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Abstract— In this paper we present system-on-a-chip exten-
sions to the Spinach simulation environment for rapidly prototyp-
ing heterogeneous DSP/FPGA based architectures, specifically in
the embedded domain. This infrastructure has been successfully
used to model systems varying from multiprocessor gigabit
ethernet controllers to Texas Instruments C6x series DSP based
systems with tightly coupled FPGA based coprocessors for com-
putational offloading. As an illustrative example of this toolsets
functionality, we investigate workload partitioning in heteroge-
neous DSP/FPGA based embedded environments. Specifically,
we focus on computational offloading of matrix multiplication
kernels across DSP/FPGA based embedded architectures.

I. INTRODUCTION

In this paper, system-on-a-chip extensions to the Spinach
simulation infrastructure for rapidly prototyping heteroge-
neous and reconfigurable FPGA based architectures for em-
bedded computing are presented. This infrastructure has been
successfully used to model systems varying from multiproces-
sor ethernet controllers to Texas Instruments C6x series DSP
based systems with tightly coupled FPGA based coprocessors
for computational offloading. As an illustrative example of this
toolsets functionality, workload partitioning in heterogeneous
DSP-FPGA based embedded environments is investigated.
Specifically, matrix multiplication kernels of various sizes are
implemented using various system configurations of DSP and
integrated FPGA based compute blocks.

There are two main contributions of this paper. The first
is the development of DSP and FPGA based reconfigurable
computing elements to the Spinach simulation environment.
With these extensions, users can model multiprocessor hetero-
geneous DSP based system topologies, incorporating FPGA
based reconfigurable computing elements into their overall
system designs. These architectures can now be programmed
using Texas Instruments Code Composer Studio in much the
same manner as one would develop on the real hardware,
running production binaries in a bit true and cycle accurate
manner. The second contribution is an exploration of parti-
tioning embedded applications in the presence of a heteroge-
neous computing environment with DSPS AND reconfigurable

FPGA based coprocessing elements. Tradeoffs in performance
and system resource utilization are presented as an illustrative
example of the toolsets functionality.

II. BACKGROUND

Simulation has been an established design methodology in
architectural exploration for a number of years. By modelling
common system components at a high level in software,
users can typically prototype system configurations much more
rapidly than if this were done at the gate level [2], [3], [4], [8],
[9]. Limitations in rapidly prototyping heterogeneous systems
typically stem from the fact that the simulated hardware is not
well abstracted in software. In modelling heterogeneous ISAs
and multiprocessor systems, there is not a one-to-one mapping
between system hardware and simulator software modules, nor
are there well defined interfaces between the various software
modules to accurately model componenets such as data busses,
memory arbitration engines, etc. This typically results in an
inherent lack of coupling between system timing and data flow,
and precludes accurately modelling real time system demands
and deadlines.

There are a number of commercially and academically
available toolsets for modelling heterogeneous hardware at
various levels. Early systems such as SOS from the Uni-
versity of Southern California primarily targeted synthesis
of heterogeneous multiprocessor systems based on task level
partitioning of a selected input application [6], [10]. Similar
to this was the PICO-NPA system from Hewlett Packard,
which again was a program-in, chip-out type system [7].
While these tools provide a general solution to the problem
at the computational bottleneck level, they fail to provide
insight into the overall system component interactions and
synergy between application software and application specific
hardware at a system wide level.

Commercially available solutions have become readily
available in recent years, such as the Seamless system from
Mentor Graphics [5]. Seamless provides a hardware/software
co-verification environment for multiprocessor heterogeneous
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environments with custom processing units such as FPGAs.
The overall goal is to provide the end user with a toolset
of building blocks to prototype a given embedded system.
While these tools are useful in the industrial setting, their
closed source nature tends to limit the amount of architec-
tural exploration or under-the-hood type research that can be
performed with them. Modifying processor architecture and
bus architectures is precluded, as is the ability for the user
to roll their own system components into the overall system
topology.

In building an environment for rapidly prototyping het-
erogeneous embedded architectures, there are a number of
features the toolset should support. The library of building
blocks should include common elements in the embedded
domain. In using these building blocks for system prototyping,
multiple clock domains as well as multiple concurrent ISAs
should be supported as is commonly the case in today’s SOCs.
Finally, as a toolset, the user must be able to rapidly prototype
a given system topology. Prototyping a system should rapid
enough to facilitate an iterative hardware/software design pro-
cess where synergy exists between input application proposed
hardware topology. Input applications should be compiled
using production compilers, facilitating a similar experience to
programming real hardware, while the entire system remains
open source and user extensible amongst various collaborators.

III. SIMULATION INFRASTRUCTURE

The Spinach SOC simulation environment is a simulator
design tool rather than a simulator for a specific system [1].
Spinach provides the user with a library of composable, user
configurable software modules that can be used to build sim-
ulators for various embedded architectures. In using Spinach,
users create instances of various supplied software modules,
and connect them together via well abstracted port mecha-
nisms to simulate a given hardware topology. This provides
the simulator designer with an intuitive framework to work
within, where there exists a one–to–one mapping between
simulator software modules and hardware components in the
actual or proposed system. In doing this, system designers
deal not with massive amounts of source code, but rather
high level module constructs that behave like real hardware
components. Furthermore, modelling vastly different system
topologies is as simple as reusing existing modules without
modifying underlying source code. As an example, going to
a multiprocessor DSP based system simply entails creating
multiple instances of the DSP module, and connecting the
fetch and write-back stages to the appropriate memory hi-
erarchy input ports. While this paper presents extensions to
the Spinach simulation environment for modelling DSP and
FPGA based computational elements for full system-on-a-chip
simulation, further details on the user interfaces and models
of computation used within the simulator can be found in [1].

Table I lists the various types of modules included with
the SOC extensions to the Spinach simulation environment.
Processing modules include bit-true, cycle accurate models of
the Texas Instruments C6x series fixed point Digital Signal

TABLE I

SIMULATOR MODULE LIBRARY

Module Type Description

Processing Elements Texas Instruments C6x series DSPs

MIPS R4000 Microcontrollers

Fine Grain FPGA based reconfigurable ALUs

Coarse grain FPGA based accelerators

Reconfigurable Blocks Fine Grain FPGA (on-chip for ISA extensions)

Coarse Grain FPGA (off chip computation offloading)

Memory System Variable latency SRAM and DRAM modules

Memory controllers, scratpad SRAMs

Caches and cache controllers

Interconnect Memory arbitration units

Master-slave on-chip crossbar connects, stackable

Flexible bandwidth bus modules

Application programmable DMA engines

Compilers/Utilities Texas Instruments Code Composer Integration

MIPS GCC Integration

Runtime profiler, simulation checkpointing

Processor cores. Specifically the C60x and C62x series, with
support for the C64x series pending. Also included are models
of the MIPS R4000 embedded microcontrollers. FPGA based
compute engines supporting both fine grained and coarse
grained functionality. Fine grained reconfigurable FPGA mod-
ules have been used to perform compiler controlled custom
ISA extensibility at runtime, whereas the coarse grained FPGA
models are used to simulate Xilinx style fabrics similar to the
Virtex-II and Virtex-IV series devices [11]. FPGA modules
include customizable dual ported RAM array sizes, as well
as user programmable logic. Timing information for FPGA
compute latencies is typically collected externally via real
hardware and plugged into simulation timing statistics for
overall SOC performance gathering. Communication with
FPGA modules within the simulated system is typically done
via memory mapped registers in the simulated address space
for synchronization and control. Data transfers to and from lo-
cal FPGA RAM arrays are typically done via burst mode direct
memory access transfers or programmed I/O via simulated bus
interfaces between modules. FPGA modules are implemented
in low level C code, rather than at VHDL or RTL level, which
is a limitation of the Liberty Simulation Environment upon
which the simulator is built, this permits increased simulation
speed for the overall SOC model [1], [8]. We feel this is a
fair trade off given the fact that in these types of systems, the
overall system component interaction and system performance
is of more importance.

A brief list of major memory system components are listed
in Table I, while a full description can be found in Brogioli
et. al [1]. Variable latency SRAM and DRAM modules are
included, as well as flexible user programmable memory con-
trollers. Instruction and data caches and cache controller mod-
ules with flexible storage policies, as well as local fast SRAM
based scratchpad memory modules. All memory modules are
user configurable and extensible in terms of I/O bandwidth,
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storage size, clock rate, arbitration and replacement policies.
Additionally, all such configurability is user extensible and
modifyable as well.

System interconnect functionality such as crossbar and
arbitration logic is modelled with flexible memory arbitration
engines for variable I/O bus bandwidths. Crossbars for SOC
component interconnect are included, which are stackable in
order to support a master, slave, and slave-grouping structure
of interconnect. Flexible bandwidth bus modules are used to
connect modules via their port interfaces, and model overall
system interconnect. High speed data transfers within the
simulated system are performed by the application software
programmable DMA enginees. Finally, a user extensible I/O
harness is included for simulating traffic coming off of an
external medium asynchronously.

All modules are customizable via scripting level parameters
by the user. Typical parameters included on modules are: clock
rate, bus bandwidth, local data memory size (FPGA RAM
arrays), arbitration policys, replacement policies, debugging
information, module state logging and checkpointing etc. This
allows the system user to ignore the internal details and source
code implementation of a given block in the system, and
strictly prototype at the script level.

Figure 1 shows how the simulator modules listed in Table I
can be used to prototype a given SOC architecture. The topol-
ogy includes Texas Instruments C6x based DSP processing
elements with supporting instruction and data memory busses,
and instruction and data memory controllers. Access from
256 bit on chip data busses to external off chip busses must
pass through a 256-32 bit bus bridge and through various
crossbar and arbitration logic to the appropriate devices. DMA
engines and memory mapped control registers are modelled
off chip and are accessed via read-write operations from the
DSP. Similarly, FPGA engines existing off-chip are modelled
explicitly as well, incorporating both local memory mapped
registers for control and synchronization, as well as local dual
ported RAM arrays for local compute data storage and logic
blocks for given functionality. The proposed system topology
in Figure 1 was one of many systems modelled in arriving
at a heterogeneous DSP/FPGA based SOC architecture for
achieving and exceeding 3.5G wireless receiver data rates.

In the next section, we investigate using the toolset for
prototyping simple DSP/FPGA based heterogeneous SOCs for
matrix multiplication kernels. The intent is not to show the
limits of the simulation infrastructure, as much as to show a
tractable illustrative example of using the toolset, and the types
of statistics and level of modelling detail available to the user.

IV. CASE STUDY: MATRIX MULTIPLICATION OFFLOADING

As an illustrative example of this toolsets functionality,
matrix multiplication kernels are considered. Typically these
workloads, specifically dot product computation within matrix
multiplication, exhibit larger amounts of instruction and data
level parallelism than can be tackled by standard VLIW
pipeline widths. The proposed idea is to use coarse grained
FPGA based compute engines to exploit large levels of
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Fig. 1. Simulator Instance

instruction level parallelism, thereby achieving performance
enhancements over typical VLIW style architectures. The
entire system is modelled, including DSP, FPGA compute
engines, DMA engines and bus arbitration and bandwith. Dot
product computation in the matrix multiply kernel is offloaded
to various FPGA configurations, and synchronization between
host DSP and FPGA is the explicit responsibility of the
application programmer. The DSP must pole memory mapped
registers on the FPGAs and DMA engines to control burst data
transfers of input vectors to the FPGA’s local RAM arrays for
computation. Figure 2 shows the simulated system topology,
whereby all data traffic must explicitly occur over either the
256 bit on-chip or 32-bit off chip busses, and be subject to
contention with other devices on said shared busses.

The details of the modelled system are as follows: DSP
cores are 167 MHz Texas Instruments C62x series fixed point
processors, 64KB of on-chip instruction and data memory,
all accesses must pass through the instruction and memory
controllers on-chip via the 256-bit on-chip busses. FPGA
based coprocessors are application software controlled explic-
itly by the programmer via load/store references to memory
mapped registers. Data computed on locally by FPGA must
be explicitly moved from on-chip instruction memory to local
dual ported RAM arrays on FPGA either via programmed I/O
by the DSP, or via software controlled burst tranfers from the
off-chip DMA engines. All matrix multiply computation is
performed at 16-bit fixed point resolution, with all array sizes
and offsets known statically at compile time with aggressive
loop unrolling performed. In doing this, the optimistic case
for DSP performance is modelled due to the nature of the
Texas Instruments C62x pipeline functional unit resources.
Specifically the C62x pipeline has four adders and two multi-
pliers, each of which are 32-bits wide. When performing 16-
bit fixed point computation, however, the ALUs in the DSP
pipeline can be used to perform two computations in parallel.
This effectively provides eight adders and four multipliers for
computation each clock cycle.

Table II shows the parameters used for the various FPGA
implementations of dot product simulated. Two implementa-
tions of FPGA based dot product computation were modelled:

1632

Authorized licensed use limited to: Rice University. Downloaded on June 18, 2009 at 13:22 from IEEE Xplore.  Restrictions apply.



fpga 1

FPGA

RAM
Arrays

Dot
Product

C
ro

s
s
b

a
r

MMR

DMA
Engines

Memory
Mapped

Registers

256-32

Bus

Bridge

Instruction
Memory

I-Mem
Controller

Memory
Controller

Data
Memory

TMS320C6201
DSP Core

Fig. 2. Matrix Multiplication SOC Diagram

TABLE II

FPGA BASED DOT PRODUCT COMPUTE LATENCY

Dot Product Size 8 Wide Coproc Latency 16 Wide Coproc Latency
8 2 clock cycles 2 clock cycles
16 3 clock cycles 2 clock cycles
32 6 clock cycles 3 clock cycles
64 11 clock cycles 6 clock cycles
128 21 clock cycles 11 clock cycles

one using an 8-wide parallel multiplier array followed by a 4
level deep adder tree, the other a 16-wide parallel multiplier
array followed by a 5 level deep adder tree. The first column in
Table II shows the different matrix sizes modelled, specifically
8x8, 16x16, 32x32, 64x64, and 128x128. For each matrix
multiplication problem size, the corresponding dot product size
is listed in the table showing the computational latency given
either 8 or 16 parallel multipliers and corresponding adder
trees. It is important to note that these are strictly the number
of clock cycles to perform the computation once all data
resides locally in FPGA RAM arrays. It is still the application
programmers responsibility to initiate the DMA engine data
transfers to and from the local RAM arrays on FPGA before
computation can begin, as well as manage any synchronization
between DSP and FPGA via the memory mapped registers in
the address space.

Figure 3 shows the normalized runtimes and instruction
fetch bandwidth utilization for each input matrix multiplication
problem size. For each matrix size, we simulate the entire
matrix multiplication kernel executing only on the host DSP,
as well as DSP using the 8 wide or 16 wide FPGA coproces-
sor for dot product computation. Looking at Subfigure 3(a),
performance improvements greater than 90% can be achieved
for the 128x128 matrix problem size. With the smaller 8x8
problem size, modest improvements are gained on the order
of 40% improvement, due to data transfers to local RAM
arrays on the FPGA must be performed before FPGA based
dot product computation can occur. With much smaller vector
sizes to DMA back and forth, the offset incurred by the DSP in
programming DMA transfers via the off-chip memory mapped

registers is significant when compared to overall DMA data
transfer time. For the larger vector sizes in the 128x128 case,
the penalty of DMA block setup is minimal compared to the
total data transfer time. Looking at Subfigure 3(b), similar
data trends in the instruction fetch bandwidth can be seen.
Here, the number of instruction fetch bundles requested and
transferred from on-chip instruction memory to the DSP fetch
stage via the on-chip instruction memory controller is shown.
When significant computation is offloaded to the FPGA, the
amount of instruction fetch decreases significantly, reducing
bus contention in the event of shared resources on a single
bus. While the program runtime is shorter thereby reducing
the number of fetches, the following is important to note: tThe
tight polling loop used for synchronization and control within
the system via memory mapped registers actually is split
across two instruction fetch bundles. This results in fetches
occurring during synchronization wait time. This, however,
was not apparently until the overall system was simulated.
Other solutions thus become apparent: optimize the polling
loop to use a single instruction fetch bundle. Furthermore,
perhaps interrupt based synchronization is more efficient.
Finally, perhaps single bundle sized SRAM based instruction
caches can be used to alleviate instruction fetch bus activity
during DSP idle time for synchronization loops.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8x8 16x16 32x32 64x64 128x128

host_dsp 8 wide coproc 16 wide coproc

(a) Normalized Program Runtime

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8x8 16x16 32x32 64x64 128x128

host dsp 8 wide coproc 16 wide coproc

(b) Normalized Instruction Fetch
Bundles

Fig. 3. Program Runtimes and Instruction Fetch Bundles

Similar insights into overall system performance can be seen
by the fact that both Subfigures in Figure 3 show identical
results using the 8-wide and 16-wide FPGA coprocessors
until the 128x128 matrix multiplication kernel. That is to
say, program runtime and instruction fetch performance is
identical regardless of greater amounts of instruction level
parallelism residing on the FPGA. This seems counterintuitive
upon first glance until we consider the computational latencies
of the various FPGA implementations of dot product. The
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C62x architecture has a lengthy branch delay slot of 5 clock
cycles. Looking at the compute latencies in Table II we see
that it is not until the 128 element dot product that the
difference in computational latency between the two FPGA
implementations of dot product exceeds the 5 clock cycle
branch delay slot of the host DSP architecture. It is the polling
loop for synchronization between DMA transfer and FPGA
computation that results in the branch delay slot overshadow-
ing the difference in compute speed between the two FPGA
implementations until the 128x128 element matrix. Without
simulation at such a level of detail, it is counter intuitive details
like this that the application developer and system architect
often do not realize until too late in the production process.
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Fig. 4. DSP Functional Unit Utilization

By using an FPGA for the computationally intensive por-
tions of the matrix multiply workload described above, we
can see over 90% increase in runtime performance for the
larger input problem sizes. These simulations show that despite
the non-trivial overhead in configuring DMA based burst data
transfers, and synchronization via memory mapped polling
registers that whole system performance gains can be achieved.
Similarly, we were able to reduce activity on the instruction
memory bus by as much as 90% in the larger input problem
sizes and were able to show that despite adding more paral-
lelism to the FPGA based coprocessor, memory mapped syn-
chronization methods preclude achieving performance gains
due to architectural features of the DSP pipeline.

Other statistics gathered during simulation can be found in
Figure 4 where the utilization of host DSP ALUs is shown.
We can see that the .D unit, used for load-store operations,
has significantly reduced utilization. Similarly the .S unit used
for integer computation and control register file accesses is
reduced dramatically as well. Finally, the .M unit used for
multiplication drops to zero, as would be expected when all
dot product computation is offloaded to the FPGA. While these
results are as to be expected, it is interesting to note that in the
presence of FPGA compute elements, it may be beneficial to
utilize function unit gating in certain host DSP architectures,
or to perhaps overlap computation amongst both the FPGA and
DSP. Other statistics gathered and reported at simulation time,

but not visualized in this paper for sake of brevity, are: bus
utilization, arbitration policy and contention statistics, DMA
engine utilization and activity, FPGA activity as well as com-
pute latencies and dynamic data transfer latencies, instruction
and data level parallelism tradeoffs in the input appliction,
host processor dynamic ISA utilization and dynamic runtime
profiling of the input application. All of these statistics are
modelled at the granularity of clock cycles and reported to
the user.

V. CONCLUSIONS

This paper presents extensions to the Spinach simulation
environment for modelling heterogeneous DSP/FPGA based
reconfigurable embedded architectures. Specifically, support
for bit true, cycle accurate DSP cores, fine grained and coarse
grained FPGA based compute elements is presented. As an
illustrative case study, the toolset is used to investigate the
benefits of computational offloading various matrix multi-
plication kernels in heterogeneous DSP/FPGA based system
on a chip architectures. In doing this, performance gains of
approximately 90% are shown to be achieved using both
coarse grained FPGA compute engines in tandem with modern
DSP cores. Additionally, insights into total system on a
chip performance are presented that are only apparent when
modelling no only computational elements in the system, but
overall chip interconnect and memory system.
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