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Abstract 8 
An accurate forecast of river stage is very significant so that there is ample time for the 9 
pertinent authority to issue a forewarning of the impending flood and to implement early 10 
evacuation measures as required. Since a variety of existing process-based hydrological 11 
models involve exogenous input and different assumptions, artificial neural networks have 12 
the potential to be a cost-effective solution. In this paper, a split-step particle swarm 13 
optimization (PSO) model is developed and applied to train multi-layer perceptrons for 14 
forecasting real-time water levels at Fo Tan in Shing Mun River of Hong Kong with different 15 
lead times on the basis of the upstream gauging station (Tin Sum) or at Fo Tan. This 16 
paradigm is able to combine the advantages of global search capability of PSO algorithm in 17 
the first step and local fast convergence of Levenberg-Marquardt algorithm in the second step. 18 
The results demonstrate that it is able to attain a higher accuracy in a much shorter time when 19 
compared with the benchmarking backward propagation algorithm as well as the standard 20 
PSO algorithm. 21 
 22 
Keywords: River stage forecasting; split-step; particle swarm optimization; 23 
Levenberg-Marquardt algorithm; artificial neural networks 24 
 25 
Introduction 26 
 27 
Throughout these years, prediction of river stages has long been an important research topic 28 
in hydrologic engineering because flooding is a type of natural disaster that has been 29 
occurring for centuries, but can only be mitigated rather than completely solved. An accurate 30 
water stage prediction allows the pertinent authority to issue a forewarning of the impending 31 
flood and to implement early evacuation measures when required. Mathematical models are 32 
conventionally used to forecast flow in a water body. In general, they require exogenous 33 
input and embrace different assumptions. Conventional numerical modeling addresses the 34 
physical problem by solving a highly coupled, non-linear, partial differential equation set. 35 
The involving processes affecting flooding occurrence are highly complex and uncertain 36 
which may consume enormous computing cost and time. In this sense, existing numerical 37 
models are not totally satisfactory in representing the highly complex inter-relationships. 38 
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In the past decade, soft computing (SC) techniques have been gradually becoming a trend to 
complement or replace the process-based models. Amongst others, artificial neural networks 
(ANN), in particular the feed forward back-propagation (BP) perceptrons, have been widely 
applied in different fields including water resources engineering. It is claimed that the 
multi-layer perceptrons can be trained to approximate and accurately generalize virtually any 
smooth, measurable function whilst taking no prior assumptions concerning the data 
distribution. Characteristics, including built-in dynamism in forecasting, data-error tolerance, 
and lack of requirements of any exogenous input, render it attractive for use in river stage 
prediction in hydrologic engineering. 
 
Thirumalaiah and Deo [1] depict the use of a conjugate gradient ANN in real-time forecasting 
of water levels, with verification of untrained data. Liong et al. [2] demonstrate that a feed 
forward ANN is a highly suitable flow prediction tool yielding a very high degree of water 
level prediction accuracy in Bangladesh. Kumar et al. [3] employed the k nearest neighbors 
of the monthly spatial flow pattern to approximate nonparametrically the probability 
distribution of the vector of disaggregated flows conditional on the multisite monthly flows. 
Chau and Cheng [4] describe the sensitivity of various network characteristics for real-time 
prediction of water stage with the ANN approach in a river in Hong Kong. Raju et al. [5] 
adopted an integrated irrigation planning strategy for the case study of Jayakwadi irrigation 
project, Maharashtra, India, incorporating linear programming models, multiobjective 
optimization, Kohonen neural networks based classification algorithm and multicriterion 
analysis technique. Cheng et al. [6] perform a long-term prediction of discharges in Manwan 
Reservoir using several artificial neural network models. Although the BP algorithm is 
commonly used in recent years to perform the training task, some drawbacks are often 
encountered in the use of this gradient-based method. They include: the training convergence 
speed is very slow; it is easily to get stuck in a local minimum [7]. Different algorithms have 
been proposed in order to resolve these drawbacks, yet the results are still not fully 
satisfactory [8]. Levenberg-Marquardt (LM) optimization technique [9] is a commonly used 
ANN that has attained certain improvements such as convergence rates over the BP algorithm. 
Particle swarm optimization (PSO) is another recently developing SC technique that has been 
applied to different fields [10-12]. This technique has been applied in hydrological problems 
and accomplished satisfactory results [13-14]. Moreover, a combination of global and local 
search methods, such as [15-16] can be explored. 
 
In this paper, a split-step PSO algorithm, coupled with LM technique, is employed to train 
multi-layer perceptrons for forecasting real-time water levels at Fo Tan in Shing Mun River 
of Hong Kong with different lead times on the basis of the upstream gauging station (Tin 
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Sum) or at Fo Tan. The split-step is the key improvement over [13]. It is believed that, by 
combining the two algorithms, the advantages of global search capability of PSO algorithm in 
the first step and local fast convergence of LM algorithm in the second step can be fully 
utilized to furnish promising results. 
 
Attributes of PSO algorithm 
 
PSO is an algorithm tailored to optimize complicated numerical functions based on metaphor 
of human social interaction [8]. Although it is initially developed as a tool for modeling 
social behavior, the PSO algorithm has been recognized as a computational intelligence 
technique intimately related to evolutionary algorithms [17-18]. This optimization paradigm 
simulates the ability of human societies in processing knowledge [18]. It is a populated 
search method for optimization of continuous nonlinear functions resembling the biological 
movement in a fish school or bird flock. The basic principle of PSO algorithm is formed on 
the assumption that potential solutions will be flown through hyperspace with acceleration 
towards more optimum solutions. Each particle adjusts its flying according to the flying 
experiences of both itself and its companions. During the process, the coordinates in 
hyperspace associated with its previous best fitness solution and the overall best value 
attained so far by other particles within the group are kept track and recorded in the memory. 
 
The most significant advantage of PSO algorithm is its relatively simple coding and hence 
low computational cost. It is quite similar to a genetic algorithm in aspects of the fitness 
concept and the random population initialization. However, the evolution of generations of a 
population of these individuals in such a system is by cooperation and competition among the 
individuals themselves. The population is responding to the quality factors of the previous 
best individual values and the previous best group values. The allocation of responses 
between the individual and group values ensures a diversity of response. The principle of 
stability is adhered to since the population changes its state if and only if the best group value 
changes. It is adaptive corresponding to the change of the best group value. The capability of 
stochastic PSO algorithm, in determining the global optimum with high probability and fast 
convergence rate, has been demonstrated in other cases [17-18]. This algorithm can be 
readily adopted to train the multi-layer perceptrons as an optimization technique, as presented 
in the following section. 
 
Adaptation to training of perceptrons 
 
For this case for adaptation to training of perceptrons, a three-layered perceptron is 
considered here. W[1] and W[2] represent the connection weight matrix between the input layer 
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and the hidden layer, and that between the hidden layer and the output layer, respectively. 
During training of the preceptron, the i-th particle is denoted by Wi = {W[1], W[2]} whilst the 
velocity of particle i is denoted by Vi. The position representing the previous best fitness 
value of any particle is denoted by Pi whilst the best matrix among all the particles in the 
population is recorded as Pb. Let m and n represent the index of matrix row and column, 
respectively, the following equation represents the computation of the new velocity of the 
particle based on its previous velocity and the distances of its current position from the best 
experiences both in its own and as a group. 
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where j = 1, 2; t is the time step; t+1 is the new time step; m = 1, …, Mj; n = 1, …, Nj; Mj and 
Nj are the row and column sizes of the matrices W, P, and V; r and s are positive constants; α 
and β are random numbers in the range from 0 to 1. In the context of social behavior, the 

cognition part  denotes the private thinking of the particle itself 

whilst the social part  represents the collaboration among the 

particles as a group. The new position is then determined based on the new velocity as 
follows: 
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The fitness of the i-th particle is determined in terms of an output mean squared error of the 
neural networks as follows: 
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where f is the fitness value, tkl is the target output; pkl is the predicted output based on Wi; S is 
the number of training set samples; and, O is the number of output neurons. 
 
The split-step PSO paradigm 
 
It is believed that the combination of two different SC techniques could enhance the 
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performance through fully utilization of the strengths of each technique. In this algorithm, the 
training process is divided into two stages. Initially the perceptron is trained with the PSO 
algorithm for a predetermined generation number to exploit the global search ability for 
near-optimal weight matrix. Then, after this stage, the perceptron is trained with the LM 
algorithm [9] to fine tune the fast local search. The drawbacks of either entrapment in local 
minima in LM algorithm or longer time consumption in global search of PSO algorithm 
might be avoided in this new paradigm. 
 
Forecasting water stage in Shing Mun River 
 
The capability of any model can only be validated through prototype application to mimic a 
particular case study with accurate depiction of real phenomena. In this case, the system is 
employed to study the potential flood hazards in terms of water levels in the Shing Mun River 
network, Hong Kong. Figure 1 shows the schematization of Shing Mun river channel 
together with the three tributary channels. The author has studied the tidal dynamics and 
potential flood hazards in this river network [19-22]. Details regarding the location of the 
Shing Mun River and its tributary nullahs can be found in [19-22] and are not repeated here. 
The maximum flow at the river for a 200-year storm is about 1500 m3/s. The existing Shing 
Mun River has been trained for a length of about 2840m, from the bell-mouth outlet of Lower 
Shing Mun Dam to Sha Tin Tsuen. The three minor streams, i.e. the Tin Sum, Fo Tan and Siu 
Lek Yuen nullahs, form tributaries of the extended river. Surface water from an extensive 
catchment with an area of approximately 5200 ha flows into Sha Tin Hoi via the Shing Mun 
River. 
 
The data available at the study area pertain to continuous stages from 1999 to 2002, in the 
form of daily water levels. In this study, water levels at Fo Tan is forecasted with a lead time 
of 1 and 2 days based on the measured daily levels there and at Tin Sum, which is located at 
2500m upstream of Fo Tan. In total, 1095 pairs of daily levels were available, of which 730 
were used for training and 365 were used to validate the network results with the 
observations. The division of data is tailored so as to include extreme frequency and intensity 
in both sets of data. In other words, it is ensured that the data series chosen for training and 
validation comprised both high and low discharge periods of the year and also rapid changes 
in water stages. 
 
The perceptron has an input layer with one neuron, a hidden layer with three neurons, and 
output layer with two neurons. The input neuron represents the water stage at the current day 
whilst the output nodes include the water stages after 1 day and 2 days, respectively. All 
source data are normalized into the range between 0 and 1, by using the maximum and 
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minimum values of the variable over the whole data sets. In both the PSO-based perceptron 
and split-step PSO-based perceptron, the number of population is set to be 40 whilst the 
maximum and minimum velocity values are 0.25 and -0.25 respectively. The learning rate is 
0.9 and the number of epoch is 10,000. The computer code is developed under Visual Basic 
environment. 
 
Results, analysis and discussions 
 
Figure 2 shows the comparison between observed and predicted flow levels using spilt-step 
PSO. In order to gauge objectively the performance of the split-step multi-layer ANN, its 
results are compared with the benchmarking standard BP-based network, a PSO-based 
network and a LM network. In order to provide a fair and common initial ground for 
comparison purpose, the training process of the BP-based perceptron or LM network 
commences from the best initial population of the corresponding PSO-based perceptron or 
split-step network. Since forecasts precision of high flows and extreme floods is more 
important than the precision of normal flows, special consideration is paid to testing the 
model performance in prediction of high floods. Two performance measures are employed in 
this study: (i) the correlation coefficient between the field and simulated data; and (ii) 
steady-state fitness evaluation times during training. 
 
Table 1 shows comparison of the water stage forecasting results by different perceptrons 
based on data at the same station and at different station during high floods. It can be 
observed that, in terms of prediction accuracy, the split-step algorithm performs the best. For 
both data inputs at Fo Tan and at Tin Sum under training and validation processes, the order 
is consistent and is as follows: the split-step algorithm, PSO algorithm, LM algorithm and 
then BP algorithm. Moreover, it should be noted that 1 day lead time is better than its 
counterparts of 2 days and that forecasting at Fo Tan made by using the data collected at the 
upstream gauge station (Tin Sum) is generally better compared to the data collected at the 
same station. This result may be due to the average travel time of flow between the stations. 
 
Table 2 shows the steady-state fitness evaluation times during training for various 
perceptrons. The fitness evaluation time is equal to the product of the population with the 
number of generations. It can be observed that the split-step PSO perceptron, with rate 
comparable to that of LM algorithm, exhibits much faster convergence than those by the 
BP-based perceptron and the standard PSO-based network. Although the improvement in 
performance by this novel algorithm over others is not substantial, the results are still 
encouraging because the improvement is observed to be consistently better over all cases (for 
different lead times, locations as well as training/validation processes). 
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Conclusions 
 
In this paper, a perceptron based on a split-step PSO algorithm is employed for real-time 
prediction of water stage at Shing Mun River in Hong Kong with different lead times on the 
basis of the upstream gauging station or stage/time history at the specific station. The training 
and verification simulation results show that the split-step PSO-based perceptron outperforms 
the other commonly used benchmarking optimization techniques in water stage prediction, in 
terms of both convergence and accuracy. It is demonstrated that this novel hybrid 
optimization algorithm, which is able to provide model-free estimates in deducing the output 
from the input, is an appropriate forecasting tool. Moreover, forecasting at Fo Tan made by 
time-lagged water stage is shown to be a robust forewarning and decision-support tool. 
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Table 1. Results for river forecasting at Fo Tan during high floods based on input data at 

different stations 

 

Coefficient of correlation 
Training Validation 

 
Input 
data 

 
Algorithm 

1 day ahead 2 days ahead 1 day ahead 2 days ahead 
 BP 0.944 0.940 0.943 0.938 

Tin Sum PSO 0.975 0.971 0.973 0.969 
 LM 0.966 0.960 0.959 0.953 

 Split-step 0.991 0.984 0.986 0.979 
 BP 0.936 0.922 0.931 0.915 

Fo Tan PSO 0.964 0.953 0.961 0.948 
 LM 0.952 0.941 0.947 0.931 

 Split-step 0.982 0.971 0.975 0.965 
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Table 2. Steady-state fitness evaluation times during training for various algorithms 

 

Algorithm Steady-state fitness valuation time 
BP 18,000 
PSO 8,500 
LM 4,500 
Split-step 5,500 
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Figure 1. Schematization of Shing Mun river channel together with the three tributary 

channels 
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Figure 2. Comparison between observed and predicted flow levels using spilt-step PSO 




