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SUMMARY

This paper proposes a new fault-tolerant control (FTC) method for discrete-time linear parameter varying
(LPV) systems using a reconfiguration block. The basic idea of the method is to achieve the FTC goal
without re-designing the nominal controller by inserting a reconfiguration block between the plant and the
nominal controller. The reconfiguration block is realized by an LPV virtual actuator and an LPV virtual
sensor. Its goal is to transform the signals from the faulty system such that its behavior is similar to that
of the nominal system from the viewpoint of the controller. Furthermore, it transforms the output of the
controller for the faulty system such that the stability and performance goals are preserved. Input-to-state
stabilizing LPV gains of the virtual actuator and sensor are obtained by solving linear matrix inequalities
(LMIs). We show that separate design of these gains guarantees the input-to-state stability (ISS) of the
closed-loop reconfigured system. Moreover, we obtain performances in terms of the ISS gains for the
virtual actuator, the virtual sensor and their interconnection. Minimizing these performances is formulated
as convex optimization problems subject to LMI constraints. Finally, the effectiveness of the method is
demonstrated via a numerical example and stator current control of an induction motor. Copyright c© 2010
John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is an increasing demand for safety, reliability and performance of modern industrial systems.
A fault in the system might deteriorate the performance of the system or lead to the loss of the
system functionality or stability. In some instances, it might result in hazardous events. Therefore,
it is very important to design control systems that can tolerate occurrence of some faults during the
operation while guaranteeing stability and functionality of the system and maintaining an acceptable
performance. Such controllers are called fault-tolerant. The area of fault-tolerant control (FTC) has
attracted a lot of attentions is the past two decades, see review papers [1], [2], [3] and books [4] and
[5].

Broadly speaking, FTC systems are divided into two categories: passive (PFTC) and active
(AFTC). In PFTC, the FTC system does not react to the occurrence of a fault in the sense that the
structure and parameters of the controller are pre-designed and fixed such that it can tolerate a set of
faults without any change in the controller. This means that the fault tolerant controller provides a
common solution to the problem of control design for the normal system as well as the faulty system.
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Figure 1. Fault-tolerant control using a reconfiguration block: (a) nominal loop, (b) faulty plant with nominal
controller, (c) reconfigured plant with nominal controller

Therefore, the PFTC solution is usually a conservative solution. Moreover, when some severe faults
are taken into account, a common solution may not always exist and if it exists, it usually yields
a low performance. On the other hand in AFTC, the controller reacts to the occurrence of faults
and changes the parameters and/or the structure of the controller. A fault detection and estimation
module is used to detect and estimate the fault when it occurs. Then, based on the information about
the occurred fault, a supervisory controller changes the control law or the structure of the controller,
in the case of severe faults, such that the faulty system with the new controller is stable and provides
an acceptable performance. AFTC can usually provide a better performance because it changes or
modifies the controller based on the characterizations of the occurred fault.

In most of the AFTC methods developed in the literature, a specific controller is designed for each
faulty case. When the fault is detected and estimated, the controller is switched to the controller
designed specifically for the system subject to the detected fault. In this paper, the idea is to keep
the nominal control in the loop and design a reconfiguration block, which is inserted between the
faulty system and nominal system such that the overall stability of the closed-loop is preserved. This
idea is depicted in Figure 1. The idea of control reconfiguration using a virtual sensor and actuator
was first proposed in [6] and later in [7] for linear systems. The goal of the reconfiguration block
is to transform the output of the faulty plant to an appropriate signal such that from the nominal
controller’s viewpoint its behavior is similar to that of the nominal plant. The reconfiguration block
is realized respectively by a virtual sensor, a virtual actuator or a series connection of both a virtual
sensor and a virtual actuator in case of a sensor fault, an actuator fault, and a simultaneous sensor
and actuator fault.

The main advantage of the proposed approach is in practical applications where another supplier
provides the controller and due to the complexity of the control systems as such as well as insurance
or legal reasons, we do not have access to or information about the inside of the controller box. The
proposed method helps us to achieve fault tolerance in these situations without any change to the
nominal controller.

A control reconfiguration method using an observer for sensor faults and its dual for actuator
faults based on loop transfer recovery design is proposed in [6]. In [7] virtual actuators and
virtual sensors for linear systems are investigated. In [8] it is shown that control reconfiguration
of a linear system after an actuator fault is equivalent to disturbance decoupling. A fault-tolerant
control method using virtual actuator combined with set-separation method fault detection for linear
systems subject to actuator faults is proposed in [9]. Control reconfiguration using virtual actuators
and sensors for piecewise affine systems and Hammerstein-Wiener systems are proposed in [10],
[11], [12] and [13]. FTC for Lur’e systems with Lipschitz continuous nonlinearity subject to actuator
fault using a virtual actuator is presented in [14] where it is assumed that the state of the faulty

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc



FTC OF LPV SYSTEMS USING VIRTUAL ACTUATORS AND SENSORS 3

system is measurable. FTC for a system with additive Lipschitz nonlinearity subject to actuator
faults using a virtual actuator is presented in [15].

[16] proposes using virtual sensors for fault tolerant control of polytopic LPV systems subject to
sensor faults. The structure of the nominal controller is assumed to be known. It is assumed that the
nominal controller consists of a state feedback controller combined with an LPV observer. When a
sensor fault occurs, a virtual sensor is used to hide the fault. In [17] an FTC method using virtual
sensor for polytopic LPV systems subject to sensor faults is proposed where the fault is detected
using robust fault detection based on invariant-set methods. In a previous work [18], we considered
the problem of control reconfiguration for continuous-time LPV systems where both sensor and
actuator faults were considered and only input-to-state stability (ISS) properties of the reconfigured
system were investigated.

In this paper, we consider the problem for discrete-time LPV system. We address both actuator
and sensor faults. We do not assume any specific structure for the nominal controller. It is only
assumed that the nominal controller is designed such that the nominal closed loop system is input-
to-state stable (ISS). Then, we show that if we design the virtual actuators and the virtual sensor
separately such that each of them is ISS, we can guarantee that the closed loop reconfigured system
is also ISS. We derive sufficient conditions in terms of LMIs for designing input-to-state stabilizing
virtual actuator and sensors. We also obtain performance in terms of ISS gains for the virtual actuator
and virtual sensor as well as the their interconnection i.e the reconfiguration block. We formulate
minimizing the performance of the virtual actuator and virtual sensor as a convex optimization
problem with LMI constraints. Finally, we obtain the performance of the reconfiguration block in
terms of ISS gains of the virtual actuator and the virtual sensor.

In contrast to [16] and [17], we consider both actuator and sensor faults. Also, we do not make
any assumption about the structure of the controller. This is important in practical cases where
another supplier provides the controller and we do not have information about the structure or the
parameters of the controller. We prove the stability properties of the systems in the ISS paradigm.
Moreover, we consider the performance in terms of ISS gains and we discuss how to optimize the
performance. Stability in the ISS sense turns out to be very practical since it is a global notion and
it implies robust stability as showed in [19].

This paper is organized as follows. In Section 2, preliminaries and some basic definitions are
given. In Section 3 LPV systems and faults are introduced and the reconfiguration problem for LPV
systems is defined. Control reconfiguration of LPV systems using a virtual actuator and a virtual
sensor is discussed in Section 4. In Section 5, the method is demonstrated on a numerical example
as well as on stator current control of an induction motor. Finally, conclusions are given in Section
6.

2. PRELIMINARIES

The field of real numbers, the set of nonnegative reals and the set of nonnegative integers are
respectively denoted by R,R≥0,N. For any x ∈ Rn, xT stands for its transpose and ‖x‖ =

√
xT x

denotes its Euclidean norm. Also, the i-th entry of x is denoted by xi. The infinity norm of x denoted
by ‖x‖∞ is given by maxi|x|. Given a sequence {v(k)}k∈N, its supremum norm i.e supk∈N‖v(k)‖ is
denoted by ‖v‖∞.

A function γ : R≥0 → R≥0 is a class K function if it is continuous, strictly increasing, and
γ(0) = 0. γ is a class K∞ function if it is a class K function and also it satisfies γ(s)→∞ as s→∞.
A function β is a class K L function if for each fixed k ∈ R≥0, the function β (·,k) ∈K , and for
each fixed s ∈ R≥0, the function β (s, ·) is decreasing and β (s,k)→ 0 as k→ ∞. In the following
we recall definitions of input-to-state stability for nonlinear discrete-time system [20]. Consider the
following nonlinear discrete-time system:{

x(k+1) = f (x(k),v(k)),
y(k) = h(x(k)),

(1)
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where x(k) ∈ Rn is the state, and v(k) ∈ Rd is an unknown input disturbance.

Definition 1
The zero-input nonlinear system (1) i.e. x(k + 1) = f (x(k),0)) is globally asymptotically stable
(GAS) if there exist a K L−function β such that for each initial condition x(0) ∈ Rn, all solutions
of the system satisfy:

‖x(k)‖ ≤ β (‖x(0)‖,k). (2)

In case β can be chosen as β (s,k) = dsλ k for some d ≥ 0 and 0 ≤ λ < 1, then the system (1) is
called globally exponentially stable (GES).

Definition 2
The nonlinear system (1) is called input-to-state stable (ISS) with respect to the input v if there exists
K L function β and a class K function γ such that for each initial condition x(0) ∈ Rn and all
inputs {v(k)}k∈N, all solutions of the system satisfy:

‖x(k)‖ ≤ β (‖x(0)‖,k)+ γ(‖v‖∞). (3)

The function γ is called the ISS gain of (1) with respect to the input v. When v(k) is zero then
(3) reduces to ‖x(k)‖ ≤ β (‖x(0)‖,k) which implies that zero-input system x(k+1) = f (x(k),0) is
asymptotically stable. Also, β (‖x(0)‖,k)→ 0 as k→ ∞. Intuitively speaking, this means that for
large k the size of the state is bounded by the amplitude of the input (possibly in a nonlinear way).
At the other hand, for small k the term β (‖x(0)‖,k) may dominate γ(‖v‖∞) which determines the
transient behavior of the system [21].

Definition 3
The nonlinear system (1) is called Input-to-output stable (IOS) with respect to the input v if there
exist a K L function β and a class K function γ such that:

‖y(k)‖ ≤ β (‖x(0)‖,k)+ γ(‖v‖∞). (4)

Theorem 1
[20], [22] Let V : Rn→R≥0 be a continuous function. If there exist a class K∞ functions α1 and α2
such that:

α1(‖x‖)≤V (x)≤ α2(‖x‖),∀x ∈ Rn (5)

and if there exist a class K∞ function α3 and a K function σ such that

V ( f (x,v))−V (x)≤−α3(‖x‖)+σ(‖v‖),∀x ∈ Rn,∀v ∈ Rd , (6)

then, the system (1) is ISS with respect to the input v.

A function V that satisfies (5), (6) is called an ISS-Lyapunov function (LF) for the system (1).

Theorem 2
ISS of cascaded systems: (see [20]) Consider the following interconnected systems:

x2(k+1) = f2(x2(k),y1(k),u(k)),
y2 = h2(x2),

x1(k+1) = f1(x1(k),v(k)),
y1 = h1(x1)

(7)

Assume that the first system is IOS w.r.t the input v and output y1 and the second system is IOS w.r.t
the input (y1,u) and the output y2. Then, the interconnected system is IOS w.r.t the input (u,v) and
output (y1,y2).
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3. LINEAR PARAMETER VARYING SYSTEMS

We consider the following LPV system:

ΣP :

{
x(k+1) = A(θ(k))x(k)+Buc(k)+Bdd(k),
y(k) =Cx(k),

(8)

x(0) = x0

where x(k) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(k) ∈ Rp is the output, and d(k) ∈ Rd

is the disturbance. The matrix A ∈ Rn×n is a function of a time-varying parameter vector θ ∈ Rnθ .
It is assumed that the parameter θ is bounded in a given compact set Θ i.e θ ∈ Θ ∀k ∈ N. Matrix A
can have different forms of dependence on the time-varying parameter θ . Among these forms, affine
dependence and polytopic dependence are more appealing for synthesis and analysis purposes. Here,
we consider the polytopic dependence. In the polytopic dependence form, A is written as:

A(θ(k)) =
N

∑
i=1

pi(θ(k))Ai, (9)

where pi is a continuous function pi : Θ→ R and Ai are matrices in Rn×n. Moreover, it is assumed
that pi belongs to the compact set:

P = {p = [p1, . . . , pN ] ∈ RN |pi ≥ 0, i = 1, · · · ,N,
N

∑
i=1

pi = 1}. (10)

Therefore, for all θ ∈ Θ, we have that A(θ(k)) is in the convex hull of A1, · · · ,AN . In the rest of
the paper for the sake of simplicity we omit the dependency of pi on the θ(k) and use the notation
pi(k) instead of pi(θ(k)) whenever it is necessary. We also mention that the affine dependency and
polytopic dependency can be easily converted to each other.

Remark 1
In the above model, we assume that B and C are independent of the varying parameter θ . This is
because we aim at obtaining conditions in terms of LMIs to design the gains of virtual actuator
and sensor that are scheduled based on θ . It is possible to let the input and output matrices to be
dependent on the varying parameter but design fixed gains for the virtual actuator and sensor. In
both cases we can derive LMI conditions. In the following, we choose the first case where B and C
are independent of θ . Obtaining the conditions for the second case is very similar.

3.1. Control Design

We assume that a nominal controller ΣC is designed for the nominal system with the internal state
xc ∈Rnc and the reference input r(t)∈Rp which generates the control input uc. It is assumed that the
nominal closed loop system (ΣP,ΣC) is stable. We do not make any assumption about the structure
of the controller. It could be for example a dynamic or static output feedback controller.

Assumption 1
IOS of the nominal closed loop system. The nominal closed loop system (ΣP,ΣC) is IOS w.r.t the
inputs (r,d) and the output (uc,x).

3.2. Faults

We consider both actuator and sensor faults. Actuator faults are modeled as events that change the
input matrix of the LPV system from B to B f . In the same way, sensor faults are modeled as events
that change the measurement matrix from C to C f . Therefore, the model of the faulty plant is given

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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by:

ΣPf :

{
x f (k+1) = A(θ(k))x f (k)+B f u f (k)+Bdd(k),
y f (k) =C f x f (k),

(11)

x f (0) = x0.

3.3. Reconfiguration problem

In most of AFTC approaches, when a fault is detected and estimated a new controller ΣCr is designed
and replaces ΣC such that the stability of the closed-loop system that consists of (ΣPf ,ΣCr) is
guaranteed and it provides an acceptable performance. In this paper, we use the paradigm proposed
in [6] in which instead of changing the nominal controller with a new controller designed for the
faulty system, the nominal controller is kept in the loop and a reconfiguration block is inserted
between the nominal controller and the faulty system, see Figure 1(c). The reconfiguration block
receives as its input, the output of the nominal controller uc and the output of the faulty system y f
and generates as its outputs, the input signal for the faulty system u f and the input to the nominal
controller yc.

The LPV reconfiguration block is an LPV system with the internal state z:

ΣR :


z(k+1) = Ar(θ)(k)z(k)+Br(θ)uc(k)+Er(θ)y f (k),
yc(k) =Cr(θ)z(k)+Fr(θ)y f (k),
u f (k) = Gr(θ)z(k)+Hr(θ)uc(k),

(12)

z(0) = z0,

The reconfiguration block must be designed such that the overall closed-loop system (ΣPf ,ΣR,ΣC)
is stable and some closed-loop performance requirements are satisfied. The series connection
of the plant with the reconfiguration block (ΣPf ,ΣR) is called the reconfigured plant and the
series connection of the nominal controller and the reconfiguration block (ΣPf ,ΣR) is called the
reconfigured controller. Different goals in the design of the reconfiguration block may be considered
and based on them different reconfiguration problems are defined. Here we consider the following
problem.

Problem 1
Stability recovery for LPV systems. Consider the nominal LPV systems ΣP (8) and the faulty LPV
system ΣPf (11), find, if possible, a reconfiguration block ΣR such that for all ΣC that (ΣC,ΣP) is ISS
w.r.t the input (r,d), we have (ΣPf ,ΣR,ΣC) is ISS w.r.t the input (r,d).

4. RECONFIGURATION BLOCK DESIGN

In this work, the reconfiguration block, ΣR is realized by a virtual sensor, ΣS and a virtual actuator
ΣA as depicted in Figure 2. The virtual sensor estimates the state of the faulty system x̂ f based on
a model of the faulty plant and feedback of an injection of the output of the faulty system through
gain L. The virtual actuator uses a reference model that is the same as the model of the nominal
plant to generate a reference state x̃. The estimate of state of the faulty system x̂ f is compared with
the reference state x̃. The difference between the estimate of the state of the faulty system and the
state of the reference model, x∆, is then fed back through the gain M. The output injection gain L
and the gain M are designed such that the estimation error goes to zero and at the same time the
difference state (x∆) goes to zero. Consequently, states of the faulty system approach to the states of
the reference model. In the following we describe the virtual actuator and sensor in details.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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Faulty Plant

Virtual Sensor

Virtual Actuator

Bd

Bf z−1 Cf

A(θ)

−L(θ)

Bf z−1

A(θ)

−M(θ)

R B z−1

A(θ) C

Nominal Controller
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r
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1

Figure 2. LPV virtual sensor and actuator in the closed loop system

The virtual actuator block has the following structure:

ΣA :


x̃(k+1) = A(θ)x̃(k)+Buc(k),
u f (k) =−M(θ)x∆(k)−Ruc(k),
yc(t) =Cx̃(k),

x̃(0) = x̂ f 0, (13)

where x∆(k) = x̃(k)− x̂ f (k) is the difference state, and M is a time-varying gain matrix that depends
on θ which is defined as:

M(θ(k)) =
N

∑
i=1

pi(k)Mi. (14)

The virtual sensor is defined as:

ΣS :

{
x̂ f (k+1) = Aδ (θ)x̂ f (k)+B f u f (k)−L(θ)y f (k),
u f (k) = uc(k),

(15)

x̂ f (0) = x̂ f 0,

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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where Aδ (θ) = A(θ)+L(θ)C f and L is a time-varying gain matrix that depends on θ that is defined
as:

L(θ(k)) =
N

∑
i=1

pi(k)Li. (16)

To analyze the reconfigured plant we introduce the observation error defined as e = x̂ f − x f and the
difference state defined as x∆ = x̃− x̂ f and associated with them the observation error system Σe and
the difference system Σ∆ which are defined as follows. The observation error system is defined as:

Σe : e(k+1) = Aδ (θ)e(k)+ v(k), (17)
e(0) = x̂ f 0− x0,

where
v(k) =−Bdd(k), (18)

and the difference system is defined as:

Σ∆ : x∆(k+1) = (A(θ)+B f M(θ))x∆(k)+L(θ)C f e(k)+B∆uc(k), (19)
x∆(0) = 0,

where B∆ = B+B f R. Dynamics of the system in terms of x̃ and the new introduced variables e and
x∆ are given by : x̃(k+1)

e(k+1)
x∆(k+1)

=

A(θ) 0 0
0 A(θ)+L(θ)C f 0
0 L(θ)C f A(θ)+B f M(θ)

 x̃(k)
e(k)

x∆(k)

+
 B

0
B∆

uc(k)+

 0
−Bd

0

d(k), (20)

yc(k) =
[
C 0 0

] x̃(k)
e(k)

x∆(k)

 ,
 x̃(0)

e(0)
x∆(0)

=

 x̂ f 0
x̂ f 0− x0

0

 . (21)

We can see in (20) that the reference state x̃ is decoupled from the observation error e and the
difference state. Also, the observation error is decoupled from the reference state, the difference
state and the input uc. The difference state is decoupled from the reference state. In the following
we find sufficient conditions in terms of LMIs for the observation error and the difference system
to be ISS and then we show that these conditions also guarantee the stability of the overall closed-
loop system. In Theorem 3, we give the conditions for designing the virtual sensor gains Li and in
Theorem 4 we give the conditions for designing the virtual actuator gains Mi such that they are ISS
respectively. Then, in Theorem 5, we show that separate design of these gains results in stability of
the overall closed-loop system that consists of

(
ΣPf ,(ΣS,ΣA),ΣC

)
. In other words, separate design

of the virtual actuator and virtual sensor gains yields stability of the overall closed-loop system.

4.1. Virtual Sensor Design

In the following we give LMI conditions for designing gains of virtual sensor and discuss how we
can minimize its ISS gain and peak-to-peak gain.

Theorem 3
Consider the faulty LPV system (11). If there exist symmetric matrices Pi = PT

i , matrices Gi and
Ui, i = 1, · · · ,N and a scalar σd ≥ 1 such that the following set of LMIs are satisfied:

Pj−Gi−GT
i 0 GiAi +UiC f Gi

∗ −I I 0
∗ ∗ −Pi 0
∗ ∗ ∗ −σdI

< 0 ∀i, j = 1, · · · ,N, (22)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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then, the virtual sensor ΣS is an observer for the LPV system such that the observation error system
(17) is GES for d(k) = 0. Moreover, the error dynamics (17) is ISS w.r.t the disturbance d with ISS
gain γd(s) = ‖Bd‖σds. The observer gain is given by :

L(θ) =
N

∑
i=1

pi(k)Li, Li = G−1
i Ui. (23)

Proof
See Appendix A.1.

To minimize the ISS gain, the following optimization problem is solved.

min
Pi,Gi,Ui,σd

σd (24)

s.t (22)

The above optimization problem is a convex optimization problem with a set of LMI
constraints which can be solved efficiently using available softwares such as YALMIP/SeDuMi or
YALMIP/LMILAB [23].

Link to peak-to-peak gain:

The peak-to-peak gain of the observation error is defined as:

sup
0<‖d‖∞<∞

‖e‖∞

‖d‖∞

. (25)

Corollary 1
If the LMIs (22) are satisfied then the error system (17) with the observer gain (23) admits a peak-
to-peak gain smaller than ‖Bd‖σd .

The proof is straightforward from (64) by taking the limit of κ to infinity and assuming e(0) = 0.
Note that according to the corollary by minimizing the ISS gain we are also minimizing the upper
bound on the peak-to-peak gain.

4.2. Virtual Actuator Design

In the following theorem we give conditions for the design of stabilizing gains for the virtual actuator
such that the difference system is stable.

Theorem 4
Consider the faulty LPV system (11). If there exist symmetric matrices Qi = QT

i and matrices Yi for
i = 1, · · · ,N and scalars σa ≥ 1 and such that:−Q j 0 AiQi +B fYi I

0 −I Qi 0
∗ ∗ −Qi 0
∗ ∗ ∗ −σaI

< 0 ∀i, j = 1, · · · ,N, (26)

then, the difference system (19) associated with the virtual actuator is ISS with respect to the input
(uc,e). The virtual actuator gain is given by:

M(θ(k)) =
N

∑
i=1

pi(k)Mi, with Mi = YiQ−1
i . (27)

The ISS gain w.r.t. e is γe(s) = σac1‖C f ‖s where c1 = max1≤i≤N‖Li‖ and the ISS gain w.r.t. uc is
σa‖B∆‖. The ISS gain w.r.t. (uc,e) is max(σac1‖C f ‖,σa‖B∆‖).
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Proof
See Appendix A.2.

Note that the gain w.r.t. uc is proportional to ‖B∆‖ and also the gain w.r.t. e is proportional to
c1‖C f ‖ which is sensible since the difference state is affected by e through the matrix L(θ)C f and
by the control signal uc through the matrix B∆.

Minimization of the ISS gain of the virtual actuator can be formulated as the following
optimization problem:

min
Qi,Yi,σa,

σa (28)

s.t. (26)

The above optimization problem is a convex optimization problems with LMI constraints which
can be solved efficiently using available softwares such as YALMIP/SeDuMi or YALMIP/LMILAB
[23].

Link to peak-to-peak gain:
The peak-to-peak gain of the difference system is defined as:

sup
0<‖w‖∞<∞

‖x∆‖∞

‖w‖∞

. (29)

where w =
[
e uc

]T .

Corollary 2
If the LMIs (26) are satisfied then the difference system (19) with the gains (27) admits a peak-to-
peak gain smaller than max(σac1‖C f ‖,σa‖B∆‖).

4.3. Combination of Virtual Sensor and Virtual Actuator

So far, we gave conditions for the design of the virtual actuator and the virtual sensor. The following
lemma considers the stability of the cascade connection of the error system and the difference system
and states that their interconnection is ISS if they are designed based on the above theorems. The
interconnection is given by:[

e(k+1)
x∆(k+1)

]
=

[
(A(θ)+L(θ)C f ) 0

L(θ)C f (A(θ)+B f M(θ))

][
e(k)

x∆(k)

]
+[

0
B∆

]
uc(k)+

[
−Bd

0

]
d(k) (30)

.

Lemma 1
If observer gains of the error system (17) and gains of the difference system (19) are designed based
on the conditions in Theorem 3 and 4, then the interconnection (ΣS,ΣA) given by (30) is also ISS.
The ISS gain of the interconnection w.r.t. d is c2

√
µσdc4s and w.r.t uc is c3

√
σac4s where

c2 = ‖Bd‖, c3 = ‖B∆‖,µ = σac2
1‖C f ‖2 +1, c4 = max(µσd ,σa). (31)

Proof
See Appendix A.3.
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4.4. Stability of the Closed-loop System

The following theorem states that if we design the virtual actuator and the virtual sensor
independently based on the previous theorems, then we can guarantee that the closed-loop
reconfigured system that consists of the interconnection

(
ΣPf ,(ΣS,ΣA),ΣC

)
is ISS w.r.t to the input

(r,d).

Theorem 5
Consider the faulty LPV system (11). Assume that Assumption 1 holds. If there exist Mi(θ),Li(θ)
such that conditions (22) and (26) are satisfied, then the closed-loop reconfigured system
(ΣPf ,ΣS,ΣA,ΣC) with Mi = YiQ−1

i and Li = G−1
i Ui, i = 1, · · · ,N is ISS w.r.t the input (r,d).

Proof
See Appendix A.4.

4.5. Control Reconfiguration Algorithm

The overall algorithm for the proposed fault-tolerant control method is summarized in Algorithm 1.
We assume that there is a fault detection and isolation (FDI) module which detects and isolates the
fault. When a fault is isolated, the system is reconfigured based on the type of the fault. Estimation
of the parameters of the faulty system can be performed using available results on identification
of LPV systems, for example see [24] or [25] and references therein. The proposed method in this
paper, works as long as there is no missed detection and no false positive alarm and the estimation
error is small such that the system is robust to the uncertainties in the estimated parameters.

Three different cases are possible: sensor fault but no actuator fault, actuator fault but no sensor
fault, simultaneous sensor and actuator fault. If there is only sensor faults and no actuator faults,
we only need to reconfigure the loop by locating the virtual sensor in the loop. In this case the
virtual sensor is acting as an observer which estimates the states of the system form the healthy
measurements. In this case, the parameters of the faulty system C f is received from the FDI module
and the gains of the virtual sensor are obtained by solving the optimization problem (24). The
estimated state of the faulty system is multiplied by the output matrix of the nominal system, C
and then injected as input to the nominal controller i.e. yc =Cx̂ f . Since the input matrix B and the
internal dynamics A(θ) are not changed the dynamics viewed by the nominal controller is the same
of that of the reference model (the nominal plant).

When there is only actuator faults, the virtual sensor gains are the same as the gains for the
nominal plant since the C and A matrix are not changed. In this case, the virtual sensor acts as an
observer that estimates the state of the faulty system. Then, the gains of the virtual actuator,Mi’s ,
are designed by solving the optimization problem (28). The the reference model is initialized with
the estimate of the state of the faulty system obtained by virtual sensor i.e x̃(kr) = x̂ f (kr), where
kr is the time of reconfiguration. In order to avoid large over-shoots, it is possible to wait for some
sample time so that the virtual sensor converges such that the estimation error, x̂ f − x f , becomes
small and then initialize the reference model and reconfigure the system.

In case both actuator and sensor faults have occurred, the gains of the virtual sensor Li must also
be updated since the output matrix in changed to C f in this case. C f is received from the FDI module,
the gains of the virtual sensor Li are updated by solving (24), the gains of the virtual actuator, Mi’s,
are obtained by solving (28) and the reference model is initialized by the estimate of the state of the
system. Finally, the loop is reconfigured by locating both virtual sensor and actuator in the loop, i.e.
the reconfigured loop is (ΣPf ,ΣS,ΣA,ΣC).

In designing the virtual actuator we choose R to minimize ‖B‖∆(see line 16 of Algorithm 1). This
is because the ISS gain of the virtual actuator w.r.t. (uc,e) is given by max(σac1‖C f ‖,σa‖B∆‖).
Note that c1 is determined by the maximum of the norms of the virtual sensor gains that are obtained
separately here. The only variable that we can manipulate here through choosing R is ‖B∆‖.
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Algorithm 1 Fault-Tolerant Control design for LPV system using virtual actuator and sensor

1: Given The parameters of the nominal LPV system ΣP: Ai, i = 1, · · · ,N, B,Bd ,C.
2: C f ←C
3: Solve the optimization problem (24) . To design a stabilizing virtual sensor
4: Li← G−1

i Ui, i = 1, · · · ,N . Gains of the virtual sensor
5: repeat
6: Run the nominal loop that consists of (ΣP,ΣC)
7: until an actuator or sensor fault is isolated.
8: if there is a sensor fault then
9: Update C f from the FDI module.

10: Solve the optimization problem (24) . Re-design the virtual sensor
11: Li← G−1

i Ui, i = 1, · · · ,N. . Update the gains of the virtual sensor
12: end if
13: if there is an actuator fault then
14: Update B f from the FDI module.
15: Update the virtual sensor with B f .
16: Choose R to minimize ‖B∆‖
17: Solve the optimization problem (28) . Design the virtual actuator
18: Mi← YiQ−1

i , i = 1, · · · ,N. . The gains of the virtual actuator
19: end if
20: if there is only sensor fault but no actuator fault then
21: yc←Cx̂ f . Put the virtual sensor in the loop.
22: Run the reconfigured loop consisting of (ΣPf ,ΣS,ΣC)
23: else
24: x̃(kr)← x̂ f (kr) . Initialization of the reference model at the time of reconfiguration
25: Run the reconfigured loop consisting of (ΣPf ,ΣS,ΣA,ΣC)
26: end if

4.6. Special Cases: Static Reconfiguration Blocks

A special case of the above solutions is when the virtual actuator and virtual sensor can be realized
using a static block [7]. Consider the case of an actuator fault. In this situation, if the image of the
nominal input matrix B is a subset of the image of the faulty input matrix B f , then all control signals
generated by the healthy actuator can be generated by the faulty actuator. Therefore, the system can
be reconfigured by inserting a static block S before u f i.e u f = SBuc. The general solution is given
by the matrix S such that:

B f SB = B. (32)

The solution to this problem exists if:

im B⊆ im B f , (33)

where im B = {Bu : uRm}. An equivalent condition is:

rank(B f )=rank(
[
B f B

]
) (34)

A similar approach can be used for the case of sensor fault. In this case the faulty measurement
is corrected through a static gain SC, therefore yc = SCy f . Therefore, matrix SC must satisfy:

SCC f =C. (35)

The above condition is satisfied if and only if:

rank(C f ) = rank(
[
C f
C

]
). (36)
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5. EXAMPLE

We consider the following LPV system:

x(k+1) =
N

∑
i=1

pi(k)Ai +Bu(k)+Bd(k)

y(k) =Cx(k) (37)

with the following parameters:

A1 =

0.7786 0.9908 0.1270
0.1616 0.8443 0.8144
0.9214 0.9747 0.7825

 , A2 =

0.3984 0.3263 0.7764
0.7806 0.9886 0.1297
0.8814 0.4718 0.3110

 ,
A3 =

0.3049 0.4247 0.8979
0.8448 0.2485 0.6921
0.7558 0.9160 0.3636

 , A4 =

0.1194 0.3964 0.2454
0.1034 0.2515 0.4983
0.6981 0.8655 0.2403

 ,
B =

 0.984 0.7409
0.9237 0.9118

0 0

 , Bd =

0.02
0.02
0.02

 ,
C =

[
0.3815 0.6916 0.7183

]
, (38)

We mention that all the matrices A1, · · · ,A4 are unstable and therefore the open-loop system is
unstable. To test the method we consider the extreme change of the parameters pi so that they take
values randomly between 0 and 1 subject to the constraint that their sum is equal to 1. The details
of the nominal controller is not important for our approach but for the sake of completeness we
also give the details here. A gain-scheduled H∞ static-output feedback (SOF) controller of the form
u = ∑

N
i=1 pi(k)Kiy(k) is designed for the nominal system using the method in Appendix A.5. The

corresponding gains are:

K1 =

[
3.2224
−4.9456

]
, K2 =

[
−0.7580
−0.4070

]
, K3 =

[
0.5869
−1.9773

]
, K4 =

[
0.9532
−1.7546

]
. (39)

The H∞ gain of the designed controller is 0.4016. A simulation of the nominal system and nominal
controller is given in Figure 3

5.1. Partial loss of the actuator gain

In the first scenario we consider partial loss of the actuator gain. As a result of this fault the input
matrices are changed to:

B f = 0.4B. (40)

The nominal controller with the faulty system with 60% loss of actuator gain is unstable. This is
depicted in Figure 4 where the fault occurs at k = 30. In this case the reconfiguration block is
realized by a virtual sensor and a virtual actuator. The virtual sensor is basically an observer for the
faulty system that estimates the state of the faulty system. Since the C matrix is not changed, the
gains of the virtual sensor would be the same as the gains of an observer designed for the nominal
system. We use (24) with nominal output matrix C and obtain the virtual sensor gains. The gains are
given as:

L1 =

−0.8989
−1.039
−1.42

 , L2 =

−0.8179
−0.9723
−0.8031

 , L3 =

−0.899
−1.014
−1.163

 , L4 =

−0.4452
−0.4938
−0.9263

 , (41)

σd of the virtual sensor is obtained as 6.3116 and therefore its ISS gain is 0.2184.
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Figure 3. Simulation of the nominal closed-loop

To design the virtual actuator, the gain R is designed such that it gives us the possibility to
minimize σa. Since uc is amplified by B∆ and B∆ = B+B f R, we choose R as:

R =−BT
f (B f BT

f )
−1B.

Consequently, B∆ = 0. The virtual actuator gains are obtained by solving the optimization problem
(28). The gains are:

M1 =

[
−8.039 −4.549 4.507

6.93 1.48 −7.452

]
, M2 =

[
1.714 4.589 −7.291
−4.664 −7.781 6.753

]
,

M3 =

[
3.287 −3.189 −3.854
−6.32 1.732 1.682

]
, M4 =

[
−1.351 −3.027 1.429
0.5039 1.629 −3.027

]
, (42)

We assume that the fault is detected and isolated after 15 sample times. The reference system is
initialized with the estimate of the states from the virtual sensor and then the virtual actuator is
activated. Figure 5 shows the simulation result. The observation error shows that the virtual sensor
estimates effectively the state of the nominal as well as the faulty system. As we can see both the
observation error e and the difference system x∆ are stable and the system is stabilized by the virtual
actuator. The σa of the virtual actuator is obtained as 6.1954. Therefore, its ISS gain w.r.t. (uc,e) is
obtained as 13.07.
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Figure 4. Simulation of the nominal controller with faulty system with 60% loss of actuator gain. The fault
occurs at k = 30.
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Figure 5. Simulation of the faulty system with 60% loss of actuator gain with reconfiguration block. The
fault occurs at k = 30, and the virtual actuator is activated at k = 45.
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5.2. Complete loss of second actuator

In this scenario we consider total loss of the second actuator. Consequently, the input matrix changes
to:

B f =

 0.984 0
0.9237 0

0 0

 .
As a result of this fault the loop consisting of the nominal controller and the faulty system becomes
unstable. As before, the reconfiguration block is realized by a virtual sensor and a virtual actuator.
The gain of the virtual sensor are the same as before since the C matrix is the same. The matrix R is
chosen such that we are minimizing the Frobenius norm of B∆. The matrix R is given by:

R =

[
1 R12
0 0

]
where R12 is obtained by minimizing the Frobenius norm of the second column of B + B f R as
R12 = 0.8702. The gains of the virtual actuator are obtained by solving (28) as:

M1 =

[
−0.9289 −1.419 −0.8561

0 0 0

]
, M2 =

[
−0.9644 −0.9026 −0.5506

0 0 0

]
,

M3 =

[
−0.8802 −0.6972 −0.9688

0 0 0

]
, M4 =

[
−0.3217 −0.5921 −0.462

0 0 0

]
. (43)

Since the second row of Mi’s are replaced by zero the input to the lost actuator is replaced by zero.
As it is expected in this case the ISS gain of the virtual actuator increases and we get σa = 10.3970
and γa = 21.93s. The simulation results are depicted in Figure 6. The fault occurs at k = 30. We
assume that the fault is detected and isolated after 5 samples. As it can be seen, the reconfiguration
block effectively stabilizes the faulty system. Note that in Figure 6, x∆ before occurrence of fault is
zero because the virtual actuator is not active in that period. Also, notice that the input to the second
actuator is zero after the reconfiguration time k = 35.

5.3. Simultaneous sensor and actuator fault

In this scenario, we consider simultaneous sensor and actuator fault. The second actuator is totally
lost and the C matrix is changed to:

C f =
[
0.7638 1.3832 0

]
.

The reconfiguration block is realized by a virtual sensor and a virtual actuator. The gains of the
virtual sensor are obtained as:

L1 =

−0.8836
−0.8482
−1.248

 , L2 =

−0.6994
−0.8848
−0.7754

 , L3 =

−0.7583
−0.8319
−0.9484

 , L4 =

−0.3547
−0.3975
−0.8405

 , (44)

and the matrix R is chosen as in 5.2. The gain of the virtual actuator are given by solving (28):

M1 =

[
−0.9257 −1.418 −0.8585

0 0 0

]
, M2 =

[
−0.9671 −0.9002 −0.5575

0 0 0

]
,

M3 =

[
−0.8802 −0.691 −0.9658

0 0 0

]
, M4 =

[
−0.3237 −0.5946 −0.4625

0 0 0

]
, (45)

The simulation results are given in Figure 7. As it is expected in this case σd increases to 7.85 and
γa increases to 27.07s . The fault occurs at k = 30. We assume that the fault is detected and isolated
after 5 seconds. As it can be seen, the reconfiguration block effectively stabilizes the system.
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Figure 6. Simulation of the faulty system with total loss of the second actuator with reconfiguration block.
The fault occurs at k = 30, and the virtual actuator is activated at k = 35.

5.4. FTC control of an induction motor

We consider the problem of stator current control for an induction motor. A squirrel cage induction
motor is considered here. Using the dynamic (d,q) frame, the nonlinear model of the induction
motor is given as [26]: 

φ̇a = a1φa−npωφb +a2ia,
φ̇b = npωφa +a2ib,
i̇a = a3φa +a4ωφb− γia +a5u1,

i̇b =−a4ωφa +a3φb− γib +a5u2,

y =
[
ia ib

]T
,

(46)

where ω is the rotor speed, φa,φb are the (d,q) projection of the rotor flux, ia, ib are the (d,q)
projection of the stator currents, and u1,u2 are the stator voltages. The parameters are defined as
follows: a1 =−1/Tr,a2 = Lsr/Tr,a3 = Lsr/(TrσLsLr),a4 = npLsr/(σLsLr) and a5 = 1/(σLs) where

Tr = Lr/Rr,γ = Rs
Lsσ

+ L2
sr

LsσLrTr
, and σ = 1− L2

sr
LsLr

. The values of the parameters are given in Table I
and are taken from [26].

In this example, we focus on the problem of controlling the current of the system where the current
must follow a given reference. If we consider the rotor speed as a parameter, then the nonlinear
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Figure 7. Simulation of the faulty system with total loss of the second actuator and sensor fault. The fault
occurs at k = 30, and the reconfiguration block is activated at k = 35.

Table I. parameter values of the induction motor

Description Parameters Value Units
Stator inductance Ls 0.47 H
Rotor inductance Lr 0.47 H
Mutual inductance Lsr 0.44 H
Leakage factor σ 0.12
Stator Resistance Rs 0.8 Ω

Rotor Resistance Rr 3.6 Ω

Number of pole pairs np 2

system can be modeled as an LPV system as follows:

{
ẋ = (A0 +ωA1)x+Bu,
y =Cx,

(47)
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where

A0 =

a1 0 a2 0
0 a1 0 a2
a3 0 −γ 0
0 a3 0 −γ

 , A1 =

 0 −np 0 0
np 0 0 0
0 a4 0 0
−a4 0 0 0

 , (48)

B =

 0 0
0 0
a5 0
0 a5

 , C =

[
0 0 1 0
0 0 0 1

]
. (49)

where ω ∈ [−110,110]. The system is discretized with a sample time of Ts = 2ms and an LPV
model of it is obtained with introducing p1 = ω−ω

ω−ω
, p2 = 1− p1 where ω = −110 and ω = 110.

An LPV static output feedback controller is designed to track the reference signal
[
iar , ibr

]T system
using the method given in Appendix A.5. The gains are as follows:

K1 =

[
7.7277 −0.5076
0.5076 7.7277

]
, K2 =

[
7.7277 0.5076
−0.5076 7.7277

]
(50)

Simulation of the response of the controlled system for ω = 88 is given in Figure 8 and simulation
results for 10 equally spaced value of ω is given in Figure 9 . We consider loss of measurement of ib
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Figure 8. Simulation of the induction motor with SOF controller and ω = 88 rad/s. Top: ia, solid and iar
dashed, Middle: ib, solid and ibr dashed, Bottom: ua solid, ub dashed.

as well as 40% loss of actuator gains. Simulation of the faulty system with 10 equally spaced values
of ω in the range −110 to 110 is given in Figure 10. In the simulation, we assume that the inputs
ua and ub saturate at ±1000. As we see from the simulation, ib cannot track the given reference any
more and also the tracking performance of ia is deteriorated significantly.
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Figure 9. Simulation of the induction motor with SOF controller and 10 equally spaced values of ω in the
range −110 to 110 . Top: ia, solid and iar dashed, Middle: ib, solid and ibr dashed, Bottom: ua solid, ub

dashed.

We use the method proposed in this paper and design a virtual actuator and a virtual sensor to
reconfigure the system. The simulation results are given in Figure 11 which shows the simulation
results for 10 equally spaced values of ω in the range [−110,110]. As it is demonstrated, using
a virtual sensor and a virtual actuator, we can regain tracking of ib. Moreover, the tracking
performance of ia is better than the case where reconfiguration is not used. The bottom of the figure
shows ua and ub which are the outputs of the virtual actuator i.e. the input to the faulty system. Note
that the control efforts are increased compared to the case of fault-free system.

Comparison with AFTC using Controller Re-design: To compare our results with cases where
we have the possibility of redesigning the controller, we use the following AFTC method. An
observer is designed for the faulty system to estimate the missing measurement and then the SOF
is re-designed based on the model of the faulty system using the method in Appendix A.5 with
B = B f . The nominal controller is then replaced with the re-designed controller. The simulation
results are depicted in Figure 12. The results show that our proposed reconfiguration method and
the re-designed AFTC method have similar performances with similar control efforts.

6. CONCLUSION

In this paper we presented a new method for fault tolerant control of linear parameter varying
systems (LPV) using a reconfiguration block. We considered discrete time LPV systems with
both sensor and actuator faults. The main idea of the method is to insert a reconfiguration block
between the plant and the nominal controller such that the fault tolerant goal is achieved without
re-designing the nominal controller. We do not need any knowledge about the nominal controller
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Figure 10. Simulation of the induction motor with SOF controller and 10 equally spaced values of ω in the
range −110 to 110 subject to loss of measurement of ib and 40% loss of actuator gains. Top: ia, solid and iar

dashed, Middle: ib, solid and ibr dashed, Bottom: ua solid, ub dashed.

and it is only assumed that the loop consisting of the nominal controller and the nominal system is
stable. The reconfiguration block is realized by a virtual actuator and a virtual sensor. We show that
by separately designing input-to-state stable (ISS) virtual sensor and actuators, the input-to-state
stability of the closed loop reconfigured system is guaranteed. We derive sufficient conditions in
terms of LMIs for ISS of the virtual sensor and actuator. Performance of the reconfiguration block
in terms of ISS gains is derived and is optimized by convex optimization. The efficiency of the
method is demonstrated by means of a numerical example as well as an example of stator current
control of an induction motor.
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Figure 12. Simulation of the faulty system with a re-designed controller with 10 equally spaced values of ω

in the range −110 to 110 subject to loss of measurement of ib and 40% loss of actuator gains. Top: ia, solid
and iar dashed, Middle: ib, solid and ibr dashed, Bottom: ua solid, ub dashed.

A. PROOFS

A.1. Proof of Theorem 3

Consider
V (e(k)) = e(k)T P(k)e(k) (51)

with P(k) = ∑
N
i=1 pi(k)Pi as the ISS Lyapunov function candidate. To prove the ISS of the system

we use Theorem 1 and show that this candidate LF satisfies relations of the form (5) and (6).
The first step is to show that (51) satisfies a relation of the form (5). If (22) is satisfied then, we

have: [
−I I
I −Pi

]
< 0. (52)

Using Schur complement, it implies that Pi > I. Also, (22) implies:[
Pj−Gi−GT

i Gi
∗ −σdI

]
< 0. (53)

By Schur complement, this implies that Gi + GT
i − Pj > σ

−1
d GiGT

i > 0. From the fact that
GiP−1

j GT
i ≥ Gi +GT

i −Pj, it follows that GiP−1
j GT

i > σ
−1
d GiGT

i . Therefore, Pj < σdI, and we have
Pi > I. Since ∑

N
i=1 pi(k) = 1, we have:

‖e(k)‖2 ≤V (e(k))≤ σd‖e(k)‖2. (54)

The second step is to show that the candidate LF satisfies a relation of the form (6). We use the
relation GiP−1

j GT
i ≥Gi+GT

i −Pj again which implies that feasibility of (22) is a sufficient condition
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for the feasibility of the following matrix inequality:
−GiP−1

j GT
i 0 GiAi +UiC f Gi

∗ −I I 0
∗ ∗ −Pi 0
∗ ∗ ∗ −σdI

< 0 ∀i, j = 1, · · · ,N. (55)

Pre- and post-multiplying the above inequality with diag{G−1
i , I, I, I} and its transpose and noting

that Li = G−1
i Ui, we get:

−P−1
j 0 Ai +LiC f I
∗ −I I 0
∗ ∗ −Pi 0
∗ ∗ ∗ −σdI

< 0 ∀i, j = 1, · · · ,N, (56)

Multiplying the above inequality by pi(k) for each i, j and summing them together over i for each
j, and then multiplying the resulting N inequalities by p j(k+ 1) and summing them together, and
finally applying the Schur complement we get:[

−∑
N
i=1 pi(k)Pi 0

0 −σdI

]
−[

∑
N
i=1 pi(k)(Ai +LiC f )

T I
I 0

][
−∑

N
j=1 p j(k+1)Pj 0

0 −I

][
∑

N
i=1 pi(k)(Ai +LiC f ) I

I 0

]
< 0, (57)

Define Aδ (k) = ∑
N
i=1 pi(k)(Ai+LiC f ) and note that P(k) = ∑

N
i=1 pi(k)Pi and P(k+1) = ∑

N
j=1 p j(k+

1)Pj. Then, the above inequality is is equal to:[
Aδ (k)T P(k+1)Aδ (k)−P(k)+ I Aδ (k)T P(k+1)

∗ P(k+1)−σdI

]
< 0 (58)

Pre- and post-multiplying the above inequality with
[
e(k)T v(k)T

]T and its transpose gives:

(Aδ (k)e(k)+ v(k))T P(k+1)(Aδ (k)e(k)+ v(k))− e(k)T P(k)e(k)≤
−e(k)T e(k)+σdv(k)T v(k). (59)

The above inequality can be rewritten as:

(e(k+1))T P(k+1)(e(k+1))− e(k)T P(k+1)e(k)≤−e(k)T e(k)+σdv(k)T v(k), (60)

which is:
V (e(k+1))−V (e(k))≤−‖e(k)‖2 +σd‖v(k)‖2, (61)

Therefore, based on Theorem 1, V (e(k)) is an ISS Lyapunov function for the error system and the
error system is ISS with respect to v =−Bdd.

Now, we move to the calculation of the ISS gain. The inequality (61) together with (54) gives:

V (e(k+1))≤V (e(k))(1− 1
σd

)+σd‖v(k)‖2. (62)

Applying (62) for k = 0 up to k = κ in an inductive manner gives:

V (e(κ))≤V (e(0))(1− 1
σd

)κ +σd

κ−1

∑
l=0

(
1− 1

σd

)κ−l−1

‖v(l)‖2

≤ (1− 1
σd

)κV (e(0))+σ
2
d ‖v‖2

∞. (63)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc



FTC OF LPV SYSTEMS USING VIRTUAL ACTUATORS AND SENSORS 25

Since from (54) V (e(0))≤ σd‖e(0)‖2, the above inequality implies:

‖e(κ)‖ ≤ √σd

(
1− 1

σd

)κ/2

‖e(0)‖+σd‖v‖∞. (64)

This proves that the system is ISS with respect to v with the ISS gain γv(s) = σds,s ∈ R≥0.
Consequently, the ISS gain w.r.t. d is ‖Bd‖σd .

A.2. Proof of Theorem 4

Consider
V (x∆(k)) = x∆(k)T P(k)x∆(k), (65)

where P(k) = ∑
N
i=1 pi(k)Pi with Pi = Q−1

i as a candidate LF for the difference system (19).
If (26) is feasible, then it holds that: [

−I Qi
∗ −Qi

]
< 0, (66)

which by using Schur complement implies that Q−1
i = Pi > I. Also, we have that:[

−Q j I
I −σaI

]
< 0 (67)

which yields Q−1
j = Pj ≤ σaI. Therefore, V (x∆) satisfies:

‖x∆(k)‖2 ≤V (x∆(k))≤ σa‖x∆(k)‖2. (68)

Post- and pre-multiplying (26) by diag{I, I,Q−1
i , I} and its transpose and using the relation

Mi = YiQ−1
i we get: 

−Q j 0 Ai +B f Mi I
0 −I I 0
∗ ∗ −Q−1

i 0
∗ ∗ ∗ −σaI

< 0 ∀i, j = 1, · · · ,N. (69)

Multiplying the above inequality by pi(k) for each i, j and summing them together over i for each j,
and then multiplying the resulting N inequalities by p j(k+1) and adding them together, and finally
by using the Schur complement we get:[

P(k)+ I 0
∗ −σaI

]
+[

∑
N
i=1 pi(k)(Ai +B f Mi) I

]T [P(k+1)
][

∑
N
i=1 pi(k)(Ai +B f Mi) I

]
< 0, (70)

where P(k+1) = ∑
N
j=1 p j(k+1)Pj with Pj = Q−1

j and P(k) = ∑
N
i=1 pi(k+1)Pi with Pi = Q−1

i . Pre-

and post-multiplying the above inequality with
[
x∆(k)T w(k)

]T and its transpose and knowing that
x(k+1) = ∑

N
i=1(Ai +B f Mi)x(k)+w(k) we get:

x(k+1)T P(k+1)x(k+1)− x(k)P(k)x(k)≤−x(k)T x(k)+σaw(k)T w(k). (71)

which is
V (x∆(k+1))−V (x∆(k))≤−‖x∆(k)‖2 +σa‖w(k)‖2, (72)

Therefore, based on Theorem 1 , the closed-loop system is ISS with respect to w(k) . The ISS gain
is calculated using the same procedure as we used for the observation error system. The ISS gain
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with respect to w is γw(s) = σws. To obtain the ISS gain w.r.t uc and e, note that

w(k) =
[
B∆ −∑

N
i=1 pi(k)(LiC f )

][uc(k)
e(k)

]
Therefore, we have:

V (x∆(k+1))−V (x∆(k))≤−‖x∆(k)‖2 +σa‖B∆‖2‖uc(k)‖2 +σac2
1‖C f ‖2‖e(k)‖2, (73)

where c1 = max1≤i≤N‖Li‖. Using the same procedure as in the proof of Theorem 3 we obtain that
the ISS gain w.r.t. uc is γu(s) = σa‖B∆‖s and ISS gain w.r.t. e is γe(s) = σac1‖C f ‖s.

A.3. Proof of Lemma 1

Consider the following candidate LF:

V (e(k),x∆(k)) = µVe(e(k))+V∆(x∆(k)), (74)

with µ > 0 for the interconnection where Ve is the LF in (51) and V∆ is the LF in (65). From (61)
and (73), we have

V (x(k+1),e(k+1))−V (x(k),e(k))≤
−µ‖e(k)‖2 +µσd‖Bd‖2‖d(k)‖2−‖x∆(k)‖2 +σa‖B∆‖2‖uc(k)‖2 +σac2

1‖C f ‖2‖e(k)‖2

= (σac2
1‖C f ‖2−µ)‖e(k)‖2 +µσd‖Bd‖2‖d(k)‖2−‖x∆(k)‖2 +σa‖B∆‖2‖uc(k)‖2. (75)

Denote c2 = ‖Bd‖,c3 = ‖B∆‖. If we choose µ = σac2
1‖C f ‖2 +1, then we have:

V (x(k+1),e(k+1))−V (x(k),e(k))≤
−‖e(k)‖2−‖x∆(k)‖2 +µσdc2

2‖d(k)‖2 +σac2
3‖uc(k)‖2 ≤

−‖
[

e(k)
x∆(k)

]
‖2 +µσdc2

2‖d(k)‖2 +σac2
3‖uc(k)‖2, (76)

which proves that the interconnection is ISS w.r.t d and uc. The next step is to compute the ISS
gains. From (54) and (68), we have:

µ‖e(k)‖2 +‖x∆(k)‖2 ≤V (k)≤ µσd‖e(k)‖2+≤ σa‖x∆(k)‖2. (77)

Denote c4 = max(µσd ,σa), er =

[
e

x∆

]
and note that µ = σac2

1‖C f ‖2 +1≥ 1. Then we have:

‖er(k)‖2 ≤V (er(k))≤ c4‖er(k)‖2. (78)

The above inequality with (76) gives:

V (er(k+1))≤ (1− 1
c4
)V (er(k))+µσdc2

2‖d(k)‖2 +σac2
3‖uc(k)‖2. (79)

Applying the above inequality for k = 0 to k = κ gives:

V (er(κ))≤

(1− 1
c4
)κV (er(0))+µσdc2

2

κ−1

∑
l=0

(1− 1
c4
)κ−l−1‖d(l)‖2 +σac2

3

κ−1

∑
l=0

(1− 1
c4
)κ−l−1‖uc(l)‖2 ≤

(1− 1
c4
)κV (er(0))+µσdc2

2c4‖d‖2
∞ +σac2

3c4‖uc‖2
∞. (80)

Since V (er(0))≤ c4‖er(0)‖2, the above inequality implies:

‖er(κ)‖ ≤
√

c4(1−
1
c4
)κ/2‖er(0)‖+ c2

√
µσdc4‖d‖∞ + c3

√
σac4‖uc‖∞. (81)

Threfore, the ISS gain w.r.t. d is c2
√

µσdc4s and w.r.t uc is c3
√

σac4s.
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A.4. Proof of Theorem 5
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Figure 13. Closed-loop system as series connection of (ΣC,ΣP̃) and (Σe,Σ∆)

To prove ISS of the closed-loop reconfigured system, we use Theorem 2 and the fact that the IOS
of closed-loop system is equivalent to the IOS of the interconnection of the (ΣP̃,ΣC) and (Σe,Σ∆) as
shown in the Figure 13.

The closed-loop system that consists of the faulty system, the virtual sensor, the virtual actuator,
and the nominal controller is given by:

ΣPf :

{
x f (k+1) = A(θ(k))x f (k)+B f u f (k)+Bdd(k),
y f (k) =C f x f (k),

(82a)

ΣS :x̂ f (k+1) = Aδ (θ)x̂ f (k)+B f uc(k)−L(θ)y f (k), (82b)

ΣA :


x̃(k+1) = A(θ)x̃(k)+Buc(k),
u f (k) =−M(θ)x∆(k)−Ruc(k),
yc(t) =Cx̃(k),

(82c)

ΣC :

{
xc(k+1) = fc(xc(k),yc(k),r(k))
uc = hc(xc(k),yc(k),r(k))

(82d)

where xc is the internal state of the controller. Using the change of the variables: x∆ = x̃− x̂ f and
e = x̂ f − x f , we get:

ΣP̃ :

{
x̃(k+1) = A(θ)x̃(k)+Buc(k),
yc =Cx̃c,

(83a)

ΣC :

{
xc(k+1) = fc(xc(k),yc(k),r(k))
uc = hc(xc(k),yc(k),r(k))

(83b)

Σe : e(k+1) = (A(θ)+L(θ)C f )e(k)−Bdd(k) (83c)
Σ∆ : x∆(k+1) = (A(θ)+B f M(θ))x∆(k)+L(θ)C f e(k)+B∆uc(k), (83d)

which is shown graphically in Figure (13). Since IOS properties are invariant under a linear change
of variables (y f =C f x f ,x f = x̃− x∆− e), it is enough to show the IOS of (83).

The transformed system (83) consists of the cascade interconnection of the (ΣP̃,ΣC) and (Σe,Σ∆)
as shown in the Figure 13. Note that ΣP̃ has the same dynamics as the nominal system ΣP. Based on
the assumption 1, we know that the nominal closed-loop system is IOS, therefore (ΣP̃,ΣC) is also
IOS and based on Theorems 3 and 4 Σe and Σ∆ are ISS .

Moreover, in Lemma 1 we showed that the interconnection (Σ∆ , Σe) is ISS with respect to the
inputs (uc,d) and, therefore, it is IOS w.r.t the output (e,x∆). Based on Assumption 1, (ΣP̃,ΣC) is
IOS w.r.t to the input (r,d) and the output (uc, x̃) . Therefore, using Theorem 2 we conclude that the
series connection (ΣP̃,ΣC,Σe,Σ∆) is IOS w.r.t to the input (r,d) and the output e,x∆, which proves
the theorem.
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A.5. Static Output Feedback Control Design for LPV systems

In this appendix, we give the details of design of an SOF controller for discrete time LPV systems.
The structure and type of the controller is not important for our proposed method and is only given
for the sake of completeness.

Consider an LPV system of the following form:

ΣP :


x(k+1) = A(θ(k))x(k)+Buc(k)+Bdd(k),
y(k) =Cx(k),
z(k) =Czx(k)+Dzd(k),

(84)

where A is defined as in (9), z is the performance vector. The goal is to design a static output feedback
controller of the form:

u(k) = K(θ)y(k) =
N

∑
i=1

piKiy(k). (85)

We assume without loss of generality that the output matrix is of full row rank. Then, there exist
nonsingular transformation matrices TC such that CTC =

[
I 0

]
. This transformation matrix is not

unique for a given C. A special case is given by TC =
[
CT (CCT )−1 C⊥

]
where C⊥ is an orthogonal

basis for the null space of C. We define the following matrices: Ãi = TCAiTC, B̃ = T−1
C B, C̃z =CzTC,

B̃d = T−1
C Bd .

Theorem 6

If there exist symmetric matrices Qi = QT
i and matrices Gi =

[
G11i 0
G21i G22i

]
such that:


−Q j 0 ÃiGi + B̃

[
Ui 0

]
B̃d

∗ −I C̃zGi Dz
∗ ∗ Qi−Gi−GT

i 0
∗ ∗ ∗ −γI

< 0 ∀ i, j = 1, · · · ,N, (86)

then, the LPV system (84) is stable with the H∞ performance index
√

γ i.e. ∑
∞
k=0‖z(k)2‖<

γ ∑
∞
k=0‖d(k)‖2. The controller gains Ki are given by:

Ki =UiG−1
11i. (87)

Proof
Denote Qi = TCQ̃iT T

C , then Q̃i = T−1
C QiT−T

C . Therefore, (86) is equal to:
−T−1

C Q jT−T
C 0 T−1

C AiTCGi +T−1
C B

[
Ui 0

]
T−1

C Bd
∗ −I CzTCGi D̄zi
∗ ∗ T−1

C QiT−T
C −Gi−GT

i 0
∗ ∗ ∗ −γI

< 0, ∀i, j = 1, . . . ,N. (88)

Pre- and post multiplying the above inequality by: diag{
[
TC I TC I

]
} and its transpose, and

denoting G̃i = TCGiT T
C we get:
−Q j 0 AiG̃i +B

[
Ui 0

]
T T

C Bd
∗ −I CzG̃i Dz
∗ ∗ Qi− G̃i− G̃T

i 0
∗ ∗ ∗ −γI

< 0 ∀i, j = 1, . . . ,N. (89)

Since Ki =UiG−1
11i, using the structure of Gi, we have:

[
Ui 0

]
= Ki

[
I 0

][G11i 0
G21i G22i

]
.
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Substituting
[
I 0

]
with CTC, then:

[
Ui 0

]
= KiCTCGi. Therefore, (89) is equal to

−QT
j 0 AiG̃i +BKiG̃i Bd

∗ −I CziG̃i Dz
∗ ∗ Qi− G̃i− G̃T

i 0
∗ ∗ ∗ −γI

< 0 ∀i, j = 1, . . . ,N (90)

Using the fact Qi− G̃i− G̃T
i ≥−G̃iQ−1

i G̃T
i and by pre- and post-multiply the above inequality with

diag{
[
I I G̃−1

i I
]
} and its transpose, we find that if the above inequality is satisfied, then we

have: 
−Q j 0 Ai +BKiC Bd
∗ −I Cz Dz
∗ ∗ −Q−1

i 0
∗ ∗ ∗ −γI

< 0 ∀i, j ∈ 1, . . . ,N. (91)

The rest of the proof is easily followed using the same pattern as in the proof of Theorem 3 or 4 and
is omitted here for the sake of space.
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