
A Hyper-heuristic Inspired by Pearl Hunting

C.Y. Chan, Fan Xue, W.H. Ip, and C.F. Cheung

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic
University, Hunghom, Kowloon, Hong Kong

{mfcychan,mffxue,mfwhip,mfbenny}@inet.polyu.edu.hk

1 Pearl Hunter: An Inspired Hyper-heuristic

Pearl hunting is a traditional way of diving to retrieve pearl from pearl oysters
or to hunt some other sea creatures. In some areas, hunters need to dive and
search seafloor repeatedly at several meters depth for pearl oysters. In a search
perspective, pearl hunting consists of repeated diversification (to surface and
change target area) and intensification (to dive and find pearl oysters). A Pearl
Hunter (PHunter) hyper-heuristic is inspired by the pearl hunting, as shown in
Fig. 1. Given a problem domain and some low-level heuristics (LLHs), PHunter
can group, test, select and organize LLHs for the domain by imitating a rational
diver.

PHunter, which executes a repeated “move-dive-move-dive” sequence in the
main phase in Fig. 1, is in the Iterated Local Search (ILS) scheme [1] in general. In
PHunter, a “surface move” (or move) action involves usually one diversification
LLH which is not hill climbing. However, PHunter can try more moves if the new
position (solution) is trapped around a “buoy”. In other words, a diversification
will not be accepted if the new objective value does not meet a low threshold
“buoy”. In practice, the buoy can be set to the best result of the first iteration.

A “dive” action refers to a sequential execution of hill climbing LLHs. There
are two kinds of dives: “snorkeling” and “deep dive” (scuba). Snorkeling involves
a short sequence of hill climbing algorithms with a low “depth of search” and
stops once an improvement is found. Deep dive iteratively carries out a long
sequence with a high “depth of search” until no further improvement can be
found. Experience showed that there were different positive coefficients between
snorkeling and deep dive in different domains. In a typical “move-dive” iteration,
PHunter generates a number (Num of snorkeling) of new solutions and ranks
them by snorkeling. Only a few promising (best ranked) solutions can be further
processed by deep dives.

PHunter decides a “mode” consisting of a portfolio of grouped moves and
a way of diving for a given problem. In fact, the idea of portfolio was proven
successful in SAT (Boolean satisfiability) competitions [2]. In the rehearsal run,
PHunter employs counters to record how many suboptimal solutions are found
by different groups of moves and different dives. The final mode is determined
according to the rules obtained by off-line learning. The diving environment is
also discovered in the rehearsal run. For example, if the snorkeling and the deep
dives always find the same result for every move, the environment is flagged as

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61030553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1 procedure PHunter()

2 test_and_order_dives_and_moves();

3 mode←rehearsal_run();

4 loop while (terminate_condition_not_met())

5 for each move m in mode.portfolio
6 P ←Ø;

7 loop for Num of snorkeling times

8 p←apply_move_to_pool(m);

9 loop while (trapped_around_buoy(p))
10 p←apply_more_moves(p);
11 end loop

12 p′ ←snorkeling(p, mode.env);
13 P ← P ∪ p′;
14 end loop

15 p∗ ←select_promising_positions(P);

16 deep_dive(p∗, mode.env);
17 end for

18 if (mission_restart_condition_is_met())

19 clear_pool();

20 end if

21 end loop;

22 return BestEverFound;
23 end procedure

Fig. 1. Pseudo code of Pearl Hunter

“Shallow Water”. In Shallow Water, PHunter simplifies the sequence in snorke-
ling and disables deep dives. Another environment is “Sea Trench”, where at
least one hill climbing heuristic consumes too much time (e.g., 3% of overall
time) in a single execution. In this case, the depths of search are tuned to lower
values and the sequences in snorkeling and deep dives are also simplified.

In practice, a hashed cache can be employed to record courses of deep dives
and it is also used as an unwanted (inferior to tabu) list for surface moves at
the same time. A restart mechanism can reset the search procedure when the
suboptimal solution pool is over-converged or no better solutions are found for
a certain amount of time.

2 Implementation and Experiments

PHunter was implemented on a Java cross-domain platform named HyFlex1

(Hyper-heuristics Flexible framework) [3]. HyFlex provides a random initializa-
tion, a set of LLHs in 4 groups (Crossover, Mutation, Ruin-recreate and Lo-
cal search), two parameters (the “intensity” of mutation and “depth of local

1 See http://www.asap.cs.nott.ac.uk/chesc2011/hyflex_description.html



3

In a Sea Trench environmentNot a Sea Trench environment

D
Pmu >= 18.9% Pmu < 18.9%

Pdir >= 6.7% 

and Prr < 1.5%

B

Pdir < 6.7% 

or Prr >= 1.5%

A

Pdir >= 34.5%

B

Pdir < 34.5%

C

N < 59 

or Mco >= 28

N >= 59 

and Mco < 28

Mco < 14.5 Mco >= 14.5

B

C

Dmurr < 9Dmurr >= 9

N < 78

B

N >= 78

A

Dmurr: Depth of the mission in the Mutation and Ruin-recreate test,

Mco: Number of missions completed in the Crossover test,

N : Number of suboptimal solutions found in total,

Pdir: Percentage of suboptimal solutions found right after some moves (before any dive),

Pmu: Percentage of suboptimal solutions found in iterations started with Mutation moves,

Prr: Percentage of suboptimal solutions found in iterations started with Ruin-recreate moves,

Fig. 2. Decision tree on modes obtained by off-line learning

search”), and a list of easily accessible (but functionally limited) solutions for
each problem in each problem domain.

Five portfolios of moves were defined on the 3 groups (Crossover, Muta-
tion and Ruin-recreate) of moves: average calls (A), Crossover emphasized (B),
Crossover only (C), average calls with an online pruning (D), Mutation and
Ruin-recreate only (E). The portfolio A chooses a move from the 3 groups with
the same probability. The portfolio D selects in the same way and eventually
prunes some moves according to the history. An off-line classification procedure
was carried out to identify the best mode. The decision attributes (counters)
were gathered from a 1-minute test on mode C followed by a 1-minute test on
mode E. The latter test inherits the solution pool. A decision tree was discovered
by the Best-first tree classifier provided by WEKA2 with default parameters, as
shown in Fig. 2, where the mode E was dominated.

Given a set of hill climbing heuristics {A,B,C} (ordered by performances)
and an initial solution, the result of applying heuristics in order “ABC” is usu-
ally different from that in “CBA” in practice. Possible reasons include complex
shape of solution space and occasionally inconsistency of local search algorithms.
In PHunter, deep dives exploit parallel sequences (such as “A-BA-CBA” and

2 Version 3.5.6, see http://www.cs.waikato.ac.nz/ml/weka/



4

Table 1. Scores of hyper-heuristics on the HyFlex framework

Domain HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 PHunter PHw/o Snor PHHsiao

MAX-SAT 41.3 54.8 19.5 5.0 0.0 25.0 38.3 2.0 91.3 46.0 67.0
1D Bin-packing 29.0 30.0 53.0 35.0 0.0 23.0 12.0 0.0 73.0 63.0 72.0
Personnel Scheduling 53.0 50.5 8.0 39.0 42.0 0.0 36.0 18.0 52.0 42.0 49.5
Flow Shop 12.0 3.0 11.0 54.5 5.0 42.5 3.0 37.0 82.5 65.0 74.0

Overall 135.3 138.3 91.5 133.5 47.5 90.5 89.3 57.0 298.8 216.0 262.5

“CBA-BA-A”), swap and repeat until no improvements can be further found.
The complex sequences introduce potential redundancy but return better results
generally.

Tests have been conducted on 4 problem domains: MAX-SAT, 1D Bin-
packing, Personnel Scheduling and Flow Shop, each with 10 difficult instances.
The results are shown in Table 1, where PHw/o S was the PHunter without
snorkeling and PHHsiao was the PHunter that used Hsiao et al.’s local search
scheme [4] in deep dive. The results were on average of 10 independent trials.
HH1 to HH8 were 8 default hyper-heuristics and their results were provided
in HyFlex. The scoring system was the Formula 1 point system provided by
HyFlex, greater number meant better. The computation time was benchmarked
to be equal to 10 CPU minutes on an Intel P4 3.0GHz CPU.

As shown in Table 1 scores of PHunter were competitive. PHunter won the
4th place overall and the 1st place in the hidden domains out of 20 competitors
in the CHeSC 2011 competition3. The score of PHw/o Snor was significantly lower
than PHunter’s in Table 1. It can be concluded that the snorkeling trial is one of
the keys to the success of PHunter. Another key should be the effectiveness of the
ILS scheme. The parallel sequences of local search tests in deep dive might also be
a reason by comparing the scores of PHunter and PHHsiao. However, the complex
sequence in deep dive is a specified compromise to the LLHs implemented in
HyFlex and may not work in other practice.

In fact some results of the tests approximated or had broken the best-known
solutions. One exception is the Personnel Scheduling domain. PHunter classified
most of the environments as Sea Trench in the domain. So further tests were
made, where the computation time was 24 CPU hours and more benchmark
problems were included. The results were much satisfied. Especially, PHunter
discovered 6 new best-known records, as shown in Table 2. One possible reason
was the new “vertical” swap local search was first implemented in an LLH on
the HyFlex.

Acknowledgements

The work described in this paper was partially supported by a grant from the
Hong Kong Polytechnic University (POLYU5110/10E) and partially supported

3 See http://www.asap.cs.nott.ac.uk/chesc2011/results.html.



5

Table 2. New best-known solutions found in the Personnel Scheduling domain

Instance Size (Men * days) Time (h) Solution Previous best-known† % improved

BCV-A.12.2 12 * 31 24 1,875 1,953 4.0
CHILD-A2 41 * 42 24 1,095 1,111 1.4
ERMGH-B 41 * 42 24 1,355 1,459 7.1
ERRVH-A 51 * 42 24 2,135 2,197 2.8
ERRVH-B 51 * 42 24 3,105 6,859 54.7
MER-A 54 * 42 24 8,814 9,917 11.1

†: Collected from http://www.cs.nott.ac.uk/~tec/NRP/misc/NRP_Results.xls.

by a grant from the Department of Industrial and Systems Engineering of The
Hong Kong Polytechnic University (No. RP1Z).

References

1. Lourenço, H., Martin, O., Stützle, T.: Iterated Local Search. In Glover, F., Kochen-
berger, G. (eds.) Handbook of Metaheuristics. Springer New York. 320–353 (2003)

2. Xu, L., Hutter, F., Hoos, H., and Leyton-Brown, K.: SATzilla: Portfolio-based Algo-
rithm Selection for SAT. Journal of Artificial Intelligence Research. vol. 32 565–606
(2008)

3. Ochoa G., Hyde M., Curtois T., Vazquez-Rodriguez J. A., Walker J., Gendreau M.,
Kendall G., McCollum B., Parkes A. J., Petrovic S., and Burke E. K.: HyFlex: A
Benchmark Framework for Cross-domain Heuristic Search. European Conference on
Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2012), LNCS
series, Vol. 7245, Springer. (2012)

4. Hsiao, P.-C., Chiang, T.-C., Fu, L.-C.: A variable neighborhood search-based hyper-
heuristic for cross-domain optimization problems in CHeSC 2011 competition. Fifty-
third Conference of OR Society (OR53), September 6–8, Nottingham, UK (2011)




