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Abstract 

A number of crucial decisions face the plant breeder in developing improved cultivars.  

Because of the impact and modern complexity of these decisions, computer simulation based on 

effective models can be an important resource for the breeder, particularly in providing guidance 

on choice of parents and decisions related to various aspects of the integrated breeding approach. 

Four areas related to use of computer simulation and modeling were explored as outlined in 

respective chapters:  

1) To maximize utility, the simulation tool must be based on effective models of the 

genome and the process of genetic transmission through generations, the breeding process, and 

other ‘processes’ involved in genetic recombination, identification and production of new 

cultivars.  Additionally, the statistical methodology employed has ramifications for predicting 

performance and breeding outcome.  We highlighted the role of computer simulation in planning 

phases of crop genetic improvement, the basics of model building, statistical considerations, and 

key issues to be addressed.  Examples of publicly available simulation software were described 

(features, functionalities, and assumptions) and new directions for improved/expanded 

approaches and tools are discussed.   

2) Improvement of genome model, through accurate modeling investigation of crossover 

interference and additive and dominance effects were explored. Crossover interference in maize 

was modeled by two-pathway methods using doubled haploid data; various levels of crossover 

interference were found across chromosomes. To challenge the commonly invoked assumption 

of the infinitesimal model of genetic effects, published data from five quantitative trait loci 

(QTL) mapping studies were used to derive the distributions of QTL additive effects and 

dominance coefficients in the form of mixtures of normals. Four separate normal distributions 
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with zero mean and different variances were fitted for QTL additive effects of different classes 

of traits. Dominance coefficients fit a single normal distribution with positive mean, indicating 

prevalence of additive or partial dominant gene action across many traits.  

3) To enhance the predictive ability in new line development, we developed and 

evaluated a novel method for use in genomic selection. Genomic selection procedures have 

proven useful in estimating breeding value and predicting phenotype with genome-wide 

molecular marker information. We proposed a new nonparametric method, pRKHS, which 

combined the features of supervised principal component analysis and reproducing kernel 

Hilbert spaces regression, with versions for traits with no/low epistasis, pRKHS-NE, to high 

epistasis, pRKHS-E. Compared to RR-BLUP, BayesA, BayesB, and RKHS, pRKHS delivers 

greater predictive ability, particularly when epistasis impacts expression in the trait of interest. 

Beyond prediction, the new method also facilitated inferences about the extent to which epistasis 

influences trait expression.  

4) A case study involving transgenic conversion of a target hybrid for 15 events explored 

optimization of parameters in version testing to facilitate a high likelihood of recovery of at least 

one hybrid conversion with performance equivalent to the unconverted target hybrid. We 

determined that by creating 5 versions of each parental conversion, then selecting 3 each based 

on breeding value and yield testing a total of 9 hybrid versions of the conversion facilitated a 

95% probability of success.  These results had implications for the trait conversion process 

pertaining to single event conversion and event pyramiding.   

 

 

 



 

iv 

Acknowledgements 

I am very grateful to my advisor Dr. Rita H. Mumm for her sincere guidance and support 

during my training at the Maize Genetics Lab.  

I would like to thank my supervisory committee members Drs. Glenn R. Johnson, Roger D. 

Shanks, Ping Ma, and Patrick J. Brown for their valuable comments and advice.  

I would also like to thank all technicians, post doctorate fellows and graduate and 

undergraduate students working at the Maize Genetics Lab for their kind technical assistance and 

friendship.  

Finally, I would like to thank my family for their support throughout my PhD study.



 

v 

Table of Contents 

List of Figures ............................................................................................................................... vii 

List of Tables ............................................................................................................................... viii 

Chapter 1 - Introduction .................................................................................................................. 1 

1.1 Literature review of current simulation programs and models ..............................................1 

1.1.1 Introduction .....................................................................................................................1 

1.1.2 Computer simulation programs in review .......................................................................6 

1.1.3 Other resources for model building and computer simulation for prediction 

purposes .................................................................................................................................20 

1.1.4 A look forward ..............................................................................................................23 

1.2 Objectives ............................................................................................................................26 

Chapter 2 - Improvement of genome model ................................................................................. 29 

2.1 Overview ..............................................................................................................................29 

2.2 Investigation of crossover interference in maize .................................................................30 

2.2.1 Introduction ...................................................................................................................30 

2.2.2 Material and methods ....................................................................................................33 

2.2.3 Results ...........................................................................................................................36 

2.2.4 Discussion .....................................................................................................................40 

2.3 Investigation of distribution of genetic effects in grain crops .............................................42 

2.3.1 Introduction ...................................................................................................................42 

2.3.2 Materials and methods ..................................................................................................44 

2.3.3 Results ...........................................................................................................................54 

2.3.4 Discussion .....................................................................................................................59 

Chapter 3 - Genomics-based prediction of performance of quantitative traits involving 

epistasis using a nonparametric method ................................................................................ 67 

3.1 Introduction ..........................................................................................................................67 

3.2 Materials and methods .........................................................................................................70 

3.3 Results ..................................................................................................................................77 

3.4 Discussion ............................................................................................................................84 



 

vi 

Chapter 4 - Optimization of parameters for successful outcome of version testing in 

marker-aided trait integration ................................................................................................ 94 

4.1 Introduction ..........................................................................................................................94 

4.2 Materials and methods .........................................................................................................96 

4.3 Results ................................................................................................................................102 

4.4 Discussion ..........................................................................................................................103 

Appendix A  ................................................................................................................................ 108 

References ................................................................................................................................... 110 

 

  



 

vii 

List of Figures 

Figure 1.1 Computer simulation applied to create tools that improve operational 

efficiency in seed product development.................................................................................26 

Figure 2.1 Histogram of observed QTL additive effects from a) corn data I, b) corn data 

II, c) rice data, and d) wheat data. ..........................................................................................45 

Figure 2.2 Histogram of the cluster sizes in four data sets: a) corn data I; b) corn data II; 

c) rice data; and d) wheat data. ..............................................................................................56 

Figure 2.3 Fitted normal distribution to the QTL additive effects in a) corn data I; b) 

corn data II; c) rice data; and d) wheat data. ..........................................................................58 

Figure 2.4 Histogram of observed dominance coefficients from meta-analysis using five 

mapping studies. ....................................................................................................................61 

Figure 2.5 (a) Estimation of cluster size. (b) Fitted normal distribution to the dominance 

coefficient. .............................................................................................................................62 

Figure 2.6 Histograms of simulated effects from Gaussian mixtures with (a) (n=150) 

three components having mean of -1, 0 and 1, and variance of 0.36, 0.64 and 0.04, 

respectively; and (b) (n=300) two components having zero means and variance of 

0.025 and 0.36, respectively...................................................................................................66 

Figure 3.1 Mean percentage of variation (across the 12 simulation scenarios) explained 

by the top 18 SPCs with pRKHS, which together explain 70% of the total 

variation. ................................................................................................................................91 

Figure 4.1 Illustration of the process generating female inbred versions stacked with 

eight events.. ..........................................................................................................................99 

Figure 4.2 Histograms of observed and estimated remaining donor parent regions (cM). .........100 

  



 

viii 

List of Tables 

Table 1.1 List of computer software programs examined in this review.........................................6 

Table 1.2 Attributes of computer software programs to guide critical planning decisions 

in crop improvement: models (or modules), functionalities, and assumptions .......................7 

Table 1.3 Models and methods for predicting breeding value via genomic selection, as 

per (Meuwissen et al. 2001) ...................................................................................................23 

Table 2.1 The population size and number of markers of six double haploid populations ...........33 

Table 2.2 Chromosome coverage and number of markers by six double haploid 

populations .............................................................................................................................35 

Table 2.3 Estimates of m and p (only in alternative model, i.e. two-path way model) on 

chromosomes 1, 2 and 3. ........................................................................................................38 

Table 2.4 Estimates of m and p (only in alternative model, i.e. two-path way model) on 

chromosomes 5, 6, 7, 9 and 10. ..............................................................................................39 

Table 2.5 List of number of QTLs that were associated with traits for studying QTL 

additive effects. ......................................................................................................................46 

Table 2.6 List of number of QTLs that were associated with traits for studying QTL 

dominance coefficients. .........................................................................................................47 

Table 2.7 a) The mean of the absolute values of the observed QTL additive effects and 

fitted normal distribution; b) Estimates and Bayesian confidence interval for 

parameters in distribution of additive effects. ........................................................................57 

Table 2.8 True vs. estimated (hat) parameters in a) simulation I and b) simulation II. .................60 

Table 3.1 For scenarios with no epistasis, Pearson correlation coefficients between 

estimated breeding value and true breeding value (rEBV:TBV) or phenotype 

(rEBV:PHE) obtained through ten-fold cross-validation with Cycle 0 (C0) and 

prediction of Cycle 1(C1), implemented for simulated traits with heritability of 

0.1, 0.2, 0.4, 0.8, via the various statistical methods. ............................................................81 

Table 3.2 For scenarios with a low level of epistasis (10% of the epistasis interaction 

effects are nonzero), Pearson correlation coefficients between estimated breeding 

value and true breeding value (rEBV:TBV) or phenotype (rEBV:PHE) obtained through 

ten-fold cross-validation with Cycle 0 (C0) and prediction of Cycle 1 (C1), 



 

ix 

implemented for simulated traits with heritability of 0.1, 0.2, 0.4, 0.8, via the 

various statistical methods .....................................................................................................82 

Table 3.3 For scenarios with a low level of epistasis (50% of the epistasis interaction 

effects are nonzero), Pearson correlation coefficients between estimated breeding 

value and true breeding value (rEBV:TBV) or phenotype (rEBV:PHE) obtained through 

ten-fold cross-validation with Cycle 0 (C0) and prediction of Cycle 1 (C1), 

implemented for simulated traits with heritability of 0.1, 0.2, 0.4, 0.8, via the 

various statistical methods .....................................................................................................83 

Table 3.4 For each scenario with pRKHS, the percent of the total variation explained by 

top three SPCs (%P1, %P2 and %P3), the number of markers MP1, MP2 and MP3 

included in the respective SPCs, and number of SPC interactions at three given 

cosine thresholds ....................................................................................................................89 

Table 3.5 Applying pRKHS to real life scenarios, Pearson correlation coefficients 

between estimated breeding value (EBV) and phenotype obtained from (a) five-

fold cross-validation (CV) implemented for maize anthesis-silking interval (ASI) 

and (b) ten-fold CV using genotypes and phenotypes of barley lines in year 2007 

and prediction based on genotypes of different lines in year 2008 implemented for 

grain yield (GYD) and plant height (PHT) for each of the 5 statistical methods ..................90 

Table 4.1 Estimated SR of recovering ≥1 hybrid conversion with yield within 3% of the 

unconverted target hybrid given performance testing of all possible hybrid 

combinations of various number of versions of RP conversions .........................................105 

Table 4.2 Estimated SR of recovering ≥1 hybrid conversion with yield within 3% of the 

unconverted target hybrid given performance testing of 9 hybrid combinations of 

various number of versions of RP conversions after selecting the ‘best’ 3 versions 

of each RP from the total number of versions created .........................................................106 

Table 4.3 The ratio between the success rates derived from using partial and full hybrid 

conversions ..........................................................................................................................107 

 

 



 

1 

Chapter 1 - Introduction 

 1.1 Literature review of current simulation programs and models 

 1.1.1 Introduction 

Crop cultivars with improved performance have been successfully developed through 

plant breeding, which comprises activities such as crossing, inbreeding, progeny selection, and 

seed propagation.  Before any such activities are actually initiated, the breeder has several key 

decisions to make, including 1) choice of germplasm and specific parents, and 2) various options 

pertaining to the breeding strategy such as breeding methods. The prediction of phenotypic 

response to selection is quantified by genetic gain (∆G), which is defined as the rate of change in 

the population mean under selection (Falconer and Mackay 1996; Moose and Mumm 2008): 

∆G =
L

i

L

i
h

p

a
p










2
2  

where h
2
stands for narrow sense heritability,  p  stands for phenotypic standard deviation, i 

stands for selection intensity, L stands for generation interval, and 
2
a stands for additive 

variance. Thus, genetic gain is a function of these variables, some of which are impacted by 

choice of parents (e.g.
  p and

2
a ) and others are a consequence of the chosen breeding strategy 

(e.g. the values of i and L). 

Choice of parents is foundational to cultivar improvement. The maxim of crossing “good 

by good” to produce a set of progenies from which a superior line will be derived assumes highly 

positive mean performance for the traits of interest and diversity in the favorable alleles 

contributed by the parents (Melchinger et al. 1988). Breeders have used several ways to assess 

these among potential parents, including phenotypic expression of heterosis, best linear unbiased 
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prediction (BLUP), estimates of genetic relationship based on pedigree, molecular marker data, 

etc. (Bernardo 2002; Burkhamer et al. 1998; Dudley 2004; Dudley et al. 1992; Frisch et al. 2010; 

Panter and Allen 1995; Zhong and Jannink 2007). Dudley (1982, 1987) proposed a theory for 

choosing parents to improve a single cross based on classes of loci. In this scenario, three 

inbreds, P1, P2 and Pw, are involved:  Pw is used to cross with parent P1 (or P2) to develop a new 

inbred Pnew, whose cross with P2 (or P1) would outperform the original cross P1 x P2. Methods for 

choosing Pw have been progressively improved: 1) Dudley (1984) suggested that Pw should have 

the largest number of favorable alleles not present in P1 or P2; 2) Bernardo (1990) further 

proposed a statistic method called “net improvement” to account for the risk of losing favorable 

alleles already present in P1 x P2 when introducing favorable alleles from Pw; and 3) Metz (1994) 

proposed using the probability of net gain of favorable alleles to estimate the likelihood that Pw 

could improve performance of a given single cross. Furthermore, Pw should be chosen to 

maintain the same heterotic pattern as P1 to maximize heterosis if P2 is used as tester, and vice 

versa. More recently, ways to estimate breeding value of potential parents have been utilized to 

direct choice of parents in crop improvement, e.g. BLUP, genomic selection (GS) or genome 

wide selection (GWS).  In addition, choice of parents may be based on predicted performance. 

Zhong and Jannink (2007) proposed choosing inbred parents based on the expected performance 

of the best progeny resulting from that cross, referred to as ‘superior progeny value’. 

Choice among options pertaining to aspects of the breeding strategy employed is also 

critical to successful crop improvement. The breeding strategy entails more than simply the 

breeding methods used; it encompasses an integrated approach which also details the specific 

breeding objectives aligned with the overall goals, the technologies deployed, the experimental 

designs and plans for statistical analysis of the data collected, structures of the population to be 
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created, screening/phenotyping methods and devices, and selection thresholds and regimes. The 

breeder must consider the size of the effects of favorable alleles contributed by each parent 

(Bernardo and Yu 2007), the number of loci likely to be involved with the trait(s) under selection 

(Bernardo 2002), and the likely gene action underlying these (Cockerham 1954; Crow and 

Kimura 2009). Furthermore, modes of male sterility to be utilized for hybrid cultivars, how to 

manage selection for multiple traits (e.g. tandem selection, index selection), use of dihaploidy to 

accelerate inbreeding, and use of genomic applications like molecular markers must be 

considered in deciding the integrated approach or other methods of indirect selection (Moose and 

Mumm 2008). For the latter, population structure may play a key role in estimating marker 

effects, particularly if depending on linkage disequilibrium (LD) to identify markers in genomic 

proximity to genes underlying traits of interest (Caldwell et al. 2006; Hamblin et al. 2005; Hyten 

et al. 2007; Remington et al. 2001). Approaches may differ depending on whether cultivars are 

inbred or hybrid (Bernardo 2002; Kharkwal and Roy 2004) and whether transgenic traits are 

involved (Mumm 2007). To increase quantity as well as quality of phenotypic data, much effort 

has been devoted to field design optimization and automated data collection (Eathington et al. 

2007; Hallauer and Pandey 2006) aimed at greater accuracy and precision in assessing 

performances.   

The decisions made by the breeder with respect to choice of parents and breeding strategy 

can mean the difference between success and failure in meeting the defined breeding goals in 

crop improvement.  Computer simulation can be an important resource for the breeder as it 

provides a means for evaluating dynamic model(s) in silico (e.g. the genome model, the seed 

product development ‘process’ model).  Furthermore, it is particularly useful for comparing the 

process efficiencies without going through field experimentation, thus saving both time and field 
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resources (Wang et al. 2003).  Cases in point: Ribaut et al. (2002) and Ishii and Yonezawa 

(2007) explored optimal ways to stage the donor crosses to pyramid multiple transgenic events in 

elite cultivars; Longin et al. (2006) and Gordillo and Geiger (2008a) optimized resources for 

breeding and testing based on different breeding scenarios; and Gordillo and Geiger (2008a) 

assessed the reduction in genetic diversity due to selection with a given selection scheme.  

Falconer and Mackay (1996) pointed out that quantitative genetic principles underlying 

particular breeding methods are usually associated with some strong assumptions, some of which 

may not be met in reality. With computer simulation, we can certainly relax some assumptions 

and investigate the effects and implications of doing so. Computer simulation can also be used to 

estimate the effect of population structure. For example, Yu et al. (2008) included the mean of 

each subpopulation along with the marker effects in the model to interpret the effect of 

population structure in the maize nested association mapping (NAM) population. Computer 

simulation is also useful in finding the optimal molecular marker density for marker-based 

applications like marker-assisted selection (MAS) or predicting performance (Frisch et al. 2000). 

As Xu and Crouch (2008) pointed out, modeling and computer simulation are becoming 

more and more essential for dissecting the genetic basis of complex traits and optimizing 

breeding approaches. At the same time, the advent of powerful computers has greatly facilitated 

the assessment and use of different statistical methods for analysis of massive data sets. 

Advancements in models and methods in computer simulation have been realized; and a number 

of computer simulation programs have been developed and made publicly or commercially 

available.  

The objective of the paper is to highlight the role of computer simulation in crop genetic 

improvement, the basics of model building, statistical considerations, and key issues to be 
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addressed.  In addition, we describe the features, functionalities and underlying assumptions for 

several functionally diverse software packages used in silico for the purpose of promoting the 

use of such tools by plant breeders.  These software packages include: Plabsoft, QU-GENE/ 

QuLine, MBP, GREGOR, PLABSIM, GENEFLOW and COGENFITO (Tables 1.1 and 1.2). 

More specifically, GREGOR (Tinker and Mather 1993) predicts the average outcome of mating 

or selection in plant breeding; PLABSIM (Frisch et al. 2000) is a program specifically for 

simulation of marker-assisted backcross procedures; Plabsoft (Maurer et al. 2008) and 

GENEFLOW (http://www.geneflowinc.com) focus on certain factors such as genetic diversity; 

QU-GENE (Podlich and Cooper 1998) uses a specific E(NK) model to estimate the gene-by-

environment and epistatic effects; COGENFITO (Hessel et al. 2010) performs as a database 

searching tools to find specific genotypes; and MBP (Gordillo and Geiger 2008b) optimizes the 

allocation of testing resources to maximize the genetic gain in maize hybrid breeding.  Due to the 

diversity in the functionality of these programs, a head-to-head comparison of program 

efficiency and outcome is not possible; however, the models utilized in each program are 

detailed to the greatest extent possible. 

In addition to the computer programs, we also highlight some specific models utilized in 

predictive breeding simulations (Table 1.3) that may or may not be incorporated in the computer 

programs reviewed, namely, models for predicting breeding values using genomic selection 

proposed by Meuwissen et al., (2001) and by Bernardo et al., (2007), and associated algorithms.  

By examining the basic properties of programs and models and assessing their utility in guiding 

critical decisions facing breeders, we also intend to suggest possibilities for further development 

and improvement.    

  

http://www.geneflowinc.com/


 

6 

Table 1.1 List of computer software programs examined in this review. 

Software Script 

language 

Platform  Availability (Email or URL) Reference 

Plabsoft C, R UNIX, Linux, 

MS-Win 

melchinger@uni-hohenheim.de (Maurer et al. 2008) 

QU-

GENE/QuLine 

Fortran MS-Win http://www.uq.edu.au/lcafs/inde

x.html?page=59974 

(Podlich and Cooper 1998) 

MBP C++ MS-Win andres.gordillo@agreliantgeneti

cs.com 

(Gordillo and Geiger 2008b) 

GREGOR Pascal MS-DOS http://gnomad.agr.ca/software/gr

egor/ 

(Tinker and Mather 1993) 

PLABSIM C++ UNIX, Linux, 

MS-Win 

melchinger@uni-hohenheim.de (Frisch et al. 2000) 

GENEFLOW unknown MS-Win http://www.geneflowinc.com (Coburn et al. 2002)  

COGENFITO PHP 4.0 

with SQL 

Web-based http://maizegdb.org/Cogenfito.p

hp 

(Hessel et al. 2010) 

 

This list is not fully inclusive.  With the focus on support for decision making in early 

planning and implementation phases, some related software packages were not taken into 

account.  For example, software for creating linkage maps and for facilitating selection among 

progeny were not included in the review. In some cases, these have been covered by other 

reviews (Kearsey and Farquhar 1998).  (For a comprehensive listing of computer software 

programs for genetic analysis, the reader is referred to http://linkage.rockefeller.edu/soft/.) The 

programs included in this review are those primarily focused on decisions about choice of 

parents and breeding strategies facing the breeder as he/she devises a plan to meet a defined 

breeding goal. 

 1.1.2 Computer simulation programs in review 

Plabsoft 

Plabsoft is a computer program for population genetic data analyses and simulations in 

plant breeding under various mating systems and selection regimes. Data analysis routines are 

provided to analyze both in silico and experimental datasets. 

http://www.uq.edu.au/lcafs/index.html?page=59974
http://www.uq.edu.au/lcafs/index.html?page=59974
http://gnomad.agr.ca/software/gregor/
http://gnomad.agr.ca/software/gregor/
http://www.geneflowinc.com/
http://maizegdb.org/Cogenfito.php
http://maizegdb.org/Cogenfito.php
http://linkage.rockefeller.edu/soft/
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Table 1.2 Attributes of computer software programs to guide critical planning decisions in crop 

improvement: models (or modules), functionalities, and assumptions. 

Software Models/Modules  Summary of Functionality Assumptions 

Plabsoft Quantitative genetic 

model
†
; count location 

model 

Integrates population genetic analyses 

and quantitative genetic models for 

estimating genetic diversity; tests 

HWE and calculates LD; haplotype 

block-finding algorithms to predict 

hybrid performance 

Absence of selection in the 

base population; random 

mating; Infinite population 

size; no crossover interference 

QU-GENE 

/QuLine 
E(NK) model

‡
; 

Infinitesimal model
§ 

 

Employs simple to complex genetic 

models to mimic inbred breeding 

programs, including conventional 

selection and marker-assisted selection  

No mutation; no crossover 

interference; all random terms 

are normally distributed  

MBP Quantitative genetic 

model for 

optimization; 

Infinitesimal model  

Optimizes hybrid maize breeding 

schemes based on DH lines and 

maximizes the expected genetic gain 

per year by means of quantitative 

genetic model calculations under the 

restriction of a given annual budget 

Timely staggered breeding 

cycles; no epistatic and 

maternal effects; no correlated 

response in testcross 

performance; infinite 

population size to calculate 

selection intensity 

GREGOR Quantitative genetic 

model 

Predicts the average outcome of 

mating or selection under specific 

assumptions about gene action, 

linkage, or allele frequency 

No crossover interference; no 

epistatic effect 

PLABSIM Random-walk 

algorithm to simulate 

crossovers during 

meiosis 

Simulates marker-assisted 

introgression of one or two target 

genes using backcrossing 

No crossover interference 

GENEFLOW Genotype; Pedigree; 

Population and Report 

modules; optional 

Multiplex and 

Germplasm Security 

modules 

Studies the nature and structure of 

genetic diversity 

Diploid inheritance 

COGENFITO Genome model limited 

to marker maps in 

MaizeGDB 

Screens marker data from a given 

genetic mapping population to identify 

lines with user-defined informative 

haplotypes. 

 Maize only 

† 
With the quantitative genetic model, an estimate of genotypic value is obtained by summing the allelic effects of a 

subset of loci, and an estimate of phenotypic value is calculated by adding genetic effects with non-genetic effects, 

such as environment or error.  

‡ 
In the E(NK) model, E represents the number of different environment types; N represents the total number of 

genes involved; the average level of epitasis (K) is calculated by the summation of the level of epistasis in each 

environment type weighed by their respective frequency of occurrence.  

§
 The infinitesimal model assumes a very large (effectively infinite) number of loci each with small effect. 
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Models & Functionality 

Plabsoft employs the count-location model proposed by Karlin and Liberman (1978) to 

simulate recombination during meiosis.  The number of crossovers on a chromosome is 

determined with a Poisson distributed random variable and the position of each crossover on the 

chromosome is sampled from a uniform distribution.  Genotypic value is estimated as the sum of 

preset allelic effects of a subset of loci, applying the following equation: 





NS

sXG , 

where X s is a genetic haplotype effect at a subset of loci S and N is set of all loci (Bulmer 1985). 

Phenotypic value is estimated by combining genetic effects with non-genetic effects, which are, 

environmental effects and error. 

Some functions in Plabsoft focus on understanding population structure: 1) estimation of 

allelic and genotypic frequencies and identifying population-specific alleles; 2) measurement of 

genetic relationship through use of modified Roger’s distance (Wright 1978), Nei-Li distance 

(Nei and Li 1979) and Euclidean distance, which form the basis for cluster analysis and 

dendrograms; 3) estimates of genetic diversity such as coefficient of gene differentiation between 

different subpopulations (GST) (Nei 1973); a similar term to Wright’s FST (1965), representing 

the relative differentiation between subpopulations); 4) application of principal coordinate 

analysis (PCoA) to analyze genetic relationship among individuals; and 5) testing of Hardy-

Weinberg Equilibrium (HWE) via approximation and Fisher’s exact test using Monte Carlo 

methods (Maurer et al. 2007).  

Other functions extended from PLABSIM (a forerunner of Plabsoft; see Section V 

below) focus on breeding application and simulating individual breeding stages (e.g. backcross) 

and/or entire plant breeding programs. Users can conduct Pearson’s chi-square test and Monte-
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Carlo-based Fisher’s exact test for gametic and genotypic data to measure linkage 

disequilibrium; calculate linkage disequilibrium measures like D
2
, D', r

2
, D'm, and R for 

association mapping; conduct haplotype-block-finding algorithms (these algorithms have been 

employed to predict heterosis and hybrid performance in four factorial crossing designs of a 

hybrid maize breeding program); and determine the optimum design and investigate the 

estimated selection response in MAS programs.  Prigge et al. (2008) compared the accuracy of 

computer simulations of recurrent parent genome recovery rate with empirical data from an 

implemented marker-assisted backcross scheme, and found a high degree of closeness between 

them.   

Properties & Assumptions 

Plabsoft is written in C and implemented as a library package to the statistical software R 

(Ihaka and Gentleman 1996). Currently, the software is supported under both Microsoft 

Windows and Linux operating system. Users operate the program within the R environment. 

Input files include: the linkage map, marker data, and trait data files, which can be imported from 

text files or through interfaces provided by the R environment from databases and from the 

Plabsoft database (Heckenberger et al. 2008). The genetic architecture of a trait and genome 

parameters (e.g. ploidy level and chromosome number and length) need to be defined prior to the 

analysis. The output results can be displayed graphically, e.g. as dendrograms, LD plots, 

principal coordinate plots and graphical genotypes (Maurer et al. 2008). In Plabsoft, no crossover 

interference during meiosis is assumed.  

Comments 

Plabsoft is a program to consider for general population genetic data analysis. From a 

breeding viewpoint, the haplotype-block-finding algorithm makes it less likely to overestimate 

the quantitative trait locus (QTL) effects and inaccurately predict hybrid performance (Grapes et 
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al. 2004). Another advantage is that the program can access external databases, facilitating 

massive data computation. The software and tutorial may be obtained by contacting the author. 

Although Plabsoft is highly versatile, it could benefit from a more user-friendly interface. 

QU-GENE (version 2.2.04) & QuLine (version 2.0) 

QU-GENE (Podlich and Cooper 1998) is a computer simulation platform for quantitative 

analysis of genetic models aimed at evaluating various breeding strategies and selection 

approaches in light of GEI and epistasis.  Because it considers GEI and epistasis, QU-GENE 

would likely integrate well with a breeding process model and perhaps a business process model, 

providing extended utility. 

Models & Functionality 

QU-GENE compartmentalizes the basic GE system (i.e. the defined genetic and 

environmental information used in the QU-GENE simulation, referred to as GES) and the 

application modules (e.g. QuLine) for simulation. QU-GENE is based on the E(NK) model, 

where E represents the number of different environment types; N represents the total number of 

genes involved; the average level of epitasis (K) is calculated by the summation of the level of 

epistasis in each environment type weighed by their respective frequency of occurrence (Cooper 

and Podlich 2002; Cooper et al. 2007). Thus, this genetic model incorporates the GEI effect and 

epistasis. Cooper et al., (2007) considered E(NK) as complementary to the basic statistical 

framework suggested by the equation: P = G + E + GE. In QU-GENE, the phenotypic value is 

modeled by: 

pijk = gi + ej + (ge)ij + εijk , 

where gi stands for the genotypic value, ej is the macro-environmental effect of environment j, 

(ge)ij is the interaction effect between genotype i and environment j, and εijk is the micro-

environmental effect (error)  
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or 

pij = gij + ei
b
 + eij

w
, 

where the environment effect is divided into two parts: one is between-plot error ei
b
 estimated 

from family mean and the within-plot error eij
w
 estimated from broad sense heritability, and gij is 

the genotypic value calculated from the user-defined gene action. The former part of the 

environment effect is used to estimate the among-plot variance; the within-plot error is 

considered to be environmental noise and is based upon user-defined information. 

Built on QU-GENE, QuLine (previously called QuCim) is a genetics and breeding 

simulation tool that can integrate various genes with multiple alleles operating within epistatic 

networks and differentially interacting with the environment interaction, and predict the 

outcomes from a specific cross following the application of a real selection scheme (Wang et al. 

2003; Wang et al. 2004). It therefore has the potential to provide a bridge between the vast 

amount of biological data and breeder’s queries on optimizing selection gain and efficiency. 

QuLine has been used to compare two selection strategies (Wang et al. 2003), to study the effects 

on selection of dominance and epistasis (Wang et al. 2004), to predict cross performance using 

known gene information (Wang et al. 2005), and to optimize marker assisted backcross selection 

to efficiently pyramid multiple genes in elite lines (Kuchel et al. 2005; Wang et al. 2007).  

Properties & Assumptions 

QU-GENE is written in FORTRAN and implemented under OS Microsoft Windows. The 

latest version 2.2.04 was released in 2008. Data is imported as the QUG-formatted file, which 

can be opened and edited in a text editor or directly in the software. QU-GENE supports diploid 

or amphi-diploid genomic structures with two alleles per locus. A simple graphical user interface 

has been designed for importing data. Users need to define and specify the information for 

environment, trait, gene, and population data in the QUG file, especially gene information which 



 

12 

is the fundamental part to define GE system, including gene action (e.g. additive, dominance, 

and epistasis), GEI, pleiotropy, linkage, multiple alleles, and molecular markers. The GES and 

POP-formatted files output by the QU-GENE engine are used to store the information about the 

GE system and an initial population, respectively, for further application in the QuLine module.  

QuLine is a QU-GENE strategic application module (current version 2.0) developed to 

simulate the breeding processes for developing advanced inbred lines.  It can also be used to 

investigate the starting population under the defined GE system. QuLine is the only currently 

available application module for QU-GENE. QuLine can be implemented under both MS-DOS 

and MS-Windows environments and has a graphical user interface to facilitate simple operations. 

The input files for QuLine include GES and POP files (described above), as well as QMP file 

which contains basic parameters, such as numbers of breeding strategies, runs, cycles, and 

crosses. Users also need to define the breeding strategies and selection information to be used 

and to specify the final output results in the QMP file.  

With the E(NK) model, the following assumptions are made: a large number of loci with 

small gene effects contributing to the genetic variation (infinitesimal model), no crossover 

interference, no mutations and all random terms, such as environmental errors are normally 

distributed as ~ N (0, σ
2
). 

Comments 

 QU-GENE is a potentially useful tool to explore the non-additive variation and to make 

predictions from genetic models defined in terms of gene frequencies, gene action type, and 

specified target populations of environments. Starting with input on known parameters, 

estimations of epistasis and genotype by environment interaction will be generated within this 

framework. The above approach could be utilized to leverage the known genetic information and 
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to compare breeding strategies by using these in association with the estimated genetic 

parameters generated by the model.  

   Some additional notes about QU-GENE are: 1) the sample of environments in a multiple 

environment trial will not well represent the target population environment if the cycle number is 

small and the environment is sampled randomly, as the expected frequency of occurrence will 

not match the real environment types frequency; and 2) no provision is made for mutation, 

autopolyploid species, or use of doubled haploid (DH) lines. 

The user manual illustrates program specifics in detail. Although the data format can be 

complicated when starting from scratch, the software provides some example files which can be 

used as templates. We found that run time was brief using the sample files provided, suggesting 

speed in processing small datasets. The running time would change, of course, depending on the 

model, parameters, and the size of dataset. 

MBP (version 1.0)  

MBP (version 1.0; (Gordillo and Geiger 2008b) is a software package to optimize hybrid 

maize breeding procedures based on DH lines.  It is designed to maximize the expected genetic 

gain per year for a given annual budget and a limited relative annual loss of genetic variance. 

Alternative breeding plans are optimized using model calculations. The software uses default 

values for the underlying estimates of variance components and genetic correlation coefficients 

as well as haploid induction parameters and costs of individual breeding steps based on data 

from collaborating breeding companies; these can be varied by the user according to his/her 

genetic, technical, and financial resources.  

Models & Functionality 

The estimated phenotypic variance between testcross progenies is calculated as the sum 

of the genotypic variance between testcross progenies and the genotype × year, genotype × 
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location, genotype × year × location interaction variances, and the error variance. The estimated 

genotypic variance between testcross progenies (
2
tσ ) comprises the variance of the general 

combining ability ( 2

GCA
 ) and specific combining ability ( 2

SCA
 ; Griffing, (1956) :  

T
SCAGCAt /222    

where T is the number of testers and 2

GCA
  and 2

SCA
  are derived from additive and dominance 

variance estimates, respectively.  

The functions of the program are: 1) maximization of the expected annual genetic gain in 

general combining ability (GCA) under a restricted annual budget and an upper limit for the 

decay of genetic variance; 2) inclusion of seven alternative breeding schemes, each differing in 

the genetic structure of the material used for starting a new breeding cycle, the generation in 

which the haploid induction is applied, and the stage at which the DH lines are evaluated for per 

se performance; 3) prediction of the gain from selection based on index composed of grain yield 

and dry matter content, implementing numerical methods for the calculation of normal integrals 

for the distribution of genotypic values under one-, two-, and three-stage selection; 4) 

specification of the number of lines to be finally selected; and 5) optimizations under a 

restricted relative annual loss of genetic variance defined by Δσg
2
= 1/(2NeY) , where Y is the 

cycle length in years and effective population size (Ne) is predicted by applying formulae for the 

joint effects of drift and cumulative selection according to Santiago and Caballero (1995).  

Properties & Assumptions 

MBP is written in programming language C++ and the compiled program can be 

implemented under OS Microsoft Windows. Within the confines of a maize breeding program 

involving DH lines, users may arbitrarily specify the quantitative genetic parameters and 

operational variables in the input files, such as breeding and mating scheme, the index weights, 
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the restricted budget and the dimensioning (or allocation) restrictions to be used for the 

optimization procedures. The software will output the results regarding resource allocation, 

expected gain in optimization criterion, GCA, and the predicted annual loss of genetic variance. 

In MBP, absence of epistatic and maternal effects as well as no correlation between per 

se and testcross performance for yield and harvest moisture is assumed. The program user may 

specify that the breeding material representing one gene pool is subdivided into multiple, timely 

staggered breeding cycles (as it is usually the case in practical breeding). When calculating Ne, a 

constant number of random mating parents and random distribution of number of progenies per 

cross is assumed. An infinitesimal model of gene effects is assumed to interpret the genetic 

architecture of a trait and an infinite population size is assumed for calculating selection 

intensity. 

Comments 

Although specifically developed to optimize hybrid maize breeding procedures using DH 

lines, MBP has the potential to be extended to other breeding schemes. Gordillo and Geiger 

(2008a) illustrated an example of using different genetic variance component ratios, budgets, and 

breeding strategies. Herein, the authors clarified that differences in the estimated genetic gains 

between the evaluated optimization variants that are statistically significant remain open, since 

formulae for computing confidence intervals of genetic gain estimates are available for one-stage 

selection only (Burrows 1975). 

GREGOR (version 1.5) 

GREGOR (Tinker and Mather 1993) is a simulation program predicting the average 

outcome of a given cross or selection scheme. 
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Models & Functionality 

With GREGOR, users can choose from three scenarios, which differ in the number of 

loci, chromosome number, and crossover rate. All genomes are modeled as diploid. The 

genotype at every locus in the genome is defined for each individual; a population is defined as a 

group of specific individuals with conditions in common. The positions and allelic effects of a 

subset of loci within the genome are specified for defining a trait. Markers are determined to be 

associated with alleles having dominant or codominant effects at associated loci. The genotypic 

value estimate is calculated as the sum of allelic effects (additive and dominance effects) of a 

subset of loci; and the phenotypic value estimate is calculated by adding the genotypic value to 

an environmental effect that is chosen randomly from a normal distribution. 

The function of GREGOR is to predict the average outcome of mating or selection under 

specific assumptions about gene action, linkage, or allele frequency. It can process various types 

of population structures e.g. DH lines, recombinant inbred lines (RILs), and diverse mating 

schemes including random mating, chain crosses, full diallels, and backcrossing. The program 

also allows individuals comprising the population to be selected manually or randomly. 

Properties & Assumptions 

GREGOR is written in Pascal and implemented under MS-DOS environment. No 

empirical data are needed, since all inputs including individual, trait and marker data are 

simulated by the program. The Haldane mapping function (1919) is used to relate map distance 

to recombination frequency, or vice versa. The program will output a histogram and graphical 

genotype for visualization and results consisting of population information, trait and marker 

phenotypes in a population. In terms of interfacing with other programs, GREGOR can create 

files readable for Mapmaker/Mapmaker QTL. The program assumes no crossover interference 

and absence of epistasis. 
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Comments 

 This program was designed for illustrating basic breeding methods and quantitative 

genetic theory. The program tutorial is quite thorough. However, the program has not been 

updated since 1995. Since GREGOR runs only in a MS-DOS environment, and a DOS emulator 

such as DOSBox (http://www.dosbox.com/) can be used to facilitate operation in Windows OS. 

It may have its greatest utility as a teaching aid. 

PLABSIM 

PLABSIM (Frisch et al. 2000) is a software program which simulates backcross 

introgression with one or two target genes or genetic factors. 

Models & Functionality 

PLABSIM simulates recombination during meiosis via the random-walk algorithm 

(Crosby 1973). A crossover event is considered to have taken place only if a number sampled at 

random from a uniform distribution is no larger than recombination frequency.  

Functions of PLABSIM include simulation of marker-assisted introgression of one or two 

target genes using backcrossing, evaluation of gene frequencies to estimate the recurrent parent 

genome proportion in backcrossing, calculation of genotype frequencies to estimate 

homozygosity and heterozygosity and estimation of the required number of marker data in 

breeding program. The program allows for population manipulation and selection.  

Properties & Assumptions 

PLABSIM is written in C++ and implemented under multiple operating systems, such as 

UNIX and Windows NT. The input file specified by users contains information about linkage 

map, the base population, and a description of the breeding program, such as various breeding 

designs implemented, etc. The Haldane mapping function (1919) is used to calculate 

recombination frequency for the random walk algorithm. The program assumes no crossover 

http://www.dosbox.com/
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interference. PLABSIM is capable of data export, which provides a handy interface with data 

analysis programs.   

Comments 

PLABSIM has narrow focus.  Furthermore, it has not been maintained or updated since 

2000. However, since PLABSIM functionality has been incorporated into Plabsoft, it is available 

in a newer and better form.  

GENEFLOW 

GENEFLOW (www.geneflowinc.com) is a commercial software package designed to 

support breeding programs and genomic investigations.   

Models & Functionality 

The software features several built-in modules: a pedigree module to support the analysis 

of genetic and phenotypic data within the context of a pedigree; a genotype module to identify 

patterns of inheritance and to compare genetic structure across multiple individuals; a population 

module to analyze structured populations; and a report module containing a number of reports on 

genotype-phenotype associations and specific choice of markers and/or progeny for use in 

breeding. There are optional modules for designing multiplexing kit design, and germplasm 

security. 

GENEFLOW uses pedigree, marker and phenotypic trait data as inputs and allows users 

to integrate, analyze and visualize this information. It supports simple statistical analyses, such as 

ANOVA, regression analysis, t-tests, and correlation calculation. Coburn et al. (2002) applied 

the program to design multiplex panels for SSR polymorphism data analysis in the study of 

genetic diversity among a wide range of cultivated rice germplasm. Malysheva-Otto et al. (2006) 

used GENEFLOW to calculate allelic richness, gene diversity, the occurrence of unique and rare 

http://www.geneflowinc.com/
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alleles, and the frequencies of heterogeneous loci.  This software is a tool for data management 

and display; model building and data analysis capabilities are limited. 

Properties & Assumptions 

GENEFLOW is appropriate for the analysis of diploids or functional diploids, such as 

wheat. Sample databases of rice and barley are included within the system. 

Comments 

GENEFLOW allows the user to define and execute MAS rules, evaluate parental pairs 

for target genotype analysis, find polymorphism between any pairs of lines, find lines the 

most/least similar to a reference or ideotype, and identify non-parental alleles.  Its strengths are 

in data management and display. 

COGENFITO 

COGENFITO, the composite genotype finder tool, is a web-based program designed to 

facilitate use of molecular marker data to optimize choice of parents in maize breeding for fine 

mapping purposes (Hessel et al. 2010). It acts as a browser for large genotype data sets, allowing 

a user to sort and sift through marker data to identify lines with user-defined haplotypes. The tool 

has a very limited genome model, in keeping with its focused functionality, and does not have 

analysis capabilities. The only available implementation at present is at 

http://www.maizegdb.org/ , where it can be used to browse through more than 5,000 stocks in 

molecular breeding efforts for maize (Lawrence et al. 2007). Based on a multi-locus genotype 

query for a particular population of lines, COGENFITO identifies and provides stock center links 

to genetic stocks that best match the desired parameters.  Hessel and colleagues (2010) also 

provide several proposed use cases, including the use of effectively isogenic lines for testing 

allelic action and for accelerating positional cloning. COGENFITO is available for use at 

http://maizegdb.org/Cogenfito.php.  

http://www.maizegdb.org/
http://maizegdb.org/Cogenfito.php
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 1.1.3 Other resources for model building and computer simulation for prediction 

purposes 

In addition to the software programs described above, some significant work in modeling 

and simulation methodologies has been done in support of breeder decisions, mainly in 

constructing genetic models and conducting in silico evaluation based on rather narrowly defined 

product development process models. For example, work by Meuwissen and colleagues (Luan et 

al. 2009; Meuwissen et al. 2001) and Bernardo and Yu (2007) focused on predicting breeding 

value using marker and phenotypic data to guide choice of parents, the former in animals and the 

latter in plants. Details on construction of the genome model as well as statistical methodologies 

for estimating genetic effects can be useful to the breeder who may wish to develop his/her own 

tools to guide choice of parents and options for breeding methods.  A word is given in review of 

some of the key issues related to prediction: a) the genetic model, especially in light of the ever-

growing body of knowledge about genome architecture and function (Holland 2007; Mackay 

2001); b) statistical methods for precision and accuracy; and c) approaches for an integrated 

strategy. 

The genetic model of Meuwissen et al. (2001) was structured as follows. A model 

genome (1000 cM) was divided into 1000 segments with 100 segments per chromosome, and a 

QTL was assumed to be located at the midpoint of each segment flanked by two markers. The 

model suggested that the QTL are identified by flanking markers, and there are on average 50 

different haplotypes per centiMorgan. A total of 1010 maker loci were included and about 

50,000 haplotype effects were estimated. 

Bernardo and Yu (2007) specifically simulated the maize genome (1749 cM) which 

corresponded to the linkage map published by Senior et al. (1996). The 10 maize chromosomes 

were divided into NM bins, where NM was the number of markers, indicating one marker for each 
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bin. The location of the marker was set to be at the middle of each bin. A number of bi-allelic 

QTL influencing the trait of interest were assumed to be randomly located across the genome 

according to a uniform distribution.  

The infinitesimal model is often deployed with prediction of quantitative traits. Laurie et 

al. (2004) pointed out the futility of modifying a single gene to affect an improvement in oil 

content in corn, a trait that is polygenic, yet additive in nature and highly heritable. Likewise, 

other agronomic traits of interest in maize like grain yield, grain moisture, flowering time and 

plant height, are typically represented by an infinitesimal model (Austin et al. 2000; Buckler et 

al. 2009; Schon et al. 2004).    

In contrast to MAS to identify outstanding progeny wherein markers with strong 

association with the trait of interest are used to “collect” favorable chromosomal segments to 

improve performance, approaches to prediction may involve a more inclusive accounting of the 

genome. For example, GS (or GWS) or approaches that account for epistatic interactions may be 

employed.  

GS was first introduced to predict breeding value in animal breeding (Meuwissen et al. 

2001). All marker loci are utilized to estimate breeding value of an individual, not just those 

associated with a particular level of statistical significance. All gene effects are estimated across 

the genome simultaneously. Then, individuals are ranked according to the magnitude of the sum 

of gene effect estimates for each.  

Meuwissen et al. (2001) used the following statistical model for predicting breeding 

value:  

ny l Xg     
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where y is the vector of phenotype;   is the overall mean, ln  is a vector filled with 1, X is a 

design matrix for all genotypes, and g is the haplotype effects. The gene effects are assumed to 

fit a gamma distribution.  These are captured by the haplotype whose inheritance is tracked 

through DNA marker genotyping, assuming no recombination within the haplotype. The random 

non-genetic effect (ε) has a normal distribution with a mean of zero and the variance is adjusted 

according to the heritability. It is assumed that all genotypes can be traced back to the same base 

population, which is in HWE and/or linkage equilibrium (LE) and all individuals are unrelated in 

the base population. Absence of epistasis is also assumed. Bernardo and Yu (2007) later applied 

the same statistical model to maize breeding, but assumed that distribution of gene effects follow 

geometric series according to Lande and Thompson (1990).   

Statistical methodologies for GS have been evolved progressively. Meuwissen et al. 

(2001) firstly proposed methods like least square (LS), BLUP, Bayes A and Bayes B (Table 1.3). 

Calus and Veerkamp  (2007) added the polygenic term into the model, and found that the 

polygenic effect will not increase the GS accuracy although it explains variance components 

better and removed bias. While de los Campos et al.(2009) used the Bayesian least absolute 

shrinkage and selection operator (LASSO) to fit marker effects in a regression model to predict 

gene effects. Compared to shrinkage methods such as Bayes A or Bayes B in Meuwissen et al. 

(2001), LASSO employed double exponential distribution rather than normal distribution as 

prior for regression coefficients, imposing more shrinkage on the effect close to zero and less 

shrinkage on the large effect. 

GS applications in plants typically consider environmental effects, and treat these as 

random (Bernardo and Yu 2007). Piepho (2009) applied GS to accommodate GE data using two-

stage analysis and fitted the model by restricted maximum likelihood method. Heffner et al. 
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(2009) suggested that Bayesian methods might be a better method when handling data with 

limited phenotypic records and increased marker data sets. Furthermore, they suggested that the 

selection cycle in plant breeding could be shortened by GS. Wong and Bernardo (2008) 

concluded that use of GS as a predictive tool was superior to both marker-assisted recurrent 

selection and phenotypic selection and also increased breeding efficiency by reducing 

development of new lines by two thirds, from 18 years to 6 years. Later, Bernardo (2009) 

reported that computer simulations involving GS showed that only three years would be required 

for genetic improvement of an adapted line using an exotic source.    

 

Table 1.3 Models and methods for predicting breeding value via genomic selection, as per 

(Meuwissen et al. 2001). 

Genetic model Assumptions Statistical methods Specificity 

Phenotypic values are 

obtained by adding 

genetic effects with 

nongenetic effects. 

 

Gene effects fit 

gamma distribution.  

 

Random nongenetic 

effects fit a normal 

distribution with mean 

of zero and variance 

adjusted to heritability. 

All genotypes can 

be traced back to the 

same base 

population. 

 

Unrelated 

individuals in the 

base population  

 

Absence of epistasis 

and interactions 

 

Least-squares (LS) 

estimation 

Fixed haplotype effects; 

Only significant effects are estimated. 

 

Best Linear 

Unbiased Prediction 

(BLUP) 

Random haplotype effects;  

Same variance for every segment 

effect. 

BayesA Random haplotype effects sampled 

from normal distribution;  

Different genetic variance for every 

segment effect. 

BayesB Random haplotype effects sampled 

from normal distribution;  

Different genetic variance for every 

segment effect; 

Some segments have no effects with 

probability p 

 1.1.4 A look forward 

Given the benefits and promising future of computer simulation to guide breeding 

decisions in early planning and implementation phases, the development of user-friendly 

software programs and modeling methodologies for this purpose deserves greater focus.  Most of 

the software reviewed has limited focus and/or utility for impacting decisions facing the plant 

breeders, especially with respect to choice of germplasm and breeding strategy options.  
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Model building and computer simulation can play an important role in decision making, 

process design, and operational efficiency in the development of improved crop seed products 

(Figure 1.1). A model is formulated, e.g. for the genome of the crop of interest, based on 

available facts, scientific principles, and various assumptions. A model is intended as a 

simplified version of the system it represents, and the model evolves and is refined as scientific 

advances are made and more information is available.  A simulation tool may, in fact, include 

more than one model or layers of models.  For example, a genome model may represent the 

genetic architecture of the species of interest; a seed development ‘process’ model may represent 

the system used to advance promising materials to commercial release; and a ‘business’ model 

may represent the seed roll-out and distribution of a new cultivar.  At present, we know a great 

deal about the genetic systems of various crops and we are learning more every day with 

advancements in DNA sequencing, biochemistry, and genomics, paving the way for more 

sophisticated genome models.  The model(s) are then used to “predict” the best options based on 

probable outcomes, whether these are optimal pairs of inbred lines to produce progeny having 

superior performance or top breeding strategies to minimize development time and maximize the 

rate of genetic gain, potentially saving time and resources.  The predictions can then be validated 

using actual data, which serves to reinforce and refine or redefine the model and simulation 

mode.  With the incorporation of real data, the program takes the form of a tool, which can be 

directed to optimize an operational process to improve efficiency.  At this level too, continual 

refinements are made as outputs are captured and applied to further tune the model.  Operational 

efficiencies are realized as the tool is applied to the product R&D pipeline, in terms of 

accelerated speed to market, greater rates of genetic gain, new knowledge, and/or innovation (i.e. 

creation of a new type of product or process). As an example, improved breeding schemes for 
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marker-assisted introgression suggested through computer simulation may later be adopted and 

incorporated in the product pipeline to achieve speed to market in release of corn hybrids with 

new transgenic trait combinations.   

Heffner et al. (2009) suggested that, since speed-to-market and cost efficiency are 

relatively higher priority in the private sector, software and database development may be given 

greater attention there than in the public sector. Notwithstanding, Xu and Crouch (2008) 

emphasized that decision support tools are crucial to analyze and combine other data to make 

rapid and efficient selection decisions in a short time period while maintaining accuracy.  Xu 

(2010) suggested integrating knowledge from various disciplines in building tools to guide 

tactical and strategic decisions. Furthermore, such tools are important to the education of the next 

generation of plant breeders and their preparation for productive careers in crop improvement. 

A particular need exist for more support in choosing parents, as decisions in this realm 

are some of the most crucial facing the breeder, and few current software programs address this 

area, e.g. MBP and QU-GENE. For instance, when the breeding target is to develop an improved 

hybrid, computer simulation could be used to model GCA and SCA for predicting the cross 

performance and optimizing the lines used as parents to create breeding populations (Bernardo 

1993, 1994; Piepho 2009). An effective tool would increase the probability of choosing parents 

that will result in superior new gene combinations, focus resources on materials with the greatest 

genetic potential, and increase the odds of successfully recovering outstanding progeny. Several 

issues need to be considered in building models, e.g. investigating the impact of GEI effects, 

accounting for epistatic effects in the model (Dudley and Johnson 2010), and optimizing marker 

density to maximize accuracy of prediction. In the maize genome, thousands of genes isolated by 

repetitive sequence regions contribute small effects to the quantitative traits, in keeping with the 
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infinitesimal model. This model can be tailored for application to other diploid species, 

depending on genetic architecture and type of gene action. For example, dominance effects are 

usually less important in a self-pollinated crop than in a cross-pollinated crop and epistatic 

effects may be more important in self-pollinated crops (Blanc et al. 2006; Mihaljevic et al. 2005).  

 

Figure 1.1 Computer simulation applied to create tools that improve operational efficiency in 

seed product development. 

 

Any new simulation program must be able to handle massive amounts of data and offer 

reduced computing time.  The ability to interface with external databases will be critical. New 

software will likely enable cloud computing including parallel and grid computing, demanding a 

higher level of design and programming.  Furthermore, new simulation tools require testing both 

in silico and experimentally to validate models and methods used. 

 1.2 Objectives  

Given the simulation programs and tools mentioned above, we challenged some of the 

assumptions commonly incorporated in genome models, namely those of no crossover 
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interference and invocation of the infinitesimal model of gene effects, with the aim to produce a 

more accurate representation of the genome. In Chapter 2, we used data from private and public 

sources to model crossover and distribution of QTL additive and dominance effects. Specifically, 

a two-pathway crossover interference model (Copenhaver et al. 2002) was used to estimate the 

strength of crossover interference across the genome based on several doubled haploid data sets 

contributed by Monsanto Company. Meanwhile, published data from QTL mapping studies were 

used to derive the distributions of QTL additive effects and dominance coefficients (calculated as 

the ratio of dominant to additive effect) in the form of mixtures of normals by fitting the 

Dirichlet Process Gaussian Mixture Model (DPGMM).  

 Besides absence of crossover interference, epistasis is also typically unaccounted for in 

most of the genetic simulations and statistical models. For example, Meuwissen et al. (2001) and 

Bernardo and Yu (2007) fit the data using a linear model to estimate breeding values. However, 

given the impact of epistasis in the expression of some key traits of interest (Dudley and Johnson 

2009), predictive ability may be improved in taking this important genetic characteristic into 

account. In Chapter 3, we proposed a new nonparametric method, pRKHS, which combines the 

features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert 

spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high 

epistasis, pRKHS-E. The new method was evaluated in comparison with current popular 

methods for practicing genomic selection, specifically RR-BLUP, BayesA, BayesB and RKHS, 

using both simulated and real data. Beyond prediction, the new method also facilitated inferences 

about the extent to which epistasis influences trait expression. 

In Chapter 4, we applied the genome model mentioned above to a case study involving 

conversion of a target hybrid for 15 transgenic events. The case study demonstrated how we 
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could take advantage a more definitive genome model incorporating a more accurate distribution 

of genetic effects to help to determine the optimal breeding strategy for marker-aided 

introgression. Prospective breeding strategies differed from each other based on the assignment 

of various parameters such as: 1) the proportion of non-recurrent parent germplasm remaining in 

the converted lines; 2) the number of ‘versions’ of the inbred conversions; and 3) the number of 

‘versions’ of the hybrid conversions needed for a 95% probability of recovering at least one with 

performance on par with the unconverted target hybrid. 

In summary, the following three respective chapters cover: A) Improvement of genome 

model, including investigation of crossover interference and the distribution of genetic effects; 

B) Development of a novel statistical method to enhance the predictive ability in choosing 

parents in the new line development process; and C) Optimization of number of versions of 

converted hybrid introgressed of 15 transgenic events. 
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Chapter 2 -  Improvement of genome model 

 2.1 Overview 

To serve better predictive ability, the underlying genome model of a simulation tool 

needs to be synchronized with updated scientific facts and principles. Crossover interference 

allows us to accurately capture the recombination process within a small genetic interval. At the 

same time, understanding of the distribution of genetic effects provides a basis for depicting a 

more realistic picture of genetic architecture, particularly the magnitude and direction of QTL 

effects across the genome.  

Crossover interference has been observed in almost all organisms. However, because not 

much is known about the degree of interference or the variability among and within individuals, 

the assumption of no crossover interference is typically invoked in genetic simulation. Taking 

into account that crossover interference is immensely important when considering the outcome 

of the recombination process within a small chromosomal interval, this issue must be addressed 

if we are to accurately predict the results of various breeding strategies focused on eliminating 

linkage drag in trait introgression. However, whereas crossover interference is a biological 

process, modeling it is a statistical process. We are employing a two-pathway statistical model to 

model crossover process across the whole genome and assign genotypes to individuals of the 

next generation in simulation. The model reflects two possible ways for crossover interference to 

occur during meiosis: one is called pairing crossover which will not interfere with the crossover 

occurring adjacently; and the other is called disjunction crossover which will interfere with the 

crossover occurring adjacently by assigning m gene conversions (non-reciprocal recombination) 

for the following events before the next crossover occurs. The interference counting parameter 

(m) and the proportion of pairing crossover (p) across the total number of crossovers are 
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estimated by using actual data from maize dihaploid populations (contributed by Monsanto 

Company).  

Besides crossover interference, we explored the distribution of genetic effects, 

specifically additive effects and dominance coefficients, to improve the genome model and 

provide a stronger basis for accurate simulation of QTL effects. We utilized a Gaussian Mixture 

Model (GMM) to fit the distribution of genetic effects, which is based on the notion that various 

alleles fall into a number of classes with different effects. QTL effects collected from previous 

QTL mapping studies were utilized in this work; however, because the effects reported were 

observed with additional experimental error and the actual number of mixture components 

underlying is unknown, a traditional GMM is not sufficient for the problem. We, therefore, 

derived a Dirichlet Process Gaussian Mixture Model (DPGMM) to include the experimental 

error into the model and treat the number of mixture components as random variables with a 

Dirichlet process prior distribution.  

 2.2 Investigation of crossover interference in maize 

 2.2.1 Introduction 

Meiosis is the specific cell division that is necessary for sexual reproduction, with 

reproductive cells to be haploid gametes. Prophase I in meiosis has been given special attention 

mainly in the field of studying recombination and crossover. The DNA exchange events initiated 

by DNA double-strand breaks could be either reciprocal or nonreciprocal, leading to crossover or 

noncrossover events, respectively. The distribution of crossover is regarded as a regulated 

process. For example, regions around centromeres have less frequent recombination events than 

other regions. Barchi et al. (2008) suggested that crossovers on the same chromosome generally 

distribute uniformly and broadly whereas Timmermans et al. (1996) indicated that crossover in 
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maize was restricted to unmethylated and nonrepetitive genomic regions. The different types of 

distribution of crossover indicated the phenomenon of crossover interference which has been 

observed in almost all organisms studied (Sturtevant 1915). The distribution of crossovers along 

a genetic interval is typically inferred from genetic experiments, i.e. recombination information, 

due to the facts that crossovers are not easily observed. Other than indirect inference from 

recombination information, direct observations from cytogenetic experiments such as late 

recombination nodules could also be used to indicate the position of crossover (Anderson et al. 

2003).  

Modeling crossover interference has been not only a biological but also a statistical 

process. McPeek and Speed (1995) reviewed some statistical models to fit the distribution of 

crossovers, with certain emphasis on the stationary renewal process model, such as gamma 

model. Generally, the gamma model could also be named as gamma inter-arrival process, which 

suggested that the distances between two crossovers are independent and identically distributed 

from a gamma distribution. The chi-square model is a special case of gamma model with the 

shape parameter to be integer, i.e. m + 1, where m is the counting parameter (Zhao et al. 1995). 

Foss et al. (1993) supported a chi-square model using observed gene conversions from 

experiments and gave the model some biological meaning, i.e. assigning the ratio between 

noncrossover and crossover to a counting parameter. Copenhaver et al. (2002) later proposed a 

two-pathway model on the basis of the chi-square model, which suggested the coexistence of 

two types of crossovers during meiosis: pairing (non-interfering) crossover which doesn’t 

interfere with the crossover occurring adjacently; and disjunction (interfering) crossover which 

hinders the neighboring crossover by inserting certain noncrossover events between two 

crossovers. Besides a counting parameter, another parameter, p, was used to govern the 
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proportion of non-interfering crossovers in the two-pathway model. Later Mézard et al. (2007) 

extended the two-pathway idea to all plants. And Falque et al. (2009) concluded that two types of 

crossovers exist in maize genome.  

It is essential to find the positions of crossovers for studying crossover interference by 

either indirect inference from recombination or direct observations from cytogenetic studies. 

Depending on the organisms, recombination would usually be recorded in the form of two types, 

i.e. single spore data and tetrad data. For example, in Drosophila, a single meiotic product could 

be retrieved and observed individually as a “single spore”, while in yeast and Arabidopsis, 

products of all four meiosis were regained and observed together as a “tetrad” (Zhao et al. 1995). 

In maize, it is uncommon and difficult to directly genotype either pollen or eggs to recover a 

single meiotic product. However, it could be indirectly accomplished by the usage of doubled 

haploid (DH) technology, an important approach to accelerate inbreeding in plant breeding. With 

DH, the haploid gamete is steadily reserved in a homozygous diploid status by the doubling 

chromosome process.  

In this study, we employed six DH populations developed and genotyped by Monsanto 

Company to explore crossover interference in maize. Coverage of 8 chromosomes provided by 

these data and the two-pathway crossover interference model (Copenhaver et al. 2002) were used 

to investigate the crossover process. The results obtained from this study were also compared to 

those in Falque et al. (2009) who fit the late recombination nodules data to a gamma model 

(McPeek and Speed 1995) considering additional “sprinkle” process (i.e. two-pathway 

interference).  
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 2.2.2 Material and methods 

Data sources and processing 

Six DH populations derived from F1s were obtained from Monsanto Company to 

investigate crossover interference in maize. Population sizes ranged from 87 to 148 with each 

population having different marker coverage (Table 2.1). A total of eight chromosomes were 

exposed, with different genetic length coverage (Table 2.2). Given parents genotypes, marker 

data were then converted to recombination scores for fitting the statistical model. For example, 

we denoted allele originated from parent 1 as ‘A’ and the one from parent 2 as ‘B’, and 

recombination score was recorded as 1 in an interval if the flanking marker genotypes were ‘AB’ 

or ‘BA’; otherwise 0, indicating no recombination.  

 

Table 2.1 The population size and number of markers of six double haploid populations.  

Populations Pop size Total # of Markers 

1 132 6 

2 132 19 

3 148 13 

4 134 21 

5 87 17 

6 110 27 

 

Statistical model 

The two-pathway crossover interference model adopted from Copenhaver et al. (2002) 

was employed in this study to assess the crossover interference in maize. The first pathway was 

designated as the interference-alone pathway which was modeled using the chi-square model 

(Zhao et al. 1995), denoted as Cx(Co)
m
. In detail, due to the fact that crossover inference is a 

property of meiosis on the tetrad, exchanges events (crossover intermediates) were randomly 

positioned on the bivalent (four-strand bundle) in light of a Poisson process and were later 

thinned to get the process on a single meiotic product, i.e. pollen or egg. Given the assumption of 
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no chromatid interference (NCI), the probability a specific crossover goes on a specific single 

meiotic product is ½ and is independent of the results of other meiotic products. Every exchange 

event will resolve into either a crossover, denoted as Cx or a non-crossover, denoted as Co which 

was biologically interpreted as gene conversion by Foss et al. (1993). According to the Cx(Co)
m
 

model, every (m+1)
st
 event is a crossover. The interference counting parameter (m) is a non-

negative integer and controls the crossover interference strength, with m = 0 equivalent to no 

crossover interference. The other pathway represents the non-interference mechanism, in which 

case every exchange event will resolve into a crossover. The proportion of non-interfering 

crossover was governed by additional parameter, p.  

Parameters m and p were estimated according to (Copenhaver et al. 2002; Zhao et al. 

1995). In detail, a D matrix with dimensions (m+1) x (m+1) was built by assigning a value to the 

(i, j) element as 

  

  

     or 
0

1 1
,

! 1 1 1 1

l n l
y nk

l k j i
l

n m pe y p

ln p m p p m p





 


     
                

  

where    n j i k m k l     was the total exchange events in that interval, k is the total 

number of crossover and l is the number of non-interfering crossover, and

   2 1 1y p p m X     was the DNA double strand breaking length adjusted by exchange 

events rate, where   is the inter-marker distance provided by Monsanto Company. 
  or l k j i


 
 is 

the indicator function and has value of 1 if  or l k j i  , otherwise 0. According to the theory 

from Mather (1935) that under the assumption of NCI, if at least one crossover occurs between 

two markers, the probability that recombination occurs between the two markers on any single 

meiotic product is ½, matrices N (no recombination) and R (recombination) on j
th

 inter-marker 

interval were built upon the D matrix to construct the likelihood (Zhao et al. 1995): 
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Table 2.2 Chromosome coverage and number of markers by six double haploid populations. 

Chromosomes Populations # Markers Genetic interval (cM) 

Chr 1 1 2 102 - 104 

 
2 2 55 - 59 

  
3 253 - 255 

 
3 2 1 - 1.5 

  
7 167 - 247 

 
4 5 1 - 59 

 
5 2 1 - 2 

  
2 119 - 122 

 
6 7 169 - 247 

    Chr 2 6 2 107 - 113 

    Chr 3 2 2 103 - 107 

  
4 162 - 188 

 
4 4 103 - 129 

 
5 2 103 - 107 

  
5 162 - 219 

 
6 2 162 - 167 

  
2 218 - 219 

    Chr 5 2 2 11 - 13 

  
2 121 - 125 

 
4 3 104 - 126 

 
6 4 81 - 107 

  
2 160 - 172 

    Chr 6 4 4 99 - 133 

 
6 4 78 - 103 

    Chr7 4 2 172 - 174 

 
5 3 35 - 52 

 
6 2 66 - 91 

    Chr 9 2 4 65 - 117 

 
4 3 65 - 71 

 
5 3 34 - 67 

 
6 2 34 - 71 

    Chr 10 1 4 50 - 62 

 
3 4 44 - 98 

 

   0

1

1/ 2j j s j

s

N D y D y


    

 
1

1/ 2 ,j s j

s

R D y


   

where s represents the number of crossover. The likelihood function of observing recombination 

pattern  1 2, , , ,j ni i i i  is  
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 1 2 1 2

1
, , , , | , ',

1
j n j nL i i i i m p M M M M

m



1 1  

where ji  is the recombination score in j
th

 interval, which has two possible values: 0 for no 

recombination and 1 for recombination in j
th

 interval and jM was the matrix dependent on the 

recombination score, i.e. j jM N when 0ji  , and j jM R  when 1ji  . A grid search using 

optimization function “optim” in R (R Development Core Team 2011) was used to estimate m 

and p that minimize the negative log-likelihood. Parameter m was restricted to take integers from 

0 to 20 and variable p was in the boundary of [0, 1](Copenhaver et al. 2002). Method “L-BFGS-

B” (Byrd et al. 1995) was used in “optim” function due to its “box constrains” feature. Both chi-

square model (null model with only parameter m) and two-pathway models (alternative model 

with parameter m and p) were used to fit the data and the log-likelihood ratio test was used to 

determine which model fit the best. The distribution of the test statistic follows
2

1 .  

 2.2.3 Results 

Chromosome 1 was covered in all six populations and thus was the one that had the 

longest chromosome coverage (Table 2.3). Most of the p estimators were zero, suggesting 

interference-alone model works well for the linkage groups (LKG) in chromosome 1. Out of nine 

LKGs in chromosome 1, four of them showed no crossover interference, i.e. m = 0, three showed 

small to moderate crossover interference (1 10m  ), and the other two fragments showed 

strong crossover interference, i.e. 15 20m  . Two LKGs from population 3 and 6 were mostly 

overlapped in the genetic interval (167 – 247 cM) but had different outcomes. Interference of 

LKG from population 3 had higher strength than that from population 6. Similar to chromosome 

1, chi-square model worked well in the 5 cM region for chromosome 2 and a high level of 

interference was detected. On chromosome 3, no or low crossover interference was found (Table 
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2.3). Out of seven LKGs, four were determined as no crossover interference, two were in low 

interference, and only one LKG spanning 21 cM was fitted by high m value. Among the four 

LKGs without crossover interference, two were overlapped at regions from 103 to 107cM. The 

LKG ranging from 162 to 219 cM was explained by null model as well as the two-pathway 

model.  

No two-pathway crossover interference was detected in LKGs of chromosome 5, 6, and 7 

(Table 2.4). On chromosome 5, chi-square model fit the data with various strength of 

interference in different regions. Out of five LKGs, three showed no crossover interference and 

two were detected as strong crossover interference (15 20m  ). Regions on chromosome 6 

were demonstrated in two populations and showed moderate (m = 5) to strong (m = 20) 

crossover interference. On chromosome 7, three non-overlapped LKGs provided by three 

different populations exhibited no, moderate strong and strong crossover interference.  

On chromosome 9, LKG from population 2 displayed overall no crossover interference in 

the region of 65 to 117 cM, part of which (65 – 71 cM) showed strong crossover interference. 

LKGs from population 5 and 6 shared most of the genetic interval and were explained by two-

pathway model as well as the chi-square model. In the region (34 – 67 cM), strong interference 

was detected by two-pathway model with 17% of the crossovers to be non-interfering while low 

interference (m = 2) was detected by chi-square model. The LKG (34 – 71 cM) was detected 

with low crossover interference using both models. On chromosome 10, the LKG spanning 

12cM was detected with strong interference while the LKG ranging from 44 to 98 cM was 

detected with low interference (Table 2.4).   

  



 

38 

Table 2.3 Estimates of m and p (only in alternative model, i.e. two-path way model) on 

chromosomes 1, 2 and 3.    

        Genetic Log-likelihood    

Chromosomes Populations m̂   ˆ ap   Interval (cM) ratio test statistic p-value
b
 

Chr 1 1 0 0.000 102 - 104 
  

  
0 

    

 
2 20 0.000 55 - 59 

  

  
20 

    

  
0 0.000 253 - 255 

  

  
0 

    

 
3 8 0.000 1 - 1.5 

  

  
8 

    

  
5 0.006 167 - 247 0.001 0.97 

  
5 

    

 
4 0 0.000 1 - 59 

  

  
0 

    

 
5 0 0.000 1 - 2 

  

  
0 

    

  
17 0.000 119 - 122 

  

  
17 

    

 
6 1 0.000 169 - 247 

  

  
1 

    

       
Chr 2 6 20 0.000 107 - 113 

  

  
20 

    

       
Chr 3 2 0 0.000 103 - 107 

  

  
0 

    

  
2 0.000 162 - 188 

  

  
2 

    

 
4 20 0.000 103 - 124 

  

  
20 

    

 
5 0 0.000 103 - 107 

  

  
0 

    

  
1 0.420 162 - 219 0.213 0.64 

  
1 

    

 
6 0 0.000 162 - 167 

  

  
0 

    

  
0 0.000 218 - 219 

  

  
0 

    a
 The null model (chi-square model) doesn’t have estimates for p.  

b  p-value is shown only when parameter p has non-zero value in the alternative model.   
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Table 2.4 Estimates of m and p (only in alternative model, i.e. two-path way model) on 

chromosomes 5, 6, 7, 9 and 10.    

    
Genetic Log-likelihood 

 
Chromosomes Populations m̂  ˆ ap  Interval (cM) ratio test statistic p-value

b
 

Chr 5 2 0 0.000 11 - 13 
  

  
0 

    

  
16 0.000 121 - 125 

  

  
16 

    

 
4 0 0.000 104 - 126 

  

  
0 

    

 
6 20 0.000 81 - 107 

  

  
20 

    

  
0 0.000 160 - 172 

  

  
0 

    

       
Chr 6 4 5 0.000 99 - 133 

  

  
5 

    

 
6 20 0.000 78 - 103 

  

  
20 

    

       
Chr 7 4 13 0.000 172 - 174 

  

  
13 

    

 
5 20 0.000 35 - 52 

  

  
20 

    

 
6 0 0.000 66 - 91 

  

  
0 

    

       
Chr 9 2 0 0.000 65 - 117 

  

  
0 

    

 
4 20 0.000 65 - 71 

  

  
20 

    

 
5 20 0.174 34 - 67 0.244 0.62 

  
2 

    

 
6 1 0.346 34 - 71 0.214 0.64 

  
1 

    

       
Chr 10 1 20 0.000 50 - 62 

  

  
20 

    

 
3 1 0.369 44 - 98 0.538 0.46 

  
1 

    a
 The null model (chi-square model) doesn’t have estimates for p.  

b  p-value is shown only when parameter p has non-zero value in the alternative model.  
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 2.2.4 Discussion 

Overall, interference-alone model (chi-square model) works well for the six datasets, 

indicating single pathway exist in the covered maize linkage groups. However, the results that 13 

out of 33 observed LKGs were detected to have no crossover interference (Table 2.3 and 2.4), 

demonstrated that across the whole genome some genetic regions do not experience interference 

which conformed to the conclusions made by Falque et al. (2009). Falque et al. (2009) suggested 

the coexistence of two pathways of crossover in maize genome and identified that the crossover 

interference strength was moderate across the maize genome with strength parameter v being 

around 6 to 8 (i.e. m = v -1 is around 5 to 7) and the proportion of noninterfering crossovers had 

a range from 6 to 23%.  

We attributed the deviation of our results from Falque et al. (2009)’s work to two 

reasons. First of all, due to different data source, variations of the results were expected. The data 

used in this study was recombination data which was used to indirectly infer the distribution of 

crossover, while Falque et al. (2009) used the direct observation of late recombination nodule to 

indicate positions of crossover. The other reason may be due to the fact that most of the 

recombination data used in this study spanned small genetic intervals, i.e. we explored the 

interference in various small blocks, while Falque et al. (2009) investigated the interference 

using information from the whole chromosomes. To deal with the above issue that chromosomes 

were not fully covered by our data, we also applied a regression based method proposed by 

Housworth and Stahl (2009) to estimate parameter p on a chromosome-wide basis and found 

relatively small p estimator overall, indicating most of the crossovers are in interfering pathways 

across the genome (data not shown). Meanwhile, the results that large estimates of interference 

strength parameter m were detected in the present study conformed to the suggestion from 
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Copenhaver et al. (2002) that within the frame of interference-alone model, green plants have 

high crossover interference.    

It is noticed that the estimates of counting parameter m are detected with large variations 

in certain genetic intervals. One possible explanation may be that estimator m has large standard 

errors, which is supported by the results obtained through simulations that given true parameter, 

the estimated m could be either large or small within certain boundary (Copenhaver et al. 2002). 

The confidence intervals of interference parameters are hard to obtain analytically because we 

only explore m from 0 to 20 in the study for the ease of computation, leading to a skewed 

distribution of m. Moreover, the issue of small population sizes may also cause the problem of 

failure to obtain certain recombination events which further leads to inaccurate estimates.  

Given the estimates obtained from various linkage groups, the final estimates of m could 

be obtained by taking the weighted mean of the estimates. In detail, we would split the 

chromosome into several bins, e.g. 10, with each bin spanning certain genetic distances and the 

weight of the linkage group was thus calculated as the percent of genetic interval coverage. And 

m is calculated as
1 1

*
l l

i i i

i i

m w m w
 

  , where wi is the weight and mi is the m estimator of i
th

 

bin.  

The information obtained from the study could guide simulation of different population 

structures, such as backcross, RIL, DH and F2, etc. The gametes simulated using crossover 

interference model may better represent the true recombination patterns (Zhao et al. 1995). The 

simulated genetic populations could be further employed to construct various breeding programs, 

such as genomic selection, and marker assisted backcross, etc. Among those, application of 

crossover interference on marker assisted backcross (MABC) is promising due to the fact that 

linkage drag in MABC could be a huge problem especially when there are deleterious genes in 
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the flanking regions of the transgenic event. And one of the problems of eliminating linkage drag 

is to evaluate if there are sufficient crossovers to switch the foreign DNA out, in other words, if 

the crossover interference is high in the flanking regions then we need larger population size to 

have a crossover occur between the event and foreign DNA.  

 2.3 Investigation of distribution of genetic effects in grain crops 

 2.3.1 Introduction 

Numerous QTL mapping studies have been reported with various grain crops, e.g. rice, 

wheat, and maize, etc. in the last decades (e.g. Briggs et al. 2007; Sun et al. 2010; Wang et al. 

2010). However, very few publications have explored the distribution of QTL effects in crops. 

Typically, the infinitesimal model, which assumes an infinite number of loci of small effect, is 

invoked to explain the observed genetic variation because it can easily be incorporated into the 

statistical analysis, especially for best linear unbiased predication of breeding values (Henderson 

1984). However, there is mounting evidence that most quantitative traits are actually controlled 

by a few loci with large effects and a large number of loci with small effects (Bennewitz and 

Meuwissen 2010; Bost et al. 2001; Bost et al. 1999; Hayes and Goddard 2001). Under the latter 

hypothesis, distributions of various types have been proposed to represent genetic effects, i.e., 

negative exponential distribution (Otto and Jones 2000; Xu 2003a), gamma distribution (Hayes 

and Goddard 2001), inverse chi-squared prior distribution (Meuwissen et al. 2001), and 

geometric series (Lande and Thompson 1990). Recently, Bennewitz and Meuwissen (2010) 

applied the results from three pig F2 mapping populations evaluated for meat quality and carcass 

traits to infer the distribution of additive effects and dominance coefficients, fitting a Gaussian 

Mixture Model (GMM). The idea of utilizing GMM is based on the notion that various alleles 

fall into a number of classes with different effects (Bennewitz and Meuwissen 2010). The merit 
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of employing GMM is its flexibility with different combinations of mixtures of normals leading 

to different shapes of the distribution.  

In the finite mixture model, the number of components K is pre-specified. The value 

could be determined based on some specific information or criteria, such as Akaike information 

criterion (AIC) and Bayesian information criterion (BIC). This requirement frequently 

encountered in parametric statistics could be sidestepped by introducing a nonparametric Bayes, 

Dirichlet process, which assumes an infinite number of components. The Dirichlet process is 

defined as a random process by which a sample drawn is a random discrete distribution; it can be 

considered a ‘distribution over distributions’ and has been used widely in the field of population 

genetics to explain population structure (Gao et al. 2007; Huelsenbeck and Andolfatto 2007). 

Modeling the distribution of QTL additive and dominant effects can lead to greater 

insights into the underlying genetic characteristics of quantitative traits and assisting plant 

breeding in several areas. That is, more accurate representation of QTL effects would reduce bias 

and, in turn, lead to more reliable genetic simulation of breeding strategies. In addition, applied 

to choice of parents or selection among progeny, estimates of breeding value may be improved 

by using more realistic estimates of QTL effects for assignment of priors. For example, genomic 

selection based on Bayesian models currently assumes the variance of additive effects to be 

sampled from an inverse chi-squared prior distribution (Meuwissen et al. 2001), which was 

further thought to be influenced by the arbitrary selection of hyperparameters (Gianola 2009). In 

this study, we applied a particular case of the Dirichlet process mixture model, namely Dirichlet 

process Gaussian mixture model (DPGMM), to derive the distribution of QTL effects in various 

grain crops, specifically maize, rice and wheat. The additive QTL effects represented results 

from four different mapping studies using recombinant inbred lines (RIL) or backcross 
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populations across the three crops evaluated for yield, agronomics, morphological and 

domestication, and grain quality traits. QTL dominant coefficients represented results from a 

meta-analysis using five maize QTL mapping studies with five F2 or F3 crosses in corn evaluated 

for yield, stress tolerance, morphological, and grain/silage quality traits. Two limitations of the 

data, namely that the observed QTL effects were estimated with errors and that only statistically 

significant QTL effects were reported, were taken into account. 

 2.3.2 Materials and methods 

Data sources 

Additive QTL effects were assembled from previous QTL mapping studies performed in 

corn (Briggs et al. 2007; Messmer et al. 2009), rice (Wang et al. 2011), and wheat (Sun et al. 

2010); see Table 1 for a list of traits and number of QTL from each data set.  Composite interval 

mapping had been used to map quantitative trait loci in three out of four studies, while multiple 

interval mapping had been applied by Briggs et al. (2007). In corn, Messmer et al. (2009) had 

evaluated a recombinant inbred line (RIL) population derived from a cross between two 

subtropical white dent maize lines to map genes controlling yield components and secondary 

traits in corn, whereas Briggs et al. (2007) had utilized a maize-teosinte backcross (BC1) 

population to explore genes controlling domestication and morphological traits such as plant 

architecture, primary tassel and lateral inflorescence. A total of 57 and 59 QTL additive effects 

had been identified in the former and later experiment, referred to as corn data I and corn data II, 

respectively. Rice data had originated from a QTL study based on RILs evaluated for fourteen 

agronomic traits including grain weight, plant height, grain length (Wang et al. 2011). Out of 49 

mapped QTLs, 45 QTL additive effects were used in this study for further analysis. Wheat data 

based on 132 RILs evaluated in seven environments (Sun et al. 2010) for kernel weight, test 
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weight, kernel diameter, grain protein content, and kernel hardness index contributed 44 

significant QTL additive effects. The histograms of observed additive effects of four studies 

were shown in Figure 2.1.  

 

Figure 2.1 Histogram of observed QTL additive effects from a) corn data I, b) corn data II, c) 

rice data, and d) wheat data. The values of additive effects are in unit of phenotypic standard 

deviation.  

 

 

 

  

  

(a) 

(c) (d) 

(b) 
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Table 2.5 List of number of QTLs that were associated with traits for studying QTL additive 

effects. 

  

Data sets Traits QTL number 

Corn data I Days to anthesis 12 

 

Anthesis-to-silking interval 8 

 

Grain yield 5 

 

Kernel number 7 

 

100-kernel weight 11 

 

Plant height 14 

   Corn data II Branch number 2 

 

Cob diameter (teosinte) 4 

 

Culm diameter 1 

 

Cupules per rank 2 

 

Days to pollen 4 

 

Glume score 5 

 

Inflorescence length 2 

 

Lateral branch internode 3 

 

Lateral branch 2 

 

Lateral inflorescence branch 1 

 

Length of central spike 2 

 

Male spikelet length 3 

 

Mean lateral branch internode 2 

 

Number of barren nodes  1 

 

Number of tassel branches 5 

 

Percent staminate spikelets 3 

 

Plant height (teosinte) 6 

 

Prolificacy 2 

 

Ranks of cupules 3 

 

Tassel branching space length 5 

 

Tillering 1 

   Rice data Heading date 1 

 

Culm diameter 3 

 

Plant height 4 

 

Flag leaf length 3 

 

Flag leaf width 4 

 

Tiller angle 3 

 

Tiller number 1 

 

Panicle length 5 

 

Grain length 4 

 

Grain width 5 

 

Grain thickness 4 

 

1,000-grain weight 4 

 

Spikelet number 4 

   Wheat data Test weight 11 

 

kernel weight 9 

 

Kernel diameter 10 

 

Grain protein content 4 

 

NIR-hardness index 5 

  SKCS-hardness index 5 
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Table 2.6 List of number of QTLs that were associated with traits for studying QTL dominance 

coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, dominance coefficients which were defined as the ratio between the observed 

QTL dominance deviation and absolute value of QTL additive effects were assembled from 

maize mapping studies. The absolute value of additive QTL effects was used because the sign of 

QTL effect only indicated which parent had contributed the favorable allele, not the true 

direction of specific additive effect. Due to limited data published in individual studies, 

dominance coefficients were extracted from a meta-analysis using five maize QTL mapping 

studies with F2 or F3 populations. A total of 101 significant quantitative trait loci were assembled 

(Table 2.6), among which 1) 11 QTLs for kernel oil concentration were mapped in an F2 

Populations Traits QTL number 

Pop1 Kernel oil concentration 11 

   Pop2 Root angle 10 

 

Plant height 5 

   Pop3 in vitro dry matter digestibility  4 

 

in vitro cell wall digestibility  3 

 

Neutral detergent fibre  4 

 

Acid detergent fibre  5 

 

Water-soluble carbohydrate  2 

 

Kernel oil content  4 

 

kernel protein content 4 

 

Kernel starch content  5 

   Pop4 Stripe virus resistance 6 

   Pop5 Grain yield 3 

 

100-kernel weight 9 

 

Kernel number per ear 6 

 

Cob weight per ear 7 

 

Kernel weight per ear 3 

 

Ear weight 5 

  Ear number per plant 5 
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population (Song et al. 2004); 2) 15 QTLs for root angle and plant height were mapped in an F2 

population (Omori and Mano 2007); 3) 31 QTLs for stalk digestibility and kernel composition in 

a F3 population (Wang et al. 2010); 4) 6 QTLs for stripe disease resistance were mapped in an F2 

population (Dintinger et al. 2005); and 5) 38 QTLs for drought tolerance, yield and yield 

components were mapped in an F3 population (Xiao et al. 2005).  All five mapping studies 

shared a common parent, B73 and employed composite interval mapping to detect QTLs. 

Data processing 

 The standard error (SE) for additive QTL effects and dominance coefficients was 

measured to take into account the experimental error. If LOD scores for QTL were absent, 

standard errors were generated by taking sample standard deviation of effects from multiple 

environments. The SE of corn data II and data from (Dintinger et al. 2005) were produced in this 

way, where only those QTLs detected in at least two environments were included in the final 

dataset. For rest of the studies, SEs were derived from LOD scores as suggested by Hayes and 

Goddard (2001). Standard errors of dominance coefficients were estimated by the delta method 

suggested by Bennewitz and Meuwissen (2010), assuming no covariance between additive and 

dominance effects. In detail,  
2 2

/ / * a d
d a

SE SE
SE d a

a d

   
    

   
, where SEa and SEd were 

standard errors for additive effects a and dominance effects d, respectively.  

 Additive QTL effects were scaled by their corresponding phenotypic standard deviations 

(PSD) in order to combine data across traits. PSD were computed based on the following in 

order of priority: 1) raw data, 2) error variance and heritability, and 3) range of phenotype 

values. Phenotypic range was assumed to be 8 PSD, considering that most traits follow a normal 

distribution. Since for the data sets from which dominance effects were generated none of these 

conditions were fulfilled to obtain the PSD for additive QTL effects, the additive effects from 
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those five corn studies were not utilized in analyzing the distribution of additive QTL effects. 

Note that scaling process was not necessary for dominance coefficients, because PSD was 

canceled out in the d/a ratio.    

Due to limited power of QTL mapping studies (Churchill and Doerge 1994), many QTLs 

with near-zero effects could not be detected, causing a truncation of the additive QTL effects 

distribution. Faced with this issue, Bennewitz and Meuwissen (2010) suggested a “doubling” 

process to manage the data, given the assumption that QTL effects occur at the highest frequency 

around zero. Basically, both signs for the same QTL additive effect were created. For example, 

for i
th

 effect iy  with SE i , iy  was added to the data with the same SE. The above procedure 

ensures the mean of the distribution of additive effects is zero. The “doubling” process was not 

applied to dominance coefficients, because most loci have observed effects around zero.  

Dirichlet Process Gaussian Mixture Model (DPGMM) and priors 

We modeled the distribution of additive QTL effects and dominance coefficients using 

mixtures of normal distributions, namely GMM (Rasmussen 2000). The goal was to assign 

genetic effects to different mixture components, based on the similarity of their values. Two 

latent variables were introduced, 1) the total number of mixture components (cluster size, K) and 

2) the assignment of i
th

 effects to components (cluster indicator,  1,...,ic K ). The GMM model 

was modified to expand the experimental error term:  

                                         2 2

1

1

| , , ~ ; , ,
K

i K k i k k i

k

p y N y     


                               [1] 

where iy  was the thi observed QTL effect, i was the known standard error of thi effect, and 

 2, ,k k k k    was the k
th

 parameter set, where variables k , k
2and k  were the mixing 
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proportion, mean and variance of the k
th

 mixture component, respectively. The GMM could be 

formulated hierarchically as follows: 

                                       

   
 

 
 

2 2

1: 1 2

2

0

1 2

| ,   ~  ; ,

        |   ~  , ,

     ,   ~  

, ,   ~  , , ,

i ii i i c c i

i K K

k k

K

p y c N y

c Discrete

G

Dirichlet K K

  

   

 

    

Λ

                             [2]
 

where 0G was a joint prior distribution for  2,k k  and mixing proportions 1:K were drawn from 

a symmetric Dirichlet distribution with  to be concentration parameter. Conditional on the 

mixing proportions, the latent indicator variables ic ’s were sampled from discrete distribution, 

specifically multinomial distribution. By integrating out mixing proportions, the prior for the ci 

in model [2] could be written as a probability conditional on ic (Neal 2000): 

   ,
| , ,

1

i k

i i

n K
p c k

n











 

 
c  

where ,i kn was the number of effects, not including iy  that were linked with class k. As K goes 

to infinity, the limits of the prior for the ci reach the following: 

 

'

,

,

'

, 0
1

| , .

,
1

i k

i i k

i i

i i

n
c k n

n
p c

i i c c
n













   

 
   
  

c                                 [3] 

As K  , the Dirichlet distribution becomes a Dirichlet process (DP) in the limit (Ferguson 

1973; Neal 2000). The infinite limit of model [2] thus could be written as a DPGMM: 

                    

 

 
 

2

2

0

             ~   | ,

,    ~   

            ~   DP , ,

i i i i

i i

y N y

G

G G

 

 

                                                    [4] 
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where  2~ ,i i iN    was a nuisance parameter, G was a random discrete distribution drawn 

from DP, and 0G was the base distribution, which specified the joint prior distribution of 

 2,i i  . Given that the regular choice of priors for the mean and variance of the Gaussian are 

Normal and Inverse Gamma distributions, respectively, conjugate joint priors  2

0 0; ,iN    *

 2

1 2; ,iIG r r were chosen in the model.  

Gibbs sampling  

            In Bayesian framework, unknown variables were sampled and updated from the 

conditional posterior distribution using Markov Chain Monte Carlo (MCMC) (Robert and 

Casella 2004). By Bayes rule, the joint posterior distribution is proportional to the product of the 

prior and likelihood. Considered the likelihood and priors in [3] and [4], the full joint posterior 

distribution was written as follows: 

     

         

2 2 2

1

2 2 2 2

0 0 1 21

, , | ; , , , ,                                                                      [5]

                     ; , ; , ; , ; , | , .

n

i i i i i i ii

n

i i i i i i i i i ii

p N y c

N y N N IG r r p c

     

         













c μ σ y

c
 

Unobservables  2, ,c μ σ were repeatedly sampled and updated from their posteriors conditional 

on all other variables. The Gibbs Sampler was implemented as follows: 

1) Initialization. Assign initial values for  2,k k  where 1k   and 1,  for 1:ic i n  .  

2) Update i : The conditional posterior distribution of i was 

     
2 2

2 2

2 2 2 2

1
| ; , ; , ; ,

1 1 1 1

i k

k i
i i i k i k i i

k i k i

y

P else N y N N



 
      

   

 
 

 
 

 
 
 

 

3) Update cluster indicators ci : The conditional posterior probabilities for ci  were: 
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       

   
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  

   
  
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

where  .  is the gamma function and  1k K . Note that constant
1

1n  
was omitted 

in both probabilities and  2

1 1,K K  
were unknown and needed to be integrated out to leave 

ci as the only state of Markov Chain. DP was represented via the Chinese Restaurant Process 

(CRP) (Aldous 1985). Effects were assigned to either currently holding cluster(s) or a new 

cluster based on the above probabilities. If a new cluster was chosen, then the cluster size 

was increased, i.e. 1K K  . In case of , 0i kn  , the k
th

 cluster was eliminated and the 

cluster indicators were decreased by one, i.e. 1K K  . 

4) Resample and update  2,k k 
 
suggested by Algorithm 2 as per Neal (2000) as follows: 
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where nk is the number of effects associated with the k
th

 mixture component.   
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5) Repeat steps 2 to 4.  

Gibbs sampler was implemented with 100,000 iterations to update conditional posterior 

distributions. The first 80,000 samples were discarded as burn-in and the rest 20,000 samples 

were used to construct joint posterior distribution. The hyper-parameters in [5] were set to be 

2

1 2 0 00.05,  1,  0.01,  0,  0.01.r r       Convergence was checked by inspection of 

negative log-likelihood plots. After burn-in period, when the Markov chain converges to the 

stationary distribution, sampled parameters were collected to form the posterior distribution. We 

employed posterior means for estimating  2ˆ ˆ,k k   and posterior modes for estimating 
îc , which 

was further used to infer ˆ
k . The Bayesian Confidence Interval (BCI) which was the counterpart 

of the confidence interval in frequentist statistics was defined as posterior probability that the 

parameter lies within the interval: 

   | | / 2,

A

B

p Y d p Y d 




  Λ Λ Λ Λ  

where is the significance level. Instead of analytically estimating the CI, the confidence 

interval for  2ˆ ˆ,k k  was numerically estimated from quartiles of posterior distribution. 

 

Simulation  

To demonstrate the performance of the proposed model, two simulations were performed. 

Simulation I was used to evaluate model performance on complete data. It was generated from 

three GMMs with respective means -1, 0 and 1 and variances of 0.360, 0.640 and 0.040, 

respectively. A total of 150 simulated data were evenly distributed (mixing proportion was 1/3) 

to the three components. Simulation II was used to evaluate model performance on a truncated 

distribution with similar shape to Figure 2.1. A truncated Gaussian mixture with two mixture 

components was simulated. Zero mean was assigned to both components. The first mixture 
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component had mixing proportion 1  and variance
2

1  
of 0.800 and 0.023, respectively; the 

second mixture component had 2 and 
2

2  of 0.200 and 0.360, respectively. Truncation points 

were arbitrarily set to ± 0.1. In both simulations, the SE i was generated from a uniform 

distribution [0, 0.01].     

 2.3.3 Results 

QTL additive effects  

The distributions of observed additive QTL effects from the various data sets varied with 

respect to the magnitude of effects and the variance of the distribution (Figure 2.1). In this study, 

we arbitarilly set 0.5σp as the threshold for QTL effects considered to be large. The positive or 

negative sign of the effects indicates which parent is contributing the favorable additive effect 

allele. In corn data I, a large number of small QTL effects were detected, with an average value 

of 0.2σp (Table 2.7a) whereas a few small QTL effects plus some large effects were detected in 

corn data II with the mean of 0.4σp (Table 2.7a). In contrast with corn, no effects around zero 

were detected in rice and wheat data (Figure 2.1c, d), with means of 0.45σp and 0.3σp, 

respectively (Table 2.7a). Note that above means were calculated from the absolute QTL 

additive effects as only the magnitude of effects (not parent of origin) was emphasized. 

DPGMM fitted normal distributions to the additive effects. The number of mixture 

components was inferred by the mode of posterior distribution with regard to cluster indicator ci. 

The histogram of cluster sizes of four datasets clearly suggested fitting all data into one cluster 

(Figure 2.2). For each of the four data sets, the fitted distribution was overlaid on the histogram 

of “doubled” data (Figure 2.3). All distributions have zero mean; variances differed (Table 2.7b). 

The lowest and highest variances came from distribution of corn data I (0.044, with 95% BCI of 

0.034 to 0.059) and rice data (0.220, with 95% BCI of 0.163 to 0.297), respectively.  
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QTL dominance coefficients 

Observed dominance coefficients obtained from meta-analysis of 5 mapping studies 

varied from lower than -2.0 to over 2.0 (Figure 2.4), suggesting that all classes of dominance 

were represented among the traits measured. Around 50% of the QTLs (50 out of 101) displayed 

d/a ratio in the range of -0.5 to 0.5, indicating partial recessivity, additivity, and partial 

dominance gene action. Approximately 25% of the QTLs exhibited either partial dominant or 

dominant gene action (0.5 < d/a < 1.25) or partial recessive or recessive gene action (-1.25 < d/a 

< -0.5). Furthermore, 25% of the QTLs exhibited apparent overdominance (> 1.25) or 

underdominance (< -1.25) gene action. The extreme cases depicted expression of overdominance 

(d/a >2) in grain yield and yield components among progeny from the cross between X178 and 

B73 (15 out of 16 QTLs) and expression of underdominance (d/a <2) in kernel protein content 

among progeny derived from the cross between Ce03005 and B73.     

 Dominance coefficients were fitted with the normal distribution using DPGMM. 

Parameters for the distribution (i.e. number of clusters (K), mean    and variance  2 ) were 

estimated through Gibbs sampling (Figure 2.5a). Setting 80,000 Markov Chain Monte Carlo 

(MCMC) iterations as burn-in period, we employed the remaining 20,000 steps as the samples of 

the posterior distribution. The mode of posterior distribution with regard to K is one, suggesting 

that all data could be fitted to a single component (Figure 2.5b shows the estimated distribution 

overlaid on the density plot of observed data). The estimated distribution mean was 0.152 with 

95% BCI of 0.055 to 0.237, with variance 0.329 with 95% Bayesian confidence interval to be 

0.193 to 0.542.     
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Figure 2.2 Histogram of the cluster sizes in four data sets: a) corn data I; b) corn data II; c) rice 

data; and d) wheat data. 

 

 

  

(a) 

(c) (d) 

(b) 
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Table 2.7 a) The mean of the absolute values of the observed QTL additive effects and fitted 

normal distribution; b) Estimates and Bayesian confidence interval for parameters in distribution 

of additive effects. Values are in unit of phenotypic standard deviation. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Simulation  

To further verify the accuracy of estimated parameters in fitting the distribution of QTL 

additive effects and dominance coefficients using DPGMM, two simulations were performed. In 

Simulation I, three components with means -1, 0, and 1, and variances of 0.360, 0.640, and 

0.040, respectively, result in a histogram of genetic effects from which it is difficult to infer the 

number of mixture components visually (Figure 2.6a). Simulation II based on a truncated 

mixture normal featuring two mixture components with both with mean zero and variances of 

0.023 and 0.360, respectively, produced the histogram displayed in Figure 2.6b. Data points with 

values from -0.1 to 0.1 had been removed to emulate the scenario in Figure 2.1.  

Data sets Observed mean Fitted mean  

Corn I 0.2 0.167 

 

 
 

Corn II 0.4 0.306 

 

 
 

Rice 0.45 0.374 

 

 
 

Wheat 0.3 0.247 

Data sets Parameters 
Posterior 

mean 

Bayesian confidence 

interval 

2.50% 97.50% 

Corn I 
2

1̂  0.044 0.034 0.059 

     Corn II 
2

1̂  0.147 0.110 0.194 

     Rice 
2

1̂  0.220 0.163 0.297 

  
   

Wheat 
2

1̂  0.096 0.071 0.130 

(a) 

(b) 
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In Simulation I, DPGMM clearly fitted the data to three clusters with estimated values 

close to true values (Table 2.8a). DPGMM predicted accurately the mean and variance of 

Clusters 1 and 3, although miss assignments of cluster membership were observed. In contrast, 

the mixing proportion of Cluster 2 was estimated precisely; however, certain deviations from the 

true mean and variance were observed. In Simulation II, all parameters were estimated 

accurately, except for the variance of Cluster 1, which was estimated at 0.251 versus the true 

value of 0.023 (Table 2.8b).  

 

Figure 2.3 Fitted normal distribution to the QTL additive effects in a) corn data I; b) corn data II; 

c) rice data; and d) wheat data. Values are in unit of phenotypic standard deviation.  

 

(a) 

(c) (d) 

(b) 



 

59 

 2.3.4 Discussion 

Evidence from QTL studies in livestock has favored the leptokurtic distribution of QTL 

effects with many loci of small effects and few loci of large effects (Bennewitz and Meuwissen 

2010; Bost et al. 2001; Bost et al. 1999; Hayes and Goddard 2001). In plants, Edwards et al. 

(1987) found an L-shaped distribution of QTL effects in maize for 25 traits comprising yield and 

domestication traits. 

Based on previous results, we anticipated two mixture components to best fit additive 

QTL effects, one component with high mixing proportion and small variance to represent a large 

number of small effects and the other component having relatively large variance and low 

mixing proportion to represent a small number of large effects. However, only one component 

was fitted to all four data sets, which might be caused by two reasons. First of all, the distribution 

of additive QTL effects in corn comes from specific classes of traits: yield-related traits were 

included in corn data I and domestication traits were included in corn data II. The variance of the 

fitted distribution with corn data I is as small as 0.044 while the variance with corn data II is 

three times larger, suggesting differences in genetic architecture between these two data sets. The 

other reason might be from the problem of truncated data. The absence of near-zero effects in 

corn data II, rice data, and wheat data significantly reduced the ability to represent all the small 

effects in these distributions, creating a gap between the fitted distributions and the observed 

density plots, especially for values around zero (Figure 2.3). The above phenomenon is further 

reflected by the lower mean of the fitted normal distribution compared to the distribution of 

observed additive QTL effects in all four data sets; corn data I which retained many near-zero 

effects showed the least (Table 2.7a).  
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Table 2.8 True vs. estimated (hat) parameters in a) simulation I and b) simulation II. is the 

mixing proportion in the k
th

 cluster, and are the mean and variance of k
th

 mixture 

component, respectively. 

a) 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

Our results for distribution of dominance coefficients are in accordance with two 

previous reports in maize (Edwards et al. 1987; Stuber et al. 1987). The gene action profile found 

in this study has high similarity to the one found by Edwards et al. (1987). For example, both 

studies found roughly 50% of the investigated QTLs were additive or partially dominant, leading 

to a high density of dominance coefficients around zero (Figure 2.5b). This result also suggests 

k
2 and k k 

 Cluster1 Cluster2 Cluster3 

k  0.333 0.333 0.333 

ˆ
k  0.487 0.367 0.147 

    

k  1.000 0.000 -1.000 

ˆ
k  0.841 -0.673 -1.041 

    

2

k  0.360 0.640 0.040 

2ˆ
k  0.312 0.303 0.012 

 Cluster1 Cluster2 

k  0.800 0.200 

ˆ
k  0.912 0.089 

   

2

k  0.023 0.360 

2ˆ
k  0.251 0.382 
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that the distribution of dominance coefficients more accurately reflects the true distribution 

because during QTL mapping, any significant effect, either additive or dominant, would result in 

a QTL to be retained in the model, which theoretically doubled the size of small valued data. 

Because of high frequency of small effects, a normal distribution with a positive mean fit the 

data smoothly. Kacser and Burns (1981) also concluded that dominance coefficients tend to have 

positive direction. Meanwhile, the majority of the overdominance effects were associated with 

grain yield, not surprisingly since this trait reflects heterosis that has been exploited during 

selection (Stuber et al. 1987). Furthermore, Edwards et al. (1987) interpreted overdominance as 

an over-estimation of the d/a ratio caused by linkage of more than one QTL to a marker locus, 

with each QTL expressing partial dominance.  

 

Figure 2.4 Histogram of observed dominance coefficients from meta-analysis using five mapping 

studies. 
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Figure 2.5 (a) Estimation of cluster size. (b) Fitted normal distribution to the dominance 

coefficient. The estimated mean was 0.152 with 95% Bayesian confidence interval to be 0.055 

and 0.237. The estimated variance was 0.329 with 95% Bayesian confidence interval to be 0.193 

and 0.542.    

 

 (a) 

 

 (b) 
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The distribution of dominance coefficients was derived from a meta-analysis across five 

QTL mapping studies. Therefore, the Beavis effect (Beavis 1998) which was defined as the 

tendency to overestimate QTL effects might be raised as an issue during meta-analysis. Otto and 

Jones (2000) suggested that given the small population size for each QTL mapping study, the 

number of loci was estimated downward while the QTL effects would be estimated upward. 

Later, Xu (2003b) investigated the statistical side of the Beavis effect and derived a formula to 

correct it for meta-analysis, mainly to guard against repeated reporting of the same QTL across 

experiments. However, the solution only works when the sample size is sufficiently large 

enough.  Secondly, there was not a great deal of overlap among populations for traits analyzed 

(Table 2.6). Moreover, compared to the dominance coefficients obtained from Edwards et al. 

(1987) who adopted data from single population, a similar pattern of distribution was observed. 

Therefore, we think the Beavis effect does not hugely impact our results in this study and no 

correction is needed for the data.  

In this study, we employed a new model, namely DPGMM, to investigate the distribution 

of QTL additive effects and dominance coefficients in the form of mixtures of normals. 

Although similar to the fitting of a mixtures of normals using a modified EM algorithm 

(Bennewitz and Meuwissen (2010), this approach differed primarily in the way of dealing with 

cluster size (K). With use of a finite mixture model and certain clustering algorithms like the EM 

algorithm, the number of components needs to be preset and later decided under certain 

circumstances, or selected by some measure, e.g. Akaike information criterion (AIC) and 

Bayesian information criterion (BIC). The optimum cluster size (K) will strike a balance between 

maximum data compression (assigning all data to one component) and maximum accuracy 

(allowing the number of clusters equal sample size). By employing the Dirichlet process, which 
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assumes infinite number of mixture components, model selection issue was avoided. In the 

present study, the Dirichlet process was represented via the Chinese Restaurant Process (CRP) 

(Aldous 1985). Using the CRP, a data point was assigned either to a currently occupied mixture 

component with probability proportional to the number of data already held in that cluster, or to 

a new cluster with probability proportional to the concentration parameter. By the same token, in 

each iteration of Gibbs sampling , the cluster indicators were also updated along with parameters 

like the mean and variance. As such, DPGMM fits the data distribution and explores the 

potential number of mixture components simultaneously.   

Model performance on complete and truncated data was also illustrated. Given a 

complete set of data, DPGMM could clearly assign membership to  respective clusters with 

small prediction errors (Figure 2.6a, Table 2.8). In the case of truncated data, DPGMM was still 

effective in predicting the correct number of mixture components and estimating the variance of 

components with greater variability; however, DPGMM was less effective in estimating variance 

of components with small differences among cluster members. As shown in Table 2.8, the 

deviation of estimated variance (0.251) from true value (0.023) was somewhat large and might 

be attributed to the loss of small valued data in the sample. The above result is in accord with the 

conclusion that small effects would be missed easily with a mixture model (Bennewitz and 

Meuwissen 2010).  

In short, we fitted the distribution of QTL additive effects and dominance coefficients 

using DPGMM which simultaneously predicted the number of mixture components and 

estimated the parameters. The result that the distribution of dominance coefficients was fitted to 

a normal distribution with a positive mean conformed to previous studies. Four separate normal 

distributions were derived for the QTL additive effects of four data sets. These results might be 



 

65 

interpreted with caution since the predicative ability of the model may have been impacted by 

the censored samples of identified QTL. Censorship can be reduced through use of larger 

population sizes, denser marker sets, more precise experimental designs in the collection of 

phenotypic data in the identification of QTL impacting expression of traits of interest (Beavis 

1998; Xu 2003b). For example, by applying certain high resolution mapping methods, such as 

genome wide association mapping using high density SNP markers, a greater number near-zero 

sized genetic effects could be tracked (Yu et al. 2006). Furthermore, it would also be helpful to 

investigate the distribution of QTL effects on a trait-by-trait basis rather than group QTLs across 

traits as was done here.   

The distributions of QTL additive and dominance effects highlighted through this study 

shed further light on the genetic architecture of important traits of interest. These results could be 

used to update the genome model used in genetic simulation for more accurate representation of  

QTL effects for important traits of interest (Sun et al. 2011). This would allow breeding 

strategies to be compared with greater precision and thus provide more value through genetic 

simulation; breeding decisions based on the simulation could be made with more confidence.  In 

addition, results could aid in estimating the number of loci (or genetic factors) controlling the 

target trait (Zeng 1992), and serve as prior knowledge for calculation of genomic-based estimates 

of breeding value (Meuwissen et al. 2001).  
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Figure 2.6 Histograms of simulated effects from Gaussian mixtures with (a) (n=150) three 

components having mean of -1, 0 and 1, and variance of 0.36, 0.64 and 0.04, respectively; and 

(b) (n=300) two components having zero means and variance of 0.025 and 0.36, respectively. 

The mixing proportions were set to 1/3 for all three components in (a) and 0.8 and 0.2, 

respectively in (b). Distribution in (b) is truncated at points -0.1 and 0.1.  
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Chapter 3 - Genomics-based prediction of performance of 

quantitative traits involving epistasis using a nonparametric method 

 3.1 Introduction 

The estimation of breeding values to facilitate choice of parents is a central problem in 

plant breeding. Fernando and Grossman (1989) first demonstrated the utility of molecular marker 

data to estimate breeding values in livestock species. These were data involving very few 

markers. Due to increasingly developed genotyping and sequencing technologies, densely spaced 

genome-wide SNP (single nucleotide polymorphism) data, involving tens or hundreds of 

thousands of markers, are now available for a number of crops.  The genome-wide markers can 

be used as ‘predictors’ to achieve high accuracy in estimating breeding values.  However, 

problems like high dimensionality and multicollinearity emerge when the number of predictors is 

very large and exceeds the number of records. Therefore, statistical methods to effectively 

address those issues are urgently needed.  

Meuwissen et al. (2001) proposed a procedure called Genomic Selection (GS), which 

uses genome-wide markers to estimate breeding value. By regressing phenotypes on genome-

wide markers via linear regression, this method can model high-dimensional predictors. Then, a 

shrinkage method can be applied to effectively ‘shrink’ the effect of multicollinearity and to 

provide stable parameter estimates (Gruber 1998). Utilizing the two techniques, this approach 

can generate information about genomic regions that may affect the trait of interest.  Since then, 

several other shrinkage methods have been developed to estimate breeding values (de los 

Campos et al. 2009; Xu 2003a). These methods are primarily based on linear models, which is 

easy to interpret and able to fit to the data without overfitting. However, the relationship between 

breeding value and genetic markers is likely to be more complex than a simple linear 
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relationship, in particular when accounting for epistasis which can be an important source of 

genetic variation (Dudley and Johnson 2009). Furthermore, strong genetic assumptions are 

needed to statistically decompose epistatic variance in those linear models (Cockerham 1954), 

and the fact that biological basis of epistasis is not well understood makes accommodation for it 

in the genetic model even more difficult. To address these issues, model-free or so-called 

nonparametric methods which side-step linearity and require fewer genetic assumptions have 

gained more and more attention (Gianola et al. 2006; Gianola and van Kaam 2008; Gonzalez-

Recio et al. 2008). 

Gianola et al. (2006) and Gianola and van Kaam (2008) first proposed reproducing kernel 

Hilbert spaces (RKHS) regression for estimating breeding values with genomic data and 

capturing epistatic interactions. The key idea of the RKHS methods is to replace the original 

marker values with nonlinear transformed markers through so-called ‘basis functions’. After 

transformation, a new space of predictors is formed and can be used in regression. In 

reproducing kernel Hilbert spaces, the base functions are reproducing kernels, which vary 

according to different inner products defined in the RKHS. Gianola and van Kaam (2008) 

proposed using Gaussian kernel suggested by Mallick et al. (2005) as a reproducing kernel. 

Besides RKHS methods, Bennewitz et al. (2009) also explored the use of a kernel method which 

originated from Nadaraya-Watson kernel regression (Nadaraya 1964; Watson 1964) to estimate 

breeding values. However, the kernel methods incur substantial bias when applied to high 

dimensional regression with interactions (Fan 1996).  

With tens of thousands of markers in the model, the fitting of RKHS models is 

computationally expensive, even infeasible. The resulting algorithm is unstable and error-prone. 

One solution is to bring down the dimensionality of predictors through usage of a dimension 
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reduction method such as principal component analysis (Macciotta et al. 2010). Alternatively, 

one can increase prediction accuracy by filtering out ‘noisy’ markers. For the latter, Macciotta et 

al. (2009) and Schulz-Streeck et al. (2011) assigned a p-value to each marker through univariate 

linear regression and used an empirical threshold to remove markers without strong signal. And 

Long et al. (2007) used two steps called “filter” and “wrapper” to select SNPs. Supervised 

principal component analysis (SPCA) (Bair et al. 2006) offers both dimension reduction and 

background noise reduction and is a good choice to supplement RKHS regression.  

In this study, we for the first time combine SPCA and RKHS regression to develop a 

two-step method (pRKHS) to estimate breeding value and predict performance. In step one, we 

preselect genetic markers highly correlated with the phenotype, and perform principal 

component analysis on the reduced marker subset. In step two, we use significant principal 

components as predictors in a smoothing spline ANOVA model to conduct the RKHS 

regression. Smoothing spline ANOVA in RKHS (Gu 2002; Wahba 1990), categorized as 

functional data analysis, was developed to account for nonlinear and nonadditive features in 

predictors. The model is fitted using a penalized least squares method, where goodness-of-fit is 

measured by the least squares and model complexity is dictated by a penalty. The trade-off 

between goodness-of-fit and model complexity is controlled by smoothing parameters, which are 

selected by data-driven generalized cross-validation (GCV).  The pRKHS method is developed 

in two versions: pRKHS-NE, which accounts for only additive effects, and pRKHS-E, which 

includes additive-by-additive interaction effects as well as additive effects in the model. The 

pRKHS versions are evaluated for predictive ability in simulated genetic scenarios and 

confirmed in real life scenarios for utility using actual data from corn and barley. The pRKHS 
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versions are also compared in performance with shrinkage methods that use all markers genome-

wide, specifically RR-BLUP, BayesA, and BayesB (Meuwissen et al. 2001). 

 3.2 Materials and methods 

Simulation  

The breeding scheme for maize line development outlined by (Bernardo and Yu 2007) 

was used in the simulation of a number of plant breeding scenarios. Specifically, two unrelated 

inbreds were crossed to produce an F1 population, from which N doubled haploid (DH) lines 

(Cycle 0) were generated and crossed to a common tester. Testcross performance data and 

genotypes of Cycle 0 lines were used to train the model. Based on Cycle 0 testcross phenotypes, 

Nsel lines were selected to randomly mate for two generations to produce N Cycle 1 lines. 

Genotypes of Cycle 1 lines were used to estimate testcross phenotypes using fitted model. The 

marker data were coded as zij = 1, if jth marker locus in ith individual was homozygous for 

marker allele from parental Inbred 1, and zij = -1 if homozygous for marker allele from parental 

Inbred 2. N and Nsel values were set as 144 and 8, respectively, according to Bernardo and Yu 

(2007).  

The genome model for simulation was constructed according to the published maize 

ISU–IBM genetic map, with a total of 1788 cM (Fu et al. 2006), with recombination computed 

using the Kosambi map function (Kosambi 1944). One hundred QTLs were randomly positioned 

across the genome. Markers were evenly spaced on the chromosome at 1cM interval. Both QTLs 

and markers were assumed to be bi-allelic. The genotypic value for ith individual was calculated 

according to (Cockerham 1954)  

1

L

i k ik kl il ik

k k l

G a u u u
 

    . 
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Design element ku is defined according to the general two-allele model (G2A, (Zeng et al. 2005) 

as   

2(1 ) th QTL genotype is QQ

1 2   th QTL genotype is Qq

2     th QTL genotype is qq

k

p k

u p k

p k




 
 

, 

where p is the allele frequency of Q. Parameter ka is kth QTL’s additive effect and kl is the 

epistatic interaction effect between kth and lth QTL. In this case, kl indicates additive by 

additive interaction. Furthermore, ka was sampled from geometric series 
1

1

k
L

L

 
 

 
 (Bernardo and 

Yu 2007; Lande and Thompson 1990), where L equals the total number of QTL positioned 

throughout the genome. The direction of effect was randomly assigned to each QTL, leading to 

random coupling and repulsion linkages. Epistatic effect kl was sampled from gamma 

distribution  

 ~ 0.2,10kl x PGamma    and 
1

0

x P

x P


  


 , 

where δ is the indicator function. The extent of epistasis was specified by assigning the 

proportion (P) of total epistatic interactions with nonzero effect. Three levels of epistasis were 

considered: P = 0, 0.1 and 0.5, representing no, low, and high epistasis, respectively. The G2A 

model (Zeng et al. 2005) was chosen to model QTL due to its orthogonal property, which links 

genetic variance partition directly to genetic effect partition. The genetic variance was therefore 

calculated from the sample variance of genotypic values. Random nongenetic effects were added 

to the genotypic values to generate phenotypic values in proportion to the heritability (i.e. four 

heritability levels were considered: 0.1, 0.2, 0.4 and 0.8). 
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Real data  

To evaluate the predictive ability under real life scenarios, data reported by Crossa et al. 

(2010) on 284 maize lines genotyped with 1148 SNPs and phenotyped for anthesis-silking 

interval (ASI) were utilized.  In addition, two barley datasets generated from North Dakota State 

two-rowed (N2) breeding program, with trial name of Expt41_2007_Langdon and 

Expt41_2008_Langdon, respectively, from The Hordeum Toolbox 

(http://wheat.pw.usda.gov/tht/) were utilized. Only entries with phenotypic observations for both 

grain yield and plant height from the same location were used to avoid confounding genotype 

with environment. Each trial contained a different set of 96 lines for a total of 192 unique lines 

across the two years. There were 2161 SNPs for the 2007 dataset and 2029 SNPs for the 2008 

dataset, among which 1875 markers were shared between two years.  

After filtering out markers with minor allele frequency (i.e. smaller than 0.05), 1148 and 

1642 SNPs were retained for maize and barley data, respectively. SNPs were bi-allelic and the 

dummy variable for marker data is defined as zij = 1 for A1A1, zij = 0 for A1A2 and zij = -1 for 

A2A2. For SNP data from BarleyCAP, genotypes ‘1:1’, ‘2:2’, and ‘1:2’ were considered as A1A1, 

A2A2, and A1A2, respectively. Although the type of marker data is discrete, it is treated as 

continuous vector of covariates. Missing markers were imputed by averaging marker scores 

across all lines of that marker. Missing phenotypes were imputed using k-nearest-neighbor 

(KNN) algorithm.  

Statistical methods  

Features from SPCA and RKHS regression were combined to develop the new method, 

pRKHS. First, SPCA was applied to reduce the high dimensionality represented by the markers 

and to decrease ‘noise’. Steps to apply SPCA included: 

a) Computing the regression coefficient for each marker on a single marker basis,  

http://wheat.pw.usda.gov/tht/
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b) Ranking markers by the absolute value of their regression coefficients and selecting a 

defined number of the top ranked markers to form a marker subset (MS) with which 

to construct the reduced data matrix,  

c) Performing principal component analysis using the reduced data matrix to generate 

resulting PCs, referred to as supervised principal components (SPCs).  

SPCs explaining 70% of the data matrix variance were then selected as independent 

variables to fit a smoothing spline ANOVA model in reproducing kernel Hilbert spaces (Gu 

2002). Two versions of the new method (pRKHS-NE and pRKHS-E) were proposed to account 

for various levels of epistasis.  

1) pRKHS-NE: All selected SPCs were included in the model as main effects. No 

interactions were included. 

2) pRKHS-E: Main effects and two-way, additive-by-additive interactions were 

included in the model, specifying the level of epistasis. For example, when epistasis 

was specified as 0.1, then 10% of the epistasis interaction effects were considered to 

be nonzero. To prevent high dimensionality, each variable and their pair-wise 

interactions were tested for significance and selected using non-parametric model 

diagnostics tools, i.e. cosine value (CoV) (Gu 2002), which corresponds to F-statistics 

in a parametric regression model i.e. a high CoV corresponds to a high level of 

statistical significance. Main effects with CoV larger than 0.05 were retained in the 

model. To determine the tolerance for various different levels of epistatic interactions, 

a series of CoV i.e. 0.3, 0.25 and 0.2 were considered. 

We modeled the phenotype and SPCs using a general nonparametric model on domain  

= [0, 1], which can be written as  
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( )i i iY   x , 

where Yi is the phenotype of ith individual,  (1) (2) ( ), ..., K

i i i ix x x x  is the vector of k SPCs  

(1) (2) ( ), ..., K

i i ix x x of ith individual, and  2~ 0,i N   is error term for ith individual. Analogous to 

classical ANOVA in linear models, a functional ANOVA decomposition could be written as, 

   ( ) ( ) ( )

0

1 1 1

( ) , all higher order of interactions
K K K

j j m

j jm

j j m j

x x x   
   

     x , 

where 0  is constant, 'sj
 
are the main effects, and 'sjm

 
are the two-way interactions with 

 ( ) ( ),j mx x on product domain  ×  = [0, 1]
2
. Each j  was estimated in a RKHS j , and each 

jm  was estimated in the tensor product RKHS jm j m  , and so on (Gu 2002). Let 

( , ) jf g  be the inner product in j , ( , ) jmf g be the inner product in jm , and so on. ( ) x was 

thus estimated by a penalized least squares in the RKHS

1 2 12 ( 1)... ... ...K K K        , 

                                                    
2

1

1
( )

n

i i

i

Y
n

  


  x ,                                              (1) 

where   1 1 1 1

1 1 12 12 ( 1) ( 1)( , ) ... ( , ) ( , ) ... ( , ) ...K K K K K Kf f f f f f f f f      

        , and s are 

the inter-space inner product rescaling parameters, and λ is a smoothing parameter. The first term 

 
2

1

( )
n

i i

i

Y 


 x  measures the goodness-of-fit, the second term    penalizes for smoothness 

of the η, and the smoothing parameter   strikes the balance between the goodness-of-fit and 

smoothness of the η. The subspaces s  
form two large subspaces, 1)   : 0n  , 

which is the null space of   , and 2) , with the reproducing kernel ( , )R   . 
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The minimizer of (1) has expression  

                                                  
1 1

( ) ( ) ( , )
m n

v v j j

v j

x d x c R x x 
 

   ,                                           (2) 

where 1, , m  is the basis of null space and coefficients vd and jc need to be estimated 

from data. 

In the pRKHS-NE version, we consider 1 2 ... K    , and in the pRKHS-E 

version, we consider 1 2 12 ( 1)... ...K K K       . In the computation, any 

continuous SPC ( )jx is scaled onto [0, 1] and choose j to be

1
2

'' ( )

0

: ( )j

j j j x dx 
  

     
  

 . 

When endowed with a certain inner product, j has the reproducing kernel (RK): 

0 11 ( , ) ( , )R s t R s t  , 

where 0 1 1( , ) ( ) ( )R s t k s k t and 
1 2 2 4( , ) ( ) ( ) ( )R s t k s k t k s t   , with  1 0.5k t t  ,

   21 1
2 12 12

( )k t k t  , and       
2
14 71

4 124 2 240

k t
k t k t   . The RK for jm  is  

  0 1 0 11 ( , ) ( , ) 1 ( , ) ( , )R s t R s t R s t R s t    . 

A refined leave-one-out cross-validation procedure called generalized cross-validation (GCV) 

was used to choose values for λ and s (Gu 2002).  

pRKHS-E and pRKHS-NE were compared to three shrinkage methods: RR-BLUP, 

BayesA and BayesB (Meuwissen et al. 2001). The general model was written as   y l Xβ ε , 

where l  is a vector filled with ones, X is marker data matrix,  is the fixed grand mean, β is the 

vector of marker effects, and ε is the vector of random residuals. A Gaussian prior was assigned 

toβ  andε , with  2~ 0,N β I  and  2~ 0, eN ε I . RR-BLUP was implemented in a Bayesian 
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frame and assigns common variance to all marker effects, whereas BayesA and BayesB assigns 

different variances to different markers. BayesB was modified in this study to include π, the 

proportion of markers having no genetic variances, as another parameter in the model and assign 

it a uniform [0,1] prior instead of arbitrary setting (Habier et al. 2011). Variances 
2

e  and 2

  

were assigned a scaled inverse chi-square distribution with scale 2S and degree of freedom v .  

Data analysis 

The smoothing spline ANOVA model in pRKHS-E and pRKHS-NE was fitted using the 

ssanova function in “gss” package available in R (R Development Core Team 2011). 

Smoothness parameter λ, which balances the goodness-of-fit of data and smoothness of the 

curve, was selected by GCV. RR-BLUP, BayesA and BayesB were coded using C++, among 

which 2S  = 4.23, v = 0.05 and
2

eS  =1, ev  = 1. Gibbs sampler was implemented with 3 chains and 

10,000 iterations for each chain to update conditional posterior distributions. The first 1,000 

samples of each chain were discarded as burn-in and later thinned by 10. Convergence was 

checked by inspection of trace plots and Gelman-Rubin plots of error variance using “coda” 

package in R (Plummer et al. 2006). Samples from three chains were combined to estimate 

posterior means. All analyses were run on an Ubuntu Server with 2.8 GHz CPU and 16GB 

memory. 

In simulation scenarios, ten-fold CV in Cycle 0 (C0) was used to determine the best MS 

and CoV for pRKHS-E(NE). Pearson correlation coefficients between estimated breeding value 

(EBV) and true breeding value (TBV) (rEBV:TBV), and between EBV and phenotype (PHE) (rEBV:PHE) 

were calculated and averaged across five replicated simulations.  

Since TBV will never be observed in real cases, the criterion to select MS and CoV was 

based on rEBV:PHE rather than rEBV:TBV. Given the highest rEBV:PHE in C0, optimum MS and CoV were 
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determined and used to estimate breeding values and phenotypes in Cycle 1 (C1). Across a series 

of MS (i.e. from 500 to all markers), percent of variation and number of influential markers 

whose loadings > 0.8*the maximum loading were extracted from top three SPCs, and number of 

SPC interactions with CoV being 0.2, 0.25 and 0.3 were also recorded.  

 In real data applications, predicted maize ASI values were based on five-fold CV since 

only one set of data was available. With barley, rEBV:PHE was computed to measure predictive 

ability.  Expt41_2007_Langdon barley data were used for ten-fold CV to select the optimum MS 

and CoV for pRKHS-E(NE), which were further used to predict phenotypes of trial 

Expt41_2008_Langdon. Since the population size in barley was small, i.e. 96 per year, model 

fitting was repeated five times and results were reported as a mean of five. The R code for 

computing pRKHS EBVs and correlations with phenotype using the two barley datasets 

generated by North Dakota State barley breeding program (Expt41_2007_Langdon and 

Expt41_2008_Langdon accessed through The Hordeum Toolbox http://wheat.pw.usda.gov/tht/) 

is provided in the supplemental materials (LINK). 

 3.3 Results 

Simulation results 

Twelve different scenarios were considered in this study to facilitate comparison of 

methods given various levels of heritability and epistasis (Table 3.1, 3.2, and 3.3). Pearson 

correlation coefficients for EBV: PHE (rEBV:PHE) and for EBV: TBV (rEBV:TBV) were calculated and 

displayed in Tables 3.1, 3.2 and 3.3. Both ten-fold CV in C0 and prediction in C1 were used to 

assess the predictability of the statistical methods.  

For scenarios with no epistasis, BayesB generally outperformed other methods in 

predictive ability (Table 3.1). BayesB provided the highest correlation between EBV and TBV in 

http://wheat.pw.usda.gov/tht/
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most cases, except in C0 case at h
2
=0.1, where pRKHS-NE outperformed BayesB. The values of 

rEBV:TBV for pRKHS-NE were always higher than those for pRKHS-E across both C0 and C1, in 

keeping with the scenario of no epistasis. The pRKHS method provided higher correlations 

between EBV and PHE than BayesB in four out of eight cases. Among the four cases, pRKHS-E 

provided the highest correlation between EBV and PHE when heritability was low to moderate 

(h
2
 = 0.1, 0.2, and 0.4) in C0 cases, whereas pRKHS-NE outperformed BayesB only when h

2
 = 

0.2 in C1 cases. In no instances, did RR-BLUP or BayesA provide the highest correlations for 

TBV or PHE. 

For scenarios with epistasis at a low level, the pRKHS method outperformed other 

methods in predictive ability; particularly in predicting PHE, the pRKHS method provided the 

highest correlation in all eight cases of C0 and C1 (Table 3.2). The values of pRKHS-E for 

rEBV:TBV were generally higher than those for RKHS-NE, but only marginally. The pRKHS method 

provided highest values for rEBV:TBV in five out of eight cases of C0 and C1, with BayesB 

providing the highest values in the other three cases. For the correlation with PHE, pRKHS-E 

exceeded pRKHS-NE in three out of four C0 cases (h
2
 = 0.1, 0.2, and 0.4) and performed equally 

to pRKHS-NE in C1 cases. In no instances did RR-BLUP or BayesA provide the highest 

correlations for either TBV or PHE. 

For scenarios with high epistasis, the pRKHS method, particularly pRKHS-E, 

outperformed other methods in predictive ability (Table 3.3). pRKHS-E provided the highest 

correlations for both TBV and PHE in all cases of C0 and C1 across all heritabilities. Among 

four C0 cases, the magnitude of the values of rEBV:TBV of BayesB had decreased the most from the 

corresponding value in low epistasis scenario at low heritabilities (h
2
 =0.1 and 0.2) and pRKHS-

NE and BayesA experienced the most loss of accuracy at heritability of 0.4 and 0.8, respectively. 
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Compared to the low epistasis scenarios (Table 3.2), values of rEBV:TBV for BayesB among the four 

C0 cases decreased substantially, suggesting a reduction of unbiasedness due to the increasing 

extent of epistasis.  This decrease was greatest for h
2
 of 0.1 and 0.2.  pRKHS-NE and BayesA 

also experienced substantial loss of accuracy at heritability of 0.4 and 0.8, respectively.  pRKHS-

E showed the least amount of loss in unbiasedness based on change of rEBV:TBV in all four C0 

cases.  

The advantage of marker-based selection (MBS) over phenotypic selection (PS) can be 

quantified by comparing rEBV:TBV in C1 cases to accuracy of PS, defined as the correlation between 

mid-parent and offspring and measured by taking square root of half of the narrow heritability 

(Falconer and Mackay 1996). For heritabilities of 0.1, 0.2, 0.4 and 0.8, the accuracy of PS was 

estimated as 0.224, 0.316, 0.447, and 0.632, respectively. For the scenarios with no and low 

epistasis (Table 3.1, 3.2), all methods outperformed PS at all four heritabilities, particularly at 

low heritability (h
2
 = 0.1 and 0.2). For the scenarios with high epistasis (Table 3.3), not all 

methods outperformed PS across the four heritability levels. pRKHS-E had higher performance 

than PS in three out of four cases (h
2
 = 0.1, 0.2, and 0.8), whereas pRKHS-NE, BayesB and RR-

BLUP outperformed PS only at low heritabilities (h
2
 = 0.1 and 0.2).  

Table 3.4 exhibits the range of values for the percentage of variation explained by the 

first three SPCs, the number of markers included in each of these SPCs, and the number of SPC 

interactions observed when the cosine threshold for selecting SPC interactions was >0.2, >0.25, 

and >0.3, respectively, given the series of marker subsets (from as low as 500 markers to all, i.e. 

1798 markers) used across 12 simulation scenarios. With low marker density, i.e. 500 markers 

was used, the first, second and third SPCs explained up to 18.7%, 11.8% and 9.9%, respectively, 

of the marker variations. In case of utilizing full marker information, the top three SPCs only 
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explained as low as 9.2%, 5.5% and 5.1% of the variations (Table 3.4). Averaging across all 

scenarios, the first three SPC accounted for 25.4% of the marker variation and 18 SPCs were 

needed to explain 70% of the marker variation (Figure 3.1). The number of influential markers 

included in the first three SPCs, namely MP1, MP2 and MP3, varied according to the number of 

markers used. Using all 1798 markers in simulations, the 1
st
, 2

nd
 and 3

rd
 SPCs included a 

maximum of 137, 111, and 103 influential markers, respectively; using the smallest subset of 

markers i.e. 500 markers, the 1
st
, 2

nd
, and 3

rd
 SPCs included  as few as 61, 52, and 37 influential 

markers, respectively (Table 3.4). The number of SPC interactions was determined by the MS 

and CoV. High MS or low CoV generate large number of SPC interactions.  
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Table 3.1 For scenarios with no epistasis, Pearson correlation coefficients between estimated 

breeding value and true breeding value (rEBV:TBV) or phenotype (rEBV:PHE) obtained through ten-

fold cross-validation with Cycle 0 (C0) and prediction of Cycle 1(C1), implemented for 

simulated traits with heritability of 0.1, 0.2, 0.4, 0.8, via the various statistical methods. Average 

correlations ± SE were obtained from five replicated simulations. 

 

Heritability C0 / C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE 

 h
2 
= 0.1 

C0 RR-BLUP 0.490 ± 0.049 0.176 ± 0.066 

C0 Bayes-A 0.467 ± 0.053 0.172 ± 0.093 

C0 Bayes-B 0.491 ± 0.048 0.182 ± 0.075 

C0 pRKHS-E 0.436 ± 0.053 0.233 ± 0.055 

C0 pRKHS-NE 0.494 ± 0.034 0.216 ± 0.106 

C1 RR-BLUP 0.528 ± 0.036 0.199 ± 0.030 

C1 Bayes-A 0.506 ± 0.055 0.196 ± 0.023 

C1 Bayes-B 0.537 ± 0.037 0.206 ± 0.031 

C1 pRKHS-E 0.417 ± 0.119 0.157 ± 0.050 

C1 pRKHS-NE 0.497 ± 0.074 0.191 ± 0.009 

     

h
2 
= 0.2 

C0 RR-BLUP 0.492 ± 0.126 0.260 ± 0.072 

C0 Bayes-A 0.488 ± 0.102 0.255 ± 0.047 

C0 Bayes-B 0.502 ± 0.120 0.269 ± 0.084 

C0 pRKHS-E 0.392 ± 0.137 0.349 ± 0.088 

C0 pRKHS-NE 0.497 ± 0.181 0.325 ± 0.160 

C1 RR-BLUP 0.515 ± 0.107 0.293 ± 0.055 

C1 Bayes-A 0.476 ± 0.053 0.269 ± 0.066 

C1 Bayes-B 0.524 ± 0.112 0.302 ± 0.061 

C1 pRKHS-E 0.405 ± 0.104 0.236 ± 0.018 

C1 pRKHS-NE 0.514 ± 0.078 0.313 ± 0.039 

     

h
2 
= 0.4 

C0 RR-BLUP 0.785 ± 0.027 0.398 ± 0.034 

C0 Bayes-A 0.697 ± 0.034 0.331 ± 0.026 

C0 Bayes-B 0.799 ± 0.032 0.404 ± 0.019 

C0 pRKHS-E 0.756 ± 0.053 0.430 ± 0.017 

C0 pRKHS-NE 0.789 ± 0.039 0.423 ± 0.039 

C1 RR-BLUP 0.688 ± 0.027 0.521 ± 0.026 

C1 Bayes-A 0.603 ± 0.030 0.457 ± 0.052 

C1 Bayes-B 0.696 ± 0.031 0.529 ± 0.020 

C1 pRKHS-E 0.628 ± 0.020 0.475 ± 0.033 

C1 pRKHS-NE 0.689 ± 0.035 0.496 ± 0.029 

     

h
2 
= 0.8 

C0 RR-BLUP 0.823 ± 0.025 0.673 ± 0.092 

C0 Bayes-A 0.759 ± 0.046 0.617 ± 0.075 

C0 Bayes-B 0.827 ± 0.029 0.679 ± 0.101 

C0 pRKHS-E 0.754 ± 0.031 0.654 ± 0.078 

C0 pRKHS-NE 0.821 ± 0.017 0.643 ± 0.078 

C1 RR-BLUP 0.747 ± 0.060 0.704 ± 0.086 

C1 Bayes-A 0.667 ± 0.119 0.631 ± 0.134 

C1 Bayes-B 0.755 ± 0.055 0.712 ± 0.084 

C1 pRKHS-E 0.652 ± 0.057 0.602 ± 0.059 

C1 pRKHS-NE 0.751 ± 0.067 0.704 ± 0.048 
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Table 3.2 For scenarios with a low level of epistasis (10% of the epistasis interaction effects are 

nonzero), Pearson correlation coefficients between estimated breeding value and true breeding 

value (rEBV:TBV) or phenotype (rEBV:PHE) obtained through ten-fold cross-validation with Cycle 0 

(C0) and prediction of Cycle 1 (C1), implemented for simulated traits with heritability of 0.1, 

0.2, 0.4, 0.8, via the various statistical methods. Average correlations ± SE were obtained from 

five replicated simulations. 

 

Heritability C0 / C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE 

h
2 
= 0.1 

C0 RR-BLUP 0.398 ± 0.170 0.210 ± 0.096 

C0 Bayes-A 0.391 ± 0.156 0.210 ± 0.105 

C0 Bayes-B 0.399 ± 0.186 0.190 ± 0.100 

C0 pRKHS-E 0.398 ± 0.111 0.244 ± 0.112 

C0 pRKHS-NE 0.384 ± 0.126 0.197 ± 0.094 

C1 RR-BLUP 0.298 ± 0.176 0.119 ± 0.061 

C1 Bayes-A 0.287 ± 0.158 0.111 ± 0.057 

C1 Bayes-B 0.332 ± 0.121 0.125 ± 0.076 

C1 pRKHS-E 0.342 ± 0.194 0.129 ± 0.079 

C1 pRKHS-NE 0.306 ± 0.174 0.120 ± 0.086 

     

h
2 
= 0.2 

C0 RR-BLUP 0.465 ± 0.004 0.095 ± 0.096 

C0 Bayes-A 0.481 ± 0.063 0.101 ± 0.071 

C0 Bayes-B 0.494 ± 0.031 0.106 ± 0.099 

C0 pRKHS-E 0.475 ± 0.017 0.213 ± 0.055 

C0 pRKHS-NE 0.473 ± 0.084 0.161 ± 0.079 

C1 RR-BLUP 0.492 ± 0.081 0.295 ± 0.005 

C1 Bayes-A 0.431 ± 0.103 0.257 ± 0.041 

C1 Bayes-B 0.505 ± 0.127 0.303 ± 0.030 

C1 pRKHS-E 0.432 ± 0.012 0.299 ± 0.019 

C1 pRKHS-NE 0.493 ± 0.163 0.319 ± 0.050 

     

h
2 
= 0.4 

C0 RR-BLUP 0.632 ± 0.068 0.421 ± 0.097 

C0 Bayes-A 0.576 ± 0.080 0.398 ± 0.069 

C0 Bayes-B 0.641 ± 0.062 0.415 ± 0.100 

C0 pRKHS-E 0.628 ± 0.060 0.435 ± 0.079 

C0 pRKHS-NE 0.643 ± 0.071 0.431 ± 0.083 

C1 RR-BLUP 0.589 ± 0.122 0.430 ± 0.103 

C1 Bayes-A 0.518 ± 0.068 0.380 ± 0.070 

C1 Bayes-B 0.583 ± 0.142 0.425 ± 0.116 

C1 pRKHS-E 0.595 ± 0.120 0.439 ± 0.112 

C1 pRKHS-NE 0.590 ± 0.095 0.431 ± 0.085 

     

h
2 
= 0.8 

C0 RR-BLUP 0.798 ± 0.054 0.709 ± 0.072 

C0 Bayes-A 0.730 ± 0.066 0.650 ± 0.095 

C0 Bayes-B 0.812 ± 0.067 0.716 ± 0.093 

C0 pRKHS-E 0.807 ± 0.097 0.718 ± 0.083 

C0 pRKHS-NE 0.819 ± 0.066 0.721 ± 0.067 

C1 RR-BLUP 0.736 ± 0.021 0.690 ± 0.017 

C1 Bayes-A 0.676 ± 0.015 0.634 ± 0.008 

C1 Bayes-B 0.753 ± 0.021 0.705 ± 0.011 

C1 pRKHS-E 0.770 ± 0.083 0.699 ± 0.082 

C1 pRKHS-NE 0.749 ± 0.086 0.708 ± 0.097 
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Table 3.3 For scenarios with a low level of epistasis (50% of the epistasis interaction effects are 

nonzero), Pearson correlation coefficients between estimated breeding value and true breeding 

value (rEBV:TBV) or phenotype (rEBV:PHE) obtained through ten-fold cross-validation with Cycle 0 

(C0) and prediction of Cycle 1 (C1), implemented for simulated traits with heritability of 0.1, 

0.2, 0.4, 0.8, via the various statistical methods. Average correlations ± SE were obtained from 

five replicates. 

 

Heritability C0 / C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE 

h
2 
= 0.1 

C0 RR-BLUP 0.192 ± 0.146 0.173 ± 0.147 

C0 Bayes-A 0.183 ± 0.138 0.156 ± 0.154 

C0 Bayes-B 0.156 ± 0.117 0.139 ± 0.106 

C0 pRKHS-E 0.211 ± 0.119 0.213 ± 0.089 

C0 pRKHS-NE 0.192 ± 0.104 0.181 ± 0.096 

C1 RR-BLUP 0.326 ± 0.100 0.119 ± 0.034 

C1 Bayes-A 0.344 ± 0.080 0.129 ± 0.024 

C1 Bayes-B 0.315 ± 0.076 0.125 ± 0.031 

C1 pRKHS-E 0.349 ± 0.101 0.133 ± 0.055 

C1 pRKHS-NE 0.319 ± 0.081 0.115 ± 0.050 

     

h
2 
= 0.2 

C0 RR-BLUP 0.234 ± 0.113 0.165 ± 0.208 

C0 Bayes-A 0.226 ± 0.113 0.168 ± 0.190 

C0 Bayes-B 0.234 ± 0.124 0.177 ± 0.237 

C0 pRKHS-E 0.320 ± 0.071 0.224 ± 0.137 

C0 pRKHS-NE 0.314 ± 0.037 0.200 ± 0.127 

C1 RR-BLUP 0.352 ± 0.116 0.184 ± 0.160 

C1 Bayes-A 0.309 ± 0.198 0.158 ± 0.150 

C1 Bayes-B 0.372 ± 0.140 0.201 ± 0.158 

C1 pRKHS-E 0.410 ± 0.105 0.206 ± 0.089 

C1 pRKHS-NE 0.330 ± 0.077 0.189 ± 0.075 

     

h
2 
= 0.4 

C0 RR-BLUP 0.437 ± 0.067 0.262 ± 0.041 

C0 Bayes-A 0.431 ± 0.065 0.260 ± 0.074 

C0 Bayes-B 0.468 ± 0.078 0.299 ± 0.066 

C0 pRKHS-E 0.491 ± 0.075 0.326 ± 0.119 

C0 pRKHS-NE 0.439 ± 0.085 0.312 ± 0.068 

C1 RR-BLUP 0.431 ± 0.136 0.310 ± 0.071 

C1 Bayes-A 0.389 ± 0.102 0.284 ± 0.048 

C1 Bayes-B 0.438 ± 0.128 0.314 ± 0.066 

C1 pRKHS-E 0.440 ± 0.119 0.317 ± 0.052 

C1 pRKHS-NE 0.378 ± 0.108 0.271 ± 0.047 

     

h
2 
= 0.8 

C0 RR-BLUP 0.424 ± 0.154 0.404 ± 0.138 

C0 Bayes-A 0.343 ± 0.147 0.321 ± 0.147 

C0 Bayes-B 0.441 ± 0.162 0.417 ± 0.144 

C0 pRKHS-E 0.622 ± 0.124 0.552 ± 0.135 

C0 pRKHS-NE 0.576 ± 0.177 0.497 ± 0.188 

C1 RR-BLUP 0.365 ± 0.090 0.339 ± 0.074 

C1 Bayes-A 0.349 ± 0.105 0.324 ± 0.088 

C1 Bayes-B 0.390 ± 0.077 0.361 ± 0.065 

C1 pRKHS-E 0.633 ± 0.010 0.568 ± 0.088 

C1 pRKHS-NE 0.613 ± 0.051 0.431 ± 0.028 
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Experimental data 

In addition to the simulations, the predictive ability of each method was compared using 

maize and barley data reported by CIMMYT (Crossa et al. 2010) and BarleyCAP, respectively. 

With the maize dataset, five-fold CV was implemented with the trait anthesis-silking interval 

(ASI) to evaluate predictive ability and compare methods. The pRKHS method outperformed 

BayesB, RR-BLUP and BayesA, with pRKHS-E generating the highest correlation of 0.52 

(Table 3.5a). Compared to shrinkage methods which used all 1148 markers, pRKHS-E and 

pRKHS-NE needed only 700 and 100 markers, respectively, to achieve their highest prediction. 

Furthermore, the optimum CoV for pRKHS-E was 0.3, indicating that few SPC interactions were 

involved.  

A two-year set of experimental data from BarleyCAP was used to measure the predictive 

ability given an independent set of breeding lines (Table 3.5b). Phenotypes (i.e. grain yield 

(GYD) and plant height (PHT)) and genotypes from Year 2007 were used to fit models and 

evaluate ten-fold CV performance. The fitted models were then used to predict the phenotype of 

a different set of 96 lines in Year 2008. For GYD, the pRKHS method substantially 

outperformed other methods for predicting 2008 phenotypes. pRKHS-NE outperformed other 

methods using only 1000 markers for both CV assessment and predicted performance. For PHT, 

pRKHS-NE generated the highest correlation in CV evaluation using 800 markers while 

pRKHS-E had the highest correlation of EBV and 2008 PHE using 1300 markers. Optimal CoV 

for pRKHS-E was found at 0.3 in both traits. 

 3.4 Discussion 

This study demonstrates the advantages of using nonparametric methods to estimate true 

breeding value and to predict phenotypic performance, especially for traits involving epistatic 
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gene action. The new method is novel because it features a new combination of supervised 

principal component analysis and reproducing kernel Hilbert spaces, both established statistical 

methods. The introduction of SPCA complements RKHS by reducing dimensionality and 

background noise. Two sub-models were constructed to span the range of epistasis involved in 

trait expression, with pRKHS-E designed to account for low to high epistasis and pRKHS-NE 

accommodating circumstances in which no or low epistasis exists in the target trait. To evaluate 

the performance of the pRKHS method, three other shrinkage methods were compared. The 

results obtained from simulation confirmed that in the absence of epistasis, pRKHS-NE performs  

more comparably with BayesB than does pRKHS-E (Table 3.1), while pRKHS-E shows better 

predictive ability when epistasis is present (Tables 3.2, 3.3). In addition, results with actual data 

indicate that RKHS methods outperform shrinkage methods and can do so with relatively fewer 

markers (Table 3.5), further confirming the predictive ability of the pRKHS method in real 

application.   

According to selection theory, MBS holds advantage over PS when the genetic 

correlation (correlation between estimated breeding value and true breeding value) is higher than 

the correlation of mid-parent and offspring. The consequences that pRKHS outperformed PS in 

most of the cases (Table 3.1, 3.2, 3.3), its potential use as a means of indirect selection based on 

marker information alone is highlighted. However, discrepancy of performances from these two 

methods is expected, which is mainly due to different statistical models constructed for pRKHS-

E and pRKHS-NE. In the absence of epistasis, overall underperformance of pRKHS-E (Table 

3.1) is mostly attributed to model overfitting. This may be further supported by the results that 

pRKHS-E had the highest rEBV:PHE but also the lowest rEBV:TBV among five methods in C0 section 

(Table 3.1), suggesting estimates from pRKHS-E have higher variance and are more biased in 
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the scenario of no epistasis. As epistasis was increased in simulation scenarios, rEBV:TBV of 

pRKHS-NE decreased faster than that of pRKHS-E (Table 3.2, Table 3.3), suggesting properly 

modeling epistasis maintains the advantages of applying MBS.  

Note that correlations with pRKHS-E are not overwhelmingly higher compared to 

pRKHS-NE in low epistasis scenarios (Table 3.2). The result that pRKHS-E outperforms 

pRKHS-NE in only five out of eight cases indicates pRKHS-NE may function well when a low 

level of epistasis impacts trait expression. The above phenomenon may be explained by the fact 

that the optimal CoV for pRKHS-E was 0.3 in low epistasis scenario, wherein about two to three 

SPC interactions on average were involved in the model (Table 3.4). Overall, 18 SPCs were 

needed to explain 70% of the variation and were these were included as main effects in the 

pRKHS-E and pRKHS-NE model (Figure 3.1). Since the principal component score is a linear 

combination of the weighted marker score, the linear combination of 18 SPC scores may account 

for a few of SPC interactions. The above argument is further supported by the observations that 

fitting model using CoV of 0.2 (i.e. more SPC interactions) causes multicollinearity in some 

cases. Overall, features of principal component scores may help the additive model pRKHS-NE 

fit well in the situation of low epistatic interactions. 

Cosine threshold value as mentioned in this study is a nonparametric model diagnostic 

and used as a criterion to select SPC interactions. As the counterpart of F-statistics in a 

parametric model (Gu 2002), CoV could theoretically be transformed to a test statistic similar to 

the F-distribution p-values with some modification (Ma et al. 2009). However, the degrees of 

freedom for F-distribution which are estimated from the trace of the smoothing matrix change 

every time a new pair of SPC interactions is fitted. Therefore, the consequential p-value is not 

monotone with the cosine value, indicating the same cosine value could be assigned for different 
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p-values in different model fitting, which is misleading to SPC interaction selection, causing loss 

or false inclusion of interactions. We did some preliminary experimentation by constructing 

models using a transformed p-value instead of direct CoV for SPC interaction selection and 

found low predictive ability (data not shown).  

In addition to predictive performance, comparisons between pRKHS and shrinkage 

methods can consider computational load. Several studies (de los Campos et al. 2010; Gianola 

and van Kaam 2008) have suggested the computational advantages of using nonparametric 

methods over shrinkage methods. For our models, the cost of the RKHS algorithm is  2O nq , 

where O stands for computer power and n is sample size and q is number of dimensions. With 

SPCA, q is usually around 18 to 20 (Figure 3.1), indicating computational time of pRKHS will 

be mainly impacted by sample size instead of marker number. With pRKHS, most of the 

computational load involves constructing reproducing kernels and smoothing matrix and 

estimating smoothing parameter λ. In contrast, the computation load with Bayesian shrinkage 

methods is linearly related to the number of features since these are Markov Chain Monte Carlo 

(MCMC) based, with computational time increasing as the number of number of markers 

increases. Furthermore, Bayesian methods rely on the convergence of Markov chains to build the 

posterior distribution, which may require as many as 1000 to 3000 Gibbs sampling iterations 

during burn-in period. 

Model performances were influenced by the underlying genetic architecture of the trait of 

interest. pRKHS plays an important role when trait expression is influenced by epistasis, whereas 

shrinkage methods may have higher predictive ability when a trait is controlled by strictly 

additive gene effects. The genetic architecture represented by BayesB assumes a trait is 

controlled by a few large gene effects and many  small gene effects (Meuwissen et al. 2001), 
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which is similar to the genetic model utilized with pRKHS in this study. Thus, among the three 

shrinkage methods in this evaluation, BayesB has the most in common with pRKHS with respect 

to the genetic simulation. Good approximation of the underlying genome seems to contribute to 

the good performance of BayesB and pRKHS.  

The predictive ability of pRKHS is highly related to the included SPCs and their 

interactions (for pRKHS-E). Bair et al. (2006) suggested use of the first several SPCs for 

prediction and later Li et al. (2011) applied the first three SPCs on genome wide association 

mapping. With our methods, the number of SPCs to include is flexible and depends on the extent 

of epistasis; it is quantified by selecting proportion of variation instead of specific numbers. 

Empirically, we found that with setting a threshold of 70% as the amount of the variation 

explained by the model and then utilizing only the SPCs associated with that threshold, a good 

balance between variance explained and goodness-of-fit was achieved in most of the cases 

through simulation, and this was confirmed with  real data applications. However, depending on 

the crop data and the genetic architecture, the optimal threshold may actually vary by ± 10%, 

indicating a range of 60% to 80% to achieve best predictability. Cross-validation could be used 

to find the best number of SPCs to include for a specific data. 

Optimal marker density for prediction is a topic of great debate. Some studies advocate 

use of all markers with dense coverage (Meuwissen et al. 2001), while others found little value in 

dense coverage of the genome and advocate use of a reduced set of markers for prediction (Long 

et al. 2007; Luan et al. 2009; VanRaden et al. 2009). Ways of selecting markers also vary and 

can be based on random selection, genetic distance or LD extent, or entropy reduction, for 

example. In this study, selection of makers was based on the magnitude of the regression 

coefficient, i.e. the size of the marker effect, and the prediction accuracy is actually increased by 
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using this criterion. The cost of applying genomic selection on plant breeding is highly related to 

the number of markers genotyped for each plant. Even with the advent of next generation 

sequencing and genotyping by sequencing, the potential reduction in genotyping costs makes 

pRKHS promising in breeding applications, where we will genotype the training population with 

a dense marker set, but only need to genotype those “significant” markers for future prediction. 

 

Table 3.4 For each scenario with pRKHS, the percent of the total variation explained by top three 

SPCs (%P1, %P2 and %P3), the number of markers MP1, MP2 and MP3 included in the respective 

SPCs, and number of SPC interactions at three given cosine thresholds. Values reflect the lows 

and highs obtained using various marker subsets (from 500 markers to all markers). Note that 

larger cosine values are equivalent to smaller p-values. 

 

Scenarios %P1 %P2 %P3 MP1 MP2 MP3 
# of SPC interactions 

> 0.2 > 0.25 > 0.3 

h
2
=0.1, E=0 10.4 – 15.1 5.8 – 11.1 5.3 – 9.0 83 – 127 61 – 104 43 – 86 5 – 12 1 – 5 0 – 3 

h
2
=0.2, E=0 12.2 – 17.7 5.5 – 10.8 5.2 – 8.1 124 – 136 59 – 71 56 – 85 3 – 11 1 – 6 0 – 4 

h
2
=0.4, E=0 9.3 – 14.9 6.8 – 11.7 5.9 – 9.9 67 – 111 59 – 90 56 – 96 4 – 16 1 – 6  0 – 3 

h
2
=0.8, E=0 10.4 – 15.3 5.8 – 11.0 5.3 – 9.1 76 – 124 53 – 89 48 – 87 5 – 20 1 – 7  0 – 1 

          

h
2
=0.1, E=0.1 11.1 – 17.7  6.1 – 9.7 5.4 – 8.4 105 – 130 55 – 98 50 – 92 4 – 16 1 – 5 0 – 3 

h
2
=0.2, E=0.1 11.9 – 16.5 5.6 – 11.8 5.1 – 8.2 110 – 125 66 – 85 43 – 88 4 – 12 2 – 7 1 – 4 

h
2
=0.4, E=0.1 9.2 – 13.7 6.0 – 10.4 5.8 – 9.4 61 – 122 62 – 111 53 – 102 5 – 18 1 – 6 1 – 5 

h
2
=0.8, E=0.1 11.2 – 13.0 5.6 – 10.6 5.1 – 9.5 69 – 118 54 – 77 44 – 94 6 – 20 2 – 8 1 – 5 

          

h
2
=0.1, E=0.5 10.5 – 14.3 5.7 – 9.8 5.1 – 7.8 75 – 120 57 – 86 48 – 103 5 – 18 2 – 7 1 – 2 

h
2
=0.2, E=0.5 12.0 – 18.7 6.4 – 10.2 5.7 – 7.0 131 – 137 54 – 95 37 – 71 3 – 17 2 – 7 1 – 4 

h
2
=0.4, E=0.5 12.1 – 18.5 5.5 – 11.7 5.0 – 7.2 122 – 129 83 – 99 41 – 74 5 – 18 3 – 7 1 – 5 

h
2
=0.8, E=0.5 11.2 – 18.3 5.8 – 10.5 5.1 – 8.6 76 – 126 52 – 107 45 – 96 6 – 21 2 – 9 2 – 5 
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Table 3.5 Applying pRKHS to real life scenarios, Pearson correlation coefficients between 

estimated breeding value (EBV) and phenotype obtained from (a) five-fold cross-validation (CV) 

implemented for maize anthesis-silking interval (ASI) and (b) ten-fold CV using genotypes and 

phenotypes of barley lines in year 2007 and prediction based on genotypes of different lines in 

year 2008 implemented for grain yield (GYD) and plant height (PHT) for each of the 5 statistical 

methods. The number of markers used in each analysis is given, with the optimal number shown 

for RKHS methods; results were averaged across five repeated fitting. Optimal cosine value was 

0.3 for RKHS-E across all datasets. 

 

(a) 

Trait CV Methods 
Marker 

Number 
Correlation 

ASI 

CV RR-BLUP 1148 0.495 

CV Bayes-A 1148 0.388 

CV Bayes-B 1148 0.495 

CV pRKHS-E 700 0.520 

CV pRKHS-NE 100 0.515 

(b) 

Traits 
2007 / 

2008 
Methods 

Marker 

Number 
Correlation 

GYD 

2007 RR-BLUP 1642 0.457 

2007 Bayes-A 1642 0.414 

2007 Bayes-B 1642 0.506 

2007 pRKHS-E 700 0.472 

2007 pRKHS-NE 1000 0.532 

2008 RR-BLUP 1642 0.130 

2008 Bayes-A 1642 0.197 

2008 Bayes-B 1642 0.140 

2008 pRKHS-E 700 0.251 

2008 pRKHS-NE 1000 0.257 

     

PHT 

2007 RR-BLUP 1642 0.509 

2007 Bayes-A 1642 0.485 

2007 Bayes-B 1642 0.480 

2007 pRKHS-E 1300 0.495 

2007 pRKHS-NE 800 0.527 

2008 RR-BLUP 1642 -0.065 

2008 Bayes-A 1642 -0.07 

2008 Bayes-B 1642 -0.032 

2008 pRKHS-E 1300 0.179 

2008 pRKHS-NE 800 0.075 
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Figure 3.1 Mean percentage of variation (across the 12 simulation scenarios) explained by the 

top 18 SPCs with pRKHS, which together explain 70% of the total variation. 

 

 

The reduced marker approach used with the new pRKHS method seems to confer some 

advantages. When no epistasis is present, Bayesian methods perform well with utilization of the 

full marker information. However, the results that pRKHS-NE had slightly lower prediction 

accuracy than BayesB (Table 3.1), suggest a near-similar level of predictive ability may be 

enabled even if partial marker information is used. With pRKHS methods, a ‘preselection’ 

procedure is applied before doing PCA to filter out “non-significant” markers.  This increases the 

probability that the subsequent supervised principal components are in good association with the 

trait of interest (Bair et al. 2006). More importantly, the nonlinearity feature of SPCA which is 

due to initial marker selection falls into the category of RKHS regression well. Furthermore, 

PCA serves not only for dimension reduction but also clustering. In simulation, influential 

markers of each SPC except the first SPC, which contains markers from all ten chromosomes, 

usually come from one or two linkage groups (chromosomes). Therefore, one SPC is considered 

to be one or two large haplotypes and the SPC interaction presents the haplotype interactions 

instead of single marker interaction. Furthermore, methods using haplotypes have been proved to 
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show higher predictive ability than those only using single marker (Akey et al. 2001; Calus et al. 

2008).  

Besides prediction, use of pRKHS facilitates inferences about the extent of epistasis 

involved with a trait of interest. For maize trait ASI with heritability estimated at 0.8 (Buckler et 

al. 2009), pRKHS-E with optimal cosine value of 0.3 and pRKHS-NE produced comparable 

results and outperformed RR-BLUP, BayesA and BayesB that only include additive effects 

(Table 3.5a), indicating that inclusion of a few pairs of SPC interactions in the model increases 

prediction. The above results not only correspond to the case of simulated low epistasis scenario 

with h
2
 = 0.8 (Table 3.2) but also are consistent with the conclusions by Buckler et al. (2009) 

who suggested that ASI may involve some low level of epistasis . For GYD and PHT in barley, 

Xu and Jia (2007) concluded that epistasis contributes little to genetic variance for self-pollinated 

species based on work with a dihaploid population derived from cultivated parents although Von 

Korff et al. (2010) later found strong epistatic interactions existed in plant height and yield traits 

in barley and attributed the reason to use of exotic parents and different statistical approaches. As 

shown in Table 3.5b, our results align with the low epistasis conclusions from Xu and Jia (2007) 

as pRKHS-E involving a few interactions (cosine value equals 0.3) and pRKHS-NE have 

comparable predictive ability and both methods are more predictive than the three shrinkage 

methods.    

Overall, the pRKHS method performs well in estimating breeding value and predicting 

performance when epistasis explains certain proportion of the phenotypic variation. The rate of 

genetic gain may be enhanced to a certain degree depending on the underlying epistatic extent. 

Furthermore, pRKHS can be adapted to different types of genetic architectures, i.e. epistatic 

extent and linkage disequilibrium, through tuning CoV and MS, respectively. Compared to other 
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methods, pRKHS is not only for prediction purposes but also has the capacity to facilitate 

inferences about the extent of epistasis involved with a trait of interest, which helps scientists to 

unravel mysteries about the genetic architecture of complex traits. The new nonparametric 

methods can be readily extended to account for dominance effects and other semi-parametric 

methods of dealing with some covariates, e.g. population structure, typically managed in a 

parametric manner.   
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Chapter 4 - Optimization of parameters for successful outcome of 

version testing in marker-aided trait integration 

 4.1 Introduction 

Since the commercial release of the first transgenic maize hybrids in 1996, breeding 

efforts have placed greater importance on value-added traits accessed through transformation 

(Moose and Mumm, 2008). Today, hybrids generally contain multiple transgenic events.  

SmartStax™, for example, offers 8 different transgenes for insect resistance and herbicide 

tolerance through incorporation of 4 events (Monsanto News, 2009).  By the year 2030, as many 

as 15-20 biotech traits may be routinely incorporated in new corn hybrids (Fraley 2012).   

Marker-aided trait integration (MATI) is the process by which a target hybrid is 

converted to add the expression of value-added traits to the comprehensive performance package 

represented by that genotype.  The goal is to recover all the attributes of the target hybrid, with 

the addition of the specified value-added traits.  In maize, this process utilizes the backcross 

method to incorporate events of interest; thus, MATI involves 4 main steps.  The first step 

focuses on introgression of single events into a specific parent of a target hybrid (recurrent 

parent, RP), with an event defined by the specific DNA added to the host genome by the 

transformation process and the exact site of this DNA insertion.  The second step involves 

pyramiding of the single events in the RP.  The third step focuses on stable expression of the 

transgenic events by self-pollinating the converted RP to lead to homozygous status of all events.  

Lastly, the converted target hybrid is formed by hybridizing the converted RP(s) and evaluated in 

performance testing to ensure the recovery of the target hybrid performance plus the expression 

of all value-added traits, which is the emphasis of this study.    
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The activities of first three steps have been the subject by numerous investigations to 

optimize breeding strategies (Hospital 2001; Hospital and Charcosset 1997; (Hospital et al. 

1992) Visscher et al. 1996).  In addition, simulation programs such as PLABSIM and Plabsoft 

(Frisch et al. 2000; Maurer 2008) have been developed to guide breeders’ decisions with 

programmatic (Sun et al. 2011). Nonetheless, little has been published on the topic of ‘version 

testing’, which is a key element of the fourth step in MATI as its outcome determines the success 

or failure of the MATI process. It is defined as the procedure of yield testing several ‘versions’ 

of the converted inbred/hybrids, each of which contain all the transgenic events of interest but 

reflect a unique distribution of non-recurrent parent (NRP) germplasm residual to MATI.  

 This study builds upon other studies in the Mumm Lab to optimize MATI, namely efforts 

to identify ‘best’ strategies for marker-aided introgression. Furthermore, this work also benefits 

from an update of the genome model to incorporate information relevant to the distribution of 

genetic effects based on meta-analyses of previous QTL reports (see Chapter 2.3). This upgrade 

to the genome model reflects training from real data on additive and dominance effects.   

The present work reflects a case study involving MATI of 15 events, with the female RP 

converted for 8 events and the male RP converted for 7 events (Peng et al. unpublished). 

Through computer simulation, we seek to explore the relationship between parameters that 

impact the success of the MATI outcome, specifically, minimal number of RP versions required 

for each parental conversion, the proportion of residual NRP germplasm, and probability of 

recovering at least 1 hybrid version with performance equivalent to the unconverted target 

hybrid.  Furthermore, we consider ways to minimize the number of hybrid versions to be 

evaluated. By exploring the potential success rate of the multiple events introgression, we paved 
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the way for optimizing certain decisions during single event introgression, such as the optimal 

number of versions to retain and the proportions of the remaining NRP DNA.  

 4.2 Materials and methods 

Background 

In this study, we simulated introgression of fifteen events into a target elite hybrid, 

introgressing 8 and 7 events into the two inbred parents P1 (female RP) and P2 (male RP), 

respectively. In the process of generating inbred versions on each side of the pedigree, genetic 

variations among versions were the outcome of the single event introgression stage, where the 

number of versions of each single event RP conversion was the same as the number of final 

inbred versions created to proceed through  pyramiding and selfing in parallel (Figure 4.1). For 

example, in case of generating five female versions introgressed with eight events, five versions 

were retained for each event at the stage of single event introgression.  

Genome model 

The genome model for simulation was constructed according to the published maize 

ISU–IBM genetic map, with a total of 1788cM (Fu et al. 2006). Genetic markers were evenly 

spaced on the chromosome at 0.2cM interval, for a total of 8950 markers across the whole 

genome. Events to be introgressed were assumed to be inserted into different chromosomes, 

avoiding issues related to linkage. For example, 8 events introgressed in female RP were 

arbitrarily placed on chromosomes 1, 3, 4, 5, 7, 8, 9, and 10 and seven events stacked in male RP 

were randomly positioned on chromosomes 1, 2, 3, 4, 6, 8, and 9. Events were assumed to be 

traceable by a single marker and no genetic variation was considered for the event expression. 

Equivalent performance between the converted and unconverted target hybrid was based on 

grain yield, assumed to be controlled by one hundred QTLs randomly positioned across the 

genome with magnitude of effects in keeping with the distribution of additive and dominance 
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effects derived in a previous study (see Chapter 2.3). In the present study, a QTL was assumed to 

be a gene cluster with five genes per QTL. The inter-genic distance was set to 0.2cM, for a total 

of 1cM genetic distance to span a QTL. All genes and markers were assumed to be bi-allelic and 

informative (polymorphic), thus, resulting in a QTL represented by a multi-allelic haplotype. 

Another assumption in this study was that the alternate alleles were fixed on opposite sides of the 

pedigree through generations of selections to maximize heterosis; in other words, heterosis was 

assumed to be purely caused by dominance effects. Before introgression, alleles from male and 

female side were set in advance to ‘G’ and ‘g’, respectively. However, the residual NRP DNA 

may lead to certain loci with homozygous (e.g. GG or gg) status instead of heterozygous in the 

hybrid conversions, especially in cases where the original transformant line originated from the 

opposite heterotic group from one of the RPs.  

The genotypic value for ith individual was calculated according to (Cockerham 1954)  

1

1

N

i ik k ik k

k

Geno u v d


  ,    [1] 

where design elements ku  and kv were defined according to the traditional F  model as   

   1   0

  0       and         1

1  0

k k

GG GG

u Gg v Gg

gg gg

 
 

  
  

, 

and parameters 1k
 
and kd  were additive and dominance effects of kth gene. Additive effects

 1 2  defined as the effect of homozygote carrying the allele from male (female) were drawn 

from a normal distribution  20,0.044 pN  , where p was the phenotypic standard deviation of 

inbred parents. 1k was used in [1] because 1ku  when male allele ‘G’ was in homozygous. And 

dominance effects, d, were obtained from the product of homozygous effects (a) defined as half 
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of the difference between two homozygotes ( 1 2

2
a

 
 ) (Falconer and Mackay 1996) and the 

dominance coefficients ( d a ratio) which were sampled from a normal distribution

 0.152,0.392N .   

The genotypic variance was calculated as follows 

 

2 2

1 1

,
k k

N N

G A D a d

k k

V V V  
 

    
          

[2] 

where N was the number of gene loci, and
2 2 and 
k ka d   were additive and dominance variance for 

k
th

 locus. In case of the hybrid population derived from two inbred lines, the allele frequency was 

0.5 for all segregating genes and the additive and dominance variance of a single locus became 

2 2 2 21 1
 and 

2 4
a da d   (Falconer and Mackay 1996), leading [2] to 

2

1

1
*

2

N

A k

k

V a


         and     21
* .

4

N

D k

k

V d              [3] 

Narrow sense heritability of yield was assumed to be 0.4, causing the error variance to be

1.5e A DV V V  . Thus, simulated hybrids had an expected mean (± standard deviation) of 235.6 

(± 48.1) bu/ac (see Appendix A). Since dominance effects were absent in inbred lines, breeding 

values of RP versions were equivalent to their genotypic values, which had an expected value of 

zero. 
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Figure 4.1 Illustration of the process generating female inbred versions stacked with eight events. 

Only one line was kept during pyramiding and selfing stage. Yellow and blue box indicate 

homozygous and heterozygous state of the event, respectively. Red and blue broader indicate 

different genetic background. 
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Donor parent genome after introgression 

The length of residual NRP germplasm segments at the close of single event conversion 

of RPs, expressed in terms of units of genetic distance (cM), was assumed to follow exponential 

distribution (Figure 4.2). Since the smallest NRP segment was always larger than zero, we fitted 

a truncated exponential distribution to the data. The density for the truncated distribution was  

   
|

i

i

y
y c

i
y

c

e
P y e

e dy







 




 




 


,    [4] 

where yi was i
th

 observed data, c was the truncation point, and   was the rate. Referring to the 

previous introgression results (Ting et al. unpublished data), the minimum size of NRP segments 

in the 20cM flanking regions (FR) bracketing events was 1cM, i.e. c = 1. To draw sample Y from 

the truncated distribution, we simply simulated  ˆX EXP  , where ̂ was obtained by taking the 

reciprocal of expected genetic length of non-flanking regions (NFR) defined as NRP residing 

outside of flanking regions of the event and further took 1Y X  .  

 

Figure 4.2 Histograms of observed and estimated remaining donor parent regions (cM). The 

estimated values were obtained from an exponential distribution truncated at 1cM.   
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To represent pyramiding of the single events in a specific RP, we repeated the above 

sampling procedure over ne times where ne was the total number of events to be introgressed. 

The above procedure was based on assumptions that the introgression of one event was 

independent of others and that the pyramiding process contributed little to genetic content 

shuffling. When introgressing 15 events into the target hybrid, with 8 events to a female line and 

7 events to a male line, the total amount of residual NRP in a hybrid conversion was set to a 

series of values: 180, 160, 140, and 120cM, which corresponds to 10%, 8.9%, 7.8%, and 6.7% 

proportion on NRP germplasm across the genome, respectively. Thus, for each event in the 

converted target hybrid, an average of 12, 10.6, 9.3, and 8cM, respectively, was associated with 

each single event conversion, 1cM of which was located in the FR and the rest located at other 

genomic locations across the genome. The 1cM-length FR fragments were randomly positioned 

in the flanking regions of the events in the simulation whereas the balances of the NRP 

fragments randomly placed across the whole genome were sampled from [4]. In silico female 

(male) inbred versions were thus generated by repeating the above sampling-positioning 

procedure nf (nm) times, where nf (nm) was the number of female (male) versions. The analysis 

considered nf (nm) ≤5 to find the optimal number of inbred versions on each pedigree side to stay 

within realistic bounds. 

For each conversion of a target hybrid, a total of nf *nm versions were derived from the 

cross between various versions of conversions of female and male RPs. Two scenarios were 

implemented to calculate the success rate (SR) of finding at least one hybrid conversion with 

equivalent performance of the unconverted target hybrid (UTH). 1) Full-hybrid scenario: all 

hybrid conversions (ranging from 9 to 25 which relied on the number of versions selected to 

cross) were tested in yield trial and compared to the UTH performance. And 2) partial-hybrid 
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scenario: several inbred versions from each side of the pedigree were picked to form at most 9 

hybrid conversions to perform yield testing. Selection of converted RPs was done in two ways: 

1) random selection and 2) selection based on an estimate of breeding value. This simulation 

scenario (including creating genetic map, positioning QTLs, generating genetic effects, and 

generating and selecting inbred versions) was repeated 1000 times to calculate SR, that is, the 

likelihood of covering at least one hybrid conversion with equivalent performance within 3% of 

the UTH performance based on a specified probability level. To calculate the mean and standard 

errors of SR, the whole procedure was also repeated six times.  

 4.3 Results 

Simulation results indicated a high degree of relationship between the SR, amount of 

residual NRP germplasm, and number of versions of each converted RP of the target hybrid. 

With the increase of NRP germplasm in the genome, the SR of recovering at least one hybrid 

conversion with equivalent performance decreased. At the NRP level of 120cM, three SRs 

exceeded the 95% probability level, with 4 versions of the female RP conversion and 5 of the 

male RP, with 5 versions of the female RP and 4 of male RP, and with 5 versions of each RP.  At 

NRP levels from 140 – 180 cM, the SR exceeded 95% only with 5 versions of each RP (Table 

4.1).  In general, the SR was positively correlated with the number of versions of the RPs. In 

each of these cases, the SR assumes that all possible hybrid combinations of RP versions would 

be evaluated in yield performance trials.  In the full-hybrid scenario, around 8% SR rise was 

observed when the number of hybrid increased from 9 to 25 (Table 4.1). 

Using breeding value to pare down the number of versions to advance to yield trials, the 

SR associated with testing a subset of all possible hybrid combinations of RP versions was 
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estimated. In general, approximately 2% SR reduction was realized for testing a subset of 9 

hybrids created from the ‘best’ 3 versions of each RP (Figure 4.2).   

The correlation between SR using all and partial hybrid conversions was associated with 

the number of hybrid conversions involved in the partial-hybrid scenario and represented by the 

ratio between SR derived from partial and all hybrid conversions. The higher the ratio is, the 

larger the probability that partial hybrid conversions could contain the hybrid that recover UTH. 

As shown in Table 4.3, around 0.02 of the ratio rise was gained when two more hybrid 

conversions to be tested. Compared to employing two male and female versions which lead to a 

total of four hybrid conversions, usage of nine hybrid conversions derived from three male and 

female versions increased the ratio by nearly 0.06. No significant difference was observed 

between cases of using the same number of hybrid but different inbred versions. Meanwhile, 

usage of breeding value to select inbred versions had higher efficiency than random selection 

did. The best partial-hybrid scenario was found by choosing three out of five versions from both 

sides, making a total of nine hybrid conversions (Table 4.2, 4.3).  

 4.4 Discussion 

The value of computer simulation in guiding critical decisions facing the plant breeder is 

enhanced if the underlying models such as the genome model accurately portray real genetic 

processes and true genetic architecture. In the present study, we used distributions of additive 

and dominance effects which were derived from meta-analyses of previously published QTL 

studies to update the genome model used to simulate genetic effects. This aided us in estimating 

the positional effects of NRP germplasm remaining in finalized conversions relative to recovery 

of yield performance of the converted target hybrid introgressed with 15 events.  One difficulty 

of the research was to simulate heterosis which was mainly endorsed by two important theories 
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such as dominance and overdominance (Birchler et al. 2003). In this study, we adopted the 

suggestions from Edwards et al. (1987) who attributed the QTL overdominance effects detected 

in corn yield to the repulsive linkage of several genes with partial dominance. In detail, additive 

effects of genes sampled from the normal distribution with null mean were automatically 

assigned positive or negative sign, indicating random repulsive linkages between genes. And the 

positive mean of dominance coefficients, i.e. 0.152, indicated the overall partial dominance gene 

actions. The results of small additive effects and overall partial dominance gene actions 

conformed to previous conclusions that yield was composed of large number of small effect 

genes (Stuber et al. 1987) and dominance coefficients tend to have positive direction (Kacser and 

Burns 1981). These settings fit the expected hybrid mean and standard deviation in a reasonable 

range (Appendix A).  

Besides heterosis, it is also very important to have an accurate way of simulating 

remaining NRP segments residual to MATI. Because the overall amount and locations of the 

NRP fragments is influenced by recombination and selection during MATI, we directly utilized 

the results obtained by Peng et al. (unpublished) on the optimal MATI strategy for single event 

introgression. As shown in Figure 4.2, the simulated NRP results were fitted well by a truncated 

exponential distribution, suggesting the optimal MATI strategy had been incorporated into the 

simulation by sampling NRP fragments from the distribution.  

 

  



 

105 

Table 4.1 Estimated SR of recovering ≥1 hybrid conversion with yield within 3% of the 

unconverted target hybrid given performance testing of all possible hybrid combinations of 

various number of versions of RP conversions. Values were obtained from 1000 simulations with 

six repeats. Standard errors of the estimates were 0.56-0.59%.  

 

  

%NRP NRP (cM) 
Single event 

conversion (cM) 
# female 

versions  

# male versions  

3 4 5 

6.7% 120 

 3 88.82% 92.23% 93.68% 

8 4 92.20% 93.73% 95.05% 

 5 93.25% 95.20% 96.60% 

 
 

 

    

7.8% 140 

 3 88.73% 91.93% 92.58% 

9.3 4 90.82% 93.13% 94.67% 

 5 93.05% 94.88% 95.87% 

 
 

 

    

8.9% 160 

 3 88.15% 90.85% 91.92% 

10.7 4 90.70% 93.02% 94.45% 

 5 92.30% 94.73% 95.32% 

 
 

 

    

10% 180 

 3 87.13% 90.73% 91.18% 

12 4 90.50% 92.57% 93.75% 

 5 92.03% 93.97% 95.18% 
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Table 4.2 Estimated SR of recovering ≥1 hybrid conversion with yield within 3% of the 

unconverted target hybrid given performance testing of 9 hybrid combinations of various number 

of versions of RP conversions after selecting the ‘best’ 3 versions of each RP from the total 

number of versions created.  Values were obtained from 1000 simulations with six repeats. The 

standard errors of estimates were 0.51-0.57%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selecting the ‘best’ 3 versions from each set of RP conversions using breeding value to 

identify individuals with good genetic potential increased the success rate of recovering UTH 

performance. For example, Ødegård et al. (2009) also incorporated genomic selection into 

marker-assisted introgression to track both the gene being introgressed and total genetic merit, 

especially for low heritability traits like yield. Although the SR increased as the number of 

inbred versions increased, it may not be necessary to perform yield testing using all hybrid 

conversions. As shown, only a 2% deduction in SR was observed when switching from the 

scenario of testing all hybrid conversions to that of testing only nine hybrids selected by using 

breeding value criteria. Thus, the comparison of the partial-hybrid scenario to the full-hybrid 

scenario with ≥95% SR emphasizes resource allocation: 4+5 versions of RPs produced plus 20 

NRP (cM) 
Total # of female 

versions 

Total # of male versions 

3 4 5 

120 

3 88.82% 90.45% 91.62% 

4 90.42% 91.67% 92.96% 

5 91.20% 93.11% 94.47% 

 
    

140 

3 88.73% 90.16% 90.55% 

4 89.06% 91.08% 92.58% 

5 91.00% 92.80% 93.76% 

 
    

160 

3 88.15% 89.10% 89.89% 

4 88.95% 90.97% 92.37% 

5 90.27% 92.65% 93.22% 

 
    

180 

3 87.13% 88.98% 89.18% 

4 88.75% 90.53% 91.69% 

5 90.01% 91.90% 93.09% 
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hybrids yield tested broadly versus 5+5 versions of RPs produced plus 9 hybrids yield tested 

broadly (Tables 4.1 and 4.2).  

In the present simulation study, we used true breeding value (TBV) to serve as the 

selection index, whereas in real life where TBV is unknown. The estimated breeding value 

(EBV) predicted by dense genetic markers could be used as an alternative but might have 

slightly lower precision due to low heritability of yield. Furthermore, we didn’t take into account 

dominance effect for inbred version selection. However, it might be useful to perform direct 

selection on hybrid conversions by predicting single cross performances using genomic 

information, in which case, specific combining ability as well as general combining ability could 

be estimated (Arbelbide et al. 2006).  

In short, version testing is implemented in a trait integration program to identify at least 

one conversion of a target hybrid that satisfies simultaneously the requirements of incorporating 

all the transgenic events of interest and recovering UTH performance. Unless this requirement is 

met, the MATI does not achieve commercial reality and all efforts have been in vain. We used 

computer simulation to explore and develop some guidelines for such a program.  

 

Table 4.3 The ratio between the success rates derived from using partial and full hybrid 

conversions. Partial hybrid conversions were derived from crossing between inbred versions 

selected by 1) randomly picking or 2) using breeding value (BV) criteria. Standard errors of the 

estimates were 0.38-0.51%. Large ratio value indicates high similarity between lines involved in 

partial and full hybrid conversions. 

 

 

 

 

 

# female 

version 

# male 

versions Random BV 

2 2 0.81 0.92 

2 3 0.85 0.95 

3 2 0.85 0.95 

2 4 0.86 0.96 

4 2 0.86 0.96 

3 3 0.89 0.98 
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Appendix A 

Hybrid mean 

The target hybrid performance (H) was the sum of mid-parent value and heterosis which 

was assumed to be purely caused by dominance effects. Thus, expected target hybrid 

performance    *pE H N E d  , where
p was the mean of two inbred parents, N was the 

number of gene locus and  E d  was the mean of dominance effect. Given the distribution of 

additive effects and dominance coefficients,      * 0.152*
d d

E d E a E a E E a
a a

   
     

   
, 

where a was the homozygous effect following a truncated distribution of additive effects, i.e. 

 2~ 0,0.044* pa TN  , with truncation point at 0. And    

2

22

0 0

2 2

2

x
x

E a xf x e dx 


 

    , 

where  f x  was the probability density function of TN and  was the standard deviation of 

additive effects, i.e. 0.044 p  . Mean and standard deviation of inbred population, p  and p

were set to 70 bu/ac and 13 bu/ac, respectively. Both values were derived from the yield 

performance of 12 elite inbred lines, representing important heterotic sub-groups in US maize 

commercial germplasm (Unpublished data from Brian Mansfield). Given the above values, the 

expected hybrid was    
2

* 70 500*0.152* 235.6pE H N E d 


      bu/ac. 

Hybrid standard deviation  

Based on [3], the expected additive and dominance were    20.5*500*AE V E a , and 

     
2

2 20.25*500* 125*D

d
E V E d E a E

a

  
       

, where    
2

2 21 2
1

1

2 2
E a E E

 


  
      
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(Falconer and Mackay 1996). Therefore,   2125*0.044*13 925.5AE V   , and 

 
20.044*13

125* *0.392 182.2
2

DE V   . Given narrow sense heritability of 0.4, the expected 

error variance was      1.5 1212.1e A DE V E V E V   . And the total phenotypic standard 

deviation of the hybrid was 
A D eV V V  = 48.1 bu/ac.  
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