
Design and Analysis of Heterogeneous DSP/FPGA Based
Architectures for 3GPP Wireless Systems∗

Michael C. Brogioli, Manik Gadhiok and
Joseph R. Cavallaro

Electrical and Computer Engineering
Rice University

Houston, TX 77005

{brogioli, gadhiok, cavallar}@rice.edu

ABSTRACT
This paper shows how iterative hardware/software partitioning in
heterogeneous DSP/FPGA based embedded systems can be utilized
to achieve real-time deadlines of modern 3GPP wireless equaliza-
tion workloads. By utilizing a well defined set of application par-
titioning criteria in tandem with SOC simulation tools, we are able
to show a greater than six fold improvement in application perfor-
mance and ultimately meet, and even exceed real-time data pro-
cessing deadlines.

Keywords
Real Time Systems, Embedded Systems, FPGA, System Partition-
ing, Wireless Applications

1. INTRODUCTION
Often heterogeneous architectures are used in the embedded do-

main, consisting of one or more DSP cores, simpler microcon-
troller, and possible FPGA based compute engines providing low
cost, high performance, reconfigurable functionality [6]. The DSP
provides the flexibility and programmability, while the FPGA pro-
vides the performance of an all hardware solution.

Next-generation mobile wireless communications systems are a
driving force behind the innovation in high–performance, low–cost
hardware. Heterogeneous, system-on-chip architectures are being
developed in order to meet the real–time requirements and end–user
performance expected from these ubiquitous mobile devices. In de-
signing these systems, task partitioning and hardware/software co–
design present a challenge in alleviating computational bottlenecks
in a traditional all software DSP based solution.

This paper shows how hardware/software partitioning between
programmable DSPs and FPGA compute elements can be used to
achieve real-time processing deadlines in modern 3GPP wireless

∗This work was supported in part by Texas Instruments, Inc., Nokia
Corporation, National Instruments, Xilinx, Inc., and by NSF under
grants EIA-0224458, and EIA-0321266.

equalization workloads. By using a software based SOC simula-
tion environment, and well defined application partitioning crite-
ria, we are able to easily prototype multiple hardware topologies
in tandem with iterative application partitioning, and show impres-
sive preliminary gains and trends in system performance in using
heterogeneous DSP/FPGA system-on-a-chip architectures.

2. BACKGROUND
This section discusses the background of hardware/software co-

design, and uses of FPGA based computing elements in embedded
processing. As a case study, the channel equalization algorithm
for next generation High Speed Downlink Packet Access (HSDPA)
wireless standard [2] is considered, as well as the real time require-
ments and computational complexities.

2.1 Hardware/Software Partitioning in the Pres-
ence of FPGAs

Hardware/software codesign and system partitioning has been
an emerging field for a number of years, and has taken many forms
and targeted various types of workloads. In recent years, modern
embedded systems have grown to be vastly more complex than a
simple microcontroller and a small amount of local memory. This
has resulted in a number of open ended problems with respect to
how the designer should jointly specify hardware and software par-
titionings, and how system architects design their systems.

There have also been a number of uses of FPGA based com-
puting elements as an attempt to provide high performance recon-
figurable computing at both the fine grained ISA level, and coarse
grained task level. Systems such as Chimaera and other fine grained
uses of FPGAs have made attempts to provide extensible and recon-
figurable ISAs in general purpose processors [7]. Typically these
types of systems have tightly coupled a reconfigurable FPGA based
ALU that contains a shadow copy of the host processor’s regis-
ter file. Other architectures employing FPGA based computational
blocks have worked at a more coarse grained level, and make at-
tempts to offload larger elements of computation in the input appli-
cation onto an FPGA based array [9]. These systems are typically
applied to partition tightly coupled nested loops of otherwise reg-
ular computation onto an FPGA, to enhance runtime performance.
Rather than partition workloads at the fine grained, or even coarse
grained loop level, this work shows how application partitioning at
the application task level across multiple FPGAs can help achieve
real-time deadlines in computationally bottlenecked embedded sys-
tems due to the vast amounts of instruction and data level paral-
lelism that can be exploited by FPGAs versus traditional DSP based
solutions.

29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/6102654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2.2 Channel Equalization in 3G Wireless Sys-
tems

Code Division Multiple Access (CDMA) has been the driving
force behind the third generation (3G) wireless cellular technology,
and is used as the multiple–access technology of choice by many
cellular standards (UMTS, CDMA2000). Extensions to these for
data services have been standardized as the High Speed Downlink
Packet Access (HSDPA) and its equivalent 1xEV-DV (Evolution
for Data and Voice) [1, 2, 3].

This paper assumes the HSDPA downlink transmission with sin-
gle transmit and single receiving antenna (Single Input Single Out-
put: SISO system). The chip rate of 3.84 MChips/sec is assumed [3]
which determines the real-time processing requirements on the re-
ceiver end. Current research has indicated that channel equalization
is the most complex part of the receiver baseband signal processing
chain and continues to be a bottleneck for both SISO and MIMO
CDMA-based systems [8, 11, 10].

3. SOC SIMULATION INFRASTRUCTURE
All simulations and DSP/FPGA system-on-a-chip (SOC) proto-

typing was done using the Spinach SOC simulation environment
for prototyping heterogeneous embedded architectures [4, 5]. Spinach
is a library of composable, user configurable software modules for
rapidly prototyping simulators for embedded SOC architectures.
Spinach is built upon the Liberty Simulation Environment (LSE)
developed at Princeton University, creating a SystemC like infras-
tructure where all module communication is transaction based at
the bit–level, on clock cycle boundaries within the simulated sys-
tem. Spinach is intended for modelling architectures that include
heterogeneous computing environments, as well as varying system
topologies and timing semantics.

In designing an SOC architecture with Spinach SOC, users pro-
totype the system with a library of existing simulator software mod-
ules that have a 1:1 mapping to hardware components. The library
of simulator module building blocks contains bit-true, cycle accu-
rate Texas Instruments DSPs, MIPS microcontrollers, and intercon-
nect modules such as busses, bridges and crossbars with user de-
finable bandwidth, throughput latencies, and arbitration policies.
Memory modules such as SRAM, DRAM, memory controllers,
caches and cache controllers are user configurable, and simulate bit
true cycle accurate contents for processors, instruction/data mem-
ory, etc. FPGA modules are designed such that clock rates, gate
counts and functionality are user definable. FPGA modules have
support for internal dual ported RAM arrays that can be targeted
by intelligent DMA engines for data transfer. While the function-
ality implemented by an FPGA module is user definable, timing
information and gate counts can be verified on real hardware, and
configured via high level parameters at runtime. This functionality
is discussed further in Section 5.

Intra–module communication between simulated hardware com-
ponents occurs over abstracted hardware-like module I/O ports,
upon discrete clock cycle boundaries at the bit level. For instance,
in a DMA transaction from local on-chip data memory to FPGA
dual ported RAM arrays, transactions on the simulated memory
bus occur st 32/64/128/256 bit resolution upon discrete clock cy-
cle boundaries, where one device attached to the bus wins arbitra-
tion each clock cycle and transmits a maximum of the aforemen-
tioned bit width data. All data is coupled with timing information,
and thus overall system performance between DSP and FPGA for
a given system topology can be quantitatively measured. Further
information on usage, functionality, and model of computation for
Spinach can be found in [4, 5].

4. METHODOLOGY
When partitioning software in a heterogeneous system comprised

of reconfigurable FPGA compute engines, programmable DSPs or
programmable host processors, a number of criteria must be eval-
uated to determine which application level task should execute in
software on the host processor or in hardware on FPGA.

4.1 Hardware/Software Partitioning Criteria
Spatial locality of data and the ability to access data efficiently is

of great importance to performance in offloading to hardware based
FPGA implementation. DMA data transfer times can effect perfor-
mance, as well as data layout in memory and possible preemptive
reordering. DMA overhead penalties versus computational gains
must be accounted for. Signal processing applications also contain
large amount of ILP (instruction level parallelism) and DLP (data
level parallelism). ILP/DLP can exceed the DSPs compute and I/O
resources creating software bottlenecks. FPGAs coprocessors can
alleviate this with large numbers of parallel functional units and
large local block RAM arrays for local data storage and computa-
tion. Finally, algorithms that are implemented in FPGA are often
computationally intensive, exploiting ILP and DLP beyond that of
the host DSP. While this can alleviate computational bottlenecks in
the system, the programmability and flexibility of a software so-
lution is lost. Often it may be desirable to keep application func-
tionality in software on the DSP, for the sake of programability and
flexibility at the cost of performance.

4.2 Channel Equalization Workload
The workload for the mobile receiver’s equalization application

can be decomposed into multiple tasks consisting of: channel esti-
mation, covariance matrix computation and making matrix into cir-
culant matrix form, Fast Fourier Transform and Inverse Fast Fourier
Transform, Fininte Impulse Response (FIR) Filtering, and Despread-
ing/Descrambling of the received signal to recover user information
bits.

The channel estimation block takes in the received data and gen-
erates channel estimates based on the training sequence. This esti-
mate drives the covariance matrix computation block, which gen-
erates the covariance matrix and approximates it with a circulant
matrix. The FFT is then applied to the channel estimates and to
the first column of the circulant matrix. Reordering is performed
on the FFT output to compute the frequency–domain representa-
tion of the filter coefficients. Next, an Inverse FFT is performed on
these values and the resulting filter coefficients are used for filtering
the received data. Finally, despreading and descrambling are done
to compute the user information bits. In partitioning this work-
load across either software programmable DSP or across config-
urable FPGA based computation engines, we consider partitioning
at the granularity of these tasks. Channel conditions can change
dramatically from slow to fast fading environments with differing
numbers of channel paths, and thus different algorithms for chan-
nel estimation and modifications of each algorithm should be em-
ployed [8]. Due to this flexibility, channel estimation is to remain
in a programmable software based DSP implementation for these
initial case studies, even though there exists significant parallelism
in candidate algorithms.

4.3 System Modelling
Table 1 lists SOC system parameters used in simulation. The

host DSP is the Texas Instruments TMS320C6201 fixed point pro-
grammable DSP, operating at 200MHz. There are 256–bit on-
chip busses to program and data memory, with 64KB of address-
able content each for these experiments. On–chip data memory

30



controller also performs routing and arbitration of memory refer-
ences to peripheral components consisting of DMA engines, mem-
ory mapped registers (MMRs), FPGA based compute engines and
other peripherals. Peripheral busses are 32–bits with uniform clock
rate. Bridging logic is used to glue 256-bit memory busses to 32-bit
peripheral busses, performing bus packet segmentation/assembly
at minimum single cycle throughput latency per 32-bit bus transac-
tion. MxN crossbars are stackable with round-robin arbitration pol-
icy and single cycle throughput latency assuming arbitration win-
ner. Resulting system topology and block diagram are discussed in
detail in Section 5.

Simulation Parameters Value
DSP Architecture Texas Instruments

TMS320C6201
System Clock Rate 200MHz
Instruction Memory Bandwidth 256b on–chip
Data Memory Bandwidth 256b on–chip

32b off–chip
FPGA I/O Bandwidth 32 bits per clock cycle
DMA I/O Bandwidth 32 bits per clock cycle

bidirectional
Bus Arbitration Round Robin, single cycle

minimum throughput latency

Table 1: Baseline Simulation Parameters

Data transfers to and from the FPGA compute fabrics are per-
formed via the on-chip DMA engines. DMA engines are pro-
grammed via MMRs with host DSP control and synchronization
management. It is these DMA engines, operating at 32-bit data
width resolution that perform high speed block data transfers from
local DSP data memory to the dual ported RAM arrays found lo-
cally on the FPGA fabrics. Data transfers occur on discrete clock
cycle boundaries, at the resolution of the on-chip DMA engines.
Each 32-bit packet must pass through appropriate on-chip cross-
bar and bridging logic with associated latency and bus arbitration
effects.

The channel equalization firmware, as described in Section 2.2
was all compiled using Texas Instruments Code Composer Studio
Version 2.10.0, at level three optimization with aggressive inlining
and loop unrolling used. All computation in the channel equaliza-
tion workload was optimized to be 16–bit fixed point, in effect opti-
mizing the workload for DSP performance by maximizing the func-
tional unit utilization of the TMS320C6201 architecture. While
performance critical kernels are often coded in assembly, low level
optimized C code was used in these studies. Though performance
of assembly may be slightly better in some cases, the overall trends
in performance gain are the same due to bottlenecks in DSP com-
putational resources rather than software efficiency.

When partitioning the application across one or more FPGAs,
application functionality is manually offloaded to FPGA simula-
tion modules and implemented by the user. Timing information
and gate counts are obtained via prototyping in hardware, or via
the use of C to RTL offline tools. FPGA compute functionality in
simulation is then modelled via low level C code modelling RTL
behavior within the FPGA simulator module. Timing and latency
information is set via high level user parameters in simulation, as
automated RTL to C code migration into the simulation infrastruc-
ture is not yet supported.

5. RESULTS

Table 2 shows the runtime profiling data for the workload dis-
cussed in Section 4.2, executing on the base case single TMS320C6201
DSP. Based on the data in Table 2, and the criteria mentioned in
Section 4.1, FIR Filtering, FFT, and Despread and Descramble
computations were chosen to be offloaded to FPGA implementa-
tion. Channel Estimation, as mentioned in Section 4 was not con-
sidered due to the desire for software flexibililty.

Program Task Percentage Runtime
Channel Estimation: 7.06%
Covariance Matrix: 0.34%
Circulation of
Covariance Matrix: 0.19%
FFT: 9.90%
IFFT: 4.06%
FIR Filtering: 73.31%
Despread/Descramble: 3.97%

Table 2: Application Profile Data: All Algorithmic Parts Exe-
cuted on DSP

Time

D
S

P

`

`

F
P

G
A

Received Sequence

C
ha

nn
el

E
st

im
at

io
n

C
ov

ar
ia

nc
e

M
at

rix
C

om
pu

ta
tio

n

C
ov

ar
ia

nc
e

M
at

rix
C

irc
ul

ar
iz

ta
io

n

F
F

T
 +

P
os

t F
F

T
 +

In
ve

rs
e 

F
F

T

F
IR

F
ilt

er
in

g

D
es

pr
ea

di
ng

 +
D

es
cr

am
bl

in
g

`

` `

Figure 1: DSP/FPGA Partitioning

Figure 1 illustrates the major computational blocks in the chan-
nel equalization algorithm as previously depicted in Section 4.1
now partitioned to execute either in software on the host DSP, or
in hardware via an FPGA based implementation. This partitioning
was achieved via an iterative hardware–software design approach
in which the input application was profiled and analyzed, and var-
ious bottlenecks in the application were iteratively offloaded to an
FPGA based implementation.

Figure 2 illustrates the final SOC topology modelled in simula-
tion whereby FIR Filtering, FFT/IFFT and Despread/Descramble
are offloaded to FPGAs with all other functionality existing in soft-
ware on the host DSP. While a single FPGA could be used to imple-
ment multiple blocks of computation, we chose to model the worst
case scenario and maximum data transfer requirements by putting
each block in a separate FPGA. Table 3 shows the FPGA param-
eters for cold start computational latency assuming data residing
in local FPGA RAM arrays, as well as the best case DMA data
transfers across chip interconnect. DMA transfer times are often
worse during program runtime due to non-deterministic conflicts
in crossbar arbitration policies for bus access.

Figure 5 shows the clock cycle runtimes of processing one in-
coming frame of data for each hardware/software partitioning mod-

31



fpga 1

FPGA
RAM FIR

Filtering

C
rossbar

A
rbiter

C
rossbar

MMR

DMA
Engines

Memory
Mapped

Registers

256-32
Bus

Bridge

Instruction
Memory

I-Mem
Controller

D-Mem
Controller

Data
Memory

TMS320C6201
DSP Core

fpga 1

FPGA
RAM Despread

DescrambleMMR

fpga 1

FPGA
RAM FFT +

IFFTMMR

Figure 2: SOC Block Diagram

FPGA Coprocessor Compute Cycles Data Transfer Cycles
FIR20 20*512 samples 38
FIR35 35*512 samples 38
FFT/IFFT 128 128
DD 1536 276

Table 3: FPGA Cold Start Compute Latencies and Best Case
Data Transfer Times

elled. We can see that two implementations of FIR filtering in
FPGA were chosen, one with increased parallelism and lower com-
pute latency and one with a longer cold start compute latency. Look-
ing at this figure, it can be seen that as increasing amounts of com-
putation are offloaded to FPGA, performance gains increase. In the
fully partitioned case with FIR Filtering, FFT and Inverse FFT as
well as Despreading Descrambling offloaded, a 6.21 fold increase
in application performance is obtained.

156205

54274

35625 34624
2513426036

54274

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

C
lo

ck
 C

yc
le

s 
p

er
 F

ra
m

e

DSP+
FIR20

DSP+
FIR35+
FFT/IFFT+
DD

DSP+
FIR20+
FFT/IFFT+
DD

DSP+
FIR35+
FFT/IFFT

DSP+
FIR20+
FFT/IFFT

DSP+
FIR35

DSP

Figure 3: Normalized Runtime vs. System Partitioning

To achieve 3.84MChips/sec data rates of the HSDPA standard,
512 data-chip frames must be processed every 260 ns, or 26104
clock cycles (at 200MHz clock rate) for uncoded base-band pro-
cessing, which entails channel estimation, covariance matrix com-
putation and circularization, FFT + IFFT, FIR Filtering and De-
spread / Descramble. In the fully partitioned case, we can see that
the system now more than exceeeds the real-time computational re-
quirements to achieve HSDPA data rates. Furthermore, over 40%
of the total runtime is spend with the DSP in idle polling mode,

waiting for FPGA computation or data transfers to complete.

6. CONCLUSIONS AND FUTURE WORK
This paper shows how iterative hardware/software codesign can

be an effective form of designing heterogeneous DSP/FPGA based
embedded architectures for meeting real-time system deadlines in
modern 3GPP wireless systems. By following a well defined set
of partitioning criteria, and iteratively partitioning application soft-
ware between programmable DSP implementations and hardware
based FPGA implementations, significant improvements in real-
time system performance can be achieved. As a case study, mod-
ern 3GPP wireless channel equalization workloads are analyzed.
Greater than 6.2x improvements in performance are obtained over
the traditional DSP based software implementation and real-time
system deadlines are met and data rates are more than exceeded.

7. REFERENCES
[1] 1xEV-DV Evaluation Methodology (Rev.26). Third

Generation Partnership Project Two (3GPP2), May 2001.
[2] 3GPP Technical Report 25.848, Physical layer aspects of

UTRA High Speed Downlink Packet Access, version 4.0.0,
March 2001.

[3] 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network; Multiplexing and channel
coding (TDD), version 4.2.0, March 2002.

[4] M. Brogioli and J. Cavallaro. Modelling heterogeneous
DSP-FPGA based system partitioning with extensions to the
spinach simulation environment. In Asilomar Conference on
Signals, Systems, and Computers, October 2005.

[5] M. Brogioli, P. Willmann, and V. Pai. Spinach: A
Liberty-Based Simulator for Programmable Network
Interface Architectures. In Languages Compilers and Tools
for Embedded Systems 2004, pages 100–110, June 2004.

[6] T. J. Callahan and J. Wawrzynek. Instruction Level
Parallelism for Reconfigurable Computing. In Proc. 8th Intl.
Workshop on Field-Programmable Logic and Applications,
Sept 1998.

[7] J. Cong, Y. Fan, G. Han, A. Jagannathan, G. Reinman, and
Z. Zhang. Instruction Set Extension with Shadow Registers
for Configurable Processors. In FPGA ’05: Proceedings of
the 2005 ACM/SIGDA 13th International Symposium on
Field-Programmable Gate Arrays, pages 99–106, New York,
NY, USA, 2005. ACM Press.

[8] A. de Baynast, P. Radosavljevic, and J. Cavallaro. Chip Level
LMMSE Equalization for Downlink MIMO CDMA in Fast
Fading Environments. In Globecom, November 2004.
Accepted.

[9] J. eun Lee, K. Choi, and N. D. Dutt. An Algorithm for
Mapping Loops Onto Coarse-Grained Reconfigurable
Architectures. In LCTES ’03: Proceedings of the 2003 ACM
SIGPLAN Conference on Languages, Compilers, and Tool
for Embedded systems, pages 183–188, New York, NY,
USA, 2003. ACM Press.

[10] Y. Guo, J. Zhang, D. McCain, and J. Cavallaro. Efficient
MIMO Equalization for Downlink Multi-Code CDMA:
Complexity Optimization and Comparative Study. In
Globecom, volume 4, Dallas, Texas, November 2004.

[11] P. Radosavljevic, J. Cavallaro, and A. de Baynast. ASIP
Architecture Implementation of Channel Equalization
Algorithms for MIMO Systems in WCDMA Downlink. In
IEEE Vehicular Technology Conference, volume 3,
September 2004.

32


