
A General Hardware/Software Co-design Methodology for
Embedded Signal Processing and Multimedia Workloads

Michael Brogioli, Predrag Radosavljevic and Joseph R. Cavallaro
Department of Electrical and Computer Engineering

Rice University
Houston, Texas 77005

Email: {brogioli,rpredrag,cavallar}@ece.rice.edu

Abstract—This paper presents a hardware/software co-design method-
ology for partitioning real-time embedded multimedia applications be-
tween software programmable DSPs and hardware based FPGA copro-
cessors. By following a strict set of guidelines, the input application
is partitioned between software executing on a programmable DSP
and hardware based FPGA implementation to alleviate computational
bottlenecks in modern VLIW style DSP architectures used in embedded
systems. This methodology is applied to channel estimation firmware in
3.5G wireless receivers, as well as software based H.263 video decoders.
As much as an 11x improvement in runtime performance can be achieved
by partitioning performance critical software kernels in these workloads
into a hardware based FPGA implementation executing in tandem with
the existing host DSP.

I. INTRODUCTION

Personal telecommunications and multimedia systems form vast
segments of the embedded systems market. Variations in standards
for wireless and video coding, as well as the desire for software
programmability often result in applications being written in software
executing on a programmable DSP core. As workloads move from
wireless telecommunications to media intensive video and image
processing and beyond, computational demands on the host processor
are increasing [1], [4], [5], [6]. Despite increases in clock rates for
modern VLIW style DSP cores, the number of parallel functional
units within programmable DSP pipeline remains finite. For example,
Texas Instruments TMS320C6x series DSPs have an eight-wide
clustered VLIW pipeline. Even with modern code optimization tech-
niques, the computational demands of many wireless and multimedia
video kernels far exceeds the available pipeline arithmetic and logic
unit (ALU) resources of todays DSP devices.
This paper presents a hardware/software co-design methodology

for partitioning performance critical kernels of wireless and multime-
dia based workloads from software executing on DSP into a hardware
based FPGA implementation. In doing so, the programmability of a
software based implementation can be maintained while the speed
of highly parallel hardware for computationally complex bottlenecks
in the application can be achieved. Control and non–bottlenecked
portions of the application execute in software on the programmable
DSP core, whereas the bottlenecked data and compute intensive
portions of the application are offloaded to execute in hardware within
the loosely coupled FPGA. In evaluating this hardware/software par-
tition methodology, software based channel equalization for mobile
wireless receivers as well as embedded H.263 video codecs for video
processing are investigated.

II. SOC SIMULATION INFRASTRUCTURE

In order to prototype and evaluate heterogeneous DSP/FPGA
based architectures, a custom simulation infrastructure is used for
heterogeneous DSP/FPGA system-on-a-chip architectures [2], [3]. In
using this simulation infrastructure, the user is allowed to rapidly

prototype a heterogeneous DSP/FPGA based system as well as
on-chip interconnects, DMA engines and peripherals in a bit–true,
cycle–accurate manner. Application level software is compiled using
production DSP compilers, using on-chip DMA engines within the
simulation environment for data transfer between programmable host
DSP data memory and the local RAM arrays of the FPGA based
coprocessors. All data transfers, code execution and runtime behavior
is performed in a bit-true cycle accurate manner with existing
DSP and FPGA hardware. Data transfers between various modules
within the simulator is performed cycle accurately on clock cycle
boundaries, modelling all bandwidth contention and bus interactions
on a cycle-by-cycl basis as is the case in real hardware. This inherent
coupling of data flow and timing semantics, coupled with executing of
bit-true production compiler generated application level executables
allows the simulator to model hardware using a paradigm that mirrors
real hardware execution.
As a robust toolset for architectural simulation of heterogeneous

embedded computing environments, the simulator provides a large
library of user modules which can be hierarchically composed to
create simulators of vastly differing system topologies. Furthermore,
user are free to contribute their own hardware models of proprietary
or custom hardware blocks in simulation. Modules are written using C
code, with all inter-module communication taking place on clock cy-
cle boundaries over well abstracted port communication mechanisms
using a pre-defined port handling API. Simulator modules include,
but are not limited to the following processing modules: Texas Instru-
ments TMS320C6x DSPs, MIPS R4000 series microcontrollers, fine-
grained and coarse-grained FPGAa. Modules for the memory system
modelling include: caches, cache controllers, SRAMs and controllers,
DRAMs and controllers, DMA engines, point to point crossbars.
Other peripherals include program loaders, Texas Instruments Code
Composer Studio and MIPS gcc compiler support, program trace
analyzers, memory system analyzers, etc. A fullly detailed description
of the included simulator modules and peripherals can be found in [2].

III. EXAMPLE WORKLOADS FOR PARTITIONING
In exploring the benefits of hardware/software partitioning of em-

bedded workloads between programmable DSP cores and hardware
based FPGA accelerators, two workloads were chosen. The first
is a wireless channel equalizer used in high speed wireless data
communication for 3.5G cellular networks supporting the HSDPA
data rate of 3.84 megasamples per second. The second workload is
a video decoder for the H.263 compressed video standard, operating
at the CIF resolution of 240x162 pixels. These example workloads
were chosen as they not only represent multiple application domains,
namely wireless signal processing and multimedia content, but also
because they contain various computational block common amonst
many embedded signal processing workloads. Examples are: Fast

14861­4244­0785­0/06/$20.00

Authorized licensed use limited to: Rice University. Downloaded on June 18, 2009 at 12:54 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/6102634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fourier Transform, Inverse Fast Fourier Transform, Discrete Cosine
Transform, Finite Impulse Response Filtering, etc.
Figuire 1 shows the block diagram of the software only imple-

mentation of the wireless channel equalizer, whereas Figure 2 shows
the block diagram of the software architecture for the H.263 video
decoder. In each figure, the software’s runtime profile execution exe-
cuting on a dedicated DSP is shown in the corresponding block of the
diagram. Looking at Figure 1, it can be seen that the dominant blocks
of computation in the wireless channel equalizer are the Channel
Estimation routines, Fast Fourier and Inverse Fast Fourier transforms,
FIR Filtering and to a lesser extent the Despreading/Descrambling
routines. Similiarly, looking at Figure 2 it can be seen that the In-
verse Discrete Cosine Transform, Block Summation and Macroblock
Routines, as well as the Motion Compensator dominate the majority
of the software runtime.

Covariance
Matrix
Comp.

Channel
Estim. `

`

Decoded sequence

Received Sequence

`

`
Covariance

Matrix
 Circ.

` FFT +
IFFT ` FIR Despread

Desc.

7.06% 0.34% 0.19% 13.96% 73.31% 3.97%

`

Fig. 1. Channel Equalizer Block Diagram and Software Only Runtime Profile
Information

In the case of the video decoder algorithm, as depicted in Figure 2,
the algorithm utilizes a feedback look for the purposes of motion
compensation. It is due to this loop that although the motion compen-
sators and block summation routines account for a significant portion
of the total software runtime, larger runtimes are due to the multiple
executions during feedback versus a larger level of computational
complexity than the Inverse Discrete Cosine Transform for example.

+

Encoded
Video

Sequence

Output
Video

Stream48 % < 1 % 17 %

 2 %

14 %

Motion
Compensator

Frames
Store

Inverse Discrete
Cosine Transform

Inverse
Quantization

Huffman Run
Length

Decoder
2 %

Fig. 2. H.263 Video Decoder and Software Only Runtime Profile Information

A. Workload Software Compilation
The channel equalization firmware and video decoder firmware,

as described above, were aggressively compiled for the host DSP
using Texas Instruments Code Composer Studio Version 2.10.0, at
level three optimization with speed critical performance flags turned

on and aggressive inlining and loop unrolling. All computation was
optimized to be 16–bit fixed point, in effect optimizing the workload
for DSP performance by maximizing the functional unit utilization
of the TMS320C64x architecture. While performance critical kernels
are sometimes implemented in assembly code, we have chosen to
use low level optimized C code for the application software in
these studies. Though in some cases assembly can be more efficient,
the performance trends shown are valid not due to the absolute
performance of the code but rather the fact that despite the application
software efficiency there are computational bottlenecks on the DSP
due to functional unit limitations.
In the case when partitioning of the workload across one or

more FPGA based compute fabrics was performed, a system of
macros built in to Code Composer Studio for heterogeneous system
partitioning were used to program the enhanced DMA engines, FPGA
based compute fabrics, and memory mapped status registers.

IV. HARDWARE/SOFTWARE PARTITIONING CRITERIA
In partitioning embedded workloads from a traditional software

only DSP based implementation to a heterogeneous DSP and multiple
FPGA based implementation a number of criteria are considered
for partitioning. The goal of the hardware/software partitioning is
to alleviate bottlenecks in the input application that exceed the
instruction and data paralellism exploitable by the limited resources
of the DSPs processor pipeline. In migrating this computation from
a software based solution in DSP, to a more explicitly parallelized
implemnetation executing in an FPGA or ASIC, runtime compute
bottlenecks can be alleviated that often limit the real-time perfor-
mance of the software. Partitioning compute performance does not
come without cost however, quite often the data transfer DMA
overheads of moving the compute data from local DSP program
memory to the local data memory within the coprocessor can offset
any computational performance gains achieved. With this said, the
specific criteria followed in this paper are:

• Spatial locality of data. The ability to access data in a particular
order efficiently is of great importance to performance when
DMA transferring data from local DSP data memory to FPGA
RAM arrays. Issues such as latency to memory, bus contention,
and DMA transfer times to FPGA compute elements all need
to be taken into consideration. In cases where data is not
contiguous or uniformly strided, additional overhead to arrange
data before block DMA transfers can take place or data can
efficiently be computed on.

• Data and instruction level parallelism. Many signal processing
applications exhibit a large amount of both instruction and data
level parallelism, often far more than available DSP functional
units can handle efficiently. FPGAs can exploit these computa-
tional bottlenecks with parallel functional units and local block
data RAM, as well as the use of highly parallel multiplier and
adder trees.

• Task level parallelism. Applications may contain multiple tasks
that can execute concurrently, but have a limited amount of
instruction or data level parallelism within each unique task.
If one or more task contains enough instruction/data level
parallelism to exhaust the available host processor resources,
it can be considered for partitioning to FPGA.

By utilizing the partitioning criteria described in Section IV in
conjunction with runtime behavioral information of the workload
executing in software only on a programmable DSP core, iterative
partitioning of the workloads tasks and performance critical ker-
nels from programmable software executing on the DSP to one

1487

Authorized licensed use limited to: Rice University. Downloaded on June 18, 2009 at 12:54 from IEEE Xplore. Restrictions apply.

Simulation Parameters Value
DSP Architecture Texas Instruments

TMS320C6401 Core
System Clock Rate 167MHz
Instruction Memory Bandwidth 256b on–chip
Data Memory Bandwidth 256b on–chip

32bB off–chip
Instruction Memory Size 64KB on–chip
Data Memory Size 64KB on–chip
FPGA Bus Bandwidth 32 bits
DMA Bus Bandwidth 32 bits per clock cycle

bidirectional
Bus Arbitration Round Robin

TABLE I
BASELINE SIMULATION PARAMETERS

or more FPGAs can be performed. The resulting heterogeneous
DSP/FPGA based system-on-a-chip architecture is then prototyped
using the Spinach simulation environment as described in Section II.
By iteratively partitioning the workload according to the criteria
listed above in Section IV, a balance between the flexibility of a
programmable DSP core and the performance of a hardware based
FPGA implementation can be achieved.
Figure 3 illustrates the overall simulated system topology which is

used as a platform for these experiments. For each of the workloads
investigated, the programmable software portion of the algorithm
executes on the programmable host DSP while portions offloaded
to FPGAs for hardware based acceleration are implemented in the
various crossbar attached FPGA devices as shown in Figure 3. As
was mentioned previously, all DMA based data transfers are explicitly
set up and controlled via software on the programmable host DSP
utilizing the attached DMA engines, show in Figure 3.

fpga 1

FPGA
RAM Kernel A

C
rossbar

A
rbiter

C
rossbar

MMR

DMA
Engines

Memory
Mapped

Registers

256-32
Bus

Bridge

Instruction
Memory

I-Mem
Controller

D-Mem
Controller

Data
Memory

TMS320C64x
DSP Core

fpga 1

FPGA
RAM Kernel D

MMR

fpga 1

FPGA
RAM

Kernel C
MMR

fpga 1

FPGA
RAM Kernel B

MMR

Fig. 3. Hetergeneous DSP/FPGA Architecture as Modelled with the Spinach
Simulation Infrastructure

Table I shows the various architectural parameters used in the
simulated system topology for both the wireless channel equalizer
and the video decoder. The DSP architecture modelled is the Texas
Instruments TMS320C64x series device operating at a clock rate of
167 MHz. The instruction and data memory bandwidths are 256 bits
respectively, while all arbitration policies are set to round robin.

V. RESULTS
For both the H.263 video decoder and the wireless channel

equalizer workloads described in Section III, the partitioning criteria

as presented in Section IV are combined with the software only
implementations runtime profile performance on the programmable
DSP core to arrive at a system partitioning. Figure 4 shows the
resultant hardware software partitioning for the wireless channel
equalizer, whereby tasks shown in white are executing in software on
the programmable DSP core and tasks shown in grey are migrated
into a hardware based FPGA implementation. Specifically, portions
of the Channel Estimation, FIR Filtering, Despreading/Descrambling,
and Fast Fourier and Inverse Fast Fourier Transforms are placed in
FPGAs. In the case of Channel Estimation however, the kernel is
parallelized across both the programmable DSP core and FPGA to
achieve optimal parallelism.

DSP
`

`

FPGA

Received
Sequence

C
ha

nn
el

Es
tim

at
io

n
C

ha
nn

el
Es

tim
at

io
n

C
ha

nn
el

Es
tim

at
io

n

C
ov

ar
ia

nc
e

M
at

rix
C

om
pu

ta
tio

n

C
ov

ar
ia

nc
e

M
at

rix
C

om
pu

ta
tio

n
C

irc
ul

ar
iz

at
io

n

`

FF
T

Po
st

 F
FT

Pr
oc

es
si

ng

IF
FT FI
R

Fi
lte

rin
g

`

D
es

pr
ea

d
D

es
cr

am
bl

e

` ` ` `

`
Detected
Sequence

Tim
e

D
ecoded

Sequence

`

Fig. 4. Channel Equalizer DSP/FPGA Partitioning

Figure 5 shows the corresponding resultant partitioning for the
H.263 video decoder. Specifically, the video block combination and
summation routines are moved into FPGA based implementation, as
well as the Inverse Discrete Cosine Transform and Motion Compen-
sation routines. In both Figures 4 and 5, any functionality migrated
into an FPGA requires explicit DMA transfers of compute data from
local DSP program memory to the local RAM arrays of the FPGA,
and back to DSP program memory upon completion of computation.

+

Output
Video

Stream

D
S

P
FP

G
A

H
uf

fm
an

 R
un

Le
ng

th
 D

ec
od

er

In
ve

rs
e

Q
ua

nt
iz

at
io

n

In
ve

rs
e

D
is

cr
et

e
C

os
in

e
Tr

an
sf

or
m

Fr
am

e
St

or
es

M
ot

io
n

C
om

pe
ns

at
or

Encoded
Video

Stream

Fig. 5. H.263 Video Decoder DSP/FPGA Partitioning

In the case of H.263 video decoding, it is determined that in-
verse discreet cosine transform, motion compensation, and various
video decoder block and macroblock routines are to be offloaded
into hardware for optimal performance. It should be noted that all

1488

Authorized licensed use limited to: Rice University. Downloaded on June 18, 2009 at 12:54 from IEEE Xplore. Restrictions apply.

computation offloaded to hardware based FPGA implementation must
be controlled via the programmable DSP in terms of data transfers
to local FPGA RAM arrays, as well as synchronization with loosely
coupled software based tasks on the DSP. All computation within the
simulated system topology is performed in a bit–true, cycle–accurate
manner running compiler generated executables on DSP, or in the
case of FPGA implementation, according to hardware gate counts
and measured computational latencies.
Using the hardware software partitionings described above, Fig-

ures 6 and 7 show the program runtimes of the wireless Channel
Equalizer as H.263 video decoder as computational bottlenecks in the
software only implementation are iteratively offloaded to FPGA based
implementations, using the system topology described in Figure 3.
The stacked bar graphs show the component of the total runtime
each kernels considered for offloading takes, as increasing amounts
of functionality are partitioned into hardware.

0

2

4

6

8

10

12

14

16

18
x 104

Ex
ec

ut
io

n
Ti

m
e

C
lo

ck
 C

yc
le

s

Channel Estimation
FFT/IFFT
FIR
Despread/Descramble
Misc DSP

DSP

DSP+
FIR

DSP+
FIR+
FFT/IFFT

DSP+
FIR+
FFT/IFFT+
DD

DSP+
FIR+
FFT/IFFT+
DD+
CE

Fig. 6. Channel Equalizer Runtime vs DSP/FPGA Partitioning Strategy

Looking at Figure 6, the left most stacked bar shows the Channel
Equalizer runtime performance when implemented entirely in soft-
ware only using the programmable DSP core in the system. The
second bar to the left shows the performance when the FIR Filtering
kernel is offloaded to FPGA. Similarly, the subsequent bars show
the additional offloading of the Fast Fourier and Inverse Fast Fourier
Transforms, the Channel Equalization Kernel and lastly the inclusion
of also the Despreading and Descrambling portion of the workload.
In the fully partitioned implementation of the Channel Equalizer,
shown in the rightmost column of Figure 6, there is an 11.2x
improvement of the equalizers runtime performance. This includes
all data transfer overheads and synchronization overheads between
processing elements in the system. This actually allows the channel
equalizer to process samples at a rate 64% faster than the HSDPA
standard mandates, whereas the software only solution is severely
bottlenecked and only processing samples at 13
Looking at the performance of the H.263 video decoder, Figure 7

shows the video decoder performance as DSP computational bottle-
necks are isolated and migrated into an FPGA based implementation.
In this example, however, for many of the kernels considered for
offloading, the amount of parallelism implemented via the functional
units within the FPGA is varied. The left most stacked bar of
Figure 7 shows the composite performance of the software only
implementation of the video decoder. The second to left most bar of
this figure shows the performance when the block level summation
and compare routines are migrated into FPGA. The block summation
routines typically perform computations on 8x8 tiles of 16 bit or 8

0

0.5

1

1.5

2

2.5

3
x 107

R
un

tim
e

Pr
oc

es
si

ng
 1

0
C

IF
 R

es
ol

ut
io

n
Vi

de
o

Fr
am

es

Motion Comp
AddBlock
IDCT
getMB
getBlock
Misc. DSP

DSP

DSP+
Addblock DSP+

Addblock+
IDCT (1)

DSP+
Addblock+
IDCT (8)

DSP+
Addblock+
IDCT (all)

DSP+
Addblock+
IDCT(all)+
Motion
Comp

DSP+
Addblock+
IDCT(all) +
Motion
Comp
(parallel)

Fig. 7. H.263 Video Decoder Runtime vs DSP/FPGA Partitioning Strategy

bit values, rapidly comparing and summing them. This computation
is more suited to the kind of highly parallel implementation that
an FPGA can provide due to the large amount of instruction level
parallelism in the kernel. Because the programmable DSP core is an
8 wide clustered VLIW pipeline, the amount of instruction and data
level parallelism that can be effectively tackled in parallel is limited.
Continuing with Figure 7, the stacked bars in positions three

through five show the additional offloading of the Inverse Discrete
Cosine Transform in conjunction with the block summation rou-
tines. Three different implementations for Inverse Discrete Cosine
Transform are shown here, namely offload the row by row, and
column by column computation of the Cosine Transform to FPGA,
offloading the entire row parallel computation followed by the
column parallel computation, and lastly offloading the row parallel
and column parallel computation into the same FPGA. The most
aggressive Inverse Discrete Cosine parallelization, namely column
five of Figure 7 shows the greatest improvement in performance.
Interestly however, increasing the amount of parallelism available
for the Cosine Transform does not drastically effect the runtime
performance over the less parallel implementations. This is primarily
due to two reasons: first the Cosine Transform does not account for
as much of the decoder runtime as other kernels due it not being
located in the motion compensation feedback loop, and secondly the
data transfer overheads during DMA can shadow the gains achieved
by computation alone.
Looking at the right most two columns of Figure 7, in addition

to the block level summation routines and Inverse Discrete Cosine
Transform, two implementations of the Motion Compensation rou-
tines are added with the last one being explicitly parallelized in
FPGA hardware and having a much shorter computational latency.
With this most aggressive parallelization strategy, the overall runtime
performance of the video decoder is increased by a factor of 4.2x.
Similar to the case of the highly parallelized Cosine Transform
discussed above, the aggressively parallelized FPGA based Motion
Compensation routine does not afford drastic runtime improvements
over the more modest implementation. The reason for this are that
while the Motion Compensation routine does lie in the feedback loop
of the video decoder, and does account for a significant portion of the
total decoder runtime, data transfer overheads of the DMA engines
overshadows the computational portion of the FPGA runtime and
thus limits total improvement gains.
While the wireless Channel Equalizer saw improvement gains

on the order of 11.2x, the video decoder saw much more modest

1489

Authorized licensed use limited to: Rice University. Downloaded on June 18, 2009 at 12:54 from IEEE Xplore. Restrictions apply.

improvements in runtime performance on the order of 4.2x. The
reasons for this are two fold. First, the video decoder software archi-
tecture was such that portions of the codec were not readily available
for implementation in FPGA. For example, data was mapped non-
contiguously in the global space or allocated on heaps. Control flow
dominant portions of the code used non-well defined structure and
erroneous control flow via go-to type statements. Additionally the
algorithmic details made data usage patterns of the incoming frame
stores non-deterministic at runtime and thus difficult to migrate into
fixed buffer sized FPGAs. The final reason for the more modest
gains of the video decoder were due to the input problem size. CIF
resolution video is rather small in frame size compared with larger
resolutions such as 16CIF or even other codec standards like H.264.
While this affords a shorter simulation time and smaller memory
footprint, it limits the amount of instruction and data level parallelism
seen in the kernels. The overall data trends are valid for larger
frame sizes and more modern standards, and in fact would be more
pronounced when using a larger resolution video sequence. For the
sake of keeping simulation tractable, however, smaller input data sets
were used.
The improvements on the video decoder are somewhat more

modest due to the initial software organization and data layout
of the decoder, which in some cases requires data reorganization
and manipulation before DMA transfers to FPGA for local parallel
computation. Additionally, video decoding was performed on CIF
video streams, which have a much smaller data footprint and fewer
blocks and macro-blocks to compute on versus 4CIF and 16CIF
video or video for the H.264 standard. These performance gains are
impressive even for CIF resolution video frames, and will be more
pronounced for higher resolution encodings such as 4CIF and 16CIF
for the H.263 video standard.

VI. CONCLUSIONS

This paper shows a hardware/software codesign methodology for
partitioning signal processing and multimedia applications across
software programmable DSP cores and hardware based FPGA com-
pute engines in embedded environments. By using a determined set
of criteria for partitioning software based applications across one
or more FPGA based compute elements, the parallel computation
available in FPGA based hardware can be used to overcome limits
in instruction and data level parallelism inherent with modern VLIW
style DSP cores. By combining this hardware/software partitioning
methodology with a prototyping environment for simulation of het-
erogeneous DSP/FPGA based embedded systems, performance gains
on the order of 3.8x to 11x can be achieved in the embedded signal
processing and multimedia domains. By intelligently exploring the
design space, and using an simulator prototyping environment for
heterogeneous DSP/FPGA architectures, an iterative design flow of
hardware/software codesign is achieved.

ACKNOWLEDGMENT

This work was supported in part by Nokia Inc., Texas Instruments,
Inc., and NSF under grants EIA-0224458 and EIA-0321266.

REFERENCES

[1] M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Video Coding for
Mobile Communications. Academic Press, 2002.

[2] M. Brogioli and J. Cavallaro. Modelling Heterogeneous DSP-FPGA
Based System Partitioning with Extensions to the Spinach Simulation En-
vironment. In Asilomar Conference on Signals, Systems, and Computers,
October 2005.

[3] M. Brogioli, P. Willmann, and V. Pai. Spinach: A Liberty-Based Simu-
lator for Programmable Network Interface Architectures. In Languages
Compilers and Tools for Embedded Systems 2004, pages 100–110, June
2004.

[4] A. de Baynast, P. Radosavljevic, and J. Cavallaro. Chip level LMMSE
Equalization for Downlink MIMO CDMA in Fast Fading Environments.
In IEEE Globecom, volume 4, pages 2552–2556, November 2004.

[5] M. Ghanbari. Video Coding: An Introduction to Standard Codecs. The
Institute Of Electrical Engineers, London, UK, 1999.

[6] Y. Guo, J. Zhang, D. McCain, and J. Cavallaro. Efficient MIMO
Equalization for Downlink Multi-Code CDMA: Complexity Optimization
and Comparative Study. In IEEE Globecom, volume 4, pages 2513–2519,
November 2004.

1490

Authorized licensed use limited to: Rice University. Downloaded on June 18, 2009 at 12:54 from IEEE Xplore. Restrictions apply.

