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Abstract: 

A two-dimensional model is developed to simulate the performance of solid oxide fuel cells 

(SOFCs) fed with CO2 and CH4 mixture.  The electrochemical oxidations of both CO and H2 are 

included.  Important chemical reactions are considered in the model, including methane carbon 

dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam 

reforming (MSR).  It’s found that at a CH4/CO2 molar ratio of 50/50, MCDR and reversible 

WGSR significantly influence the cell performance while MSR is negligibly small.  The 

performance of SOFC fed with CO2/CH4 mixture is comparable to SOFC running on CH4/H2O 

mixtures.  The electric output of SOFC can be enhanced by operating the cell at a low operating 

potential or at a high temperature.  In addition, the development of anode catalyst with high 

activity towards CO electrochemical oxidation is important for SOFC performance 

enhancement.  The model can serve as a useful tool for optimization of the SOFC system 

running on CH4/CO2 mixtures.    
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1. Introduction  

Solid oxide fuel cells (SOFCs) are very promising electrochemical devices for stationary 

power generation [1].  Working at a high temperature (i.e. 673-1273K), SOFCs have a few 

advantages: (1) use of low cost catalyst (i.e. Ni as anode) due to fast electrochemical reaction 

rate; (2) relatively low activation loss compared with low temperature fuel cells; (3) potential for 

combined heat and power (CHP) cogeneration as the waste heat from the SOFC stack is of high 

quality and can be recovered; (4) fuel flexibility – high working temperature enables direct 

internal reforming of hydrocarbon fuels or thermal decomposition of ammonia, thus SOFCs can 

make use of alternative fuels, including hydrogen, methane, coal gas, bio-ethanol, ammonia, 

dimethyl ether (DME), and other hydrocarbon fuels [2-7].  The fuel flexibility feature makes 

SOFCs unique compared with low temperature fuel cells, such as proton exchange membrane 

fuel cells (PEMFCs), which require very pure hydrogen as fuel [8].     

Methane is a widely studied fuel for SOFCs as it’s the major component of natural gas 

and a key component of towngas and biogas.  For CH4 fed SOFCs, steam reforming of CH4 is 

needed as the direct electrochemical oxidation of CH4 in SOFCs is still very difficult [9,10].  

Extensive experimental and modeling studies have been performed to understand the methane 

internal steam reforming (MSR) and water gas shift reaction (WGSR) kinetics in SOFCs and 

their effects on SOFC performance [11-23].  For describing the reaction kinetics of MSR and 

WGSR, global reaction schemes are widely used due to their easy implementation and less 

computational time [11-17].  Detailed elementary reaction schemes are also employed for 

internal reforming SOFCs [18-23].  These studies showed that the inclusion of SR and WGSR 

greatly influences the transport process and electrochemical performance of the cell.  In addition 

to MSR, methane carbon dioxide reforming (MCDR) has also demonstrated to be feasible for 

SOFCs [24].  However, there is still no systematic modeling on SOFCs with MCDR.  It’s still 

unclear on whether the performance of SOFC with MCDR is comparable to that of SOFC with 
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MSR.  It is also not fully understood on how the inclusion of MCDR can affect the SOFC 

performance and how to improve the SOFC performance by adjusting the operating conditions.  

In this study, a 2D numerical model is developed to characterize the transport and reaction 

phenomena in SOFCs with CO2/CH4 mixture as a fuel.  The effects of various operating 

parameters on the cell performance are investigated.    

 

2. Model Development 

The working principles and computational domain for SOFCs with CO2 reforming of 

CH4 are shown in Figure 1.  Consistent with the previous studies on SOFC with MSR [17,25], 

the computational domain in the present study contains the interconnector, anode gas channel, 

porous anode layer, dense electrolyte, porous cathode layer and the air channel.  In operation, 

CO2/CH4 gas mixture with a molar ratio of 1:1 is supplied to the anode gas channel and air is 

supplied to the cathode gas channel.  In the porous anode layer, MCDR takes place for CO and 

H2 production (Eq. 1).  As H2O is produced from the electrochemical reaction, MSR (Eq. 2) and 

WGSR (Eq. 3) can also occur.        

242 22 HCOCHCO        (1) 

4 2 23CH H O CO H         (2) 

2 2 2CO H O CO H          (3) 

The produced H2 molecules are diffused to the triple-phase-boundary (TPB) at the 

anode-electrolyte interface, where they react with oxygen ions (O2-) to produce H2O and 

electrons (Eq. 4).  The electrons flow from the anode to the cathode via an external circuit to 

produce useful electrical power.  At the cathode, O2 molecules are diffused to the TPB at the 

cathode-electrolyte interface, where they react with electrons to form oxygen ions (Eq. 5).   

2
2 2H O H O 2e          (4) 
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2
20.5O 2 Oe          (5) 

The electrochemical oxidation of CH4 is neglected due to its relatively low reaction 

kinetics [26,27].  However, the rate of electrochemical oxidation of CO (Eq. 6) is on the same of 

order with H2 fuel and thus it’s considered in the present study.    

2
2CO O CO 2e          (6) 

It should be noted that in addition to reactions (1-3), CH4 pyrolysis ( 4 22CH C H  ) 

and Boudouard reaction ( 22CO C CO  ) can also occur in the porous anode.  The produced 

carbon may also contribute to power generation due to the two reactions: 2 2C O CO e     

and 2
22 4C O CO e    .  However, in the present study, only reactions (1-6) are considered 

due to their relatively high reaction rate.  In the future studies, the CH4 pyrolysis and Boudouard 

reactions can be considered for predicting the carbon deposition kinetics and the SOFC life-time.  

Based on the working principles, a 2D thermo-electrochemical model is developed to 

simulate the coupled transport and reaction phenomena in SOFC.  The 2D model consists of 3 

sub-models: (1) an electrochemical model; (2) a chemical model; and (3) a computational fluid 

dynamics (CFD) model.  

 

2.1. Electrochemical model 

The electrochemical model is used to calculate the local electrochemical reaction rates 

(current density J: A.m-2) at given operating potentials (V).  Although the SOFC only exhibits 

one open-circuit voltage (OCV, or equilibrium potential), it’s actually an “average” of the 

Nernst potentials for H2 fuel and CO fuel [28].  In the present study, the Nernst potentials for H2 

and CO fuels are calculated separately using their respective gas partial pressures [25,29,30].   In 

operation, the potential V can be calculated as the equilibrium potential (E, determined from 

Gibbs free energy change of the reactions [25]) subtracted by all overpotential losses [25,29,30].  
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where T is temperature (K).  R is the ideal gas constant (8.3145 J.mol-1K-1). F is the Faraday 

constant (96485 C.mol-1).  PI used for calculating the equilibrium potential for H2 fuel (Eq. 8) 

and CO fuel (Eq. 9) denotes the gas partial pressure.  It should be mentioned that the partial 

pressures at the electrode-electrolyte interface are used in Eqs. 8 and 9, thus the concentration 

overpotentials are included in the Nernst equation calculation.   ηohmic is the ohmic overpotential 

and can be determined with the Ohm’s law (Eq. 10). 

1
ohmic JL


         (10) 

where L (m) and   ( 1 1.m  ) are the thickness and ionic conductivity of the electrolyte 

respectively. J is the current density (Am-2).  For YSZ electrolyte, the ionic conductivity can be 

determined as 4 10300
3.34 10 exp

T
     

 
 [13].         

The activation overpotential related to the H2 fuel and CO fuel can be calculated as 

[29,30],  

2

2

2 2

, , 0
,

H
act H i

H H i

RTJ

n FJ
         (11) 

, , 0
,

CO
act CO i

CO CO i

RTJ

n FJ
         (12) 

where 
2

0
,H iJ  and 0

,CO iJ  (A.m-2) are the exchange current densities for H2 (Eq. 4) and CO (Eq. 6), 

respectively. The subscript i (i = a and c) denotes the anode and cathode.  
2HJ  and COJ  are 
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current densities (A.m-2) generated from electrochemical oxidation of H2 fuel and CO fuel, 

respectively.  By incorporating Eqs. 10-12 into Eq. 7, we can obtain the relationship between the 

operating potential and the current density, for example, the current density due to H2 

fuel: 2 2

2 2

2 2 2 2

0 0
, ,

1H H
H H

H H a H H c

RTJ RTJ
V E J L

n FJ n FJ 
    .  Thus the current density (

2HJ  as an example) 

can be determined as  

2

2

2 2 2 2

0 0
, ,

1
H

H

H H a H H c

E V
J

RT RT
L

n FJ n FJ 




 
     (13) 

To determine 
2HJ , the chemical model and CFD model must be solved, as the partial 

pressures of gas species at the electrode-electrolyte interface are used for calculating 
2HE  (Eq. 

8).  The values of 
2

0
,H aJ  and 

2

0
,H cJ  at 1073K are 5300 A.m-2 and 2000 A.m-2 respectively [31].  

From experimental investigations, the electrochemical oxidation rate of H2 is about 1.9-2.3 times 

and 2.3-3.1 times that of CO fuel at 1023K and 1073K, respectively [26].   In the present study, 

0
,CO aJ  is assumed to be 

2

0 0
, ,0.3CO a H aJ J  for the base case.  However, due to limited data on 

exchange current density for CO fuel [26,28], the chosen data may not be representative.  

Considering that researchers are developing catalyst to enhance the electrode activity toward CO 

fuel, 
2

0 0
, ,0.6CO a H aJ J  is also used in the parametric simulation.   

 

2. 2. Chemical model 

The chemical model is used to calculate the reaction rates and reaction heat of the 

chemical reactions in the porous catalyst layer.  The reaction rates in the fuel channel are 

assumed to be negligible due to the lack of catalyst.  According to Haberman and Young [11], 

the reaction rates for MSR ( DIRR , mol.m-3.s-1) and WGSR ( WGSRR , mol.m-3.s-1) can be calculated 

below (Eqs. 14-20). 
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 10 4 3 21.0267 10 exp 0.2513 0.3665 0.5810 27.134 3.277prK Z Z Z Z         (20) 

The reaction rates for MCDR have been studied by a few groups [24,32,33].  According to 

Langmuir-Hinshelwood (LH) model, the reaction rate of CO2 reforming of CH4 ( MCDRR , mol.m-

3.s-1) can be written as [32], 

2 2 4 2 4

2 2 4 4

2(1 )
co CO CH CO CH

MCDR
CO CO CH CH

k K K P P
R

K P K P


 
     (21) 

 
2

7 3 183,498
1.17 10 exp ,    COk mol m s

RT
       

 
   (22) 

2

3 149,220
3.11 10 exp ,     COK atm

RT
     

 
    (23) 

4

116,054
0.653exp ,     CHK atm

RT
   

 
     (24) 

The reaction heat associated with MSR, WGSR and MCDR can be determined from the 

enthalpy changes of the three reactions.  The heat generation from exothermic WGSR ( WGSRH , 
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J.mol-1) and heat consumption by endothermic MSR reaction ( MSRH , J.mol-1) can be determined 

as [34].  

 206205.5 19.5175MSRH T                                                         (25) 

45063 10.28WGSRH T                                                                    (26) 

For endothermic MCDR, the reaction heat is about 256.8kJ.mol-1 at 600K and 

260.05kJ.mol-1 at 1200K [34].  Assuming linear variation with temperature, the reaction heat 

(consumption) of MCDR ( MCDRH , J.mol-1) can be written as 

 253550.0 5.41667MCDRH T                                                      (27) 

 

2. 3. Computational fluid dynamic (CFD) model 

The CFD model is used to simulate the transport of heat and mass in SOFCs.  The gas 

transport in SOFCs channels is assumed to be laminar as the Reynolds number is low.  Recent 

heat transfer analyses confirm that the local thermal non-equilibrium effect in the SOFC 

electrodes is negligible [35,36].  Thus the temperatures of the solid and gas in the porous 

electrodes are assumed to be locally the same (local thermal equilibrium assumption).  As a 

result, only one energy equation is needed.  Heat radiation effect is assumed to be small.  All 

gaseous reactants and products are assumed to be ideal gases.  The cell is assumed to be in a 

large SOFC stack, thus the periodic thermal boundary conditions are assumed.  That is, the heat 

fluxes at y = 0 and My y are set to be 0.  The governing equations for the CFD model include 

the conservation laws of mass, momentum, energy and species.  The general transport equation 

can be written as [37],  

      S
t


  


    


V      (28)     
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Here   is a general variable to be solved, which can be 1 (continuity equation, Eq. 29), 

V (momentum equation, Eqs. 30 and 31), T (energy equation, Eq. 32), and Yj (mass fraction, for 

species equation: Eq. 33).  t is time.   is density. V  is the velocity vector.   is the general 

diffusion coefficient. S is the general source term.   

   
m

U V
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x y

  
 

 
       (29) 
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The density of the gas mixture (ρ) can be written as [25]. 

1

1

/
N

i ii
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           (34) 

where i  and Yi are the density and mass fraction of gas species i.  i  can be determined from 

the ideal gas law (Eq. 35).   

,298
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The viscosity of the gas mixture ( ) can be calculated as [38]  
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where Mi is molecular weight of species i (kg.kmol-1).   
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The effective heat conductivity ( effk ) and heat capacity ( ,p effc ) of the gas mixture 

depends on the gas composition.  In the porous electrodes, effk  and ,p effc  can be calculated as a 

function of the electrode porosity ( ) [39,40] 

 1eff f sk k k                 (37) 

 , , ,1p eff p f p sc c c               (38) 

where fk  and sk  are the heat conductivity of the gas mixture and the solid structure, 

respectively.  ,p fc  and ,p sc  are the heat capacity of the gas mixture and the solid structure, 

respectively.   

The effective diffusion coefficients 
,i m

effD  in species’ equation (Eq. 33) can be calculated 

as [30],  

,
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where  /  is the ratio of tortuosity to porosity.  rp is the average pore radius.  Dij is the binary 

diffusion coefficient of i and j.  σ is the mean characteristic length and ΩD is a dimensionless 

diffusion collision term.  bk  is the Boltzmann’s constant ( 23 11.38066 10  J.K  ).  The values of 
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i  and ,i j  are summarized in Table 1 [38].  Xi is the molar fraction of specie i and can be 

related to the mass fraction (Yi) as.   

1

i
i i N

i i
i

M
Y X

X M


 
 
 
 
 
 


   (42) 

The source terms in the momentum equations in x and y directions (Eqs. 30 and 31) are,  

x
g

y
g

U
S

B

V
S

B





  


  


        (43) 

where Bg is the permeability (m2).  Typical value of permeability (i.e. 10 22 10 m ) is used for the 

SOFC electrodes while infinitely large value (i.e. 20 210 m ) is used for the gas channels [25], so 

that the momentum equations can be applied to both the gas channels and the porous electrodes.   

The source term ( TS , W.m-3) in the energy equation (Eq. 32) accounts for heat associated 

with DIR reaction and WGSR, heat from electrochemical reactions, and heat from irreversible 

overpotential losses.  In the present simulation, the source term in the porous anode comes from 

the reaction heat for DIR reaction and WGSR.  The heat from electrochemical reaction and 

irreversible overpotential losses are evenly applied to the dense electrolyte.  Thus, the source 

term TS  can be written as [30,41], 

2 2 2 2, ,

,                                       in porous anode

,                           in electrolyte
2

MSR MSR MCDR MCDR WGSR WGSR

T H H CO CO H t H CO t CO

R H R H R H

S J T S J T S J J

FL L L

 
 

   
  

 (44) 

where 
2HS and COS  are the entropy changes for electrochemical reactions associated with H2 

fuel and CO fuel, respectively.  
2,t H  and ,t CO  are the total overpotential losses for H2 fuel and 

CO fuel. Here the concentration overpotential is not included since it is included in the Nernst 

potential.  Including concentration overpotential into the source term can increase the heat 
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generation rate.  However, since concentration overpotential is usually very small (unless very 

high current density), its effect on the source term is negligibly small.  

The source term ( spS , kg.m-3.s-1) in the species equation (Eq. 33) represents species 

consumption or generation due to the chemical and electrochemical reactions.  Taking H2 and 

CO as examples, the source term (
2HS ) in the species equation can be written as [30,41],  

2 2 2

2 2 2

3 2 ,      in porous anode

,                        at the anode-electrolyte interface
2

MSR H MCDR H WGSR H

H H H

R M R M R M

S J M

F y

 
 
 

  (45) 

2 ,      in porous anode

,                        at the anode-electrolyte interface
2

MSR CO MCDR CO WGSR CO

CO CO CO

R M R M R M

S J M

F y

 
  

  (46) 

where y  is the control volume width in y-direction (Fig. 1) at the anode-electrolyte interface.  

At the cathode-electrolyte interface, the source term (
2OS ) can be written as, 

 2 2 2

0,                                  in porous cathode

,       at the cathode-electrolyte interface
4

O CO H OS J J M

F y




 
 

  (47) 

 

3. Numerical Methodologies 

The boundary conditions of the 2D model have been reported in the previous 

publications [25,43].  The governing equations are discretized and solved with the finite volume 

method (FVM).  The pressure and velocity are coupled with the SIMPLEC algorithm [42].  The 

iteration scheme is shown in Figure 2.  The program starts from initialization.  Initial pressure, 

temperature, velocity, gas composition etc, are assigned to the whole computational domain.  

Based on the initial data, the chemical model is solved to determine the local chemical reaction 

rates and reaction heat.  Then the electrochemical model is solved to determine the local 

electrochemical reaction rate (current density) as well as corresponding heat.  Subsequently, 
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source terms in the CFD model are calculated.  After the CFD model is solved, the flow field, 

temperature field and gas composition can be updated, which are used to solve the chemical 

model and electrochemical model again.  Computation is repeated until convergence is achieved.    

The equations are solved with an in-house code in FORTRAN.  The CFD code has been 

validated by comparing the CFD simulation results with data from the literature [43].  The 

friction factor and Nusselt number of rectangular duct have been computed and compared with 

data by Prof. Yuan [39].  Excellent agreement between the CFD simulation results with Prof. 

Yuan’s data [39] was found and reported in the previous publication [43].  To avoid duplication, 

the comparison is not repeated here. 

 

4. Results and Analysis 

In this section, simulations are performed to investigate the effects of various operating 

parameters on performance of SOFCs with MCDR.  The values of input parameters are 

summarized in Table 2.  More detailed information about the parameters can be found from the 

previous publications [25,29].  As SOFCs are typically operated at a potential of 0.5 – 0.8V, 

simulations are performed for operating potential of 0.5V and 0.8V.  For SOFC with steam 

reforming of CH4, usually 30% pre-reformed CH4 fuel is used.  The experimental study in the 

literature has demonstrated that it’s feasible to supply CH4/CO2 mixture directly to SOFC and 

the SOFC achieves good performance at the molar ratio of 1:1 [44-46].  In the present study, the 

molar ratio of CH4/CO2 is set to be 1:1 at the SOFC inlet.   The values used in parametric 

simulations are summarized in Table 3. 

 

4.1. Base case 

Simulation is performed at an inlet temperature of 1073K, operating potential of 0.5V, 

and 
2

0 0
, ,0.3CO a H aJ J  (for simplicity, 

2

0 00.3CO HJ J  is used).  The computed current density 
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distribution is shown in Figure 3.  It is found that the current density increases at the inlet and 

then decreases along the flow channel.  The increase in current density near the inlet is mainly 

caused by reforming of CH4 that generates H2 and CO.  The reduction in current density in the 

downstream is mainly caused by lower temperature, which is discussed later.  In addition, the 

current density generated from H2 fuel is higher than that from CO fuel, as the electrochemical 

oxidation of H2 is faster.   The total current density is found to be comparable to that of SOFC 

fed with CH4/H2O mixture [17,25], indicating that SOFC with MCDR is feasible.   

The reaction rate of MCDR is found to be the highest at the inlet and decrease along the 

gas channel significantly (Fig. 4a), due to reduced temperature (Fig. 4d) and lower CH4 molar 

fraction in the downstream (Fig. 5a).  The computed MCDR rate at the inlet (at 1073K) is about 

224mol.m-3.s-1, which is consistent with the measured data from [32].  In addition, Moon and 

Ryu [24] measured the electrocatalytic reforming of CH4 by CO2 on NiO-MgO catalyst at 

1073K.  The measured reaction rate for CH4 is about 0.47 -2 -1mol.cm .s .  As the thickness of the 

catalyst layer is about 20 m , the measured reaction rate is converted to be about 235mol.m-3.s-1, 

which is also consistent with the computed data in the present study.  Prof. Yentekakis’s group 

has worked on testing of SOFC performance with MCDR for several years [44-46].  In their 

study, the MCDR reaction rate on Ni-YSZ cermet electrode was measured [44].  At a 

temperature of 1073K, the peak MCDR reaction rate of about 1.5 -1mol.s  was achieved [44].  

Considering that the electrode surface area is about 1.8 cm2 and the thickness of the electrode is 

about 20 m , the measured MCDR reaction rate is about 416 mol.m-3.s-1.  The measured 

reaction rate is higher than but on the same order with the computed data in the present study.  

The difference may be caused by the good activity of the Ni-YSZ cermet anode (prepared by 

wet impregnation) toward MCDR reaction [44].  The MCDR reaction rate is highly dependent 

on the material and morphology of the catalyst layer.  As can be seen from another study by 

Prof. Yentekakis [45], the peak MCDR reaction rate is increased to be about 2 -1mol.s  at 
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1073K when Ni(Au)-GDC (gadolinia doped ceria) cermet electrode is used.  The WGSR is 

found to be negative in the porous SOFC anodes (Fig. 4b), as the low concentration of CO and 

H2O favors backward reaction.  For comparison, the reaction rate of MSR is found to be much 

lower than that of MCDR and WGSR (Fig. 4c), which is quite different from conventional 

SOFC with MSR [25].  The peak MSR is found at the anode-electrolyte interface near the inlet, 

due to high CH4 concentration (Fig. 5a) and high temperature (Fig. 4d) near the SOFC inlet and 

relatively high concentration of H2O at the anode-electrolyte interface (Fig. 5c).  The 

temperature field in the SOFC depends on: (1) heat generation from electrochemical reactions 

associated with H2 fuel and CO fuel; (2) heat generation from irreversible overpotential loss; (3) 

heat consumption by endothermic MCDR, which is high due to high MCDR reaction rate; (4) 

heat consumption by endothermic MSR; and (5) heat generation by exothermic WSGR.  The 

large temperature drop in the SOFC along the gas channel means that the heat consumption by 

(3), (4), and (5) (negative WGSR) exceeds the heat generation from (1) and (2).  The reduction 

in temperature along the flow channel considerably decreases the reaction rate of MCDR (Fig. 

4a), leading to lower fuel conversion in the downstream.  Due to the high MCDR rate, the molar 

fractions of both CH4 and CO2 decrease considerably in the SOFC (Fig. 5a and 5b).  For 

comparison, the molar fraction of H2O increases considerably in the SOFC (Fig. 5c), due to 

negative WGSR and electrochemical oxidation of H2 fuel.  The considerable difference in H2O 

molar fraction between the anode-electrolyte interface and the anode surface indicates high 

resistance of the porous anode to gas transport.   

From this section, it can be seen that the performance of SOFC with MCDR is 

comparable to that of SOFC with MSR.  In addition, MCDR considerably influences the SOFC 

performance by affecting the temperature field and gas composition in the cell. To reduce the 

negative temperature gradient in the SOFC, additional heat supply is needed.  It can be achieved 

by utilizing the waste heat from the exhaust gas stream, or by heat supply from the furnace.  
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Alternatively, pre-reforming of the CH4 fuel can be adopted using an external reformer [47], 

thus it’s possible to adjust the temperature gradient in the SOFC by controlling the extent of pre-

reforming.  However, it is out of the objective of the present study and detailed discussions are 

not provided in this paper. 

 

4.2. Effect of operating temperature  

Simulations are performed at an inlet temperature of 973K and 1173K to investigate the 

temperature effect on SOFC performance.  The computed current density is shown in Figure 6.  

It can be seen that the current density is increased significantly when the inlet temperature is 

increased from 973K to 1173K.    

With an increase in temperature, the reaction rates of MCDR, MSR, and negative WGSR 

are all increased (Fig. 7).  For example, the peak reaction rates for MCDR, MSR, and WGSR are 

increased from about 151mol.m-3.s-1, 0.0935mol.m-3.s-1, and -3.92mol.m-3.s-1 at 973K to about 

303mol.m-3.s-1, 21.8mol.m-3.s-1, and -76.8mol.m-3.s-1 at 1173K.  The high reaction rates at a high 

temperature tend to increase the concentrations of H2 fuel and CO fuel, which in turn increases 

the Nernst potentials.  In addition, the overpotential losses decrease with increasing temperature 

[29].  The combined effects of temperature on the Nernst potential and the overpotential losses 

cause the current densities by both the H2 fuel and CO fuel to increase with increasing 

temperature.  The increased chemical reaction rates (MCDR, negative WGSR, and MSR) 

consume more heat and tend to further reduce the SOFC temperature.  On the other hand, the 

higher current density at a higher temperature tends to generate more heat by electrochemical 

reactions and the overpotential losses.  As a result, the temperature reduction for 1173K case 

(60K: 1113K at the outlet) is only slightly larger than the 973K (56K: 917K at the outlet) (Figs. 

7g and 7h).  Since the reaction rates for all chemical reactions are higher, more CH4 and CO2 are 
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converted to CO and H2, leading to larger drops in molar fractions of CH4 and CO2 in the cell at 

1173K (Figs. 8).   

 

4.3. Effect of electrochemical reaction rate of CO 

In the literature, only very limited experimental and theoretical data on CO 

electrochemical reaction rates are available [26,28].  Thus, it is necessary to examine the effect 

of CO electrochemical oxidation rate on SOFC performance.  In this section, simulation is 

performed at 
2

0 00.6CO HJ J  and the results are compared with the 
2

0 00.3CO HJ J  case.  The total 

current density and current density by the H2 and CO fuels are shown in Fig. 9.  An increase in 

CO electrochemical oxidation rate significantly increases the current density by CO fuel (Fig. 

9c), which in turn increases the total current density (Fig. 9a).  Interestingly, the current density 

by H2 fuel is also slightly increased as 
2

0 00.3CO HJ J  is changed to 
2

0 00.6CO HJ J  (Fig. 9b).  The 

computed reaction rates of MCDR and MSR at 
2

0 00.6CO HJ J  are very close to those at 

2

0 00.3CO HJ J  (Fig. 10a and 10c).  However, the WGSR reaction rates are found to be higher at 

2

0 00.6CO HJ J  than at 
2

0 00.3CO HJ J  (Fig. 10b).  This is because the high electrochemical 

oxidation of CO tends to consume more CO, which favors the negative WGSR.  The 

temperature at the SOFC outlet is about 1019K at 
2

0 00.6CO HJ J  (Fig. 10d), slightly higher than 

at 
2

0 00.3CO HJ J (1017K).  This small difference is caused by the higher current density at 

2

0 00.6CO HJ J , which produces more heat in SOFC.  As the rate of MCDR is almost independent 

of the CO electrochemical oxidation rate, the molar fraction of CH4 is found to be almost 

unchanged for these two cases (Fig. 11a).  For the molar fraction of CO2, it is related to the 

WGSR reaction and the electrochemical oxidation of CO.  The more negative WGSR reaction 

rate at 
2

0 00.6CO HJ J  tends to consume more CO2.  On the other hand, the high current density by 
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CO fuel tends to generate more CO2 at 
2

0 00.6CO HJ J .  As a result, the molar fraction of CO2 at 

2

0 00.6CO HJ J  shows negligibly small difference from that at 
2

0 00.3CO HJ J  (Fig. 11b).  For 

comparison, the H2O molar fraction in the SOFC is obviously higher at 
2

0 00.6CO HJ J  than at 

2

0 00.3CO HJ J , as the slightly higher current density by H2 fuel produces more H2O in the cell 

(Fig. 11c).   

 

4.4. Effect of operating potential  

The operating potential is an important parameter for SOFC operation.  In this section, 

simulation is performed at an operating potential of 0.8V and the results are compared with that 

at 0.5V.  The current densities are shown in Fig. 12.  As expected, the current density is 

decreased considerably as the potential is increased from 0.5V to 0.8V.  The reaction rates of 

MCDR, WGSR and MSR, as well as the temperature are shown in Figs. (13a-d).  Although the 

difference in MCDR reaction rates between the two cases (0.5V and 0.8V) is negligibly small 

(Fig. 13a), the WGSR reaction rate at 0.8V is considerably different from that at 0.5V (Fig. 

13b).  As can be seen, the peak WGSR reaction rate is lower at 0.8V than at 0.5V.  Moreover, 

the WGSR reaction rate is more uniform along the anode depth at 0.8V (Fig. 13b).  For 

comparison, high WGSR reaction rate mainly occurs near the anode surface at 0.5V (Fig. 4b).  

Since the current density is lower at a higher operating potential, less heat is generated and more 

heat reduction is observed in the cell at 0.8V (Fig. 13d).  The lower temperature in the 

downstream of the cell at 0.8V in turn results in slightly lower reaction rate of MCDR (cannot 

be clearly seen from Fig. 13a) than that at 0.5V.  Consequently, the gas composition variations 

in the SOFC are found smaller at 0.8V than at 0.5V (Figs. 14a-c).   

 

5. Conclusions 
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A 2D numerical model is developed to characterize the performance of SOFCs fed with 

CO2 and CH4 mixtures.  The model fully considers the mass transport and heat transfer, the 

chemical reaction kinetics, and electrochemical reaction kinetics.     

Simulations are performed at various inlet temperatures, CO electrochemical oxidation 

rates, and operating potentials.  The computed CO2 reforming reaction rate is consistent with the 

literature data.  The MCDR reaction rate is the highest near the inlet while the MSR reaction rate 

is negligibly small.  The WGSR is found to be negative due to low concentrations of CO and H2 

in the cell.  The MCDR, MSR and negative WGSR consumes heat, leading to a decrease in 

temperature along the SOFC channel.  Increasing the inlet temperature from 973K to 1173K 

considerably increases the current density of SOFC, as the high chemical reaction rates produces 

more CO and H2 fuels, which in turn increases the Nernst potentials.  Increasing the CO 

electrochemical oxidation rate not only significantly increases the current density by CO fuel, 

but also increases moderately the current density by H2 fuel, leading to improved SOFC 

performance.  The current densities decrease considerably with increasing operating potential, 

which in turn generates less heat and leads to lower temperature in the downstream of SOFC.   

The parametric simulations reveal that the SOFC fed with CO2 and CH4 is feasible.  The 

SOFC electric power output can be enhanced by developing catalysts with high activity towards 

CO electrochemical oxidation, operating the cell at a high temperature, or a low potential.  The 

model can serve as a useful tool for optimization of the SOFC systems.   
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Table 1. Values of i  and /i k  for calculating the diffusion coefficients [38] 

 

 CO CO2 H2 O2 CH4 N2 H2O 

i  
3.69 3.941 2.827 3.467 3.758 3.798 2.641 

/i k  91.7 195.2 59.7 106.7 148.6 71.4 809.1 

 
Table 2. Parameters used in simulation  

Parameter  Value  

Operating temperature, T (K) 1073 

Operating pressure, P (bar) 1.0 

Electrode porosity, ε 0.4 

Electrode tortuosity, ξ 3.0 

Average pore radius, rp (μm)  0.5 

Anode-supported electrolyte: 

Anode thickness da (μm) 

Electrolyte thickness, L (μm) 

Cathode thickness, dc (μm) 

 

500 

100  

100 

Height of gas flow channel (mm) 1.0 

Length of the planar SOFC (mm) 20 

Thickness of interconnector (mm) 0.5 

Inlet velocity at anode: U0 (m.s-1) 1.0 

Cathode inlet gas molar ratio: O2/N2  0.21/0.79 

Anode inlet gas molar ratio: CH4/ CO2 0.5/0.5 

SOFC operating potential (V) 0.5 

Thermal conductivity of SOFC component (W.m-1.K-1) 

Anode 

Electrolyte 

Cathode 

Interconnect 

 

11.0 

2.7 

6.0 

1.1 
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Table 3. List of parametric simulations 
Base case 
 

T  = 1073K; Potential  = 0.5V 

Effect of inlet 
temperature 
 

T = 973K and 1173K 

Effect of different exchange current 
density for CO fuel 

T = 1073K; 
2

0 00.6CO HJ J vs 
2

0 00.3CO HJ J  

  
Effect of operating potential T = 1073K; Potential = 0.8V vs Potential = 0.5V 
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