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A Study of Synchronization in Chaotic Autonomous Ćuk
DC/DC Converters

H. H. C. Iu and C. K. Tse

Abstract—The synchronization property of chaotic free-running dc/dc
converters is studied in this paper. The system under study consists of two
Ćuk converters operating under free-running current-mode control, with
two converters connected in the well-known drive-response configuration
similar to that studied by Pecora and Carroll. This paper studies, in partic-
ular, the synchronization property of the system when a capacitor voltage
is chosen as the driving signal. The study includes the derivation of the de-
scribing differential equations and the calculation of the conditional Lya-
punov exponents (CLE’s) of the synchronizing system based on the dif-
ferential equations. It is found that all the CLE’s are negative for certain
chosen parameters and, hence, synchronization is possible in this system.
Exact computer simulations have been performed to verify the synchro-
nization of the aforedescribed circuits operating in chaotic regime. With the
drive-response system connected, synchronization is demonstrated using
both exact time-domain simulations and PSPICE simulations. This paper
reports for the first time the synchronization phenomenon in power elec-
tronic converters.

Index Terms—Chaos synchronization, coupled chaotic circuits, power
electronics, switching converters.

I. INTRODUCTION

Since Pecora and Carroll [1], [2] demonstrated the possibility of syn-
chronizing two chaotic systems, many investigations have been carried
out to explore the properties and applications of chaos synchronization
in a range of nonlinear circuits and systems [3]–[7]. For power elec-
tronics systems, although chaos and bifurcation have been identified in
a number of practical converter configurations, e.g., dc/dc converters
[8]–[13], not much has been reported on the possibility of chaos syn-
chronization. Furthermore, recent success in applying chaos to commu-
nications may suggest possible use of chaotic power converters for such
applications. If power converters could be used to transmit messages,
then we may speculate, however immature at this stage, that future dis-
tributed power systems may be designed to serve the dual function of
a power supply system and a medium of communication. Of course, a
prerequisite is a well-informed operation of power converters in chaotic
regimes for which further investigation is still needed.

In this paper, we consider a very common converter circuit, namely,
the Ćuk converter and, in particular, its synchronization property when
operating chaotically under a very simple free-running current-pro-
grammed scheme [14], [15]. The circuit configured as such can be mod-
eled as an autonomous third-order system. Our purpose in this paper is
to show that two such autonomous systems, connected in a drive-re-
sponse configuration similar to that considered by Pecora and Carroll
[1], [2] can be synchronized. We will first show mathematically and
numerically that the conditional Lyapunov exponents (CLE’s) of the
coupled system under study are negative, and, hence, synchronization
is possible. Finally, computer simulations of the actual system confirm
the predicted synchronization phenomenon.
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II. REVIEW OF DRIVE-RESPONSECONFIGURATION

One essential property of a chaotic system is that trajectories
starting from nearby initial conditions diverge exponentially with
time and quickly become uncorrelated. It is therefore nontrivial to
show that two chaotic systems coupled through a chaotic signal can
be in perfect synchronization. In Pecora and Carroll [1], [2] such a
possibility was demonstrated. The basic idea of Pecora and Carroll
can be briefly described as follows.

Consider ann-dimensional(n = m+ k) dynamical system which
is described by a state equation of the form

_x = f(x(t)) (1)

wherex = [x1 x2 � � � xn]
T . The system is divided into two sub-

systems in an arbitrary way. Accordingly, the state vectorx is par-
titioned asx = [xD xR]

T , wherexD is anm-dim vector andxR
is ak-dim vector corresponding to a drive subsystem and a response
subsystem, respectively, i.e.,xD = [x1 x2 � � � xm]T andxR =
[xm+1 xm+2 � � � xn]

T . Then, (1) can be rewritten as

_xD = g(xD; xR)

_xR =h(xD; xR) (2)

whereg(x) = [f1(x) � � � fm(x)]T andh(x) = [fm+1(x) � � � fn(x)]
T .

An identical copy of the system is constructed and driven byxD

taken from the above original system. We let the state variables of this
new system bex0 which is likewise partitioned, i.e.,x0 = [x0

D x0

R]
T .

The dynamics of this second system is thus described by

_x
0

D = g(xD; x
0

R)

_x
0

R =h(xD; x
0

R): (3)

Sincex0

D = xD , we may ignore the dynamics ofx0

D and, hence, de-
scribe the second system by only its response subsystem equation, i.e.,

_x
0

R = h(xD; x
0

R): (4)

Now, the original system (2) and the second response subsystem (4)
constitute a complete coupled system.

It is readily shown that if all the Lyapunov exponents of the second
response subsystem (4), also called conditional Lyapunov exponents
(CLE’s), are negative, then after the decay of the initial transient,x0

R

will be exactly in step withxR. More precisely, under perfect synchro-
nization the difference betweenx0

R andxR will tend to zero asymptot-
ically, i.e., limt!1 jx0R � xRj = 0. Alternatively, one may examine
the error system that describes the dynamics of(x0R�xR). LettingeR
be(x0R � xR), we can write_eR(t) = h(xD; x

0

R)� h(xD; xR), or

_eR(t) = he(xD; xR; x
0

R): (5)

The Lyapunov exponents of this system are also the CLE’s. Ifhe is
linear, we can examine its eigenvalues and conclude that synchroniza-
tion occurs if the real parts of all these eigenvalues are negative. Note
that the real parts of these eigenvalues are also the CLE’s. Whenhe is
nonlinear, we must resort to numerical procedure in order to calculate
the CLE’s.

For brevity, we will refer to the original system as the drive system
(with state vectorx)and to the second system as the response system
(with state vectorx0).
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Fig. 1. Ćuk converter under hysteretic current-mode control.

Fig. 2. Hysteretic current-programming scheme.

III. FREE-RUNNING CURRENT-PROGRAMMED ĆUK CONVERTER

A. Piecewise Switched Model

The free-running current-programmed C´ uk converter under study is
shown in Fig. 1 [14], [15]. The circuit operation can be described as
follows. The sum of the inductance currents, i.e.,i1 + i2, is compared
with a reference currentiref in a hysteretic fashion. Wheni1+ i2 rises
aboveiref + (�h=2), where�h is the width of a hysteretic band, the
switch is turned off. Wheni1+i2 falls belowiref�(�h=2), the switch
is turned on. The reference currentiref is related to the output voltage
v1 by a feedback equation

iref = K � �v1 (6)

whereK and� are the control parameters. Fig. 2 illustrates this current-
programming scheme.

The converter itself can be represented by the following set of state-
space equations, wheres = 1 when the switch is closed, ands = 0
when the switch is open

di1
dt

= �

(1� s)v2
L

+
E

L
di2
dt

=
v2s

L
�

v1
L

dv1
dt

=
i2
C

�

v1
CR

dv2
dt

=
(1� s)i1

C
�

i2s

C
: (7)

The above equations constitute an exact piecewise switched model for
the Ćuk converter, which will be used for computer simulations of the
actual system to be reported in a later section.

B. State-Space Averaged Model

The state-space averaging approach has been widely used for mod-
eling dc/dc converters [16]. For the C´ uk converter, the state-space aver-

aged model has the same form as (7), withs replaced by the duty cycle
� which is the fraction of the switching period for which the switch is
closed. From (6), we see that the current-programming scheme essen-
tially forcesi1+ i2 to be linearly related tov2 and if�h is sufficiently
small, we can write

i1 + i2 = K � �v1: (8)

The closed-loop system is thus reduced to third order and the state-
space averaged model becomes

di2
dt

=
v2�

L
�

v1
L

dv1
dt

=
i2
C

�

v1
CR

dv2
dt

=
(1� �)(K � �v1)

C
�

i2
C

(9)

where � is the duty cycle. From (8), we getd(i1 + i2)=dt =
�� dv1=dt. Substitution of the involving derivatives gives

� =
1

2
�

�L

C
i2 � 1 +

�L

CR
v1 +E

2v2
(10)

which must satisfy0 < � < 1. Finally, putting (10) into (9) results
in the following set of autonomous state equations that describes the
dynamics of the free-running current-programmed C´ uk converter:

di2
dt

= �

�i2
2C

� 1�
�L

CR

v1
2L

+
v2
2L

�

E

2L

dv1
dt

=
i2
C

�

v1
CR

dv2
dt

= �

i2
C
+

K � �v1
2C

� 1 +

�L

C
i2 � 1 +

�L

CR
v1 + E

v2
: (11)

Remarks: The above representation is valid only when there is no
saturation of the duty cycle� of the converter, i.e.,0 < � < 1.
However, in the real system saturation does occur, especially when it
is operating in chaotic regime. Thus, when we use (11) to calculate the
corresponding CLE’s, we must take into account the saturation of the
duty cycle�.

C. Dimensionless Equation

Equation (11) can be put in a dimensionless form for the sake of
simplicity. Define the dimensionless state variables as follows:

x1 =
Ri2
E

; x2 =
v1
E
; x3 =

v2
E
: (12)

Also define the dimensionless time and other parameters as follows:

� =
Rt

2L
; � =

L=R

CR
; �1 = �R; �0 =

KR

E
: (13)

Direct substitution of these new dimensionless variables, time and pa-
rameters in the autonomous equation (11) gives the following dimen-
sionless autonomous equations:

dx1
d�

=���1x1 � (1� �1�)x2 + x3 � 1

dx2
d�

=2�(x1 � x2)

dx3
d�

=�2�x1 + �(�0 � �1x2)

� 1 +
�1�x1 � (1 + �1�)x2 + 1

x3
: (14)
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Fig. 3. Interaction of state variables in (a) isolated converter and (b) coupled
converters in drive-response configuration.

In the next section, we will use this set of dimensionless equations to
predict the synchronization property of chaotic C´ uk converters under
free-running current-mode control.

IV. CHAOS SYNCHRONIZATION IN FREE-RUNNING

CURRENT-PROGRAMMED ĆUK CONVERTERS

A. Construction of Drive-Response System

We consider now two identical C´ uk converters arranged in the drive-
response configuration described in Section II. Letx1,x2 andx3 be the
state variables of the drive converter, andx1r , x2r andx3r be those of
the response converter. In particular, we usex3, i.e., the dimensionless
equivalence of capacitor voltagev2, as the driving signal.

The fifth-order coupled system is thus completely described by the
set of drive converter equations, i.e., (14), and the set of response con-
verter equations which is

dxr1

d�
=���1xr1 � (1� �1�)xr2 + x3 � 1

dxr2

d�
=2�(xr1 � xr2) (15)

where subscriptr denotes the response system variables. Fig. 3(a) de-
scribes the interaction of the variables for the case of the isolated con-
verter, and Fig. 3(b) describes that for the case of the two converters
being connected in the drive-response configuration.

B. Derivation of the Conditional Lyapunov Exponents

As mentioned in Section II, synchronization may be examined in
terms of the error system, i.e., (5). For the system under study, the error
system is linear. Lettinge1 = x1 � xr1 ande2 = x2 � xr2, we can
describe the error dynamics by

de1

d�
de2

d�

=
���1 �(1� �1�)

2� �2�

e1

e2
: (16)

For brevity, we lete = [e1 e2]
T and put (16) as

_e(�) = Ae(�) (17)

TABLE I
COMPARISON OFCLES FROMAVERAGED MODEL AND BY NUMERICAL

CALCULATION INCORPORATINGDUTY CYCLE SATURATION

Fig. 4. Chaotic trajectory from exact time-domain simulation of (a) drive
system and (b) response system.

whereA can be extracted from (16). Our objective is to find the CLE’s
in order to determine if synchronization is possible. As mentioned in
Section II, the real parts of the eigenvalues of the error system are in
fact the CLE’s we need to find. Let�1 and�2 be the eigenvalues ofA.
For this linear system, we can readily show that

�1;2 = �
(2� + �1�)� (2� + �1�)2 � 8�

2
: (18)

Clearly, for(2� + �1�)
2 � 8�, both eignevalues are negative. For

(2� + �1�)
2 < 8�, moreover, the real part of both eigenvalues is

negative for all positive values of�1 and�, i.e.,

<(�i) < 0 for all �; �1 > 0: (19)

Thus, by choosing suitable values of�, �1 and�0, the drive system can
be set to operate in the chaotic regime (characterized by one positive
Lyapunov exponent) and the response system will also be driven to
chaos when synchronization occurs.
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Fig. 5. Graphical representation of synchronization from exact time-domain
simulation. (a)i versusi . (b) v versusv .

C. Numerical Calculation of the Conditional Lyapunov Exponents

In the foregoing subsection, we have predicted that chaos synchro-
nization is possible in the autonomous C´ uk converter. However, since
the foregoing analysis is based on an averaged model of the converter
which does not take into account the saturation of the duty cycle, the
values of CLE’s so obtained, i.e., those from (18), remain to be veri-
fied.

In this subsection, we will recalculate the CLE’s numerically, taking
into account the saturation effect. In other words, we will consider the
realistic case in which the switch can remain in the ON (or OFF) state
continuously, as a result of the action of the control scheme. Specifi-
cally, the describing equation for� = 1 is

dx1

d�
=2(x3 � x2)

dx2

d�
=2�(x1 � x2)

dx3

d�
=�2�x1 (20)

and that for� = 0 is

dx1

d�
=�2x2

dx2

d�
=2�(x1 � x2)

dx3

d�
=�2�x1 + 2�(�0 � �1x2): (21)

Essentially we need to include two extra subroutines to generate the
flow according to (20) and (21), when the calculated duty cycle exceeds
one and falls below zero, respectively.

Fig. 6. Plots of (a)i versusi and (b)v versusv for the uncoupled
converters.

Actual numerical calculation has been performed by using the IN-
SITE software1 [17], which employs a Gram–Schmidt orthonormal-
ization procedure for calculating Lyapunov exponents. In particular,
we fix � at 0.1 which corresponds to a realistic practical choice, and
for a range of�1 we have numerically calculated the corresponding
CLE’s using INSITE. The results are compared to those obtained from
(18). As shown in Table I, the numerical CLE’s are all negative and
reasonably close to those obtained from (18). We may thus conclude
that chaos synchronization is possible in the free-running current-pro-
grammed C´ uk converter under study. Verification is yet to be sought
using computer simulation of the actual converter circuits.

Remarks: Up to this point, validity of the averaged model has been
assumed. However, as studied in [15], averaged models are only good
up to the point of losing stability. Thus, as long as synchronization is
maintained, the averaged model for the error system is still valid and, in
this case, synchronization should be predicted by the averaged model.
The converse is not true, however, and one cannot draw any definite
conclusion if the averaged model predicts failure of synchronization.

V. COMPUTERSIMULATIONS

A. Exact Time-Domain Simulations for Piecewise Switched Model

In this section, we present exact simulations of the system
under study, which consists of two identical free-running cur-
rent-programmed C´ uk converters connected in the drive-response
configuration, as described previously. Specifically, the drive system

1INSITE is a collection of software programs developed by T. S. Parker for
studying chaotic systems. The particular software components used in this paper
are LYEXP and TRAJ for generating Lyapunov exponents and trajectories.
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Fig. 7. Chaotic trajectory from PSPICE simulation of (a) drive system and (b)
response system.

is exactly the circuit shown in Fig. 1, and the response system is
constructed with the middle capacitor (the one connecting the two
inductors) replaced by a voltage-controlled voltage source which
copies the value ofv2 from the drive system.

Based on the piecewise switched model developed in Section III-A,
we have simulated the cycle-by-cycle waveforms of the actual circuit,
from which the phase portraits of the drive and response systems are
obtained. The values of the parameters used areL = 0.01 H,C = 1000
�F,R = 10
, E = 12 V,�h = 0.5 A,� = 0.2, andK = 40. These
values correspond to� = 0.1,�1 = 2.0, and�0 = 33.3.

For ease of reporting, we usei1, i2, v1, andv2 to denote variables of
the drive circuit, consistent with Fig. 1, andi1r , i2r, v1r, andv2r to de-
note those of the response circuit. The following results are presented.

1. Fig. 4 shows the chaotic trajectories of the drive system and the
response system after discarding the points in the transient pe-
riod.

2. Fig. 5 shows the curves ofi2 versusir2, and ofv1 versusvr1,
which verify that chaos synchronization is achieved.

3. For comparison, we have simulated the uncoupled system. The
result is shown in Fig. 6.

B. PSPICE Simulations

The above simulations have verified the possibility of chaos synchro-
nization in the theoretical circuit consisting of ideal switches and zero-
delay switching. For further verification, we consider real MOSFET
switches and practical gate drivers, and use PSPICE to simulate the
system. Moreover, a voltage-controlled voltage source is again used to
establish the coupling connection. The parameters used here are iden-

Fig. 8. Graphical representation of synchronization from PSPICE simulation.
(a) i versusi andv versusv .

TABLE II
TOLERANCE LIMITS OF CIRCUIT PARAMETER MISMATCH

tical to those used in Section V-A. The results are shown in Figs. 7 and
8, which are in perfect agreement with those obtained in Section V-A.

C. Effects of Parameter Mismatch

So far, we have assumed identical parameter values for both the drive
and response systems. In practice, parameter values in the two systems
do vary, however small. It is therefore of interest to study of the effects
of parameter mismatch on synchronization. This mismatch problem can
be translated formally to the study of two slightly different systems [18]

_x = f(x(t);p) (22)

_x = f(x(t);p+ �p) (23)

wherep is a vector of parameters, and�p is a vector of the differences
in the values ofp between the two systems. If we denote the variables
for the response part of the two systems byxR andx0

R, similar to what
has been discussed in Section II, then the condition for synchronization
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under a mismatch condition becomeslimt!1 jx0R � xRj � � where
� is a vector of small numbers(�i � 1 for all i = 1; 2; � � � ; n).

In this paper, instead of a formal mathematical study as outlined
above, we examine the limits of parameter mismatch by computer
simulations. Specifically, we keep the circuit parameters of the drive
system unchanged and vary those of the response system one at
a time. Table II shows the limits of parameter mismatch beyond
which synchronization cannot be maintained. Both exact computer
simulations and PSPICE simulations report the same findings.

VI. CONCLUSION

Power electronics circuits, due to their switching nonlinearity, ex-
hibit a wide range of nonlinear and chaotic behavior. In recent years
some results concerning bifurcations and chaos have been reported in
power electronics systems and more are yet to be uncovered. In the
nonlinear system literature, recent evidence of potential application in
communication has aroused tremendous interest in chaos synchroniza-
tion and dynamics of coupled systems. In this paper we consider, for
the first time, power electronics circuits under a chaos synchronization
context. We have shown in a simple drive-response connected system
of chaotic power converters the possibility of synchronization. While
any potential use of chaotic power converters remains uncertain, the
present study provides a first evidence of synchronizing chaotic power
converters. If power converters, apart from their normal power supply
function, could be used to transmit messages, then future distributed
power systems may serve the dual function of a power supply system
and a medium of communication.
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Novel CMOS Current Feedback Op-Amp Realization
Suitable for High Frequency Applications

Aly M. Ismail and Ahmed M. Soliman

Abstract—A novel CMOS current feedback operational amplifier
(CFOA) is developed for wideband current-mode signal processing.
The circuit has a very low input impedance over an exceptionally wide
bandwidth and realizes an exact voltage-following action. Simulation
results assuming 0.5- m CMOS process shows that the impedance at
the current input node is about 2
 and current and voltage transfer
characteristics are extending beyond 180 MHz.

Index Terms—CMOS circuits, current-feedback op amps.

I. INTRODUCTION

In recent years, great interest has been devoted to the analysis and
design of current-feedback and current-conveyor integrated circuits
[1]–[9], mainly because these circuits exhibit better performance, par-
ticularly higher speed and better bandwidth, than classic voltage-mode
operational amplifiers, which are limited by a constant gain-bandwidth
product. The current-feedback operational amplifier (CFOA) is a
four-port network with a describing matrix of the form

IY

VX

IZ

VO

=

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

VY

IX

VZ

IO

(1)

Several CMOS realizations for the CFOA have been reported in the
literature [1]–[4]. The CFOA has been always seen as an extension of
the CCII, therefore, the design approach was to cascade a CCII+ with
a voltage follower to realize the complete circuit [3]. The obtained
bandwidth was always a degraded version of the CCII+ bandwidth. A
very interesting analysis for CFOA stability in high-frequency appli-
cation was given in [2] where the basic structure of the CFOA imple-
mented in bipolar technology and shown in Fig. 1 is considered. It has
been shown that the stability of the CFOA can be ensured by consid-
ering the two dominant poles due to the equivalent impedance at the
nodeZ and due to the current mirror conveying the current from the
nodeX to the nodeZ. Typically, the current mirror pole frequency
is much higher than the pole frequency due to the transimpedance
pole of the amplifier. However, because of economic constraints, the
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