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A two step method is proposed to reduce colored noise for chaotic data in the local phase space. With the
observation that the energy of colored noise is mainly distributed in a low dimensional subspace, a noise
dominated subspace is first estimated by the energy distribution of colored noise. At step 1, for the reference
phase point, the components projected into the noise dominated subspace are deleted and the enhanced data are
reconstructed with the remaining components. The residual error of the output of step 1 tends to distribute on
each direction uniformly. So at step 2, the local projection method is further applied to the output of step 1,
treating the residual error as white noise. Experiments show that our method performs well in eliminating
colored noise for chaotic data.
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I. INTRODUCTION

The presence of noise can greatly affect the analysis of
the observed data from chaotic systems. For example, noise
may obscure or even destroy the fractal structure of chaotic
attractor, may mislead the calculation of correlation dimen-
sion and Lyapunov exponents �1�. Therefore, it is desirable
to reduce the noise level. However, most noise reduction
methods are designed for signals that can be treated by a
linear model and fail to eliminate noise from a contaminated
chaotic time series because the spectra of the chaotic signal
and the noise overlap �2�. Noise reduction based on time
delay embedding, which has been widely studied, may be the
most promising way to filter the noisy chaotic data �3–9�.
Several methods were proposed independently in the local
phase space �3–5�, and further proved to be the special cases
of an optimal one �6�, which is named the local projection
�LP� method. Encouraging results have been obtained with
the LP method for both artificial data generated from chaotic
systems �e.g., the Lorenz system� and noisy experimental
data �e.g., NMR-laser data� �7�. Further, the LP method has
been successfully adapted to ECG extraction �10� and speech
enhancement �11,12�. However, the above algorithms are all
for additive white noise. Time series with dynamical noise
can be processed by “shadowing” �13�.

Recently, one generalization �hereafter called the local
subspace method� of the LP method, inspired from the linear
subspace technique �14�, was proposed by weighted projec-
tion in the local phase space, and the LP method described in
Ref. �11� is proved to be its least square �LS� case �15�. By
time delay embedding, state recurrences �an important fea-
ture of chaotic systems� of a reference phase point appear as
the nearest neighbors which cover temporally scattered data
segments with similar wave forms to that of the reference
phase point �16�. The local subspace method, actually an
extension of the linear subspace technique in the local phase
space, utilizes the redundant information possessed by the
neighbors appropriately and thus reduces noise for chaotic

data successfully. A more general phase space projector has
been further deduced with no independence assumption be-
tween the noise and the clean signal �17�. However, this
generalization seems impossible to implement numerically,
and only a reduced case with an additional independence
assumption was implemented. All these methods decompose
the reconstructed phase space into two orthogonal subspaces,
called the signal subspace which contains most of the pure
signal components plus some noise components and the
noise subspace that contains the remaining noise compo-
nents.

As far as we know, the existing noise reduction methods
for chaotic data almost all assume the noise is white noise,
and the case of chaotic data with colored noise has not yet
been tackled. In the frequency domain, a random sequence is
called white noise if its spectra are flat, otherwise it is called
colored noise. Correspondingly, in the local phase space, the
energy of white noise distributes uniformly on each direc-
tion, while the energy of colored noise mainly distributes in
a low dimensional subspace. The LP method yields poor re-
sults for chaotic data contaminated with colored noise, be-
cause its estimated signal subspace is not appropriate �lots of
noise components will be included into the signal subspace
for this case�.

In this paper, we propose a two step method to reduce
colored noise for noisy chaotic data. This method assumes
that the colored noise is stationary, and a segment of the
colored noise or its covariance matrix can be obtained in
advance �note that this assumption is widely adopted in sig-
nal processing; for example, in speech enhancement, a seg-
ment of pure noise can be obtained during a period of speech
absence�. At the first step, a noise dominated subspace can be
obtained �spanned by the eigenvectors associated with the
several largest eigenvalues� by performing eigenvalue de-
composition to the covariance matrix of the colored noise.
Then in each local phase space, the components of the ref-
erence phase point projected into the noise dominated sub-
space are deleted and the enhanced data are reconstructed
with the remaining components. After the first step, most of
the colored noise has been eliminated. The energy of residual
error tends to distribute “uniformly” on each direction. Thus
we can treat the residual error as white noise and further*sun.junfeng@polyu.edu.hk
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apply the LP method to the output of the first step.
The organization of this paper is as follows. In Sec. II, the

principle of noise reduction for chaotic data in the local
phase space is reviewed, and a two step strategy is proposed
to eliminate colored noise from noisy chaotic data. In Sec.
III, noise reduction is performed for chaotic data with col-
ored noise. Finally, some discussions and conclusions are
given in Sec. IV.

II. PRINCIPLE OF THE METHOD

Let zn=sn+wn denote the time series contaminated by
noise, where sn is the clean data generated by a dynamical
system and wn is the additive noise. For a time series �zn�n=1

L

with L samples, the phase points can be reconstructed by
time delay embedding, i.e., �zn�n=1

L−�d−1��,

zn = �zn,zn+�,zn+2�, . . . ,zn+�d−1���T,

where d is the embedding dimension, � is time delay, and �·�T

denotes the transpose of a real matrix. The near neighbor-
hood of the reference point zn is defined as

Nn � �zk:�zk − zn� � �,1 � k � L − �d − 1��� ,

where � is the size of the neighborhood.

A. The local projection method

The LP method �6,11� assumes that the noise is white
noise and the local phase space, i.e., the neighborhood Nn of
the reference point zn, can be divided into an M-dimensional
signal subspace and a �d−M�-dimensional noise subspace,
where M is the minimum embedding dimension of the dy-
namical system �18�. The signal subspace contains most of
the clean signal plus a certain amount of the noise compo-
nents, while the noise subspace contains most of the noise
components and a certain, small, amount of the signal com-
ponents. The energy of white noise is almost uniformly dis-
tributed on each direction of the local phase space. For a
preset M, the noise subspace can be estimated by minimizing
the total energy that is distributed in it. The minimization
turns out to be the standard eigenvalue decomposition for the
covariance matrix Cn of the neighborhood Nn, i.e.,

Cn · ui − �iui = 0. �1�

The matrix Cn is defined as Cn= 1
N�zk�Nn

xk ·xk
T with notation

xk=zk− z̄n, where z̄n is the center of the neighborhood, i.e.,
z̄n= 1

N�zk�Nn
zk, and N is the number of neighbors in Nn.

Sorting the eigenvalues �=diag��1 ,�2 , . . . ,�d� in de-
scending order, the eigenvectors U1= �u1 , . . . ,uM�, associated
with the M largest eigenvalues, span the signal subspace, and
the eigenvectors U2= �uM+1 , . . . ,ud�, corresponding to the
�d−M� smallest eigenvalues, span the noise subspace, re-
spectively. Then the phase vector zn can be decomposed as

zn = z̄n + U1 · U1
T�zn − z̄n� + U2 · U2

T�zn − z̄n� �2�

in the local phase space, where U1 ·U1
T�zn− z̄n� and

U2 ·U2
T�zn− z̄n� are the projections of �zn− z̄n� in the signal

subspace and the noise subspace, respectively. Eliminating

U2 ·U2
T�zn− z̄n�, we obtain the enhanced signal vector

ŝn = z̄n + U1 · U1
T�zn − z̄n� . �3�

For chaotic data with colored noise, as the linear subspace
technique suggests �14�, first, the noisy data can be whitened
by multiplying a whitening matrix Cw

−1/2, where Cw is the
covariance matrix of the colored noise. Then the whitened
data can be processed as the case of white noise. Finally, a
dewhitening strategy is performed. The enhanced signal vec-
tor can be expressed as

ŝn = z̄n + Cw
1/2 · U1 · U1

T · Cw
−1/2�zn − z̄n� . �4�

As each element of the time series �zn�n=1
L occurs as an

entry of one of d successive phase vectors zk, k=n− �d
−1�� , . . . ,n, there are d enhanced entries which may be dif-
ferent in values. The arithmetic mean over these values is
taken as the enhanced element ŝn. More details about the LP
method and its generalization can be found in Refs. �11,15�.

B. Reducing colored noise in the local phase space

Before introducing our method, we will first demonstrate
the difference of energy distribution in the local phase space
for the cases of chaotic data with white noise and colored
noise, respectively. Let Ut= �u1 ,u2 , . . . ,umt

� span a subspace
of the local phase space that is to be investigated, where mt is
the dimension of this subspace and ui is the eigenvector as-
sociated with the ith largest eigenvalue. For the reference
phase point zn, we have zn− z̄n= �sn− z̄n�+wn. Then we can
consider �ui ·ui

T�sn− z̄n��2 as the energy of signal components
projected onto the direction ui, and �ui ·ui

T ·wn�2 as the energy
of noise components projected onto the direction ui in the
local phase space �here we just investigate the energy of the
components after removing the geometric center of the
neighborhood in the local phase space, so �ui ·ui

T�sn− z̄n��2 is
not the absolute energy of the clean signal on direction ui�.

Assume the clean signal �sn� and the noise �wn� are
known. Here we take a 10 000 point sequence measured
from the x component of the Lorenz system �19�

	ẋ = ��y − x� ,

ẏ = �r − z�x − y ,

ż = xy − bz ,

 �5�

as the clean signal �sn�, where �� ,r ,b�= �10,28,8 /3� and
sample time interval is 0.04.

For chaotic data with additive white noise �wn� �wn

�N�0,1� follows the normal distribution�, we study two
cases.

Case 1: The subspace Ut is estimated by the energy of the
clean signal; i.e., the covariance matrix Cn in Eq. �1� is es-
timated by Cn= 1

N�zk�Nn
�sk− s̄n��sk− s̄n�T, where s̄n

= 1
N�zk�Nn

sk. As Fig. 1�a� indicates, the energy of the projec-
tion of the clean signal vector on the first several directions,
i.e., �ui ·ui

T�sn− z̄n��2, is much larger than that of white noise.
And the energy of white noise is almost projected onto each
direction uniformly.

Case 2: The subspace Ut is estimated by the energy of the
noisy signal; i.e., the covariance matrix Cn in Eq. �1� is es-
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timated by Cn= 1
N�zk�Nn

�zk− z̄n��zk− z̄n�T. As Fig. 1�b� indi-
cates, the energy of the projection of the clean signal vector
on the first several directions is larger than that of white
noise, which is similar to case 1. The LP method can appro-
priately estimate the signal subspace by the energy of noisy
data in the local phase space, because the energy of white
noise is almost uniformly distributed on each direction. This
has been verified by the performance of LP for chaotic data
with white noise.

Further, we study three cases for chaotic data with colored
noise generated from a three-order autoregressive process
�AR�3��, wn=0.8wn−1−0.5wn−2+0.6wn−3+	n, where 	n
�N�0,1� follows the normal distribution.

Case 3: The subspace Ut is estimated by the energy of the
clean signal, just as case 1 does. As Fig. 1�c� indicates, the
energy of colored noise vector wn is not uniformly projected
onto each direction.

Case 4: The subspace Ut is estimated by the energy of
colored noise; i.e., the covariance matrix Cn in Eq. �1� is
estimated by Cn= 1

N�zk�Nn
�wk− w̄n��wk− w̄n�T, where w̄n

= 1
N�zk�Nn

wk. As Fig. 1�d� indicates, the energy of the col-
ored noise vector wn is mainly projected onto the first several
directions, and only a certain, relatively small, amount of
signal components are projected onto these directions, re-
spectively. So if we estimate a noise dominated subspace in
this way, and delete the components projected into this sub-

space, then most of the noise components can be reduced at
the price of introducing a relatively small signal distortion.

Case 5: The subspace Ut is estimated by the energy of the
noisy signal, as case 2 does. As Fig. 1�e� indicates, a certain,
large, amount of noise components are projected into the
subspace spanned by the first several directions. If we adopt
the strategy of the LP method, i.e., estimating the signal sub-
space from the energy of the noisy signal, then a large
amount of noise components will be included into the signal
subspace, and thus cannot be reduced by projection.

With the above observations, the first step of our method
follows.

Step 1. First, estimate the noise dominated subspace UND
by performing eigenvalue decomposition to the covariance
matrix Cnoise of colored noise �note that this covariance ma-
trix is estimated from a noise sequence obtained in advance,
but with the assumption that the noise process is stationary,
this covariance matrix can be used to substitute the one in
case 4�. Then in each local phase space, i.e., the neighbor-
hood, the components projected into the noise dominated
subspace are deleted and the enhanced phase vector can be
reconstructed with the remaining components, i.e.,

ŝn = z̄n + �I − UNDUND
T ��zn − z̄n� , �6�

where I is the identity matrix.
After step 1, the noise components projected into the

noise dominated subspace have been eliminated. The energy
of residual error �the difference between the clean signal and
the output of step 1� tends to distribute “uniformly” on each
direction. This can be confirmed as follows.

Case 6. The subspace Ut is estimated by the energy of the
output of step 1, as case 2 does. As Fig. 1�f� indicates, the
energy of the projection of the clean signal vector on the first
several directions is much larger than that of the residual
error after step 1. The energy of the residual error is more
“uniformly” distributed compared with case 5, and similar
with case 2.

With this observation, the second step of our method fol-
lows.

Step 2. Treat the residual error after step 1 as white noise,
and apply the LP method to the output of step 1.

III. NUMERICAL RESULTS

We apply our method to time series measured from the
Lorenz system �Eq. �5��. It has been argued that the LP
method can obtain better results by over-embedding with
time delay �=1 and an appropriately longer embedding win-
dow �11,20,21�. While the embedding window cannot be set
too long, otherwise there are not enough appropriate neigh-
bors for the reference phase point �here the appropriate
neighbors mean that the wave forms of the data segments
covered by the neighbors are well matched that of the refer-
ence phase point; see more discussions in Ref. �16��. Thus a
tradeoff of the length of the embedding window should be
made. In this paper, we set d=80 and �=1, and the first 20
nearest neighbors are used for each reference phase point.
The covariance matrix Cnoise of colored noise is estimated
with 20 nonoverlapped noise sequences �each sequence has
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FIG. 1. Energy of the projection of clean signal vector and noise
on each direction, respectively. For each case, the signal-to-noise
ratio �SNR� is 15 dB, the 20 nearest neighbors of each reference
phase point are utilized, and only the average energy of the com-
ponents projected onto the first 20 directions is plotted. �:
E��ui ·ui

T�sn− z̄n��2�; �: E��ui ·ui
T ·wn�2�, where E��ui ·ui

T ·wn�2� de-
notes the mean of �ui ·ui

T ·wn�2 over n=1, . . . ,L− �d−1��. �a� Case
1, with white noise; �b� case 2, with white noise; �c� case 3, with
AR�3� noise; �d� case 4, with AR�3� noise; �e� case 5, with AR�3�
noise; �f� case 6, the output of step 1 of our method.
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�d−1��+1 points, equal to the length of the embedding win-
dow� generated from the AR�3� process �note that these noise
sequences are not the noise sequences that are added to the
Lorenz time series�.

With eigenvalue decomposition to Cnoise, the noise domi-
nated subspace UND= �u1 ,u2 , . . . ,umw

�, spanned by the
eigenvectors associated with the mw largest eigenvalues, can
be obtained, where mw is the dimension of the noise domi-
nated subspace. We have tried our method with different val-
ues of mw. At the first step, as mw decreases below 15, the
performance becomes worse, because the energy of the pro-
jection of noise on each direction ui �1� i�15� is bigger
than that of the clean signal, while as mw increases above 15,
the performance varies little, because the energy of the pro-
jection of noise on each direction ui �15� i�20� is almost
equal to that of the clean signal. For data with high level
noise, mw should be set a little bigger. For simplicity, we set
mn=20 for all cases. We perform the LP method �the first 20
neighbors are used, �d ,� ,M�= �80,1 ,8�, where M is set a
values relatively bigger than the minimum embedding di-
mension to control the introduced signal distortion at a small
level� for comparison �note that Eq. �4� is difficult to be
implemented, because with 20 segments of noise data and 80
dimensional embedding, the matrix Cw will be rank-deficient
and matrix Cw

−1/2 cannot be obtained�. We have also tried the
local subspace method �15� to chaotic data with colored
noise, but the results are not better than that of the LP
method. The method proposed by Luo et al. �17� has been
applied too, but as they had reported, the performance for
chaotic data with colored noise is poor. So we do not present
the results of these two methods here.

From Fig. 2, we can observe that most colored noise is
deleted after step 2 of our method and the distortion with our
method is much smaller than that of the enhanced data by the
LP method. From Fig. 3, this can be more obviously ob-
served in the reconstructed phase space. A more comprehen-
sive comparison is summarized in Table I. We can see that

significant SNR gains are obtained by our method, outper-
forming the LP method much for the case the Lorenz time
series is contaminated by the noise generated from the AR�3�
process.

We further test our method with two other typical colored
noise. One is pink noise, which is generated by a model
proposed to explain the physics of 1 / f noise �22,23�. An-
other noise is surrogate data generated by shuffling the phase
of the Lorenz sequence �24�, and thus with almost the same
power spectra of the original Lorenz sequence. By phase
shuffling, the deterministic structure is destroyed in the sur-
rogate data, and thus it is used as noise in this paper. Their
power spectra are plotted in Fig. 4. From the figure, we can
see that it is difficult to separate the pink noise and the phase
shuffled data, as well as the AR�3� noise, from the Lorenz
time series in the frequency domain, because their spectra
extensively overlap in the low frequency region. However,
our method works well for the Lorenz time series with pink
noise and phase shuffled surrogate data, as Tables II and III
indicate. For the case with phase shuffled surrogate data, a
good result can be obtained even with only the first step of
our method. Our method has also been tested with the con-
taminated Rössler time series �measured from the x compo-
nent of the Rössler system �25� with time interval 0.2�, and
about 3–5 dB SNR gains can be obtained for different noise
level.

Noisy speech with additive white noise has been success-
fully enhanced by the LP method based on its deterministic

−20

0

20

s n

(a)

−20

0

20
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ŝ n

(e)

−20

0

20

z n

(b)

FIG. 2. �Color online� Wave forms of �noisy� Lorenz time se-
ries. The thin black curves in panels �a�, �b�, �c�, �d�, and �e� are the
wave forms of the clean Lorenz time series, the noisy time series
with 10 dB AR�3� noise, the enhanced data by the LP method, the
output of step 1, and the output of step 2 of our method, respec-
tively. For comparison, the wave form of clean data in panel �a� is
plotted with thick curves in panels �c�, �d�, �e�, respectively.
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ŝn+4
ŝn

ŝ n
+

8

−20
0

20 −20 0 20

−20

0

20
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FIG. 3. Attractors reconstructed by time delay embedding with
�=4. The data used in panels �a�, �b�, �c�, and �d� are the same data
that are used in Figs. 2�a�–2�c� and 2�e�, respectively.

TABLE I. Performance of noise reduction for the noisy Lorenz
time series with colored noise generated by AR�3�. Ten sequences
�each 10 000 points� are measured from x components of the Lo-
renz system with the same parameters but different initial condition.
The four columns from left to right are the SNR of the original
noisy data, the output of step 1, the output of step 2, and the en-
hanced data by the LP method, respectively.

Noisy data
�dB�

step 1
�dB�

step 2
�dB�

LP
�dB�

15 19.47±0.14 21.91±0.31 16.98±0.46

10 13.86±0.10 16.49±0.57 12.14±0.57

5 7.70±0.10 9.85±0.55 7.15±0.63

SUN et al. PHYSICAL REVIEW E 76, 026211 �2007�

026211-4



feature �11,12�. To further verify our method, we apply it to
ten speech sequences �five vowels, /a/, /e/, /i/, /o/, and /u/,
articulated at normal speed by one male speaker and one
female speaker, respectively, and recorded with 8 kHz sam-
pling rate and 16 bits quantization� added with environmen-
tal noise measured in a running car. The results are summa-
rized in Table IV.

IV. DISCUSSION AND CONCLUSION

We first investigated the pattern of energy distribution on
each direction in the local phase space, and observed that for
chaotic data with white noise, it is appropriate to estimate the
signal subspace by the energy distribution of noisy data,
while for the case with colored noise, the signal subspace
estimated by the energy of noisy data may include consider-
able noise projection, because the energy of colored noise is
mainly distributed in a low dimensional subspace. With these
observations, we devised a two step strategy to delete col-
ored noise for noisy chaotic data. At step 1, a noise domi-
nated subspace which contains most of the noise components

and a certain, small, amount of signal components is esti-
mated by the energy distribution of colored noise. Then for a
reference phase point, the components projected into the
noise dominated subspace are eliminated and the enhanced
data are reconstructed with the remaining components. After
step 1, the energy of the residual error tends to distribute
uniformly on each direction. So at step 2, we treat the re-
sidual error as white noise and apply the LP method to the
output of step 1.

We applied this two step strategy to the noisy Lorenz time
series, and the noisy Rössler time series, which are contami-
nated by noise generated by AR�3� process, pink noise, and
phase shuffled surrogate data, respectively. We also enhanced
the noisy speech contaminated by the environmental noise
measured in a car. Experiments show that our method can
reduce colored noise significantly, and is superior to the LP
method in reducing colored noise for noisy chaotic data.

Generally, we can consider time delay embedding as a
transform from time domain to phase space. If the colored
noise is mainly distributed in a certain noise subspace, and
the signal is mainly distributed in a signal subspace which is
orthogonal to the noise subspace, we can delete the noise by
nulling out the noise subspace, just as the frequency domain
methods filter the out-band spectra of noise. Some noise
components are also, possibly, distributed in the same sub-
space of the signal. We cannot reduce these noise compo-
nents effectively, just as the frequency domain methods can
not eliminate in-band noise well. So to say whether our
method is applicable to a certain contaminated signal, the
analysis of energy distribution in the local phase space
should be performed first. But the representation of the sig-
nal in the local phase space is not so obvious as the repre-
sentation in the frequency domain. And the energy

TABLE II. Performance of noise reduction for the noisy Lorenz
time series �ten sequences, each 10 000 points� with pink noise.

Noisy data
�dB�

Step 1
�dB�

Step 2
�dB�

LP
�dB�

15 19.40±0.23 20.32±0.30 15.80±0.08

10 13.65±0.18 14.40±0.26 10.85±0.09

5 7.44±0.14 8.03±0.21 5.85±0.97

TABLE III. Performance of noise reduction for the noisy Lorenz
time series �ten sequences, each 10 000 points� with its phase
shuffled surrogate data.

Noisy data
�dB�

Step 1
�dB�

Step 2
�dB�

LP
�dB�

15 20.21±0.45 20.24±0.44 15.24±0.04

10 14.97±0.33 14.97±0.33 10.22±0.04

5 8.23±0.23 8.23±0.23 5.09±0.02
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FIG. 4. �Color online� The power spectra of Lorenz time series,
phase shuffled surrogate data of Lorenz times series, AR�3� noise,
pink noise, and white noise. Each data have 10 000 samples, and
their spectra are estimated by the periodogram averaging method
�22�; i.e., the data are divided into 10 blocks �each block has 1000
samples�, the spectra of each block are estimated by periodogram,
and the average of the spectra of these blocks is taken as the final
spectra. The spectra are offset vertically for clarity, and the scale in
the vertical axis is therefore arbitrary.

TABLE IV. Performance of noise reduction for the noisy speech
with environmental noise measured in a car.

Noisy data
�dB�

Step 1
�dB�

Step 2
�dB�

LP
�dB�

15 18.72±0.80 19.51±1.28 17.92±0.66

10 13.73±0.60 15.80±0.75 13.20±0.58

5 8.10±0.54 10.68±0.97 8.21±0.61

REDUCING COLORED NOISE FOR CHAOTIC TIME… PHYSICAL REVIEW E 76, 026211 �2007�

026211-5



distribution pattern may be complicated. As the results listed
in Tables I–III for three typical noise, the amount of SNR
gains at step 1 and step 2 are different, which is may due to
the different energy distribution pattern in the local phase
space.
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