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Abstract:  In multispectral imaging system, one of the most important tasks 
is to accurately reconstruct the spectral reflectance from system responses. 
We propose such a new method by combing three most frequently used 
techniques, i.e., wiener estimation, pseudo-inverse, and finite-dimensional 
modeling. The weightings of these techniques are calculated by minimizing 
the combined standard deviation of both spectral errors and colorimetric 
errors. Experimental results show that, in terms of color difference error, the 
performance of the proposed method is better than those of the three 
techniques. It is found that the simple averaging of the reflectance estimates 
of these three techniques can also yield good color accuracy. 
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1. Introduction 

Nowadays multispectral imaging techniques have been intensively studied for the applications 
of digital recording, archiving, and display. One of the most important tasks of multispectral 
imaging is to accurately recover the spectral reflectances of the object surfaces from system 
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responses [1-7]. In the literature, three spectral characterization techniques, i.e., wiener 
estimation [2, 3], pseudo-inverse [1], and finite-dimensional modeling [4-7] have been widely 
adopted for reflectance estimation. In the wiener estimation and finite-dimensional modeling, 
the spectral sensitivity or responsivity needs to be instrumentally measured or mathematically 
recovered. The pseudo-inverse technique computes the transform between system responses 
and reflectance without any a priori knowledge about the imaging system. 

To meet the rigorous requirement in industrial applications such as color measurement and 
color quality control, researchers are still working for new spectral characterization 
techniques. This study tries to investigate whether the accuracy of spectral reconstruction can 
be improved by combining the currently available techniques. In the color constancy area, 
Cardei and Funt found that better illumination estimation could be obtained by combing the 
results of different color constancy algorithms [8]. Based on statistical analysis, Stokman and 
Gevers investigated the optimal strategy of color model selection and fusion to improve the 
discriminative power of image feature detection algorithms [9]. This study is mainly inspired 
by these two works. 

2. Formulation of multispectral imaging process 

When the response of the multispectral imaging system is proportional to the intensity of light 
entering the camera, the response vector v of L channels can be formulated as [2]: 

1111 ××××× ++= LLNNLL nbrMv ,                                                               (1) 
where the subscript N=31 denotes the number of samples in the visible wavelength range, r 
denotes the spectral reflectance, M represents the spectral responsivity incorporating the 
spectral power distribution of lighting source, the spectral transmittances of narrowband 
filters, and the spectral sensitivity of digital camera. b denotes the bias response vector caused 
by camera dark current, and n denotes zero-mean imaging noise. It is noted that if the system 
does not behave linearly, the optoelectronic conversion function needs to be further 
considered [2, 4]. 

In spectral characterization of imaging system, it is feasible to mathematically recover the 
spectral responsivity M and bias b from training color samples, subject to the constraint of 
non-negativeness [10, 2]. It is noted that, as the filters used in this study are narrow-banded, 
the condition of smoothness is not needed. 

3. Three techniques for spectral characterization of multispectral imaging 

3.1 Wiener estimation 

In general, the purpose of spectral characterization is to estimate the reflectance vector r̂  
from the response vector u=v-b through an N×L matrix W, such that  

uWr =ˆ .                                                                                                (2) 
In wiener estimation [2, 3, 11], W is calculated by using the spectral responsivity M: 

1)( −+= n
T

r
T

r KMMKMKW ,                                                                        (3) 

where superscript T denotes transpose, Kr denotes the N×N covariance matrix of r, and Kn 
denotes the covariance matrix of noise. In this study, Kn=0 is assumed. 

3.2 Pseudo-inverse  

In the pseudo-inverse technique [1], the transform matrix W is directly solved as 
−+ == )( TT UURURUW ,                                                                       (4) 

where the superscript + denotes pseudo-inverse, R denotes the matrix of reflectance vector r, 
and U denotes the matrix of response vector u. 

3.3 Finite-dimensional modeling 

Due to the smooth property of spectral reflectance, r can always be represented by the linear 
combination of J (<N) basis functions bj [12]: 
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where aj is the coefficient of bj. bj can be calculated using principle component analysis of 
reflectance data. By combining Eq. (5) and (1), the response u can then be represented as [4-
7]: 
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MbrMu .                                                                           (6) 

Thus coefficient aj can be estimated by pseudo-inverse of the L×J matrix [Mbj]. The 
reflectance r̂  can then be obtained by substituting the estimated aj into Eq. (5). In this study, 
J=10 basis functions are used, as they are generally adequate for spectral reflectance 
construction [12, 5]. 

4. The proposed method 

4.1 Statistical properties of different observations 

Suppose a quantity is measured using K (K=3 in this study) different techniques, and xk is the 
observation of the kth technique. To obtain an improved estimation of that quantity, it is 
feasible to combine these observations as the following: 

∑
=

=
K

k
kk xwx

1

,                                                                                         (7) 

where wk is the weighting of the observation of the kth technique. The estimate and standard 
deviation of x can be expressed according to Eq. (8) and (9), respectively. 
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where E(xk) is the averaged observation of the kth technique, and σ( xk, xl) is the covariance 
between observations of the kth and lth techniques. 

4.2 Combination of different spectral characterization techniques 

Based on the statistical properties discussed above, a new method for reflectance estimation 
by combining different techniques is proposed in the following.  

Let kr̂  be the estimated reflectance of the kth technique, the spectral root mean square 
(rms) error can then be calculated as 
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and the combined rms error can be expressed as 
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δδ .                                                                                       (11) 

Similarly, the CIE 1994 color difference [13] error is represented as 
)ˆ,(*

94 kk Ee rrΔ=δ ,                                                                                    (12) 
and the combined color difference error then becomes 
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1

δδ .                                                                                       (13) 

It is noted that the spectral error δr is linear to reflectance r, while the colorimetric error δe 
is nonlinear to r, due to the third-root-square transform between CIEXYZ space and CIELAB 
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space. To account for both spectral and colorimetric accuracy in reflectance reconstruction, 
these two error terms can be merged into a single error term δ. 

Consequently, the estimate of δ can then be expressed as 
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where 0≤c≤1 is used to adjust the proportions of spectral and colorimetric errors, Er and Ee 
denote the K×1 vectors of the average spectral and colorimetric errors, respectively, and w 
denotes the K×1 weighting vector. Accordingly, the standard deviation of δ can be expressed 
as 
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where Σr and Σe denote the K×K covariance matrix of the spectral and colorimetric error, 
respectively. Considering that the spectral and colorimetric errors are always of different 
magnitudes, Er, Ee, Σr, and Σe are normalized in the calculation of weighting w. 

The appropriate weighting w can be obtained by solving the following objective function: 
minimize )(2 δσ ,                                                                                (16) 

or, alternatively, 
minimize )(2 δσ + )(δE .                                                                     (17) 

Furthermore, the following two constraints should be imposed: 

1
1

=∑
=

K

k
kw ,                                                                                           (18) 

10 ≤≤ kw .                                                                                          (19) 
The first constraint ensures that the weightings of the K techniques sum to 1, while the 

second constraint forces positive contribution of each technique. 
The objective functions (16) and (17), together with the constraints (18) and (19), can be 

solved using quadric programming. When the weighting is obtained, the reflectance of the 
proposed method can be calculated as 

∑
=

=
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k
kkw

1

ˆˆ rr .                                                                                      (20) 

It is noted that the weightings obtained from the objective functions are suboptimal, due to 
the nonlinear transform between reflectance and color difference error. Nevertheless, it will be 
shown in the experiment section that this strategy can produce considerable color accuracy 
improvement, when compared with the three techniques. 

5. Experimental results and discussion 

In this study, a QImaging monochrome digital camera model Retiga-EXi, as well as a liquid 
crystal tunable filter (LCTF) made by Cambridge Research and Instrument Co., were used to 
acquire multispectral images. The LCTF contains a series of electronically-tunable narrow-
band filters, with the nominal bandwidth of 10nm Full-Width at Half-Maximum (FWHM). 
The color target used was GretagMacBeth ColorChecker DC (CDC), and its reflectance data 
were measured using a GretagMacBeth spectrophotometer 7000A in the visible spectrum of 
400 to 700 nm, with sampling interval of 10 nm. Totally L=16 multispectral images of CDC 
were taken using the filters with center wavelengths at 400 nm, 420 nm, 440 nm, …, 700nm, 
under an approximate D65 lighting condition. The spatial non-uniformity of the lighting field 
was corrected by using a white paper [4]. In total, 198 color patches on CDC were used for 
reflectance estimation, excluding the duplicated most dark ones and the glossy ones. These 
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color patches were divided into one training set and one testing set, with each set containing 
99 colors. The training set contains the color patches with odd sequence numbers, while the 
testing set contains the color patches with even sequence numbers. 
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Fig. 1. Distribution of colorimetric errors ΔE94* under D65 and spectral errors obtained using 
the objective function (16) with respect to different c values. The green square-symbol curve 
represents colorimetric errors, and the blue circle-symbol curve represents spectral rms errors. 

 
The magnitudes of spectral error and colorimetric error obtained through the objective 

function are related to the c values, as shown in Fig 1. These two kinds of errors do not 
change monotonically with c. However, as a whole trend, increasing the c value will produce 
larger color difference error, while produce smaller spectral rms error. The magnitude of color 
difference error keeps in the range of 0.850 and 0.855 when c increases from 0.0 to 0.6, which 
indicates that the color accuracy of the proposed method is not very sensitive to c value. 
Therefore, we simply let c = 0.2 in the following calculation. 

Table 1. Spectral and colorimetric error statistics of 6 methods when c=0.2: wiener estimation, pseudo-inverse 
method, finite-dimensional modeling method, simple averaging method, and the proposed methods. 

ΔE94* under D65 ΔE94* under A ΔE94* under F2 Spectral rms  
Mean Std. Max. Mean Std. Max. Mean Std. Max. Mean Std. Max. 

Wiener Est. 0.95 0.58 3.32 0.98 0.61 4.10 0.96 0.59 3.22 0.009 0.006 0.031 
Pseudo-inv. 1.01 0.87 5.73 1.11 1.07 6.97 1.08 1.00 6.52 0.008 0.005 0.030 
Finite-dim. 0.94 0.59 3.36 0.98 0.63 4.35 0.96 0.61 3.30 0.009 0.006 0.032 
Averaging 0.86 0.58 3.66 0.91 0.64 3.61 0.88 0.62 3.90 0.008 0.005 0.028 
Proposed 1 a 0.86 0.59 3.68 0.91 0.64 3.63 0.88 0.63 3.94 0.008 0.005 0.027 
Proposed 2 b 0.86 0.61 3.96 0.92 0.68 4.13 0.89 0.66 4.30 0.008 0.005 0.026 
a using objective function (16) 
b using objective function (17) 

 
For comparison, the spectral and colorimetric error statistics including mean, standard 

deviation, and maximum of 6 different methods (wiener estimation, pseudo-inverse, finite-
dimensional modeling, simple averaging, and the proposed methods with two different 
objective functions) are given in Table 1. In the averaging method, w1=w2=w3=1/3. 
Nonparametric statistical test indicates that the color difference errors of the proposed 
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methods and the averaging method are smaller than those of the other three methods at a 
significant level p=0.05. The performance of the averaging method is close to that of the 
proposed method 1 using objective function (16). The advantage of the proposed method 1 
over the averaging method lies that the former can balance the colorimetric accuracy and 
spectral accuracy by adjusting the c value. The reconstructed spectral reflectance curves with 
minimum and maximum color difference errors are shown in Fig.2. The proposed method 2 
using objective function (17) does not yield better performance, indicating that it may be not 
feasible to minimize both average color error and standard deviation. Actually, minimizing 
standard deviation will also decrease the average color error to a certain extent. 
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Fig. 2. Reconstructed spectral reflectances of the proposed method using objective function 
(16). (a) the best case, with ΔE94*=0.11 under D65, (b) the worst case, with ΔE94*=3.68 under 
D65 

 

6. Conclusion 

A new reflectance reconstruction method for multispectral imaging has been proposed, by 
combining three different spectral characterization techniques. The weightings of the 
estimated reflectances of these techniques are calculated based on the minimization of spectral 
and colorimetric errors. In terms of color difference error, the performance of the proposed 
method is better than those of the three techniques, while is close to that of the simple 
averaging method. The proposed method is applicable in industrial applications such as textile 
color measurement and color quality control. 
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