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Abstract  14 

 15 

This paper reviews current remediation technologies that use chelating agents for the 16 

mobilization and removal of potentially toxic metals from contaminated soils. These 17 

processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic 18 

extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column 19 

leaching. Current proposals on how to treat and recycle waste washing solutions after soil is 20 

washed are discussed. The major controlling factors in phytoextraction and possible strategies 21 

for reducing the leaching of metals associated with the application of chelants are also 22 

reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of 23 

metals left after the washing of soil and enhanced phytoextraction are briefly addressed.   24 
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1. Introduction 28 

 29 

The contamination of soils with toxic metals has become a major environmental concern 30 

in many parts of the world due to rapid industrialization, increased urbanization, modern 31 

agricultural practices and inappropriate waste disposal methods. In Europe, the polluted 32 

agricultural lands likely encompass several million hectares (Flathman and Lanza, 1998). In 33 

China, the degraded land associated with mining activities reached about 3.2 Mha by the end 34 

of 2004, and the figure is increasing at an alarming rate of 46,700 ha per year (Bai et al., 1999; 35 

Li, 2006).  36 

In soils, toxic metals are present in various chemical forms and generally exhibit different 37 

physical and chemical behaviors in terms of chemical interactions, mobility, biological 38 

availability and potential toxicity (Bohn et al., 1979). Chemical speciation plays a vital role in 39 

the solubility and potential bioavailability of metals in soils (Tandy et al., 2004). Unlike 40 

organic compounds, toxic metals are not degradable in the environment, and can persist in 41 

soils for decades or even centuries. The contamination of soils by metals can have long-term 42 

environmental and health implications.  43 

It is highly desirable to apply suitable remedial approaches to polluted soil, which can 44 

reduce the risk of metal contamination. The excavation and disposal of soil is no longer 45 

considered to be a permanent solution. The demand for soil treatment techniques is 46 

consequently growing and the development of new low-cost, efficient and environmentally 47 

friendly remediation technologies has generally become one of the key research activities in 48 

environmental science and technology. In selecting the most appropriate soil remediation 49 

methods for a particular polluted site, it is of paramount importance to consider the 50 

characteristics of the soil and the contaminants. At present, various approaches have been 51 

suggested for the remediation of metal-contaminated sites. Some of these technologies, like 52 
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soil washing using particle size separation and chemical extraction with aqueous solutions of 53 

surfactants and mineral acids are in full-scale use (Kuhlman and Greenfield, 1999; Mann, 54 

1999), while technologies addressed in this review, chelant-assisted soil washing and 55 

enhanced phytoextraction, are still largely in the development phase.    56 

Toxic metals and other contaminants can be isolated and contained to prevent their further 57 

movement, i.e. by leaching through soil or by soil erosion. This can be achieved by capping 58 

the site with asphalt or other impermeable materials to prevent the infiltration of water, by 59 

planting permanent plant cover (e.g., phyto-stabilization) or by covering the site with 60 

unpolluted soil (Guo et al., 2006).   61 

Smaller, but usually more polluted, soil particles can be removed from the rest of the soil 62 

by various separation techniques developed and used in the mining industry. These include 63 

the use of hydrocyclones, which separate larger particles from smaller ones using centrifugal 64 

force; and solid-liquid separation techniques, such as gravimetric settling and flotation, which 65 

are based on the different surface characteristics of particles (Mulligan et al., 2001; Vanthuyne 66 

and Maes, 2002).     67 

Stabilization involves fixing up the contaminants in stable sites by mixing or injecting 68 

inorganic or organic soil amending agents (e.g., liming agents, organic materials, 69 

aluminosilicates, phosphates, iron and manganese oxides, coal fly ashes, etc.). Due to the 70 

effects of a change in pH, such agents are effective at decreasing the bioavailability of metals 71 

by introducing additional binding sites for toxic metals. Stabilized metals then become less 72 

available for plants, and their bioconcentration through the food chain is reduced (Guo et al., 73 

2006). However, the toxic metals remain in the soil and can be harmful when soil dust is 74 

ingested or inhaled. Many of the amendments used in soil stabilization are by-products of 75 

industrial activities, and are therefore inexpensive and available in large amounts. Overviews 76 
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on previously successfully applied amending agents and their effectiveness for different 77 

metals have been given by Knox et al. (2001) and Puschenreiter et al. (2005). 78 

Another immobilization method is vitrification by heating the contaminated soil to up to 79 

2000o

This paper reviews the current remediation technologies for metal-contaminated soils, 98 

which use chelating agents. Chelants desorb toxic metals from soil solid phases by forming 99 

strong water-soluble complexes, which can be removed from the soil by plants through 100 

enhanced phytoextraction or by using soil washing techniques. The latter currently consist of 101 

C. Vitrification usually involves imposing an electrical current between electrodes 80 

inserted into the contaminated soil. Due to its low electrical conductivity, the soil begins to 81 

heat and produces a melt that hardens into a blocks of glasslike material. Vitrification is 82 

expensive but applicable to soils with mixed organic and metallic contamination, for which 83 

few technologies are available (Buelt and Farnsworth, 1991).   84 

Electrokinetic extraction has been proposed as an in situ method for the remediation of 85 

blocks of contaminated soil. Electrokinetic extraction involves the electrokinetic movement of 86 

charged particles suspended in a soil solution, initiated by an electric gradient. The target 87 

metals can be removed by precipitation at the electrodes (Hicks and Tondorf, 1994). 88 

Phytoextraction is a publicly appealing (green) remediation technology. However, 89 

phytoextraction can be effectively applied only for soils contaminated with specific (and less 90 

problematic) potentially toxic metals and metalloids, e.g. Ni, Zn and As, which are readily 91 

bioavailable for plants and for which appropriate hyper-accumulating plants with a high 92 

enough biomass are known. Common crop plants with a high biomass can be triggered to 93 

accumulate large amounts of low bioavailability metals (e.g. Pb, Cr, U, Hg) when the mobility 94 

of these metals in the soil is enhanced by the addition of mobilizing agents (Huang et al., 95 

1997; Wu et al., 1999; Shen et al., 2002; Luo et al., 2005). In such chemically enhanced 96 

phytoextraction, chelating agents are used almost exclusively as the mobilizing agents.   97 
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soil flushing, the extraction of soil slurry in reactors, and soil heap/column leaching. Another 102 

innovative remediation method that uses chelating agents for mobilizing metals is enhanced 103 

electrokinetic extraction.  104 

 105 

2. Chelant assisted phytoextraction   106 

 107 

The idea of using plants to remediate metal-contaminated soil has attracted a great deal of 108 

research in the last two decades. But due to the limited plant species with a high capacity to 109 

accumulate metals, especially metals with low bioavailability in soil, such as Pb, and to 110 

produce a large amount of biomass, one alternative approach using chelants to improve the 111 

uptake of metals by high biomass plants has been proposed, inspired by studies on plant 112 

nutrition (Marschner, 1995).  113 

 Careful assessment and evaluation is required to determine the biodegradation and 114 

toxicity of the chelating agents and their metal complexes in soils (Means et al., 1980; 115 

Borgmann and Norwood, 1995; Nörtemann, 1999; Grčman et al., 2001; Römkens et al., 116 

2002). Although EDTA (ethylenediaminetetraacetic acid) was recognized as the most efficient 117 

chelant to increase metal uptake by plants, especially for the uptake of Pb, the low 118 

biodegradability of the chemical does not make it a good choice for large-scale field 119 

applications (Kos and Leštan, 2004; Tandy et al., 2004; Luo et al., 2005). In recent years, the 120 

focus of research has shifted to some more biodegradable chelants, such as NTA 121 

(nitrilotriacetate), [S,S]-EDDS (S,S-ethylenediaminedisuccinic acid), and others. The use of 122 

these biodegradable chelants in improving the uptake of metals by plants and in limiting the 123 

leaching of metals from soil has become an attractive field of research. Most of this kind of 124 

research has been carried out in the form of studies comparing the previous EDTA results in 125 

metal uptake efficiencies with additional data on the biodegradability of chelants and the 126 
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metal leaching potential from the application of the chemicals (Grčman et al., 2003; Kos and 127 

Leštan, 2004; Luo et al., 2005; Meers et al., 2005; Luo et al., 2006b). The optimization and 128 

application of this technology should be based on the full understanding of important 129 

processes involved, such as metal solubilization from the application of chelants, the uptake 130 

of metals by the roots of plants, and their transport upwards to the shoots of the plants. To 131 

prevent the possible movement of metal-chelants into groundwater and to reduce the impact 132 

of the remaining chelant on soil microorganisms, the selection of chelants and the amount and 133 

process of their application are important, as well as irrigation techniques and the time of the 134 

chelant application (Blaylock et al., 1997; Evangelou et al., 2007; Luo et al., 2007). The 135 

following section reviews the research progresses on the phytoextraction of metals using 136 

chelants in recent literature, and highlights some potential research area for future 137 

devolvement. 138 

 139 

2.1. Theoretical considerations 140 

  141 

In the process of chelant-assisted phytoextraction, chelant is applied to the soils. First, 142 

chelant can desorb metals from the soil matrix, and the mobilized metals move to the 143 

rhizosphere for uptake by plant roots. The amounts of bioavailable metals in soil solution are 144 

mainly determined by the properties of the soil and the chelant which is applied (Huang et al., 145 

1997; Kos and Leštan, 2004; Tandy et al., 2004; Luo et al., 2005).  146 

The efficacy of a chelant in the extraction of metals is usually rated with the stability 147 

constants Ks of the chelant-metal complexes. According to Elliott et al. (1989), the order of 148 

magnitude of the Ks can be used to rank different chelants according to their general efficacy, 149 

but not to rank the efficacies of a specific chelant toward different metals because the latter is 150 

also influenced by the metal speciation in a given soil matrix. Huang et al. (1997) indicated 151 
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that a variety of synthetic chelants have the potential to induce Pb desorption from soil. Their 152 

effectiveness, in decreasing order, was EDTA > HEDTA (N-hydroxyethylenediaminetriacetic 153 

acid) > DTPA (diethylenetriaminepentaaceticacid) > EGTA [ethyleneglycol -bis (ß -154 

aminoethyl ether), N, N, N’, N-tetraacetic acid] > EDDHA [etylenediamine-di (o-155 

hydroxyphenylacetic acid)]. EGTA has been shown to have a high affinity for Cd2+, but not 156 

for Zn2+. Luo et al. (2005) found that EDTA is more efficient than [S,S]-EDDS in the 157 

extraction of Pb and Cd, but that [S,S]-EDDS is more effective in the extraction of Cu and Zn.  158 

The predominant theory for metal-chelant uptake is the split-uptake mechanism, by which 159 

only free metal ions can be absorbed by plant roots (Chaney et al., 1972; Marschner et al., 160 

1986). Fe-EDTA is known to dissociate before plant uptake (Marschner et al., 1986; Sarret et 161 

al., 2001). Another important theory suggests that some of the purportedly intact metal-162 

chelant complexes are taken up by plants (Wallace, 1983; Bell et al., 1991; Laurie et al., 1991; 163 

Salt et al., 1995; Nowack et al., 2006). A schematic display of this process is shown in Figure 164 

1. 165 

As a typical soil metal contaminant, Pb has been extensively studied. The metal can be 166 

absorbed by plant roots and transferred as a Pb-EDTA complex (Vassil et al., 1998; Epstein et 167 

al., 1999). In the leaves of Phaseolus vulgaris, Sarret et al. (2001) detected that some of the 168 

Pb was complexed to EDTA. The complexes of Pb-EDTA cannot be split through the 169 

reduction or oxidation of Pb. It is also unlikely that Pb-EDTA or EDTA can diffuse across the 170 

plasma membrane at any significant rate, as they are too large and polar to move the 171 

plasmalemma lipid bilayer. It has been concluded that the uptake of Pb-EDTA by plants can 172 

take place in the location where suberization of the root cell walls has not yet occurred and at 173 

breaks in the root endodermis and the Casparian strip (Tanton and Crowdy, 1972; Bell et al., 174 

1991). Therefore, some damage to the root may be helpful for the indiscriminate uptake of Pb-175 
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EDTA by plant roots. The damage could be caused by the toxicity of metals, chelants and 176 

other artificial means (Vassil et al., 1998; Luo et al., 2006a).  177 

 178 

2.2. Application of chelants 179 

 180 

For a given chelant, different methods of application can produce different levels of 181 

phytoextraction efficiency. Exploring effective strategies for the application of chelants is 182 

useful in optimizing the technology. It has been reported that placing chelant at some depth 183 

near the roots of plants instead of mixing this agent into the entire soil area will lead to a 184 

significantly higher accumulation of trace metals by plants (Kayser et al., 1999). Applying 185 

chelant in several smaller dosages (versus in one application) can result in the enhanced 186 

phytoextraction of Pb (Grčman et al., 2001; Puschenreiter et al., 2001; Shen et al., 2002). The 187 

combined application of different chemicals can also greatly improve the metal 188 

phytoextraction efficiency. One type of combination is the use of two chelants/chemicals, 189 

which can increase the solubility of metals by lowering the pH of the soil. Blaylock et al. 190 

(1997) demonstrated that the application of EDTA and acetic acid led to a two-fold 191 

accumulation of Pb in Indian mustard shoots compared with the application of EDTA alone. 192 

This result was explained by the lower cell wall retention of Pb as lead carbonate at a lower 193 

rhizosphere pH. The second type of combination is based on the interactions between metals 194 

and different chelants, in which the solubility of metals by a chelant can be increased by 195 

another chelant through the reduction of competition from other metals in soil. Luo et al. 196 

(2006c) found that the combined application of EDTA and [S,S]-EDDS led to a higher level 197 

of efficiency (i.e., a synergy effect) in the phytoextraction of Cu, Pb, Zn and Cd than could be 198 

obtained by the application of either chelant alone. There are two reasons for the result: the 199 

fact that EDTA and [S,S]-EDDS have different levels of efficiency in extracting metals from 200 
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soils; and a decrease in the competitive cations for trace metals with EDTA, such as soil-201 

soluble Ca, due to the addition of [S,S]-EDDS (Tandy et al., 2004). The third type of 202 

combination is the utilization of one chemical to destroy the plant root structure to facilitate 203 

the direct uptake of metal-chelants and their translocation into the shoots. In several 204 

experiments, it was found that the application of glyphosate enhanced the Pb accumulation of 205 

the tested crops (Kayser et al., 1999; Mathis and Kayser, 2001). The mechanism of enhanced 206 

metal accumulation after the application of glyphosate was explained by a disruption of the 207 

plant’s metabolism, leading to the enhanced transport of trace metals from roots to shoots 208 

(Ensley et al

Some artificially physiological damage to roots, such as that resulting from pretreatments 210 

with MC (methanol: trichloromethane), HCl and hot water, and from treatment with DNP (2, 211 

4-dinitrophenol, an uncoupler of oxidative phosphorylation), dramatically increased the 212 

concentrations of Pb in shoots with the EDTA treatment (Luo et al., 2006a). Applying similar 213 

treatments in a pot experiment, Luo et al. (2006d) found that when chelants were applied as 214 

hot solutions at the rate of 1 mmol kg-1, the concentrations and total phytoextraction of Cu, Zn 215 

and Cd by plant shoots exceeded or at least approximated those in the shoots of plants treated 216 

with normal chelants at a rate of 5 mmol kg-1 (Luo et al., 2006d). This result indicated that the 217 

amount of chelant applied could be greatly decreased for the given effectiveness of chelants in 218 

enhancing the phytoextraction of trace metals from contaminated soils. The soil leaching 219 

study demonstrated that there was no significant difference in the soluble metals between the 220 

hot and normal chelant applications when the chelant was applied at the same dosage. The 221 

decreased dosage of chelant resulted in decreased concentrations of soluble metals in soils, 222 

which meant that the hot chelant application did not increase metal leaching compared with 223 

the normal chelant application. Similarly, some environmental stresses, such as excessive 224 

toxic metals, high temperatures, and drought, may also result in a breakdown of the root 225 
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exclusion mechanisms, subsequently influencing the chelant-enhanced accumulation of trace 226 

metals in plant shoots. This result may be one of the reasons behind the different 227 

phytoextraction efficiencies in using EDTA treatments reported by various researchers even 228 

for the same plant species (Blaylock et al., 1997; Huang et al., 1997; Wu et al., 1999; Salido et 229 

al., 2003; Walker et al., 2003; Lim et al., 2004; Meers et al., 2004).  230 

 231 

2.3. Optimizing the phytoextraction process  232 

 233 

Environmental and economic concerns require that the addition of chelants should be kept 234 

to a minimum. This suggests that further improvements in the process of selecting and 235 

applying chelants should be made in parallel with the selection of plant species. As for plants, 236 

first, the species should be one that is able to tolerate some degree metal contamination. 237 

Screening for more sensitive species/cultivars and optimizing plant growth conditions would 238 

help to reduce the dosage of chelants for a given phytoextraction efficiency (Kumar et al., 239 

1995; Li et al., 2005; Luo et al., 2006b,d). Desirable plant species are those that are fast-240 

growing, have a high biomass and are easily harvested.  Native plant species are better than 241 

exotic species, as using the former increases the probability of success and reduces the 242 

potential risk of plant invasion. Research on an easily biodegradable chelant to replace those 243 

with low levels of biodegradability has led to some exciting new results. A typical example is 244 

the recent reports about the use of [S,S]-EDDS in the phytoextraction application (Grčman et 245 

al., 2003; Kos and Leštan, 2004; Luo et al., 2005; Meers et al., 2005; Tandy et al., 2006). 246 

Different chelant application methods will also have a significant impact on the efficiency of 247 

metal phytoextraction.  248 

In addition, there are several new areas of development that are worthy further research to 249 

reduce potential metal leaching in chelant-enhanced phytoextraction.  250 
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First, a new slow-releasing chelating agent can be developed by coating solid EDTA (or 251 

other chelants) with a layer of silicate to slow down the mobilization of metals in soil in order 252 

to match plant uptake, and thus prevent excessive mobilization (Li et al., 2005). The results 253 

have indicated that the slow release of CCA (coated chelating agent) improved the 254 

bioavailability of metals in soil to match the plant uptake of these metals, and that this could 255 

reduce the risk of metals leaching from the soil.   256 

Second, some agronomic practices should be adapted to increase the efficiency of metal 257 

phytoextraction. The efficiency of phytoremediation depends on large plant yields and high 258 

metal concentrations in plant shoots. Therefore, increasing plant dry biomass yields can be 259 

helpful in increasing the total metal uptake by plants. It has been suggested that the use of 260 

foliar-applied P to plants grown in Pb-contaminated soils can overcome P deficiencies and 261 

avoid the necessity of adding P fertilizer to soils. Huang and Cunningham (1996) reported that 262 

foliar P application not only increased plant biomass four-fold in goldenrod, but also 263 

increased total plant Pb uptake by 115%. 264 

A significant increase in the uptake and translocation of Pb has been reported for corn 265 

transplanted into soil, then treated with EDTA, in comparison with the plants that were 266 

germinated and grown in Pb-contaminated soil to which EDTA was subsequently applied 267 

(Wu et al., 1999). Transplanting seedlings rather than planting seeds resulted in an increased 268 

uptake of chelates, probably through breaks in the Casparian strip due to possible mechanical 269 

damage to the roots (Wallace and Hale, 1962).  270 

Using deep-rooted, higher water-use plants or trees to reduce metal leaching may be 271 

another good approach. Chen et al. (2004) found that 98, 54, 41 and 88% of the initially 272 

applied Pb, Cu, Zn and Cd could re-adsorbed in the soil due to the effects of vetiver grass. 273 

Although the deep-rooted plants of vetiver grass could not accumulate high concentrations of 274 

metals, the plant may reduce the risk of metals migrating downwards and contaminating the 275 
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groundwater through the evaporation of water by the roots of vetiver grass. Therefore, if other 276 

high metal-tolerant plants, such as Indian mustard, are intercropped with vetivar grass, on the 277 

one hand the metals will be accumulated by the shoots of mustard, and on the other hand the 278 

leached metals would be reduced by their readsorption in deep soil layers due to the root 279 

effect of vitiver grass.  280 

Third, different phytoremediation technologies can be combined in field applications. 281 

Electrodic and electrokinetic remediation is another alternative for removing trace metals and 282 

radionuclides from contaminated soil and ground water (Li and Li, 2000; Yong, 2001). Lim et 283 

al. (2004) reported that the addition of an electric field around the plants in combination with 284 

the application of EDTA did more to enhance the uptake of Pb by Indian mustard than the 285 

addition of EDTA only. The accumulation of Pb in the shoots of Indian mustard increased 2- 286 

to 4-fold when 0.5 mmmol kg-1 of EDTA was applied with the parallel application of 287 

electrodics.    288 

 289 

3. Soil washing using chelating agents  290 

 291 

Soil washing involves the separation of toxic metals from soil solid phases by solubilizing 292 

the metals in a washing solution. Acids and chelating agents are the most prevalent removal 293 

agents used in soil washing (Peters, 1999). Acids dissolve carbonates and other metal-bearing 294 

soil material and exchange trace metals from soil surfaces where H+ ions are attracted more 295 

strongly than the cations of toxic metals. Chelating agents desorb trace metals from soil solid 296 

phases by forming strong and water-soluble metal-chelant coordination compounds 297 

(complexes). These complexes are very stable, prevent the precipitation and sorption of 298 

metals, and do not release their metal ions unless there is a significant drop in soil pH. Since 299 

acidic solutions can cause deterioration in the physico-chemical properties of the soil, using 300 



 13 

chelating agents is considered to be environmentally less disruptive than using acids (Xu and 301 

Zhao, 2005). 302 

The important issues concerning the selection of chelants and the development of washing 303 

solutions are summarized as follows (Peters and Shem, 1992; Hong and Jiang, 2005): 304 

• Extraction strength. The chelant should be able to form strong, stable complexes with 305 

toxic metals over a wide pH range.   306 

• Extraction selectivity towards target toxic metals. 307 

• The potential for recovering the spent chelant. If the chelant is to be recycled and reused in 308 

the process several times, it should have low biodegradability in soil. 309 

• The metal-chelant complexes should have low adsorption affinity towards solid soil 310 

surfaces. 311 

• The chelant should have low toxicity and a low potential to harm the environment. 312 

• The chelant should be cost-effective.    313 

 Many different chelants (mostly aminopolycarboxylic acids) have been tested for soil 314 

washing. In the literature, EDTA (Na2EDTA) is the most frequently cited chelating agent for 315 

extracting potentially toxic trace metals from soils, because of its efficiency, availability and 316 

relatively low cost. 317 

Since common soil constituents (e.g., Ca2+, Fe2+, Mg2+, Al3+) compete with toxic metals 318 

for the binding sites of chelating agents, an excess amount of chelant is needed to ensure the 319 

adequate removal of contaminants. Elliott and Brown (1989) reported that more than 95% of 320 

the Pb that was present was removed when a 2:1 EDTA:Pb molar ratio was used. The removal 321 

efficiency was lower when an equimolar ratio was used. 322 

 The stability constants of the formation of the metal-chelant complex and thus the 323 

efficiency of chelant metal extraction are pH dependent. The removal of greater amounts of 324 

toxic metals has most often been observed at lower pH levels (Van Benschoten and 325 
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Matsumoto, 1997). However, Vandevivere et al. (2001) reported that a slightly alkaline pH 326 

was optimal for the removal of Pb, Zn and Cd with [S,S]-EDDS. The formation of complexes 327 

in soils is controlled by the kinetic of all complexation reactions, adsorption in soil solid 328 

phases, mineral dissolution and the possible degradation of the chelating agent or its metal 329 

complexes (Nowack, 2002). These interactions are difficult to predict and depend on the 330 

contaminants and soil conditions. Interestingly, applying chelant in several small dosages 331 

often results in the extraction of considerably more toxic metals than when using one large 332 

dose (Finžgar and Leštan, 2007). In practice, the choice of washing solution pH, the 333 

concentration of the chelating agent and the application mode, the optimum soil/washing 334 

solution ratio, the retention (reaction) time of the chelating agent solution in the soil and the 335 

designated soil washing technique must therefore be selected individually for each case of 336 

remediation. Technically, soil-washing techniques comprise soil flushing, extraction or 337 

leaching. 338 

 339 

3.1. In situ soil flushing 340 

 341 

Soil flushing is an in situ soil washing technique applicable to specific soil conditions, in 342 

which the contaminated zone is underlain by non-permeable materials, which allows the 343 

washing solution to be pumped and treated (Gracia-Delgado et al., 1998; Khan et al., 2004). 344 

The method is suitable for sandy soil or sediment with high hydraulic conductivity. As shown 345 

in Figure 2, the washing solution is forced through the in-place soil matrix via injection wells 346 

or is infiltrated into the soil using surface sprinklers or similar devices. The washing solution 347 

is pumped from the soil using a set of recovery wells installed down a gradient of the 348 

contaminated area. The washing solution must be treated to remove toxic metals and the 349 

process water reused in the flushing process. Treating the washing solution could prove to be 350 
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more difficult than the soil remediation itself (Mulligan et al., 2001). The disadvantage of in 351 

situ soil flushing is the low degree of control over the movement of contaminants into 352 

undesirable areas. The hydrology of the site must therefore be precisely understood.  353 

 354 

3.2. Extraction of soil slurry 355 

 356 

The extraction of soil slurry refers to the batch treatment of soil slurry in a reactor, as 357 

shown in Figure 3. Following an initial screening of the excavated soil to remove the surface 358 

debris, the soil is vigorously mixed with the chelating agent solution, separated by a second 359 

screening step (filtration), and then returned to the ground (Vandevivere et al., 2001). The 360 

washing of soil in reactors involves stringent physical treatments. It is harsh for the soil flora 361 

and can cause the physical quality of the soil (its structure, water holding capacity and 362 

hydraulic conductivity) to deteriorate (Finžgar and Leštan, 2006a).  363 

 364 

3.3. Soil heap/column leaching 365 

 366 

In soil leaching, the washing solution is gravitationally percolated through a soil heap or 367 

column ex situ (Papassiopi et al., 1999; Sun et al., 2001). As shown in Figure 4, the soil which 368 

is contaminated with toxic metals is excavated, screened and placed in a mound on a pad. 369 

Metals are removed by passing washing solution through the soil using some type of liquid 370 

distribution system. The extractant is collected in a pregnant solution pit and processed to 371 

remove metals (Hanson et al., 1992). Soil leaching is operationally simple and holds the 372 

potential for the economical treatment of large amounts of soil. The leaching efficiency is 373 

higher for soils with higher hydraulic conductivity.   374 

 375 
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3.4. Chelant enhanced electrokinetic extraction  376 

 377 

When a direct current electrical field is imposed across a wet mass of contaminated soil, 378 

the pore fluid migrates by electroosmosis and the ions migrate by ionic migration towards the 379 

electrodes. Combining these two removal mechanisms results in the electrokinetic extraction 380 

of metal contaminants from soils.  381 

During electrokinetic soil treatment, hydrogen ions (H+) are generated at the anode due to 382 

water electrolysis, and migrate into the bulk of the soil. A low pH develops through the soil 383 

(except at the cathode where OH- is generated), causing desorption of metallic contaminants 384 

from the soil solid phases. The dissolved metallic ions are then removed from the soil solution 385 

by ionic migration and precipitation at the cathode (Acar and Alshawabkeh, 1993). However, 386 

a high soil buffer and ion exchange capacity can prevent soil acidification and thus decrease 387 

the efficiency of the electrokinetic extraction of toxic metals. In such conditions, the addition 388 

of a chelating agent to the soil can enhance electrokinetic extraction. EDTA has most often 389 

been tested, since EDTA form strong water-soluble chelant complexes with most toxic metals 390 

(Yeung et al., 1996). Chelant-enhanced electrokinetic extraction is promising for dealing with 391 

contamination at moderate depths in fine-grained soils and soils with a high clay or organic 392 

matter content, where the application of soil washing technologies is impractical.   393 

 394 

3.5. Treatment of soil washing solutions  395 

 396 

One of the main drawbacks of the soil washing methods is the vast consumption of water 397 

required for making up the washing solution, and of clean water for the removal of the 398 

mobilized metallic species that have been complexed with the chelating agent and that have 399 

been retained in the soil after the remedial treatment. Another problem is that the washing 400 
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solution, now rich with metal-chelant complexes, must subsequently be treated before it can 401 

be safely discharged. EDTA, the chelating agent that is most often used, is toxic, especially in 402 

its free form (Sillanpaa and Oikari, 1996; Dirilgen, 1998), and is poorly photo-, chemo- and 403 

biodegradable in the environment (Nörtemann, 1999). In the case of conventional treatments 404 

such as settling, chemical precipitation or activated carbon, it is difficult to recover chelating 405 

agents from spent extraction fluid or wastewater from other processes.  406 

Several strategies have been proposed for the treatment of spent soil washing solutions. 407 

For Pb-EDTA soil extractant, Kim and Ong (1999) proposed the replacement of the Pb in the 408 

EDTA complex with Fe3+ ions at a low pH level, followed by the precipitation of Pb ions with 409 

phosphate or sulfate ions. Ferric iron is then separated from the EDTA with precipitation at a 410 

high pH level. The method allows chelates to be recycled and reused. Similarly, Ager and 411 

Marshall (2003) investigated the possibility of substituting zero-valent Mg and Pd for metals 412 

in EDTA complexes. Zeng et al. (2005) proposed that metals be precipitated from the soil 413 

washing solution as insoluble sulphides after the addition of Na2S. Di Palma et al. (2003a) 414 

advocated the recovery of EDTA after washing soils “artificially” contaminated with Pb or Cu 415 

in two steps: using an initial evaporation treatment that leads to a reduction of the extractant 416 

volume by 75%, followed by acidification, which precipitates more than 90% of the EDTA 417 

complexes. The feasibility of the evaporation of the extractant is probably constrained by the 418 

high cost of water evaporation, an operation that consumes a great deal of energy. The same 419 

research team (Di Palma et al., 2003b) also proposed reverse osmosis to reduce the volume of 420 

the extractant. Allen and Chen (1993) suggested the electrolytic separation of metals and the 421 

chelating agent in the soil washing solution. A two-chamber cell separated by a cation 422 

exchange membrane to prevent migration to the anode and the oxidative destruction of 423 

negatively charged metal-EDTA complexes was used for this. In electrolytic separation and 424 

reverse osmosis, colloidal particles (clays and humic materials) and bacteria can clog the 425 
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membranes and thus diminish the performance and shorten the lifetime of the membranes. 426 

Tejowulan and Hendershot (1998) used a simple procedure to remove negatively charged 427 

metal-EDTA complexes from the soil washing solution using an anion exchange resin. 428 

However, an effective method of recycling expensive resins still needs to be developed.  429 

The cost of the chelating agent can be an important issue in soil remediation. Methods that 430 

recycle not only the process water, but also the chelant may therefore be economically 431 

feasible. However, at the current stage of development, the proposed EDTA recycling 432 

methods involve the use of other expensive chemical materials or are technically demanding. 433 

For example, the substitution procedure proposed by Kim and Ong (1999) can prove difficult 434 

to apply if EDTA is complexed with more than one trace metal, especially with Zn. It is rare 435 

for soil to be contaminated with a single metal; rather, several toxic metals are usually 436 

simultaneously present in elevated concentrations. On the other hand, EDTA, the most 437 

commonly used chelating agent, is relatively inexpensive (in Europe, it costs about 1.3 euros 438 

per kg-1 for the technical-grade chemical, according to a major European manufacturer) 439 

compared to the cost of soil remediation, which can go up to 450 euros per m-3 for in situ soil 440 

washing (Summergill and Scott, 2005). Chaney et al. (2000) reported that the price of 441 

technical-grade EDTA in the U.S.A. was 4.3 US$ per kg-1. The efficient destruction of EDTA 442 

complexes and the removal of toxic metals from the washing solution could provide a simple 443 

and robust treatment, and the process water can be reused.   444 

To treat decontaminated wastewater from the nuclear industry and other aqueous effluents 445 

contaminated with EDTA, the chemical destruction of EDTA and its complexes using 446 

advanced oxidation processes (AOP) has been proposed (Korhonen et al., 2000; Munoz and 447 

von Sonntag, 2000). AOP involves the use of ozone, H2O2, ultrasonic waves, UV irradiation, 448 

Fenton's reagent (Fe2+ and H2O2), alone or in combination, and electrochemical methods, to 449 

generate free hydroxyl radicals that are powerful, effective and non-specific oxidizing agents. 450 
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Finžar and Leštan (2006b) introduced a novel EDTA-based soil leaching method that involves 451 

treating and reusing the washing solution in a closed process loop (Figure 5). An AOP 452 

combination of ozone and UV was used to generate hydroxyl radicals for the oxidative 453 

decomposition of EDTA-metal complexes. The metals which were released were then 454 

removed from the washing solution by absorption on a zeolite-based commercial metal 455 

absorbent. The method was successfully tested for soils contaminated with Pb, Zn, Cd and Cu, 456 

resulting in the removal of a substantial amount of metals and in a major reduction of the 457 

mobility and bioacessibility (toxicity) of metals left in the soil after remediation (Leštan and 458 

Finžgar, 2007). The method produced a colorless discharge washing solution with a close to 459 

neutral pH and fairly low concentrations of toxic metals and EDTA. Compared to 460 

conventional soil washing methods, this method requires very little process water, and enables 461 

potential emissions to be easily controlled – in short, it is environmentally and soil “friendly.” 462 

 463 

4. The fate of metals left after soil remediation 464 

 465 

Toxic metals in soil are usually not entirely accessible to chelating agents. Consequently, 466 

only part of the total amount of metals in soil is removed by soil washing or enhanced 467 

phytoextraction, especially from soils rich in organic matter or clay. Peters and Shem (1992), 468 

for example, reported that a maximum of 64.2 and 19.1% of Pb (compared with the initial Pb 469 

concentration) was washed with EDTA and NTA as chelants, respectively, from contaminated 470 

soil with a high clay and silt content. Similarly, Pichtel et al. (2001) reported that various 471 

concentrations of EDTA and PDA (pyridine-2,6-dicarboxylic acid) removed up to 58 and 472 

56% of Pb, respectively, from soil material at a battery recycling/smelting site. Metal 473 

speciation and fractionation are also crucial for extraction efficiency of chelating agents. 474 

Barona and Romero (1996) extracted Pb-contaminated soil with EDTA and observed that the 475 
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amount of Pb that was removed correlated with the amount of Pb associated with the Fe and 476 

Mn-oxide and organic matter soil fractions. Finzgar et al. (2005) reported that using 40 mmol 477 

kg-1 of [S,S]- EDDS extracted 31.1% of Pb from vegetable garden soil, which was rich in 478 

organic matter. Lead was removed proportionally from the carbonate and organic matter soil 479 

fractions. To evaluate the potential of EDTA, NTA, DTPA and [S,S]- EDDS to extract Pb, 480 

Zn, Cd and Cu from soil, Nowack et al. (2006) compiled data from 28 publications. Except in 481 

some reports for Pb, complete solubilization did not occur, even at a chelant-to-metal ratio of 482 

greater than 10. The compiled data also indicated large variations in metal extraction among 483 

soils for a given chelant-to-metal ratio.         484 

Potentially toxic metals left in soil after remediation are likely to be present in chemically 485 

stable mineral forms and bound to non-labile soil fractions. As such, they are less mobile and 486 

bioavailable, and therefore less toxic in comparison with the original conditions before 487 

remediation. However, the question is whether the reduced mobility and bioavailability of soil 488 

residual metals is a permanent or only temporal achievement of soil remediation. Soil is a 489 

dynamic natural body and, after remediation, various abiotic (i.e., climatic, hydrological) and 490 

biotic soil (microorganisms and fauna) factors could presumably initiate the transition of 491 

residual metals from less to more mobile/accessible forms, thus changing their toxicity status. 492 

Of the biotic factors, earthworms are perhaps the most important soil organisms in terms of 493 

their influence on soil properties. By ingesting organic debris, earthworms have been shown 494 

to enhance the bioavailability of soil nutrients such as C, N and P, and also of trace metals. 495 

For example, Udovic et al. (2007)  reported that EDTA soil leaching removed 58.4% of initial 496 

soil Pb and decreased Pb mobility by 83.7% (assessed by the toxicity characteristic leaching 497 

procedure, TCLP). However, after the exposure of remediated soil to the earthworm species 498 

Eisenia fetid, the Pb mobility in their casts increased by 6.2-times – back to the initial level 499 

before remediation. In the process of phytoextraction, although the metals accumulated by the 500 
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shoots of plants are proposed to be recovered by incineration, this technology still needs 501 

further research and development in the future.       502 

 503 

5. Conclusion 504 

 505 

The remediation of metal-contaminated soils using synthetic chelants for soil washing and 506 

for enhancing phytoextraction by plants has become one of a number of well studied clean-up 507 

techniques in the last two decades.  508 

In soil washing, however, the strategies for developing chelant-washing solutions to 509 

achieve optimal efficiency in the extraction of toxic metals and in the recovery of chelant and 510 

process water need to be improved. Furthermore, the methods currently being proposed to 511 

recycle chelating agents from spent washing solution are still encountering operational 512 

difficulties and work well only within a narrow range of contamination and soil types. The 513 

cost for soil washing and vitrification is estimated to be between US$ 100,000 and 1,000,000 514 

per ha (Russel et al., 1991). The development of more robust recycling methods would greatly 515 

increase the economic value of soil washing technologies.  516 

The operational cost of chelant-enhanced phytoremediation is much lower than the soil 517 

washing operation. In combination with the possible recovery of extracted metals, this 518 

technology can be more promising in the future. However, the potential leaching of metals 519 

into surrounding environments is the most important concern in this process. It is therefore 520 

essential to optimize this technology before it can be safely adopted in field applications. 521 

Since toxic metals in soil cannot be entirely removed by chelants and plants, enhanced 522 

phytoextraction and soil washing generally focus on stripping the bioavailable and mobile 523 

metal fractions those interact with biological targets and poses a threat to the environment and 524 

human health, instead of trying to reduce the total concentration of metals in soil below limits 525 
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set by legislation (Hamon and McLaughlin 1999). However, the potential effect of abiotic and 526 

biotic soil factors on the availability and mobility of toxic metals left in soil after soil 527 

remediation requires further investigation.   528 
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Figure Captions  814 
 815 
 816 
Figure 1. The schematic representation of the uptake of metal-chelant complexes by plant 817 

roots, their translocation upward, and the potential leaching of metals into the 818 

surrounding environment in the process of chelant-enhanced phytoextraction (the red 819 

circle and yellow moon represent the metals and the applied chelant in the soil, 820 

respectively) 821 

 822 
Figure 2. Flow chart of in situ soil flushing via the injection (A), irrigation (B) and sprinkling 823 

(C) of the soil washing solution.    824 
 825 

Figure 3. Flow chart of ex situ extraction of the soil slurry in the reactor. 826 

 827 

Figure 4. Flow chart of ex situ soil heap/column leaching. 828 

 829 

Figure 5. Flow chart of the chelant-based soil leaching method using AOP to treat and reuse 830 

the washing solution in a closed process loop. The washing solution first circulates 831 

solely through soil (A- washing step) until the optimal contact time for removing the 832 

metals is reached, and afterwards also through the soil solution treatment units (B), 833 

to remove all mobilized metal complexes from the soil.      834 

 835 

836 
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Figure 3 846 
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