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Harmonic Issues Assessment on PWM VSC-Based
Controlled Microgrids using Newton Methods

Gibran Agundis-Tinajero, Student Member, IEEE, Juan Segundo-Ramı́rez, Member, IEEE, Rafael Peña-Gallardo,
Member, IEEE, Nancy Visairo-Cruz, Member, IEEE, Ciro Núñez-Gutiérrez, Member, IEEE, Josep M. Guerrero,

Fellow, IEEE, Mehdi Savaghebi, Senior Member, IEEE.

Abstract—This paper presents the application of Newton-based
methods in the time-domain for the computation of the periodic
steady state solutions of microgrids with multiple distributed
generation units, harmonic stability and power quality analysis.
Explicit representation of the commutation process of the power
electronic converters and closed-loop power management strate-
gies are fully considered. Case studies under different operating
scenarios are presented: grid-connected mode, islanded mode,
variations in the Thevenin equivalent of the grid and the loads.
Besides, the close relation between the harmonic distortion,
steady state performance of the control systems, asymptotic
stability and power quality is analyzed in order to evaluate the
importance and necessity of using full models in stressed and
harmonic distorted scenarios.

Index Terms—Commutation process, harmonics, limit cycle,
microgrid, Newton methods, periodic steady state, power man-
agement, pulse-width modulation, voltage source converter.

I. INTRODUCTION

IN order to ensure the safe, reliable and controlled operation
of the microgrid (MG) system, it is necessary to carry-out

model-based studies for design purposes, monitoring, control,
and network reconfiguration, etc. Some of these studies are
run in transient state and others in steady state; nonetheless,
for any of these scenarios are needed efficient mathemati-
cal models and computational algorithms for execution and
analysis. In particular, the steady state solution of an MG
system is necessary to carry out studies such as power quality,
stability, design of components, power flow, robustness, among
others; however, despite that in conventional power systems
the analysis previously mentioned are well established [1],
during the design stage of the MG, the computation of the
steady state solution represents a challenging task due to the
incorporation of power electronic converters, nonlinear loads
and closed-loop control systems.

On the other hand, the assumption of balanced and perfectly
sinusoidal three-phase voltage and current waveforms are
conditions increasingly difficult to sustain as valid in stressed
and harmonic distorted scenarios, since harmonic generation,
unbalance, interaction of control and harmonic components,
resonances, etc, are phenomena commonly found in systems
with high penetration of distributed generation units such as
microgrids [2], [3]. This could result, in practice, in erroneous
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or unfavorable operating scenarios overlooked in the design
and evaluation stages [1], [4], [5]. In this way, this gap has
been recognized and recently addressed in the open literature,
albeit incipient. For instance, reference [6] proposed a control
system for regulating the grid power flow and for the reduction
of the grid current total harmonic distortion in presence of
nonlinear loads; however, the control is based on average mod-
els and therefore, it does not include the harmonic interaction
with the power network. Reference [7] presents a hierarchical
control; however, the voltage source inverter (VSI) used in
this work are modeled based only on their control functions
so that fast switching transients, harmonics, and inverter losses
are neglected. In [8] a control strategy based in droop control
is proposed; nevertheless, the control is tested in a small signal
model and, furthermore, in order to reduce the system equa-
tions, the fast dynamics are neglected and the dc/dc converter
is assumed to be a controllable voltage source. To analyze
the harmonic stability of balanced AC power-electronic-based
systems, an approach based on impedance is proposed in [9],
this approach considers the harmonic content as a disturbance
matrix. In [10], the authors derive conditions for stability
of droop controlled microgrids; however, these conditions of
stability are tied to several assumptions increasingly difficult
to achieve in realistic systems with high penetration of DG
units with power electronic interfaces, for example, the authors
model the inverters as AC voltage sources, assume constant
impedance load models, only the fundamental component of
voltages and currents are considered, among others.

It is important to notice that, in the previous contributions,
the full relationship harmonics-asymptotic stability has been
overlooked; however, this problem has been addressed in
[11], [12] for adjustable speed drive systems and dynamic
voltage restorer, respectively, and more recently in [9] for
ac power electronic-based power system but using average
models. Furthermore, it has been found that, in microgrids,
the variables of control and the grid are coupled and do
exist an interaction between them [9], [13], such that, there
are effects of the harmonic distortion on the performance of
the control systems and the stability of the periodic solution,
and vice versa, that must be taken into account. In regards
to the aforementioned, there is a close relationship among
control systems, harmonics, asymptotic stability, transient and
steady state performance that must be considered in microgrid
design and studies in order to not overlook phenomena or
undesirable behaviors when using inappropriate models or
analysis techniques [14].
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In this way, this paper presents the performance assessment
of the fast-time domain methods for the computation of the
periodic steady state solutions of MGs, and shows the potential
applications of these methods to study the intrinsic relationship
among harmonics, asymptotic stability, control and the MG
without resort to simplifications of the used models that could
compromise the reliability of the analyses. In addition, this
paper tries to bring out the existing gaps on stability and
power quality analyzes of harmonic distorted and controlled
microgrids through some basic case studies.

This paper is organized as follows: Section II presents
the methodologies used to compute the periodic steady state
solutions of MG systems. Section III describes the general
formulation of the fast-time domain methods. The test micro-
grid, the close-loop controls and the validation state-space MG
model against a professional time domain simulation program
are given in Section IV. The performance assessment of the
fast-time domain methods for computation of the periodic
steady state solutions of MGs is given in Section V. Using the
top performer fast-time domain method found in the previous
Section, harmonic stability and power quality analyzes are
performed in Section VI.

II. ON THE COMPUTATION OF THE PERIODIC STEADY
STATE SOLUTION

A common and straightforward practice in the time domain
to compute the periodic steady state solution of a MG system
is to simulate over several full cycles until the initial transient
dies out. This technique is known as Brute Force method
(BF) [15]; EMTP-type programs fall within this category.
These professional programs rely on the Dommel’s formula-
tion [16], for example PSCAD/EMTDC, EMTP-RV, RSCAD,
ATP-EMTP, among others. However, this conventional time-
domain process presents some drawbacks for poorly damped,
unstable, or stiff systems. Firstly, the BF method can only
compute stable periodic solutions if the initial condition x0

is in the neighborhood U of the attractor of the limit cycle
X (i.e., X Ă U ). Therefore, the computation of unstable
periodic steady state solution is not readily available using
EMTP-type simulators. Assuming a stable limit cycle X and
a good initial condition (x0 P U ), the BF method has to be
applied over a large number of cycles and with small time
steps in poorly damped and stiff systems, respectively; both
cases increase the computational effort. Detailed MG models
are usually stiff and present stability problems and poorly
damped scenarios if the controllers are not properly tuned,
designed or implemented [17]. Therefore, even with a stable
limit cycle and a good initial condition, the computation of the
periodic steady state solution of MG’s using the BF method
may take a very large computational effort if the full harmonic
interactions, the closed-loop controls and the harmonic cross-
coupling need to be explicitly considered.

In order to overcome this problem, EMTP-type programs
can perform a load-flow initialization; the load-flow solution
is based on algebraic constraints, i.e., sources are replaced
by PQ, PV or slack bus constraints, loads are replaced by
PQ constraints and all network components must provide a

load-flow solution model [18]. Despite that this initialization
becomes complex when non-linear components and/or power
electronics switching devices are used, the EMTP-type pro-
grams perform the initialization using mean-value models and
then change to switched models after establishing the steady-
state operating condition; however, it is worth mentioning
that fully automatic methods to initialize a nonlinear switched
system with close-loop controls are still under development
[18]. It is important to highlight that even though the features
offered by the EMTP-type programs, several analyses such as
design of components, optimization, stability, control design,
among others, typically rely on state-space representation of
the system. Therefore, efficient numerical methods for state-
space models of microgrids are required [19].

One way to compute the steady state solution of micro-
grids represented by a set of autonomous ordinary differential
equations, i.e., 9x “ fpxq, is simply to solve fpxq “ 0.
Average models fall within this type of systems, but they have
evident limitations to evaluate adverse effect of the harmonic
distortion on the performance of the MG. Alternatively, the
harmonic domain modeling approach is able to consider the
distorted nature of microgrids and also leads to time-invariant
representations; however, the proper modeling of closed-loop
controls and nonlinearities are still a bottleneck in this domain
[20]. In order to deal with these problems, the fast time-domain
methods were proposed [21], [22] and based on these seminal
papers, other methods have been proposed and some of them
will be presented in the following sections. Depending on
the kind of system, these techniques are referred as shooting
methods, Poincaré map methods or simply Newton methods
[15]; in particular for non-autonomous systems, the shooting
and the Poincaré map methods are essentially the same. In
addition to the computation of the periodic solution, these
methods also give information about the asymptotic stability
of the computed steady-state solution.

The fast time-domain methods also present convergence
problems with power electronic-based systems including
closed-loop controls. Basically, the source of the convergence
problems is the numerical integration during the commutation
process of the power electronic converters. In the case of
using nonlinear models of the semiconductor switches, very
small time steps are needed during the switching transition,
becoming prohibitive the computation time. This approach is
useful and necessary if the switching phenomena want to be
analyzed; however, from the power systems perspective, it is
more important the harmonic interaction among the different
components, elements and systems of the power grid than the
intrinsic phenomena of the commutation of the semiconductor
devices; nevertheless, to overcome this convergence issue of
the fast time-domain methods, in [11], [12] the authors propose
a model for the voltage source converter (VSC) that avoid
the convergence problems for electronic-based systems and
therefore this VSC model is used in this paper.

In the next Section the general formulation of the fast time-
domain methods is presented.
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Fig. 1. Single line diagram of the microgrid.

III. NEWTON METHODS

In general, the mathematical model of periodic switched
nonlinear electric power systems can be given by the following
ordinary differential equation set,

9x “ fpt,xq (1)

where x is the state vector of n elements.
The periodic steady state solution of (1) has a fundamental

period T, such that the following relation is satisfied in steady
state,

xT “ x0 (2)

where x0 is the state vector at t0 and xT“x(t0 ` T , t0; x0);
for simplicity t0 can be set equal to zero. Besides, the repre-
sentation of dynamical periodic systems can be performed by
using a Poincaré map Ppxq. Thereby, (2) can be written as
follows,

xT “ Ppx0q (3)

Then, this problem can be solved through an iterative
Newton method,

xi`1
0 “ xi

0 ´

ˆ

BPpx0q

Bx0

ˇ

ˇ

ˇ

ˇ

x0“xi
0

´ I

¸´1

pPpxi
0q ´ xi

0q (4)

The periodic steady state solution is found once two con-
secutive state vectors meet a convergence criterion error. Also,
the state transition matrix Φ can be defined as,

Φ “
BPpx0q

Bx0

ˇ

ˇ

ˇ

ˇ

x0“xi
0

(5)

It should be noticed that the eigenvalues of Φ are the
Floquet multipliers [23]; therefore, the transition matrix of the
computed solution (4) can be used to obtain the stability of
the periodic solution of the system [15], i.e. if all the Floquet
multipliers are inside the unit circle in the complex plane Z
the system is stable, otherwise unstable.

Several methods have been developed to compute Φ [20],
and all those methods rely on numerical integration processes.
Each method differs from each other on how the approxima-
tion is done, and in the number of full cycles required for the
full identification of Φ. In [22] the Aprille and Trick method
(AT) was proposed, and the identification of Φ requires
only the integration of one full cycle and the computation
of the Jacobian of (1) along the trajectory xpt, t0; xi

0q for
t0 ď t ď t0 ` T . Later, based on the Poincaré map approach,
the Numerical Differentiation (ND) and Direct Approach (DA)
methods were proposed [24]. In both, the computation of Φ
is done column-by-column requiring the integration of n` 1
full cycles.

The ND approach is based in the perturbation of the n state
variables of (1), while DA is based on the linearized version
of (1) around an orbit started at xi

0. In [25], the Enhanced
Numerical Differentiation (END) method was proposed to
take advantage of the half-wave symmetry of waveforms of
practical power systems and compute Φ similarly to the ND
method, but only with the integration of pn`1q{2 full cycles,
leading to improve the computation time but with a lower
accuracy of Φ. At the same time, in [26] a Discrete Ex-
ponential Expansion (DEE) method was proposed, following
an identification procedure step-by-step based on a recursive
formulation that requires the integration of only one full cycle.
Additionally, the Finite Differences (FD) method [15] is an
alternative technique in the time-domain formulated in terms
of a set of difference equations. One of the main advantages
of this method over the others is the explicit trajectory of the
periodic solution of each state variable, but the main drawback
is the large number of algebraic equations to be solved at each
Newton iteration.

IV. MICROGRID SYSTEM

Figure 1 shows the single line diagram of the microgrid
used as test system. Its mathematical model including the
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control system has 86 ordinary differential equations for
grid-connected mode and 83 for islanded mode. The system
configuration, parameters and control scheme were extracted
from [27], [28]. This power system is widely used for studies
in microgrids, such as, faults events analysis [29], small signal
analysis [30], sensitivity analysis [28], among others. The MG
has a nominal voltage of 13.8 kV and it is connected through
a transformer to a harmonic free infinite bus (main grid) of
69 kV. The three distributed generation units include a voltage
source converter [31] with aRL filter of 0.01` j0.15 p.u. and
a frequency modulation index (mf ) of 21 (1260 Hz).

A. Pulse-width modulation (PWM)

The power electronic converter used in each DG unit is a
three-phase two-level VSC. The AC terminal voltage behind
the loss resistance is given by the following equation,

»

–

vaptq
vbptq
vcptq

fi

fl “

»

–

pSaptq ´ 1{3
ř

i“a,b,c Siptqqvdcptq

pSbptq ´ 1{3
ř

i“a,b,c Siptqqvdcptq

pScptq ´ 1{3
ř

i“a,b,c Siptqqvdcptq

fi

fl (6)

where Saptq, Sbptq and Scptq, are the switching functions
for the phase a, b, and c, respectively. vdcptq is the DC-
side voltage of the VSC. For the purpose of this contribution,
vdcptq is considered constant but it can be time-varying or be
described by another set of equations. The switching functions
are modeled using an hyperbolic tangent approach introduced
in [31] in order to avoid convergence problems of the Newton
methods and numerical oscillations. The switching functions
are modeled as follows,

Siptq «
ptanhpαpvsiptq ´ triptqqq ` 1

2
(7)

where vsiptq is the control signal and triptq is the sawtooth
waveform, i “ a, b, c. The parameter α is selected as,

α “
Ωc

fsw
(8)

where fsw is the switching frequency of the PWM modulation
technique and Ωc is the cutoff frequency of the VSC model.
For this contribution, the bandwidth of each VSC (Ωc) was
selected as 15 times fsw, and therefore α “ 15.

B. Power management strategies

Power management strategies (PMS) are required for the
proper operation of microgrids with multiple DG units [28],
particularly during the islanded operation mode. The PMS
adopted for each DG unit of this microgrid is schematically
shown in Fig. 2 [28]. Real and reactive power management
blocks establish the real and reactive power output of each
DG unit, respectively. The block of current controller and gate
pulses take the outputs of the real and reactive power blocks
and generate the reference voltage of the controlled VSC.

Current control

+

Gate pulses

Active power 

block

+

Reactive power 

block

idn(ref)

iqn(ref)

VSC

v(t) RS LS iG(t)

vG(t)

iG(t)

vG(t)ωn

Signal

processor

&

PLL

Power management block

Pout

VRMS

id

iq
Vd

Vq

G

G

GG

Fig. 2. Control block diagram.

C. Validation of the state-space model with PSCAD

Due that to perform the analysis of the controlled MG with
the fast-time domain methods the state space representation is
needed, the obtained state-space model (SSM) of the complete
microgrid in the form (1) needs to be validated against the
solutions of a professional software such as PSCAD [32]. Fig.
3 shows the three phase current flowing from the point of
common coupling (PCC) bus to Bus 3. Please observe that
both solutions are practically the same, despite the formulation
of the dynamical model in PSCAD relies on the Dommel’s
method based on the trapezoidal rule [16], [33]. Furthermore,
it can be seen that the current signals are highly distorted, this
is caused because of a parallel resonance that increases the
harmonic distortion on the MG system.

Cycles
0 1 2

i P
C
C
−
3
(A

)

-200

-100

0

100

200

SSM A

SSM B

SSM C

Cycles
0 1 2

i P
C
C
−
3
(A

)

-200

-100

0

100

200

PSCAD A

PSCAD B

PSCAD C

Fig. 3. Periodic steady state solution of the branch current from PCC to Bus
3 (iPCC´3). (Top) Computed with the Newton method using the state-space
model (SSM). (Bottom) Computed with PSCAD using the brute force (BF)
approach.

V. PERFORMANCE ASSESSMENT OF THE FAST-TIME
DOMAIN METHODS IN THE TEST MG SYSTEM

Two case studies of the microgrid under different operating
conditions are presented in this Section. In the first case,
the microgrid is interconnected to the main grid operating
in periodic steady state, when suddenly is disconnected to
operate in islanded mode. In the second case, the microgrid is
in islanded mode in steady state, when the load of the feeder
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3 (SL3) is suddenly decreased from 3 MW / 2.25 MVAR to
0.6 MW / 0.42 MVAR.

The accelerated computation of periodic solutions for the
case studies is carried out with the six Newton methods
aforementioned (DEE, AT, FD, DA, ND and END), and
the results obtained are compared to assess the advantages
and disadvantages of each method. The convergence error
tolerance used in the case studies is 1 ˆ 10´8 and the state
vector at the end of the 10th cycle is used for initialization of
the Newton methods; the computation of this state vector is
performed through numerical integration of (1) using as initial
condition the state vector at t “ 0 of the previous operating
condition in steady state, i.e., grid-connected mode for the case
study 1 and islanded mode with SL3 “ 3 MW` j2.25 MVAr
for the case study 2. After the 10th cycle the Newton iterations
begin and the convergence mismatches are given in multiples
of the cycles that each method need to iterate, i.e., DEE,
AT and FD methods require one full cycle, the ND and DA
methods require pn` 1q cycles and the END method requires
pn`1q{2 cycles, where n is the number of ordinary differential
equations of the system model. The case studies and methods
were implemented in Matlab and the results verified with the
professional software PSCAD.

A. Case study 1: disconnection from the main grid
Table I shows the relative efficiency of each method respect

to the BF method to achieve the periodic steady state solu-
tion within the established tolerance. Besides, the maximum
Floquet multiplier is calculated for each method. Notice that
Φ is not computed in the BF and FD methods; therefore the
Floquet multipliers cannot be calculated with those methods
and neither the stability of the computed periodic solution.
However, in this case, it is clear that the periodic steady state
solution is stable since the BF method is able to reach it. It
is important to remember that the six Newton methods are
able to compute both stable and unstable periodic steady state
solutions; this is a valuable feature since the unstable solution
can become stable with the proper selection of the control
gains or system parameters.

It can be seen that BF and DEE are the slowest and the
fastest methods, respectively. DEE is around 68, 3.46, 3.46,
1.85, 1.83, and 1.79 times faster than BF, ND, FD, DA, AT
and END, respectively. Observe that the maximum Floquet
multiplier with each method (AT, ND, DA, END, and DEE) is
computed and its value is inside the unit circle for all methods
with standard deviation of 5.0438ˆ 10´4.

Table II shows the results obtained in terms of the number of
cycles required to obtain the periodic steady state solution and
the Newton iterations are highlighted in gray. Observe in Table
II that the BF method requires 5283 full cycles and reaches
the periodic steady state with an error of 9.978ˆ10´9, while
the DEE method requires 5 Newton iterations and the others
methods require 3 Newton iterations. The END, DA, AT, ND,
and FD methods have a quadratic convergence characteristic.
Although the DEE method requires more iterations is also the
fastest since the time to compute the transition matrix at each
Newton iteration is less as compared with the others Newton
methods.

TABLE I
COMPARISON BETWEEN CPU TIMES AND STABILITY IN CASE 1

Methods CPU times
(s)

Comparison between
CPU times

TFB
Txx

|xx“FB,...,EED

Max. Floquet
multiplier

BF 80007.10 1.00 N/A
ND 4056.70 19.72 0.9978
FD 4051.06 19.74 N/A
DA 2174.96 36.78 0.9978
AT 2152.25 37.17 0.9978

END 2094.94 38.19 0.9989
DEE 1169.95 68.38 0.9974

B. Case study 2: load change

Table IV shows the relative efficiency of each method. The
BF and the DEE are the slowest and the fastest methods,
respectively. For this case, the DEE method is around 67.05,
3.68, 3.67, 2.01, 1.99 and 1.93 times faster than BF, ND, FD,
DA, AT and END, respectively.

Table III shows the results obtained in terms of the number
of cycles required to obtain the periodic steady state solution
and the Newton iterations are highlighted in gray. The BF
method requires 4969 full cycles and reaches the periodic
steady state with an error of 9.992ˆ10´9, while the DEE
method requires 5 Newton iterations and the other methods
require 3 Newton iterations, being the FD method the one
that gets the smallest convergence error, i.e, 4.843ˆ10´12.

The first two case studies presented a comparison between
the Newton and the BF methods; the Newton methods offer
a suitable alternative to compute the periodic steady state so-
lution of dynamical systems represented by full-order models,
furthermore, they provide information about the asymptotic
stability of the computed periodic steady state solution, except
the FD method.

VI. FAST-TIME DOMAIN HARMONIC ASSESSMENT

In this Section the harmonic assessment of the microgrid
is shown through three case studies using the DEE method
and the professional software PSCAD. These case studies are
presented in order to bring out the potential applications of the
Newton methods and also to expose the relationship among
harmonics, asymptotic stability, control and the network. The
first two case studies are carried out with the microgrid
operating in islanded mode and the last one in grid-connected
mode. The DEE method is used because it is the fastest as
demonstrated in the previous Section. Firstly, an analysis of
the harmonic effects on the power losses and power quality
is presented. Secondly, the harmonic interaction between the
control system and the microgrid is analyzed. Finally, the
harmonic effects on the asymptotic stability of the computed
periodic solutions are analyzed. All case studies presented in
the following sections are focused on the switching harmonics
caused by the PWM inverters considering the nonlinear and
cross-coupling interaction with the DG units, controllers and
network elements and components; however, another harmonic
sources, such as the background harmonics [13], [34], can be
easily taken into account using the proposed fast-time domain
methods.
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TABLE II
MISMATCHES DURING CONVERGENCE OF THE METHODS IN CASE 1

Cycles BF DEE AT FD DA ND END

1 5.217ˆ10´3 5.217ˆ10´3 5.217ˆ10´3 5.217ˆ10´3 5.217ˆ10´3 5.217ˆ10´3 5.217ˆ10´3

2 6.226ˆ10´3 6.226ˆ10´3 6.226ˆ10´3 6.226ˆ10´3 6.226ˆ10´3 6.226ˆ10´3 6.226ˆ10´3

3 3 3 3 3 3 3 3

10 3.969ˆ10´3 3.969ˆ10´3 3.969ˆ10´3 3.969ˆ10´3 3.969ˆ10´3 3.969ˆ10´3 3.969ˆ10´3

11 3.843ˆ10´3 5.586ˆ10´4 2.224ˆ10´5 2.277ˆ10´5 3 3 3

12 3.729ˆ10´3 4.194ˆ10´5 5.594ˆ10´8 4.968ˆ10´8 3 3 3

13 3.623ˆ10´3 2.239ˆ10´6 5.465ˆ10´12 1.567ˆ10´12 3 3 3

14 3.524ˆ10´3 5.745ˆ10´8 3 3 3

15 3.431ˆ10´3 5.316ˆ10´9 3 3 3

3 3 3 3 3

52 1.502ˆ10´3 3 3 3.290ˆ10´5

3 3 3 3 3

94 1.100ˆ10´3 2.224ˆ10´5 2.309ˆ10´5 2.662ˆ10´8

3 3 3 3 3

136 2.110ˆ10´3 3 3 2.604ˆ10´12

3 3 3 3

178 1.207ˆ10´3 5.538ˆ10´8 4.660ˆ10´8

3 3 3 3

262 5.484ˆ10´4 5.338ˆ10´12 5.479ˆ10´12

3 3

5283 9.978ˆ10´9

TABLE III
MISMATCHES DURING CONVERGENCE OF THE METHODS IN CASE 2

Cycles BF DEE AT FD DA ND END

1 9.094ˆ10´3 9.094ˆ10´3 9.094ˆ10´3 9.094ˆ10´3 9.094ˆ10´3 9.094ˆ10´3 9.094ˆ10´3

2 8.109ˆ10´3 8.109ˆ10´3 8.109ˆ10´3 8.109ˆ10´3 8.109ˆ10´3 8.109ˆ10´3 8.109ˆ10´3

3 3 3 3 3 3 3 3

10 1.365ˆ10´3 1.365ˆ10´3 1.365ˆ10´3 1.365ˆ10´3 1.365ˆ10´3 1.365ˆ10´3 1.365ˆ10´3

11 1.270ˆ10´3 3.815ˆ10´4 3.806ˆ10´4 3.806ˆ10´4 3 3 3

12 1.181ˆ10´3 1.157ˆ10´5 7.201ˆ10´8 7.158ˆ10´8 3 3 3

13 1.098ˆ10´3 3.721ˆ10´7 1.549ˆ10´11 1.548ˆ10´11 3 3 3

14 1.192ˆ10´3 5.689ˆ10´8 3 3 3

15 1.288ˆ10´3 5.707ˆ10´9 3 3 3

3 3 3 3 3

52 4.683ˆ10´4 3 3 1.890ˆ10´4

3 3 3 3 3

94 1.984ˆ10´4 3.788ˆ10´4 3.792ˆ10´4 1.875ˆ10´8

3 3 3 3 3

136 5.352ˆ10´4 3 3 1.137ˆ10´11

3 3 3 3

178 4.431ˆ10´4 4.741ˆ10´8 7.098ˆ10´8

3 3 3 3

262 1.613ˆ10´4 6.765ˆ10´12 4.843ˆ10´12

3 3

4969 9.992ˆ10´9

TABLE IV
COMPARISON BETWEEN CPU TIMES AND STABILITY IN CASE 2

Methods CPU times
(s)

Comparison between
CPU times

TFB
Txx

|xx“FB,...,EED

Max. Floquet
multiplier

BF 76173.89 1.00 N/A
ND 4190.97 18.17 0.9978
FD 4170.62 18.26 N/A
DA 2285.46 33.32 0.9978
AT 2265.30 33.62 0.9978

END 2194.82 34.70 0.9989
DEE 1136.01 67.05 0.9975

A. Case study 3: Harmonic effects on the power quality

Table V presents a comparison between the root mean
square (RMS) voltage, voltage ripple and total harmonic
distortion (THD) of the bus voltages at Bus 1, Bus 2, Bus
4 and PCC of the steady state solution obtained with the DEE
method and PSCAD, both with the detailed model (DM) and
the simplified model (SM) of the controlled microgrid. The
commutation of the VSCs is explicitly considered in the DM
and only the fundamental component of the VSCs signals is
taken into account in the SM approach.

According to Table V, the difference of the RMS voltage
between the DEE method and PSCAD, in the worst case, is
about 0.9 % and 0.0073 % for the detailed and the simplified
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TABLE V
COMPARISON BETWEEN SOME SIGNALS OF THE SOLUTION OF DEE METHOD AND PSCAD.

VRMS VRMS VRMS VRMS THD THD VRipple VRipple

(DEE-DM) (DEE-SM) (PSCAD-DM) (PSCAD-
SM) (DEE-DM) (PSCAD-

DM) (DEE-DM) (PSCAD-
DM)

Bus 1 13.870 kV 13.8 kV 13.831 kV 13.8 kV 10.11% 11.10% 10.78% 12.11%
Bus 2 14.375 kV 13.8 kV 14.507 kV 13.8 kV 29.19% 31.90% 28.39% 28.71%
Bus 4 14.335 kV 13.8 kV 14.400 kV 13.8 kV 28.13% 30.60% 27.08% 27.79%
PCC 13.834 kV 13.732 kV 13.761 kV 13.731 kV 12.33% 12.25% 14.62% 15.04%

models, respectively. The results of the THD are close each
others; however, the voltage ripples in percent of the peak
voltage value of the detailed model have, in the worst case, a
difference of 1.33 %. Please notice that the voltage signals
at buses 1, 2, 4 and PCC have high THD; this harmonic
distortion represents adverse effects in the microgrid operation,
i.e., heating of conductors, premature aging of components,
additional transmission losses, interference with communi-
cation and control systems, among others [35]. Regarding
the additional losses, Table VI shows the total active power
delivered by the VSCs at their AC terminals, the total active
power consumed by the loads and the losses of the system
both for the detailed and the simplified model, using the state
space models and PSCAD. The power losses in Table VI do
not include the ones in the VSCs, which in the best case
could be around 2-5% of the delivered power. Additionally,
Table VII presents a comparison between DG units in terms of
apparent, active, reactive and distortion power. In this Table,
it can be observed how the distortion power exceeds in all
VSCs the reactive power, which in turn contributes to reach
prematurely the current and power capacity of the power
electronic converters leading to overrated operating conditions.

TABLE VI
ACTIVE POWER GENERATED, CONSUMED AND LOSSES.

Simplified
model
(SSM)

Simplified
model

(PSCAD)

Detailed
model
(SSM)

Detailed
model

(PSCAD)
Generated

power
(Pgen)

6.6942 MW 6.6940 MW 6.7296 MW 6.7015 MW

Consumed
power

(Pcons)
6.6118 MW 6.6120 MW 6.6119 MW 6.5760 MW

Losses 82 kW 82 kW 117 kW 125 kW

B. Case study 4: Harmonic effects on the control performance

It was found that exist an interaction of the system and
the closed-loop dq control implemented in the distributed
generation units, so that 5th, 7th, 11th and 13th harmonics
appear. Even though, all the odd harmonic components appear
in the voltage and current waveforms of the microgrid (except
triplen) with DGs based in SPWM VSCs, in practice is
common to define the lowest order harmonic equal to mf ´2,
because it is expected that below this frequency the harmonic
content is negligible.
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Fig. 4. Harmonic components for three different scenarios of the microgrid
in autonomous mode, a) modulating control signal of the VSC (DG1), b)
AC voltage at the terminal of DG1, c) AC output current of DG1. For the
microgrid without control and mf “ 21, with close-loop control and mf “

33, and with close-loop control and mf “ 21.

In order to evaluate the presence of the 5th, 7th, 11th

and 13th harmonics with the closed-loop control operation,
please consider that Fig. 4(a) shows the modulating control
signal spectrum of DG1, Fig. 4(b) shows the AC voltage
spectrum at the terminal of DG1, and Fig. 4(c) shows the
AC current spectrum of DG1 under three different scenarios:
open-loop control and mf “ 21, closed-loop control with
mf “ 21, and closed-loop control with mf “ 33. Notice that
without interaction between the microgrid measurements and
the control action (open-loop control), the 5th, 7th, 11th and
13th components vanished. On the other hand, with closed-
loop control, the 5th, 7th, 11th and 13th harmonics appear
with significant values. It is important to notice that their
magnitude do not decrease inversely with mf as is shown in
Fig. 4 with mf “ 21 and mf “ 33. Actually, in Fig. 4(a), the
harmonics 5thand 7thincrease their magnitude for mf “ 33
as compared with those obtained with mf “ 21.

The nonlinear operations in controllers using distorted sig-
nals obtained from measurements derive in harmonic cross-
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TABLE VII
COMPARISON BETWEEN DG UNITS IN TERMS OF APPARENT, ACTIVE, REACTIVE AND DISTORTION POWER.

Apparent power Active power Reactive power Distortion power
(S) (P) (Q) (D)

DG1 2.6776 MVA 1.9842 MW 0.7775 MVAr 1.6211 MVAd
DG2 2.3391 MVA 1.7712 MW 0.7452 MVAr 1.3337 MVAd
DG3 3.9694 MVA 2.9741 MW 1.0402 MVAr 2.4143 MVAd

coupling [36], which tie the entire harmonic spectrum, so
that the high order harmonic are mapped into the low order
harmonics. In addition, previous contributions have exposed
that harmonic interactions phenomena arise in controlled mi-
crogrids; however, they have not been still fully explored and
understood [1], [9], [13], [37].

Therefore, the inherent harmonic cross-coupling, the reso-
nances of the system and the interaction among the network,
the control and the power electronic devices, lead to the
apparition of non-characteristic harmonic components which
are supposed to not exist. In this way, Fig. 5 shows the
magnitude of the low order harmonics of the control signal
for different mf .
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Fig. 5. Harmonic components of the modulating control signal using different
mf .

Observe in Fig. 5 that the low order harmonics in the control
signal have a non-characteristic behavior, that is, the magni-
tudes of the harmonic components oscillate as the switching
frequency increases up to mf “ 39 (2.34 kHz), above this
switching frequency the harmonic components asymptotically
decreases as fsw increases, as commonly expected. Despite the
spectrum magnitude of the control signal could be considered
negligible, it has a significant impact on the electrical variables
of microgrid as shown in Fig. 4 (b) and (c), and in this case
leads to unacceptable level of some harmonic components
[38].

Please note that if detailed models of the system compo-
nents and explicit consideration of the control system are not
used, similar interactions to those found in this study can

be overlooked in the design and evaluation stages leading
to implementation issues. Further research is needed in this
specific topic.

C. Case study 5: Harmonic effects on the asymptotic stability

In practical microgrids, the DG units commonly have
different switching frequencies, typically according to their
nominal capacity, furthermore, the equivalent impedance at
the PCC looking towards the main grid can change at any
time depending on many external factors, such as network
reconfiguration, load change, among others. Regarding to the
above, in this case study a variation of the short circuit capacity
(SCC) of the main grid is carried out in order to analyze the
steady state behavior of the MG (SCCP p30 : 2000q MVA),
additionally, the mf of DG1, DG2 and DG3 is 27, 27 and
15, respectively; the capacitor bank capacity is changed to
2.5 MVAr for a proper performance in the nominal operation
point. The nominal SCC of the grid at PCC is 926 MVA.
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Fig. 6. (a) RMS and THD of the PCC voltage; (b) RMS voltage of Bus 4 and
the maximum Floquet multiplier of the system. Stable solutions are plotted
with continuous line and unstable solutions with dot marked line.

Figure 6(a) shows the RMS in per unit (p.u.) and the THD
of the PCC voltage, and Fig. 6(b) shows the RMS voltage in
p.u. of the Bus 4 and the maximum Floquet multiplier of the
system showing the stable solutions with continuous line and
the unstable solutions with dot markers. Parallel resonances
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arise in some values of SCC, and these resonances provoke an
increase of the THD and RMS magnitude of the PCC voltage,
as shown in Fig. 6(a); in the worst case the THD increases up
to 142.4 %, and the RMS voltage up to 1.7 p.u., furthermore,
for SCC above 1800 MVA the system becomes unstable and
collapses. Despite the PCC voltage increases its magnitude
due to the resonances, the magnitude of the controlled bus
voltages (buses 1, 2 and 4) remain close to 1 p.u., being 1.03
p.u. the worst stable case, as per Fig. 6(b).

On the other hand, observe that the system loses stability
when the SCC is within 1350 MVA and 1392 MVA. It
should also be mentioned that using the fundamental frequency
model, the system remains stable over the full range of
variation and the RMS voltages in all buses have no variations.
Although the fundamental frequency model does not preserve
the information of the resonances, we expect that it holds the
information about the stability; however, in this case study is
corroborated that in systems such as microgrids, the stability
can not be computed accurately using only fundamental fre-
quency models due to the phenomena presented in the real
system, such as resonances and the interactions between the
control and the rest of the MG components.

Figure 7 shows the spectrum of the modulating control
signal of DG1, the AC terminal voltage of DG1 and the
AC output current of DG1, when the SCC is 225 MVA (see
Fig. 6(a)). Please notice that, due to the resonances in the
system, low frequency harmonics that not appear using the
fundamental frequency model (as can be seen in Section VI-
B), increase their magnitude up to prohibitive values [38]
which, in turn, could lead to an improper operation of the
MG.
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Fig. 7. Harmonic content of the modulating control signal of the DG1, the
voltage of Bus 1 and the current of DG1, when the system is in a peak of
resonance (SCC 225 MVA).

It is important to notice that to analyze all the dynamics
that appear in the system and, moreover, to obtain solutions
more reliable in steady state studies, detailed models of the
components and efficient mathematical methods are required,
and by virtue of this the fast-time domain methods for the
computation of the periodic steady state solution and stability
are presented in this work.

VII. CONCLUSION

A complete scenario for a microgrid, considering multiple
aspects such as, harmonics, nonlinearities, closed-loop controls

and stability were established to compare seven time-domain
methods: six Newton-type methods and the so called brute
force approach. The results reveal the issues and the impor-
tance of considering detailed microgrid models for steady state
analysis.

The presented Newton methods exceed the BF method in all
cases in terms of CPU time. The DEE method was the fastest,
although the one with the worst convergence rate per iteration.
Nevertheless, the DEE method was 67 and 68 times faster than
BF method in the worst and best case, respectively. In addition,
the AT, ND, DA, END, and DEE methods, give accurately the
associated stability of the computed limit cycle. All Newton
methods can compute stable and unstable solutions.

In order to show the potential applications of the Newton
methods in detailed microgrid studies, basic case studies on
harmonic analysis were conducted to show the adverse effects
of the harmonic distortion on power quality, losses, control
performance and stability. On the other hand, the obtained re-
sults confirm that for stressed and harmonic distorted scenarios
is necessary to consider explicitly the commutation process of
the power electronic devices and the control systems in order
to not overlook phenomena or undesirable behaviors of the
system. Therefore, the Newton methods are an outstanding and
straightforward alternative for harmonic stability and power
quality analysis since allow the use of full state-space models
including the complete representation of the control systems
and the explicit consideration of the commutation process of
the power electronic converters without resort to unnecessary
simplification that compromise the reliability in the analyses.
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