
A LOW-POWER 1-Gbps RECONFIGURABLE LDPC DECODER DESIGN FOR

MULTIPLE 4G WIRELESS STANDARDS

Yang Sun and Joseph R. Cavallaro
Department of Electrical and Computer Engineering

Rice University, Houston, TX 77005
Email: {ysun, cavallar}@rice.edu

Abstract— In this paper we present an efficient system-on-
chip implementation of a 1-Gbps LDPC decoder for 4G (or
beyond 3G) wireless standards. The decoder has a scalable
datapath and can be dynamically reconfigured to support mul-
tiple 4G standards. We utilize a pipelined version of the layered
belief propagation algorithm to achieve partial-parallel decoding
of structured LDPC codes. Instead of using the sub-optimal Min-
sum algorithm, we propose to use the powerful belief propaga-
tion (BP) decoding algorithm by designing an area-efficient soft-
input soft-output (SISO) decoder. Two power saving schemes
are employed to reduce the power consumption up to 65%. The
decoder has been synthesized, placed, and routed on a TSMC
90nm 1.0V 8-metal layer CMOS technology with a total area of
3.5 mm2. The maximum clock frequency is 450 MHz and the
estimated peak power consumption is 410 mW.

I. INTRODUCTION

The approaching fourth-generation (4G) wireless sys-
tems are projected to provide 100 Mbps to 1 Gbps
speeds by 2010, which consequently leads to orders of
magnitude complexity increases in the wireless receiver
SoC (System-on-Chip). As a core technology in wireless
communications, FEC (forward error correction) coding
has migrated from 2G convolutional/block codes to more
powerful 3G Turbo codes, and LDPC (Low-density parity-
check) codes [1] forecast for 4G systems because of their
excellent error correction performance and highly paral-
lel decoding scheme. To meet the power consumption
constrains in wireless handsets, it is very challenging to
design a flexible and high throughput LDPC decoder.

Most of the research on LDPC decoder design so far
has focused on one particular system in which specific
optimizations are made to improve the decoder perfor-
mance. For example, authors in [2][3] discussed LDPC
decoders for WiMax system, and authors in [4][5] pre-
sented custom designed, non-standard LDPC decoders.
In this paper, we discuss a scalable and dynamically
reconfigurable LDPC decoder targeting multiple 4G stan-
dards. For low power implementations, we introduce an
early termination scheme and a distributed SISO de-
coding and memory banking scheme to reduce power
consumption.

II. DECODING ALGORITHM

A binary LDPC code is a linear block code specified by
a very sparse binary M×N parity check matrix: H ·xT =

0, where x is a codeword (x ∈ C) and H can be viewed
as a bipartite graph where each column and row in H
represent a variable node and check node, respectively.

A. Block structured LDPC codes

Non-zero elements in H are typically placed at random
positions to achieve good performance. However, this
randomness is unfavorable for efficient VLSI implemen-
tation that calls for structured design. To address this
issue, block-structured LDPC codes are recently pro-
posed for several new communication standards such
as IEEE 802.11n, IEEE 802.16e, DVB-S2 and DMB-
T. As shown in Fig. 1, a block structured parity check
matrix can be viewed as a 2-D array of square sub
matrices. Each sub matrix is either a zero matrix or a
cyclically shifted identity matrix Ix. Generally, a block
structured parity check matrix H consists of a j × k
array of z × z cyclically shifted identity matrices with
random shift values x (0 ≤ x < z). Table 1 summarizes
the design parameters for H in several standards. In
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Fig. 1. A block structured parity check matrix with block rows (or layers)
j = 4 and block columns k = 8, where the sub-matrix size is z × z.

Table 1: Design parameters for H in several standards
LDPC Code WLAN-802.11n WiMax-802.16e DMB-T

j 4-12 4-12 24-48
k 24 24 60
z 27-81 24-96 127

order to efficiently decode structured LDPC codes, we
adopt the layered belief propagation (LBP) algorithm [6],
which is described in Algorithm 1. In the description
of the algorithm, Nm is the set of variable nodes that
connected to check node m, andNm\n is the setNm with
variable node n excluded. Λmn and λmn denote the check

367978-1-4244-2596-9/08/$25.00 ©2008 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/6102643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and variable message, respectively. Ln denotes the a
posteriori probability (APP) log-likelihood ratio (LLR) of
variable node n: Ln = log(P (xn = 0)/P (xn = 1)). H l

denotes l-th layer in H.

Algorithm 1 Layered belief propagation algorithm
Initialization:
∀(m,n) with H(m,n) = 1, set Λmn = 0, Ln = 2yn

σ2

for iteration i = 1 to I do
for layer l = 1 to L do

1) Read:
∀(m,n) with H l(m,n) = 1:

Read Ln and Λmn from memory
2) Decode:
λmn = Ln − Λmn
Λnewmn =

∏
j∈Nm\n sign(λmj)Ψ

(∑
j∈Nm\n Ψ(λmj)

)
Lnewn = λmn + Λnewmn

3) Write back:
Write Lnewn and Λnewmn back to memory

end for
end for
Decision making: x̂n = sign(Ln)

III. VLSI ARCHITECTURE
A. Block-serial scheduling algorithm

To implement Algorithm 1 in hardware, we propose a
block-serial (BS) scheduling algorithm as shown in Fig. 2.
In this algorithm, one full iteration is divided into j sub
iterations. SISO decoding is applied to each layer in
sequence. Each z × z sub-matrix is treated as a macro
within which all the involved parity checks are processed
in parallel using z number of SISO decoders. Each SISO
decoder is independent from all others since there is no
data dependence between adjacent check rows.
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Fig. 2. Block-serial (BS) scheduling algorithm

B. Low-complexity implementation of BP algorithm
Conventionally, function Ψ(x) = − log(tanh(|x/2|)) is

used for the decoding operations in Algorithm 1. However,
the Ψ(x) function is prone to quantization noise and
can be numerically unstable [7]. Alternately, a different
and numerically more robust way to compute the Λmn is
shown as

Λmn =
∑

j∈Nm\n

�λmj =
( ∑
j∈Nm

�λmj
)
� λmn, (1)

where the � and � operations are defined as a � b ,
f(a, b) = log 1+eaeb

ea+eb and a� b , g(a, b) = log 1−eaeb

ea−eb [8][9].
This computation method is especially suitable for the
proposed BS scheduling algorithm in which the macro
blocks are processed in sequential order. For hardware
implementation, f(·) and g(·) functions can be simplified
to

f(a, b) = sign(a) sign(b)
(

min(|a|, |b|) +

log(1 + e−(|a|+|b|))− log(1 + e−
∣∣|a|−|b|∣∣)),

g(a, b) = sign(a)sign(b)
(

min(|a|, |b|) +

log(1− e−(|a|+|b|))− log(1− e−
∣∣|a|−|b|∣∣)).

(2)

In hardware, the non-linear correction terms log(1 + e−x)
and log(1 − e−x) in (2) are approximated using low-
complexity 3-bit lookup tables (LUTs) [9].

C. Radix-2 SISO decoder

Fig. 3 shows the proposed SISO decoder architec-
ture for generating Λmn. We refer to it as Radix-2 (R2)
recursion architecture since only one element can be
processed in one clock cycle. The R2-SISO core consists
of one f(·) recursion unit followed by one g(·) unit. Note
that the g(·) unit would have the same structure as the
f(·) unit but with a different LUT.

Fig. 4 shows the decoding schedule for check row
m. During the first dm1 cycles, the incoming variable
messages λmn (∀n ∈ Nm) are fed to the decoder
sequentially and the f(·) unit is reused dm times to
obtain the intermediate � sum Sm. Then, the outgoing
messages Λmn (∀n ∈ Nm) are generated in a sequential
order by the g(·) unit. Though the decoding is sequential
for each check row, multiple (z) check rows within one
layer can be processed in parallel by employing multiple
(z) SISO decoders, which increases the throughput by
a factor of z (see Fig. 2). Furthermore, the decoding
throughput can be improved by overlapping the decoding
of two layers as shown in Fig. 4. This scheduling would
require dual-port memory for simultaneous read and write
operations. Typically data dependencies between layers
will occasionally stall the pipeline for one or more cycles.
However the pipeline stalls can be avoid by shuffling the
order of the layers [10].

D. Radix-4 SISO decoder via look-ahead transform

To increase the throughput of the R2-SISO decoder, a
look-ahead transform can be used for the f(·) recursion.
This transform leads to an increase in the number of data
processed in each cycle as shown in Fig. 5, where two
elements are processed in one clock cycle. We refer to
this transform as Radix-4 (R4) recursion. Fig. 6 shows the
corresponding Radix-4 SISO decoder architecture. Since

1dm is the number of non-zero elements in check row m.
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Fig. 3. Radix-2 (R2) SISO decoder architecture
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Fig. 4. Pipelined decoding schedule

two elements can be processed in each cycle, it has a
throughput speed up of 2. Table 2 summarizes the syn-
thesis results (90nm CMOS technology) for the R4 and
R2 SISO decoders. To compare these two architectures,
we define an efficiency factor η as the throughput speed-
up with R4-SISO divided by the area overhead. As can
be seen, R4-SISO achieves throughput-area efficiency
gains especially at lower clock frequency.
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Fig. 5. One level look-ahead transform of f(·) recursion
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Fig. 6. Radix-4 (R4) SISO architecture

E. Scalable and reconfigurable LDPC decoder
To support multiple LDPC codes, the datapath has

to be scalable and reconfigurable. Fig. 7 shows the

Table 2: Comparison of two SISO decoder architectures
450 MHz 325 MHz 200 MHz

R2 SISO area 6978 µm2 6367 µm2 6197 µm2

R4 SISO area 12774 µm2 10077 µm2 8944 µm2

η = Speedup
Area overhead 1.09 1.26 1.39

proposed LDPC decoder architecture. In the proposed
BS scheduling algorithm, the parallelism factor is equal
to the sub-matrix size z. Since parameter z varies from
code to code, i.e. 19 different sizes of z are defined in
WiMax, we must design a datapath that is modular and
scalable to support different code types. This is achieved
by employing distributed SISO decoders and memory
banks as shown in Fig. 7. This architecture can also
reduce the overall power consumption by deactivating the
memory banks and SISO decoders that are not being
used. The L messages, on the other hand, are stored
in a central memory bank for parallel accessing by z
SISO decoders. This is achieved by grouping [1 × z]
L messages (associated with each sub-matrix) into one
memory word.

The decoding flow for one sub-iteration is as follows:
at each cycle, [1 × z] L messages are first fetched from
the L-memory and passed through a circular shifter to
be routed to z SISO decoders. The soft input information
λmn is formed by subtracting the old extrinsic message
Λmn from the APP message Ln. Then the SISO decoder
generates a new extrinsic message Λmn and APP mes-
sage Ln, and stores them back to the Λ-memory and the
L-memory, respectively.
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Fig. 7. LDPC decoder architecture with scalable datapath

By designing proper control logic, the decoder can
be dynamically reconfigured to support multiple block-
structured LDPC codes. With this partial-parallel archi-
tecture, the pipelined (Radix-4) decoding throughput is
approximately equal to 2×k×z×R×fclk

E×I , where k is the
number of block-columns in H, z is the sub-matrix size,
R is the code rate, E is the total number of non-zero sub-
matrices in H, and I is the number of full iterations. Note
that the latency of the circular shifter is not included in the
throughput analysis, which may degrade the throughput
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by about 5-15%.

IV. RESULTS

A multi-mode LDPC decoder which supports both IEEE
802.11n and IEEE 802.16e has been synthesized on
a TSMC 90nm 1.0V 8-metal layer CMOS technology.
Fig. 8 shows the VLSI layout view of the LDPC decoder.
Table 3 compares this decoder with the state-of-the-art
LDPC decoders of [3] and [4]. The decoder in [3] has
the flexibility to support 19 modes of LDPC codes in the
WiMax standard, however it will not support the higher
data rates envisioned for 4G and IMT-Advanced. The
decoder in [4] has a throughput of 640 Mbps, but it
does not have the flexibility to support multiple codes. As
can be seen, our decoder shows significant performance
improvement in throughput, flexibility, area and power.

R4-SISO Decoder + 
Distributed Λ-Mem

x96

L-Mem Circular
Shifter

In/Out 
Buffer

CTRL

R
O

MMisc 
Logic

Fig. 8. VLSI layout view of the LDPC decoder

Table 3: LDPC decoder architecture comparison
This Work [3] [4]

Flexibility 802.16e/.11n 802.16e 2048-bit fixed
Max Throughput 1 Gbps 111 Mbps 640 Mbps

Total Area 3.5 mm2 8.29 mm2 14.3 mm2

Max Frequency 450 MHz 83 MHz 125 MHz
Peak Power 410 mW 52 mW 787 mW
Technology 90 nm 0.13 µm 0.18 µm

Max Iteration 10 8 10
Algorithm Full BP Min-Sum Linear Apprx.

As low power design is critical for wireless receivers,
in order to save power, we have implemented a simple
and effective early termination criteria for stopping the
iteration process. The decoding will stop if the following
two conditions are satisfied: 1) the hard decisions for the
information bits based on their LLR values do not change
over two successive iterations, and 2) the minimum of the
absolute values of the information bit LLRs is larger than
a pre-defined threshold. As shown in Fig. 9 (a), when
the wireless channel is good, the decoding needs fewer
iterations to converge, which therefore saves substantial
power (up to 65% power reduction). Another power sav-
ing technique is to use distributed SISO decoders and
memory banks. Fig. 9 (b) shows the power reduction from
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Fig. 9. Two power reduction techniques

deactivating the unused SISO decoders and memory
banks when the LDPC code size is small.

V. CONCLUSION
A high performance LDPC decoder has been de-

scribed that achieves a throughput of 1 Gbps. The de-
coder has a scalable datapath and can be dynamically
reconfigured to support multiple 4G wireless standards.
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