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Abstract—In a high performance multiple-input multiple-output
(MIMO) system, a soft output MIMO detector combined with
a channel decoder is often used at the receiver to maximize
performance gain. Graphic processor unit (GPU) is a low-cost
parallel programmable co-processor that can deliver extremely high
computation throughput and is well suited for signal processing
applications. We propose and implement a novel soft MIMO
detection algorithm and show we meet real-time performance while
maintaining flexibility using GPU.

I. INTRODUCTION

GPU delivers extremely high computation throughput by em-

ploying many cores to execute a common set of operations on

a large set of data in parallel. Many communication algorithms

are inherently data parallel and computationally intensive and

can take advantage of highly parallel computation offered by

GPU to deliver real-time throughput. For example, researchers

have found that GPU, like ASIC, can perform low density parity

code (LDPC) decoding as well as ASIC [1]. Combined with the

fact that these types of processors are extremely cost-effective

and ubiquitous and can be reconfigured on the fly to handle

different workloads, communication algorithms in the future can

be offloaded onto this type of processor in place of custom ASIC

or FPGA.

In many wireless systems, a channel decoder such as LDPC

is combined with a soft output MIMO detector at the receiver

to maximize performance gain. Besides the channel decoder, the

MIMO detector is another computation intensive block. Although

an exhaustive search based MIMO detector would be optimal,

its complexity would be prohibitive. Fortunately, suboptimal

MIMO detectors can provide close to optimal performance with

significantly lower complexity. The typical suboptimal MIMO

detectors are ASIC designs [2–4]. In addition, researchers have

investigated many other ways of hardware implementation such

as FPGA [5, 6] and application-specific instruction set processor

(ASIP) [7]. To the best of our knowledge, there are no existing

implementations of soft MIMO detector on GPU. In this paper,

we aim to show that besides these traditional solutions, graphic

processor unit (GPU) has become a viable alternative to high

performance accelerators for soft MIMO detection.

However, careful architecture-aware algorithm design is

needed to achieve high performance on the GPU. For example,

due to the limited amount of resources on GPU, such as on-chip

memory, many existing algorithms, such as depth first sphere

detector and K-best detector, do not map very efficiently onto this

architecture. In this paper, we propose a MIMO soft detection

algorithm specifically designed for this type of architecture based

on multi-pass forward trellis traversal. We also show that this soft

MIMO detector implementation can achieve good performance

while maintaining flexibility offered by programmable hardware.

II. SYSTEM MODEL

For an M ×N MIMO configuration, the transmitter transmits

different signals on the M antennas and the receiver receives N
different signals, one per receiver antenna. An M × N MIMO

system can be modeled as

y = Hs + w (1)

where y = [y0, y1, ..., yM−1]T is the received vector. H is

the M × N channel matrix, where each element, hi,j , is an

independent zero mean circularly symmetric complex Gaussian

random variable with unit variance. Noise at the receiver is

w = [w0, w1, ...wN−1]T , where wi is an independent zero

mean circularly symmetric complex Gaussian random variables

with σ2 variance per dimension. The transmit vector is s =
[s0, s1, ..., sN−1], where si is drawn from a finite complex

constellation alphabet, Ω, of cardinality Q. For example, the

constellation alphabet for QPSK is {−1− j,−1+ j, 1− j, 1+ j}
and Q = 4 for this particular case.

After complex QR decomposition of the channel matrix H,

we can model the M ×N MIMO system as:

y = QRs + w (2)

ŷ = Rs + ŵ (3)

where R is a M×N complex upper triangular matrix. The vector

ŷ = [ŷ0, ŷ1, ..., ŷN−1] is the effective complex receive vector.

Each symbol sm is obtained using the mapping function sm =
map(x), where x = {x0, x1, ..., xMc−1}, a Mc×1 vector (block)

of transmitted binary bits. Mc = log2 Q is the number of bits

per constellation symbol.

The soft MIMO detector calculates the a posteriori probability

(APP), in terms of log likelihood ratio (LLR) for each transmit-

ted bit, xk. Assuming no extrinsic probability, using max-log

approximation, LLR can be expressed as [8]:

L(xk|ŷ) ≈ 1
2σ2

(
min

x∈Xk,−1
Λ(s,y)− min

x∈Xk,+1
Λ(s,y)

)
, (4)

where the set Xk,+1 = {x|xk = +1} and set Xk,−1 = {x|xk =
−1} and

Λ(s, ŷ) = ‖ŷ −Rs‖22 (5)
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III. COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)

The raw computation power offered by the programmable

GPU is enabled by many cores. Eight cores form a stream

multiprocessor (SM). During execution, all cores in a multi-

processor execute the same 32-bit integer or float operation

on different sets of data. However, computation throughput can

become I/O limited if memory bandwidth is low. Fortunately, fast

on-chip resources, such as registers, shared memory and constant

memory can be used in place of off-chip global memory to keep

the computation throughput high.

Compute Unified Device Architecture [9] is a software pro-

gramming model that exposes the massive computation poten-

tial offered by the programmable GPU. A kernel, a series of

operations applied to a set of data can be defined using this

programming model. At runtime, multiple threads are spawned,

where each thread runs the operations defined by the kernel on

a data set. Threads are independent in this model. However,

threads within a block can share computation through barrier syn-

chronization and shared memory. Thread blocks are completely

independent and only can be synchronized through writing to the

global memory and terminating the kernel. Figure 1 shows the

thread hierarchy.

Thread Thread

Reg Reg

Shared Memory

Constant Cache

Texture Cache

Block

Grid

Global Memory

Fig. 1: CUDA thread model.

During execution, each thread block is assigned to an SM.

CUDA divides threads within a thread block into blocks of 32

threads. These 32 threads, a WARP, are executed as a group

on an SM over 4 cycles. As data is not cached, SM can stall

waiting for data. To keep cores utilized, multiple thread blocks

(concurrent thread blocks) are mapped onto an SM and executed

on an SM at the same time. Since the GPU can switch between

WARP instructions with zero-overhead, GPU can minimize stalls

by switching over to another independent WARP instruction on

a stall.

Besides fast thread switching, shared memory, which can be

as fast as a register, can reduce memory access time by keeping

data on-chip and reduce redundant calculations by allowing data

sharing among independent threads. However, shared memory

on each SM has 16 access ports. If 16 threads, half of a WARP,

are scheduled to access shared memory at the same time, they

must meet certain conditions to allow the instruction to execute

in one cycle. It takes one cycle if all threads access the same

port (broadcast) or none of the threads access the same port.

However, random layout with some broadcast and some one-to-

one accesses will be serialized and cause a stall.

There are several other limitations with shared memory. First,

only threads within a block can share data among themselves and

threads between blocks can not share data through shared mem-

ory. Although a fast block synchronization method is described

in [10], the overhead is still large on the order of microseconds.

Second, there are only (16KB) on each stream multiprocessor

and shared memory is divided among the concurrent thread

blocks on a SM. Therefore, the number of concurrent thread

blocks on a SM can be small if each thread block uses a large

amount of sharde memory. As a result, designing an algorithm

that maps efficiently onto GPU is a non-trivial task.

IV. PROPOSED SOFT MIMO DETECTOR

In this section, we propose using a greedy shortest path

algorithm developed in our previous work [11] to approximately

solve the soft detection problem. Only one kernel is required for

candidate list generation. At runtime, the kernel spawns a large

number of soft MIMO detector thread blocks, one thread block

for each channel matrix and the corresponding receive vector.

Each thread block uses Q threads to generate a candidate list

for each trellis level and calculate the LLR for each bit using

the candidate lists. Effectively, the kernel creates a large array of

Soft MIMO detectors that operate on an array of data in parallel.

We choose this algorithm because it maps efficiently onto GPU.

First, there are a fair amount of common computations across

threads in a thread-block. Second, memory access is fast since

this algorithm has a regular memory access pattern.

We use a 4×4 QPSK system to explain our proposed algorithm

in this section. The search space becomes larger for larger

systems with more antennas and higher modulation. Therefore,

we can extend Figure 2 by adding one trellis stage per antenna

and one trellis level per constellation point. However, we can

still apply the same greedy shortest path algorithm to solve the

soft detection problem.

A. Graph construction

The goal of the soft MIMO detector is to generate the LLR

value for each transmitted bit xk based on (4), which requires

the calculation of the minimum Euclidean distance

Λ =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

ŷ0

ŷ1

ŷ2

ŷ3

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

R00 R01 R02 R03

0 R11 R12 R13

0 0 R22 R23

0 0 0 R33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

s0

s1

s2

s3

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥

2

, (6)

over sets Xk,+1 and Xk,−1. The calculation of Λ can be decom-

posed as: Λ = w<0> + w<1> + w<2> + w<3>, where w<t> is

the 1-D Euclidean distance and is calculated as

w<0> = ‖ŷ3 −R33s3‖2,
w<1> = ‖ŷ2 − (R22s2 + R23s3)‖2,
w<2> = ‖ŷ1 − (R11s1 + R12s2 + R13s3)‖2,
w<3> = ‖ŷ0 − (R00s0 + R01s1 + R02s2 + R03s3)‖2. (7)

This process can be viewed using a flow graph which is shown

in Figure 2. There are 4 trellis stages, one stage per antenna.

In each stage, there are Q vertices, one per constellation point.

The edge between v(t− 1, i) and v(t, j) has a weight of w<t>
i,j .

The weight function does not depend on the future stages, but
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only depends on its current stage and all its predecessors. For

example, w<2>
i,j depends on the vertices in stages 2, 1, and 0.
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Fig. 2: Flow graph for MIMO detection.

B. Problem Statement

To generate the LLR value for each transmitted bit xk, we first

generate a candidate list for each trellis stage. For each vertex i
(0 ≤ i ≤ Q − 1) in the stage t (0 ≤ t ≤ M − 1), the detector

finds the shortest path, which must contain this vertex, from the

root to the toor. The Q conditioning shortest paths found at every

stage t make a candidate list Lt.

We then use the lists to compute the LLR for each bit as:

L(x<t>
i |y) =

1
2σ2

(
min

x∈Lt,−1
Λ− min

x∈Lt,+1
Λ

)
. (8)

C. Candidate List Generation

To generate the candidate lists, the algorithm searches for a

shortest path through the trellis for each vertex i in our trellis

graph. The algorithm does this by pruning unlikely paths through

the trellis. There are two ways of reducing the number of paths.

We can either prune the incoming paths or outgoing paths at each

vertex. Edge reduction reduces the number of paths by pruning

the number of incoming paths for a vertex to one. Similarly, path

extension reduces the number of paths by pruning the number

of outgoing paths for vertex to one. Figure 3 shows an edge

reduction and a path extension.

i

Best incomingsubpath Best outgoing

subpath

i

(a) edge reduction (b) path extension
Fig. 3: Data flow at vertex v(t, i)

The candidate list search process can be expressed as edge

reductions followed by path extensions. To generate the candidate

list for Lt, we perform edge reduction until there is one path per

trellis stage at level t. If we perform edge reduction after this

level, we can not guarantee each path in candidate list has a

vertex from trellis level t. Therefore, after this trellis level t,
we perform path extension until we have completely traversed

the trellis. Figure 4 shows each stage of the search process

for L1. The complete search process can be represented with

a data flow diagram, shown by Figure 5. There are common

steps when generating candidate lists for each trellis level. For
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Fig. 4: Search process for generating L1.

example, all search processes starts with a path reduction at stage

0. Furthermore, since each reduction step and the edge reduction

directly above both prune the edges between stage i and stage

i+1 and have the same set of incoming subpaths, both steps need

the same Q2 weights. Computation can be reduced by allowing

these two steps to share computations.

R E E E

R E E

R E

R

,R

Fig. 5: Data-flow diagram for generating candidate lists.

We will now describe the algorithm and the software imple-

mentation of extension and reduction steps.
1) Path Extension: Figure 3 shows that each vertex i at stage

t has Q outgoing subpaths. Since we have Q vertices to extend,

we use all Q threads, one thread per vertex. Specifically, thread

k evaluates all Q outgoing paths and picks the path with the

smallest path weight for vertex k. An outgoing path’s edge

weight between vertex k (in stage t− 1) and vertex q (in stage

t) can be expressed as

w<t>
k,q =

∥∥∥∥∥∥ŷN−t−1 −
N−1∑

j=N−t−1

R(N−k−1,j)sj

∥∥∥∥∥∥
2

2

(9)

where h′k is the kth subpath and sj is the jth element of {h′k, q}.
The kth outgoing path weight is then updated as

dk = d′k + w<t>
k,q . (10)

Algorithm 1 summarizes steps taken to find the path with the

smallest path weight. Line 2 calculates δk,

δk =
N−2∑

j=N−1−k

R(N−1−k,j)sj , (11)
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where sj is the jth element of a kth subpath h′k. Lines 4-

17 evaluate Q outgoing paths by evaluating all constellation

points in our complex constellation alphabet Ω. Line 12 first

computes edge weight w<t>
k,q and line 13 computes the updated

path weight, dk. Lines 14-17 search outgoing paths with the

smallest cumulative weight serially. The path selected is the new

kth path.

Algorithm 1 The kth thread searches for the best outgoing path

1: //Calculate intermediate PD vectors
2: Calculate δk

3: //Search for the path with minimum partial distance serially
4: w = 0
5: Fetch d′

k from shared memory
6: Fetch Ω0 from shared memory
7: Calculate w<t>

k,0 using δk and Ω0

8: Update dk

9: dw = dk

10: for q = 1 to Q− 1 do
11: Fetch Ωq from constant memory
12: Calculate w<t>

k,q using δk and Ωq

13: Update dk

14: if (dk) < (dw) then
15: dw = dk

16: end if
17: end for
18: Store wth path into kth path history in shared memory
19: Store wth path’s partial distance in shared memory
20: SYNC

At the end of the iteration, there are Q paths, one path per thread.

The paths are written to the shared memory for the next iteration.

For an extension step right above a reduction step, thread k
also saves δk into shared memory to speed up the next reduction

step.

2) Edge Reduction: Figure 3 shows that each vertex i at each

stage t has Q incoming subpaths h′0, ..., h
′
Q−1. Let the partial

distance be dk. For each iteration of the edge reduction, thread

q needs to pick the best path out of Q paths connected to vertex

q. For the iteration corresponding to stage t, the path weight

between vertex k in stage t− 1 and vertex q in stage t can also

be computed using equation (9).

To reduce complexity, the calculation can be done in two steps,

δk =
N−2∑

j=N−1−k

R(N−1−k,j)sj , (12)

w<t>
k,q =

∥∥ŷN−t−1 − δk −R(N−1,N−1)q
∥∥2

2
, (13)

where sj is the jth element of a kth subpath h′k.

Notice that the extension step above each reduction step

already computed all δk, which reduces complexity significantly.

The steps in the algorithm are summarized in Algorithm 2. The

algorithm works as follows. Each thread calculates Q partial

distances serially and finds the path with the minimum weight.

At the end of the iteration, there are Q paths, one path per thread.

The paths are written to the shared memory for the next iteration.

Algorithm 2 The qth thread searches for the best incoming path

1: //Search for the path with minimum partial distance serially
2: w = 0
3: Fetch δ0 from shared memory
4: Fetch d′

0 from shared memory
5: Fetch Ωq from constant memory
6: Calculate w<t>

0,q using δ0 and Ωq

7: Update d0

8: dw = dk

9: for k = 1 to Q− 1 do
10: Fetch d′

k from shared memory
11: Fetch δk from shared memory
12: Calculate w<t>

k,q using δk and Ωq

13: Update dk

14: if (dk) < (dw) then
15: dw = dk

16: end if
17: end for
18: SYNC
19: Store wth path into qth path history in shared memory
20: Store wth path’s partial distance in shared memory
21: SYNC

D. LLR Computation

The algorithm generates an LLR for each bit. There are

log2(Q) parallel LLR computations for each candidate list. The

thread block spawns Q threads for the reduction steps and

extension steps. Although we can terminate our thread blocks

and spawn log2(Q) threads to perform LLR computation, the

overhead to terminate a kernel is large. Furthermore, the com-

plexity of LLR computation is smaller than the reduction and the

extension step. Therefore, we propose a simple linear search. In

this search, thread k is responsible for bit k, where k < log2(Q).
This method is inefficient as only log2(Q) threads are making

useful computations. However, each thread does computation

independently and does not require any synchronization.

The steps are summarized in Algorithm 3: The input to the

LLR computation, the candidate lists, are the Q path weights.

The code block in lines 4-10 searches for two smallest weights in

a linear fashion. Lines 5-6 search for the minimal weight where

kth bit is 0 and lines 7-8 search for the minimal weight where

kth bit is 1. Line 11 computes the difference between the two

minimums, which is equal to the LLR.

Algorithm 3 The kth thread compute the kth LLR

1: m0 = 999
2: m1 = 999
3: if k < log2(Q) then
4: for j = 0 to Q− 1 do
5: if kth bit of j is 0 and m0 > dj then
6: m0 = dj

7: else if kth bit of j is 1 and m1 > dj then
8: m1 = dj

9: end if
10: end for
11: LLRk = (m0−m1)

σ2

12: end if
13: SYNC

693



V. SIMULATION RESULTS

The GPU used is an Nvidia 9600GT graphic card, which

has 64 stream processors running at 1900MHz and 512MB

of DDR3 memory running at 2000 MHz. The test code first

generates the random input symbols and a random channel. After

passing the input symbols through this channel, it performs QR-

decomposition on the channel matrix H to generate R and ŷ.

Both R and ŷ are fed into the detection kernel running on

GPU. Figure 6 compares the BER performance of the proposed

greedy algorithm with the traditional K-best algorithm. In this

simulation, the soft-output of the GPU detector is fed to a length

2304, rate 1/2 WiMax LDPC decoder [12] running on CPU,

which performs up to 15 iterations. The simulation shows that

this detector performs as well as K-best detector with large K.
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4x4 64-QAM MIMO with LDPC (R=1/2, L=2304)

Fig. 6: BER performance comparison

We configured our detector for 3GPP LTE. The number of data

subcarriers per symbol is 300 for a 5 MHz LTE MIMO system.

Since each slot is 0.5ms and consists of 7 OFDM symbols, our

detector needs to detect 2100 subcarriers in 0.5 ms to handle

maximum throughput for this particular configuration. Various

modulation schemes are compared: 4-QAM, 16-QAM, 64-QAM.

To keep utilization high, each thread block detects 16 symbols

for 4-QAM, 4 symbols for 16-QAM, and 1 symbol for 64-QAM

and 256-QAM. The execution time is averaged over 1000 runs.

As the GPU is often connected to the host through the PCI-

express bus, transfer data via this bus results in a measurable

and non-negligible latency penalty. Table I shows the results for

2×2 and 4×4 MIMO systems with and without transport time.

TABLE I: Average Runtime for 2×2 and 4×4 2100 subcarriers

Runtime(ms)/Throughput(Mbps)
2 × 2 4 × 4

Q w. transport w/o. transport w. transport w/o. transport
4 0.089/62.67 0.047/180.10 0.81/20.54 0.31/54.19
16 0.40/41.52 0.27/63.05 2.19/15.35 1.19/28.17
64 3.05/8.268074 2.86/8.80407 13.09/3.85 11.91/4.23

Once factoring in the transfer overhead, the proposed detector

can handle 4-QAM and 16-QAM for a 2×2 MIMO 5 MHz LTE

system. Without factoring in the transfer overhead, the proposed

detector can also handle 4×4 MIMO 5 MHz LTE system. Larger

configurations can be achieved using larger devices. The detector

can support other standards such as WiMAX by changing the

number of symbols fed into the detector.

VI. CONCLUSION

This paper presents a soft Trellis MIMO detector implemen-

tation using a floating-point GPU. The algorithm was designed

to fully utilize the multiple stream processors in GPU. Com-

pared to the conventional fixed-point VLSI implementations, the

GPU based MIMO detector has more flexibility in supporting

different MIMO system configurations while still achieving high

throughput that can meet LTE performance requirements. The

GPU based MIMO detector proposed in this paper opens up a

new opportunity for MIMO software defined radio.
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