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Abstract— 1 We propose a soft sphere detection algorithm
where search-bounds are determined based on the distribution
of candidates found inside the sphere for different search levels.
Detection accuracy of unbounded search is preserved while
significant saving of memory space and reduction of latency is
achieved. This probabilistic search algorithm provides signifi-
cantly better frame-error rate performance than the soft K-best
solution and has comparable performance and smaller compu-
tational complexity than the bounded depth-first search method.
Techniques for efficient and flexible architecture design of soft
sphere detectors are also presented. The estimated hardware cost
is lower than the hardware cost of other soft sphere detectors
from the literature, while high detection throughput per channel
use is achieved.

I. INTRODUCTION
Future wireless receivers need to support hundreds of

MBits/sec data-rates combined with excellent quality of ser-
vice. In addition, high and flexible spectral efficiency is
desired: multiple transmit antennas are accompanied with mul-
tiple receiver antennas forming multiple-input multiple-output
(MIMO) wireless transceivers [1]. The main challenge, cur-
rently, is to design high-throughput low-cost MIMO receivers
that can mitigate strong multiple-access interference. Current
practical solutions employ detection based on minimum mean
square error (MMSE) equalization combined with channel
decoding such as low-density parity-check (LDPC) codes [2].
The a posteriori probabilities (APPs) of the transmitted coded
bits are iteratively improved between outer decoder and inner
detector. However, in the case of four transmit/receive antennas
and 16-QAM, the error-rate is still far from the capacity limit.
To approach capacity in high spectral efficiency systems,

authors in [3] propose approximation of exponentially complex
maximum a posteriori (MAP) detection: soft sphere detec-
tion (SSD). This scheme operates close to channel capacity
if iteratively interfaced with outer decoding. However, the
detection (search for valid transmitted candidates) is too
complex for efficient hardware implementation and design of
sub-optimal SSD algorithms have been investigated [4], [5].
We propose the SSD algorithm with bounded search where
search bounds are based on distributions of candidates found
inside the sphere in different search levels. A substantial
reduction of area cost and search latency is achieved while
preserving detection accuracy of unbounded search with the

1This work was supported in part by Nokia Corporation and by NSF under
grants CCF-0541363, CNS-0619767, CNS-0551692, CNS-0321266.

same sphere radius. We also propose the cost-efficient and
flexible architecture design of soft sphere detectors.
The paper is organized as follows. Section II introduces

MIMO system model, soft sphere detection and iterative
detection/decoding. The bounded soft sphere detection (BSSD)
algorithm is proposed in Section III. Ideas for cost-efficient
and flexible architecture design of proposed soft sphere de-
tector are described in Section IV. We conclude the paper in
Section V.

II. MIMO WIRELESS SYSTEM AND SPHERE DETECTION
Coded MIMO wireless system with iterative detection and

decoding is shown in Fig. 1. This system is defined by:
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Fig. 1. MIMO transceiver, iterative detection and decoding.

y = Hs+ n, (1)

where M and N are the number of transmit and receive
antennas respectively, y is a vector of N received symbols,
H is the N × M matrix of flat-fading channel coefficients, s
is a vector of M transmitted modulated symbols, and n is a
vector of additive noise at the receive antennas.
Maximum-likelihood (ML) detection assumes testing of all

possible transmit vectors Λ for the minimum square error cost
given by ŝML = arg min

s∈Λ
||Hs − y||2. Since the number of

possible candidates is 2M·MC (MC is the number of bits
per constellation symbol), the ML scheme is not suitable
for efficient hardware implementation in systems with high
spectral efficiency. Sphere detection is a simplification of ML
detection where tested candidates are constrained to only those
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that are inside a hyper-sphere with a pre-determined radius r
around received symbol-vector y [6]:

d(s) = ||Hs− y||2 ≤ r2. (2)

For computationally simpler recursive checking, Eq. 2 is
transformed into the identical problem with triangular channel
matrix after applying the QR decomposition: H = QR. The
matrix R is M × M upper triangular, while matrix Q is a
unitary N × M matrix. Equation 2 becomes d(s) = ||Rs −
QHy||2 ≤ r2. Since matrix R is upper triangular, the distance
d(s) is calculated recursively from one transmit antenna to
another:

Tm(s) = Tm+1(s)+

∣∣∣∣∣∣ŷm −

M∑
j=m

Rmjsj

∣∣∣∣∣∣
2

≤ r2, m = M, . . . , 1 (3)

while TM+1(s) = 0 for all possible transmitted vectors s ∈ Λ.
The term Ti(s) is called the partial Euclidian distance (PED)
of a candidate symbol s at the search level m.
The soft sphere detection (SSD) algorithm is an extension of

hard sphere detection: instead of only ML candidate it finds
the list L of candidates. The list of candidates provides the
reliability information about each transmitted bit xk which is
passed as an extrinsic probability to the outer soft-input soft-
output decoder. The extrinsic probabilities can be computed
as in [3] using the max-log approximation:

LE(xk|y) ≈
1

2
max

x∈L∩Xk,+1

{
−

1

σ2
||y−H · s||2 + xT

[k] · LA,[k]

}

−
1

2
max

x∈L∩Xk,−1

{
−

1

σ2
||y− H · s||2 + xT

[k] · LA,[k]

}
,(4)

where x[k] is the sub-vector of x obtained by omitting the k-
th bit xk, LA,[k] is the vector of all a priori probabilities LA

for transmitted vector x obtained by omitting LA(xk), σ2 is a
noise variance, Xk,+1 is the set of 2M·MC−1 bits of vector x
with xk = +1, while Xk,−1 is similarly defined.

III. BOUNDED SOFT SPHERE DETECTION
Authors in [4] propose hardware design of the soft sphere

detection with the depth-first search with up to 256 search
operations. One search operation is defined as a simultaneous
testing of all constellation points if they are inside the hyper-
sphere based on the cumulative distance from the previous
search levels (see Eq. 3). This solution achieves good perfor-
mance but the latency is long because of the large number of
search operations. The soft K-best scheme from [5] is suitable
for pipelining because of the constant latency per search level
and therefore achieves high detection throughput. On the other
hand it suffers substantial performance degradation because a
large number of good candidates are discarded at every search
level.
In order to preserve accuracy of the search process, we

utilize a variable maximum number of candidates per search
level, unlike the K-best approach where the search-bound per
level is fixed to the K best candidates. The goal is also
to avoid sorting of candidates after every search level and

LevelM
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search
operation

Level2 Max2

MaxM-1LevelM-1

search
operation

Fig. 2. The tree-search visualization of bounded search with
variable bounds per search level: bounded soft sphere detection
BSSD(Max1,Max2,...,MaxM−1). M transmit antennas, QPSK.

to lower the probability of discarding good candidates in
early search levels. Figure 2 shows the principle of proposed
bounded soft sphere detection (BSSD). The maximum number
of valid candidates per search level is pre-determined. When
the search-bound is reached or exceeded the search process
stops and continues in the next search level. Candidates that
exceed predetermined bounds are discarded from the search
process. The number of search operations is upper-bounded
by 1+

∑M−1
l=1 Maxl which pre-determines the largest detection

latency.
Search-bounds are determined in such a way to preserve

detection accuracy of unbounded search with the same radius
value. Furthermore, the goal is to reduce memory space
for the storage of partial/final candidates/distances as well
as to substantially decrease latency of the search process.
Figure 3 shows distributions of the number of candidates
inside the hyper-sphere for different search levels if the
number of candidates is bounded in both the second and
third search levels to 100. Frequency non-selective channels
from Rayleigh distribution are assumed, as well as a 4x4 16-
QAM system with unitary transmit energy. The sphere radius
of 0.6 is fixed and pre-determined to provide on average
about 25 final candidates if the search is not bounded. At
the beginning, the majority of tested candidates are inside
the sphere: PEDs are small and candidates are unreliable.
This is why the K-best solution from [5] suffers performance
degradation: probability of discarding good candidates is high
even after the sorting of PEDs. Therefore, we don’t limit the
number of valid candidates in the first search level. However,
the PEDs monotonically increase during the search process
and percentage-wise more candidates in the lower search levels
are outside the sphere. While the number of candidates in
the first search level cannot be bounded without significant
performance degradation, the search process in lower search
levels can be stopped once a certain number of candidates is
reached and still preserve detection accuracy. In this case, a
significantly smaller number of partial and final candidates
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Fig. 3. Distribution of valid candidates in the 2nd, 3rd and 4th search
level: bounded search, radius=0.6, Rayleigh fading channels, 4x4 16-QAM.
Maximum number of candidates is 100 in both 2

nd and 3
rd search levels.

is observed than for the unbounded search. Therefore, the
storage of partial/final candidates and distances requires a
much smaller memory.
Figure 4 shows the frame error rate (FER) performance

for different detection schemes. Identical system parameters
are assumed as in the distribution analysis. The outer LDPC
decoding with 15 inner iterations is used, the codeword size
is 1944, code rate is 1/2, and there are four outer itera-
tions between detection and decoding. The proposed detection
approach is labeled as BSSD(16,100,100) according to the
bounds for different search levels. It can be observed that
only a small loss occurs compared to unbounded soft sphere
detection (USSD), with significant gain compared to MMSE
with decision feedback equalization (MMSE-DFE) from [7]
and soft K-best from [5]. Our approach has comparable
performance with the depth-first search from [4] with reduced
complexity due to better utilization of valid candidates in
the 1st search level: 64 search operations on average vs. 256.
Furthermore, latency of the BSSD approach is reduced com-
pare to the USSD where approximately 82 search operations
are performed on average for the chosen sphere radius of 0.6.

IV. ARCHITECTURE DESIGN OF BSSD
In this section we present the high-level architecture de-

sign of the physical layer MIMO receiver based on iterative
improvement of the a posteriori probabilities between the
inner bounded soft sphere detection (BSSD) and outer LDPC
decoding. A high level block diagram of the MIMO receiver is
shown in Fig. 5. Search function unit searches for candidates
that are inside the pre-defined hyper-sphere based on Eq. 3.
Valid candidates and corresponding PEDs are stored in the
search memory and used in the lower search levels. Once the
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Fig. 4. Frame error rate performance of proposed bounded soft sphere
detection BSSD(16,100,100) vs. other soft detection schemes.

final candidates/distances are determined they are passed to
the a posteriori probability (APP) function unit that computes
the reliability information of coded bits according to Eq. 4.
The List memory stores all lists of final candidates within the
current LDPC codeword: number of stored lists is CS/(M ·
MC), where CS is the LDPC codeword size. Search for the
list of final candidates is performed only in the initial iteration.
Then outer feedback is employed between LDPC decoder
and APP function unit to improve a posteriori information
based on updated a priories. In the following subsections, we
analyze in more detail the architecture implementation of sub-
components of the soft sphere detector.
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Fig. 5. Physical layer MIMO receiver with iterative detection and decoding.

A. Arithmetic Logic
The arithmetic logic is composed of two components: the

search function unit and the APP function unit. It is assumed
M=4 transmit antennas in the system. The search function
unit simultaneously computes PEDs for PC = 2MC constella-
tion points that correspond to the particular symbol-candidate
found in the previous search level. The search unit then checks
if PEDs are within the sphere radius and saves all valid
candidates (up to PC ) as well as their PEDs in the search
memory for later use. Final candidates and the corresponding
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final Euclidian distances are directly utilized by the APP
function unit and stored in the List memory for use in outer
feedback.
For the sake of clarity we repeat Eq. 3 assuming (without

losing generality) that the current search level is the final
and computationally most complex one: T1(s) = T2(s) +∣∣∣ŷ1 −R11s1 −

∑M=4
j=2 R1ncj

∣∣∣2 ≤ r2, while c2, c3, and c4 are
candidates saved in the search memory for the 2nd, 3rd and
4th transmit antenna respectively, T2(s) is the corresponding
PED, and s1 represents any of PC constellation points that
are simultaneously tested. Factors Fm=ŷm − Rmm · sm (for
m = M, ..., 1) are pre-computed for allM search levels, stored
in registers and used for testing of all candidates. In addition,
it is not necessary to compute all 2 · PC products Rmm · sm

per search level: only four for 16-QAM and eight for 64-
QAM since there are four and eight different signal levels,
respectively. Furthermore, rather than computing products, it is
simpler to apply shift/add operations on Rmm values because
of the known levels of constellation points.
For parallel computation of products Rmj · cj (j = 2, 3, 4)

twelve function units FUCSA and six add/subtract arithmetic
units are required. The FUCSA checks the value of partial
candidate cj loaded from the memory and then performs
the appropriate shifting, add/subtract operation and sign-
conversion. The block diagram of the arithmetic logic for
computation of a single factor Rmj · cj is shown in Fig. 6.
Computation of Euclidian distances can now be rewritten

FUCSA

Re{Rmj}

Re{cj}

FUCSA

Im{Rmj}

Im{cj}

add/
sub

Re{Rmjcj}

FUCSA
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M
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Fig. 6. Block diagram of arithmetic logic for computation of Rmjcj for a
single value of j. Block diagram of the FUCSA for computation of partial
Rmjcj products: support for both 16-QAM and 64-QAM.

as: T1(s) = T2(s) + |Re{X}+ iIm{X}|
2
≤ r2, where

X = F1−
∑4

j=2 R1jcj . There are only four and eight different
values of Re{X} and Im{X} for 16-QAM and 64-QAM,
respectively. Therefore, parallel computation of |X |2 requires

8 and 16 square multipliers for the two cases. PC different
values of |X |2 will be formed by the cross-addition of all
individual results of square multipliers as shown in Fig. 7.
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Fig. 7. Final stage of the search function unit: parallel square operations,
computation of the PC PEDs by cross-addition and comparison with the
sphere radius.

The APP function unit updates the a posteriori probabilities
of M ·MC coded bits according to Eq. 4. It can be noticed
from Eq. 4 that the computed Euclidian distance T1(s) of
the vector-candidate s can be reused. The total inner product
using sign-conversion and additions is first computed and
then the appropriate LA(xk) is excluded: xT

[k] · LA,[k] =

xT · LA − sign(xk) · LA(xk), ∀k = 1, ..., M ·MC . Support
for both 16-QAM and 64-QAM can be insured by dedicating
enough parallel arithmetic units. Updated M · MC extrinsic
probabilities LE(xk|y) will be directly passed to the memory
of the LDPC decoder without any buffering.

B. Memory Organization
The memory space is divided into two parts: the search

memory and the List memory. For cost-efficient design one-
ported search memory is proposed. All candidates found inside
the sphere per search operation and their PEDs are concate-
nated and stored in a single memory location. The depth of the
search memory is equal to the number of search operations,
while the width initially corresponds to the constellation size.
In order to reduce the memory width we divide the search
memory into modules: one module for each search level except
the last one. In all search levels except the first one, a much
smaller number of candidates than PC are found inside the
sphere per search operation. This means that the effective
width of the search modules for the 2nd and 3rd levels can be
significantly reduced. By applying this approach, a substantial
reduction of the search memory is achieved: from 35 KBits
to 16 KBits for 16-QAM and from 335 KBits to 48 KBits for
64-QAM.
Each address location of the List memory contains the final

candidate (M · MC bits) and the Euclidian distance with a
precision of b bits. The depth of the List memory corresponds
to the number of channel realizations per data-frame and to the
average number of candidates for all channel realizations. The
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memory depth needs to support the worst case which is defined
as the maximum of all average number of final candidates
among the large number of considered channel realizations.
The size of the List memory is

[
CS

M·MC
·Max{Av.Candf}

]
×

(b + M · MC), where Max{Av.Candf} is the maximum
among all average number of candidates per data-frame f .
Figure 8 shows the interface between two search memory

modules, the search function unit and the List memory. The
content of a particular search module is stored in the register
and appropriate sub-parts are loaded to the search FU - one
candidate from level l-1 at a time combined with partial vector-
candidates from a total of l-2 previous search levels. If the
last search-level is reached, final candidates and distances are
directly stored in the multi-port List memory after de-mapping
of symbol-candidates into bit-candidates.

C. Estimated Hardware Cost
Table I shows the estimated number of standard CMOS

logic gates for design of the search FU, the APP FU and the
exact memory size. Both arithmetic units support 16-QAM and
64-QAM modulations. We assume 12-bit fixed-point precision
for arithmetic operations, and representation of final Euclidian
distances. If parallel soft sphere detectors are employed for

TABLE I
ESTIMATED HARDWARE COST FOR DETECTION OF ONE CHANNEL USE.

4x4 16-QAM 4x4 64-QAM
PED FU 27 K gates 27 K gates
APP FU 17 K gates 17 K gates

Search Memory 16 KBits 48 KBits
List Memory (frame) 103 KBits 144 KBits

simultaneous detection of multiple channel realizations, the
arithmetic logic and the search memory space needs to be
parallelized while a single List memory is used since it is
dedicated for the entire data-frame.
Table II shows the estimated detection throughput, area

cost and frame-error rate performance of the proposed

BSSD(16,100,100) solution vs. two hardware implementations
from the literature: depth-first SSD with 256 search operations
from [4], and soft K-best detector from [5]. Soft detection
of four 16-QAM symbols at a time is assumed. The area
estimates for our solution correspond to the Chartered 0.13 μm
CMOS technology [8] library where the size of a two-input
NAND gate is 4.5 μm2 and the cell area of one-port memory
is 3.61 μm2. An implementation overhead of 30% is also
included. The estimated latency of one search operation is
about 2 clock cycles. Our design solution has the smallest
area cost because of the memory reduction and efficient
design of the arithmetic logic. Furthermore, our solution is
significantly faster than the solution from [4] with similar
detection accuracy.

TABLE II
COMPARISON OF SOFT SPHERE DETECTORS.

FCLK=200 MHz [4] [5] BSSD(16,100,100)
Throughput [MBits/sec] 7.68 106 ≈ 25

Area [mm2] 0.88 0.56 ≈ 0.34
SNR [dB] @ FER=10−3 9.5 11 9.6

V. CONCLUSION
We propose soft sphere detection with bounded search based

on the distribution of candidates found inside the sphere
in different search levels. This scheme has reduced mem-
ory requirements and smaller latency compare to unbounded
search while preserving detection accuracy. The frame-error
rate performance is much better compare to the soft K-best
from [5] and the computational complexity is smaller than the
bounded depth-first search from [4]. Furthermore, we propose
ideas for area-efficient and flexible architecture design: the es-
timated hardware cost is smaller than two previous architecture
solutions while achieving high detection throughput.
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