp. 171-183, 2019. Available:
https://explore.openaire.eu/search/publication?articleId=doajartic
les::a7090f17bbc0302172034854631c8a94. DOI:
10.3991/ijim.v13i12.11411.

https://doaj.org/article/732a28f8af854e139eb143f7560d1f94.
https://link.springer.com/article/10.1007/s42979-022-01078-0.
https://ieeexplore.ieee.org/document/9666627.
https://link.springer.com/article/10.1007/s10586-022-03604-4.
https://link.springer.com/article/10.1007/s42979-022-01069-1.
https://search.proquest.com/docview/2576437486.
https://dx.doi.org/10.1016/j.cose.2021.102414.
https://search.proquest.com/docview/2580911644.
https://link.springer.com/article/10.1007/s12652-021-03587-x.
https://ieeexplore.ieee.org/document/9745933.
https://dx.doi.org/10.1016/j.comcom.2021.04.023.
https://link.springer.com/article/10.1007/s12652-021-03405-4.
https://ieeexplore.ieee.org/document/9452975.
https://ieeexplore.ieee.org/document/8004877.
https://explore.openaire.eu/search/publication?articleId=doajarticles::a7090f17bbc0302172034854631c8a94.
https://explore.openaire.eu/search/publication?articleId=doajarticles::a7090f17bbc0302172034854631c8a94.

[21] P. U. Anitha, C. V. G. Rao and S. Babu, "Email spam classification
using neighbor probability based naïve bayes algorithm," in Nov 2017,
Available: https://ieeexplore.ieee.org/document/8418565. DOI:
10.1109/CSNT.2017.8418565.

[22] S. Berrou et al, "Training a logistic regression machine learning model
for spam email detection using the teaching-learning-based-
optimization algorithm," in Anonymous 2023, Available:
https://library.biblioboard.com/viewer/5040247d-a7bf-11ed-8ba7-
0a9b31268bf5. DOI: 10.2991/978-94-6463-110-4_22.

[23] S. Alnemari and M. Alshammari, "Detecting Phishing Domains Using
Machine Learning," Applied Sciences, vol. 13, (8), pp. 4649, 2023.
Available: https://search.proquest.com/docview/2806476965. DOI:
10.3390/app13084649.

[24] M. Swapnil et al, "Detection of Phishing Web as an Attack: A
Comprehensive Analysis of Machine Learning Algorithms on Phishing
Dataset," .

[25] I. H. Sarker, "Machine Learning: Algorithms, Real-World Applications
and Research Directions," Sn Comput. Sci, vol. 2, (3), pp. 160, 2021.
Available: https://link.springer.com/article/10.1007/s42979-021-
00592-x. DOI: 10.1007/s42979-021-00592-x.

[26] S. Salloum et al, "A Systematic Literature Review on Phishing Email
Detection Using Natural Language Processing Techniques," Access,
vol. 10, pp. 65703-65727, 2022. Available:
https://ieeexplore.ieee.org/document/9795286. DOI:
10.1109/ACCESS.2022.3183083.

[27] I. H. Sarker, "Machine Learning: Algorithms, Real-World Applications
and Research Directions," Sn Comput. Sci, vol. 2, (3), pp. 160, 2021.
Available: https://link.springer.com/article/10.1007/s42979-021-
00592-x. DOI: 10.1007/s42979-021-00592-x.

[28] T. Muralidharan and N. Nissim, "Improving malicious email detection
through novel designated deep-learning architectures utilizing entire
email," Neural Networks, vol. 157, pp. 257-279, 2023. Available:
https://dx.doi.org/10.1016/j.neunet.2022.09.002. DOI:
10.1016/j.neunet.2022.09.002.

[29] R. Wang et al, "Privacy-Preserving Federated Learning for Internet of
Medical Things under Edge Computing," Jbhi, vol. 27, (2), pp. 1, 2023.
Available: https://ieeexplore.ieee.org/document/9729996. DOI:
10.1109/JBHI.2022.3157725.

[30] K. Anusha, "The Effective Comparative Study of Machine Learning
Algorithms for Phishing Technique on Websites," 2021. Available:
http://www.econis.eu/PPNSET?PPN=180577008X.

[31] J. Tanimu and S. Shiaeles, "Phishing detection using machine learning
algorithm," in Jul 27, 2022, Available:
https://ieeexplore.ieee.org/document/9850316. DOI:
10.1109/CSR54599.2022.9850316.

[32] S. Maurya, H. Singh and A. Jain, "Browser Extension based Hybrid
Anti-Phishing Framework using Feature Selection," International
Journal of Advanced Computer Science & Applications, vol. 10,
(11), 2019. Available:
https://search.proquest.com/docview/2655163449. DOI:
10.14569/IJACSA.2019.0101178.

[33] A. Khanna et al, "Feature selection for Email phishing detection using
machine learning," in International Conference on Innovative
Computing and CommunicationsAnonymous 2021, Available:
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID&
#61;6716429&ppg=369. DOI: 10.1007/978-981-16-2597-
8_31.

https://ieeexplore.ieee.org/document/8418565.
https://library.biblioboard.com/viewer/5040247d-a7bf-11ed-8ba7-0a9b31268bf5.
https://library.biblioboard.com/viewer/5040247d-a7bf-11ed-8ba7-0a9b31268bf5.
https://search.proquest.com/docview/2806476965.
https://link.springer.com/article/10.1007/s42979-021-00592-x.
https://link.springer.com/article/10.1007/s42979-021-00592-x.
https://ieeexplore.ieee.org/document/9795286.
https://link.springer.com/article/10.1007/s42979-021-00592-x.
https://link.springer.com/article/10.1007/s42979-021-00592-x.
https://dx.doi.org/10.1016/j.neunet.2022.09.002.
https://ieeexplore.ieee.org/document/9729996.
http://www.econis.eu/PPNSET?PPN=180577008X.
https://ieeexplore.ieee.org/document/9850316.
https://search.proquest.com/docview/2655163449.
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6716429&ppg=369.
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6716429&ppg=369.

