ATPG for Delay Defects in Current Mode Threshold Logic Circuits

Ashok Kumar Palaniswamy
Southern Illinois University Carbondale, ashokpa@siu.edu

Spyros Tragoudas
Southern Illinois University Carbondale, spyros@siu.edu

Themistoklis Haniotakis
Southern Illinois University Carbondale, haniotak@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_articles

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Recommended Citation

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted for inclusion in Articles by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
Abstract—An automatic test pattern generation approach to
detect delay defects in a circuit consisting of current mode
threshold logic gates is introduced. Each generated pattern
should excite the maximum propagation delay at the fault site.
Manufactured weights may vary, and maximum delay is ensured
by applying an appropriately generated set of patterns per fault.
Experimental results show the efficiency of the proposed methods.

Index Terms—ATPG, Threshold logic gate, BDD, delay testing.

I. INTRODUCTION

Threshold Logic Gate (TLG) is an emerging alternative
to implement Boolean functions. It offers the capability of
realizing a complex Boolean function using less number of
gates. Although TLG were initially introduced five decades
ago [1] they gained more importance in current years due
to the recent developments in CMOS-based implementations
[2]–[4]. TLGs are also implementable with emerging nano-
electronic technologies [5], [6].

A Boolean circuit implemented by TLGs is called a Threshold
Old Network (TN). Synthesis techniques have been proposed
for implementing TNs [7]–[11]. The objective of these meth-
ods is to minimize the number of TLGs.

Recent methods in [2], [3] minimize the delay of Current
Mode Threshold Logic (CMTL) gates which are CMOS-based.
According to [3], the input patterns of the CMTL gate can be
categorized into groups based on the delay they exhibit. All
patterns in a particular group cause the same delay. CMTL
gates are clocked. We consider the combinational core of the
TN which is pipelined, does not have any feedback loops, and
has unit combinational depth at each pipeline stage.

Manuscript received July 04, 2015; revised December 19, 2015; accepted
January 31, 2016. Date of current version Aaaaaaa xx, 2016. This research has
been supported in part by grants NSF IIP 1432026, and NSF IIP 1361847 from
the NSF I/UCRC for Embedded Systems at SIUC. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation. This paper was recommended by Associate Editor A. Gattiker.
A. K. Palaniswamy is with Synopsys, Inc., Sunnyvale, CA 94085 USA and
also with the Department of Electrical and Computer Engineering, Southern
Illinois University, Carbondale, IL 62901 USA (e-mail: ashokpa@siu.edu).
S. Tragoudas, and T. Haniotakis are with the Department of Electrical
and Computer Engineering, Southern Illinois University, Carbondale, IL
62901 USA (e-mail: spyros, haniotak@siu.edu).

II. PRELIMINARIES

Threshold Logic (TL) gate is a weight dependent majority
gate. It consists of n input variables and a threshold value w0.
Each input variable xi is associated with a weight value wi.
The output O of TLG is defined as [1]:

\[
O = \begin{cases}
1 & \text{if } \sum_{i=1}^{n} w_i x_i \geq w_0 \\
0 & \text{otherwise}
\end{cases}
\]

(1)

The main objective of this work is to implement an Auto-
matic Test Pattern Generation (ATPG) method where each
generated pattern excites the maximum possible delay on the
CMTL gate at the fault site and is more likely to excite an error
at the output driven by the faulty TLG. Given the pipelined
structure of the TN, the transition fault (TF) model is ideal for
detecting delay defects. This pattern sensitive approach will
likely to detect a TF, if one exists. The manufactured weights
of a TLG may vary. It is shown that the maximum delay at the
faulty TLG is excited even if the test pattern set is generated
using the designed weights. To our knowledge, ATPG methods
for TNs only focus on logic defects using the stuck-at (SA)
fault model [12], [13].

The main contributions of this work are summarized as
follows: First, it is shown how to generate a test set per TF
to excite the maximum possible delay at the gate and propagate
the latched error to an observable point of the pipelined TN.
An important component of the ATPG is to identify the group
of patterns that excite the maximum rising or falling transition
delay at the selected gate. Second, it is shown how to generate
a set of test patterns for each TF to ensure the maximum
delay in the presence of weight deviations. This is important
because physical defects and process variation during the
manufacturing of a TLG may result into the manufactured
weights that differ from the designed (ideal) weight values.
Finally, a test set compaction scheme is introduced which
focuses on generating a high quality test pattern to detect more
than one TFs in order to reduce the test data volume and the
test application time.

This article is structured as follows. Section II presents pre-
liminaries. Section III presents the ATPG method considering
the designed weights. Section IV presents a method to generate
a test set per TF in order to cope with weight deviations.
Section V presents the test set compaction technique. Section VI
presents experimental results. Section VII concludes.
For simplicity in the notation, let the sum of input variable weights \(\sum_{i=1}^{n} w_i \) be denoted as \(W \). Let the active weight summation \(\sum_{i=1}^{n} w_i x_i \) of a particular pattern or minterm (fully specified product term) \(p_i \) be denoted as \(W_i \).

The CMTL gate representation for the two input AND gate with weight values as \((w_1, w_2 : w_3) = (2, 2 : 3)\) is shown in the Figure 1[3]. The unit weight value corresponds to the minimum gate length of the process technology. The CMTL gate consists of the differential and the sensor part. All the transistors in the differential part are connected in parallel. The differential part is further divided into the threshold and the sensor part. The PMOS transistor in the threshold part is always active. The number of active PMOS in the inputs part depends on the applied input pattern. The sensor part has 3 PMOS transistors \(P_1, P_2, P_3 \), and 4 NMOS transistors \(N_1, N_2, N_3, \) and \(N_4 \). The nodes \(M_1 \) and \(M_2 \) connect the differential part and the sensor part.

The operation of the CMTL gate is divided into two phases, the equalization phase (CLK is high) and the evaluation phase (CLK is low). Due to the design architecture, both output nodes \(F \) and \(FB \) are at same initial value (\(\approx 30\% \) of VDD) at the beginning of the equalization phase. Then a small voltage difference is developed across the output nodes which mainly depends on the differential part due to the applied pattern \(p_i \). In the evaluation phase, the sensor part boosts the initial voltage difference to a logic state at the output nodes. The node \(F \) rises from \(30\% \) VDD to VDD for logic one, and drops from \(30\% \) VDD to 0V for logic zero. The node \(FB \) changes in the opposite direction with respect to the node \(F \). See [3] for more details.

The propagation delay \((d) \) of the CMTL gate for the applied pattern \(p_l \) is modeled by [3] is shown in Equation (2).

Equation (2) also indicates that the pattern \(p_l \) which minimizes \(|w_0 - W_l| \) generates the maximum transition delay at the gate. The transition delay value of the CMTL gate decreases linearly with the increase in the \(|w_0 - W_l| \). If the \(w_0 \) is equal to the \(W_l \) value of the applied pattern \(p_l \), then an unstable value is produced at the output. Hence, the weight assignment for the CMTL gate is chosen such that the \(W_l \) value for any input pattern \(p_l \) is not equal to its \(w_0 \) value. Therefore the weight configuration of a CMTL gate always needs to satisfy \(W_l \neq w_0 \) for any pattern \(p_l \).

\[
d = c_0 + c_1 s + \frac{c_2}{s} + 50 e^{-12}
\]

where
\[
c_0 = 0.7 (W^2 + w_0^2) e^{-18} + 20 e^{-12}
\]
\[
c_1 = \frac{10 (W + w_0)}{|w_0 - W_l|} + 0.01 e^{-6}
\]
\[
c_2 = 0.7 (W^2 + w_0^2) e^{-18} + 300 e^{-17}
\]
\[
s = \sqrt{\frac{c_2}{c_1}}
\]

The transition fault model is widely used for testing delay defects at a gate. It requires that a transition is generated at the output of each gate. There are two transition faults associated with each gate: a slow-to-rise (STR) fault, and a slow-to-fall (STF) fault. A TF should propagate to an observable point through any path [14].

It is noted that CMTL gates are clocked. At the beginning of the clock cycle the output of CMTL gate is set to an initial value irrespective of the previous clock cycle value. Hence, the initialization vector of the TF model is not required for testing delay defects of the CMTL gate. For each STR fault at gate \(G \), the test pattern is generated considering that the ATPG requires setting logic one at the selected gate and propagating its effect to an observable point. Likewise, a pattern for STF is generated.

From the above and the Equation (2), the minterms which evaluate the function to one (also called onset minterms), and, in addition, produce minimum weight summation are responsible for the maximum rising transition delay. The offset minterms (i.e., minterms that set the function to zero) which produce maximum weight summation are responsible for the maximum falling transition delay of the CMTL gate.

Fig. 1. CMTL gate.

Fig. 2. Combinational circuit.
The following provide an overview of a combinational TN implemented with CMTL gates. CMTL gates are clocked and circuits that are implemented using CMTL gates are pipelined TNs without feedback loops. Synchronization CMTL buffers are inserted at the pipeline stages so that each CMTL gate receives its inputs at the appropriate clock cycle. Methods as in [7] synthesize TNs so that the total number of TLGs is minimized.

Figure 2 shows a combinational circuit with six complex combinational components whose functionalities are listed explicitly. Each combinational component is a TLG, implemented by a CMTL gate. Figure 3 shows a four stage pipelined TN of CMTL gates representing the circuit of Figure 2. The weight assignment for the inputs and the threshold at each CMTL gate is also shown. At each pipeline stage, CMTL buffers (represented by rectangle) ensure that each TLG receives its inputs at the appropriate clock cycle in a synchronized manner.

In this paper, functions will be represented using Binary Decision Diagrams (BDDs). An n input Boolean function f represented in a BDD is a directed acyclic graph where the Shannon decomposition is carried out in each node. Each vertex has two outgoing edges. A pointer to each vertex represents a distinct function. One outgoing edge simplifies the function by setting the variable to true and the other outgoing edge by setting it to false. A BDD does not contain vertices whose outgoing edges point to isomorphic sub-graphs or to the same node. BDDs are canonical forms suitable for representing functions very compactly [15].

III. ATPG BASED ON THE TRANSITION FAULT MODEL

The proposed ATPG method is called dTL (delay defect on Threshold Logic gates). This is a function-based test generation approach that uses binary decision diagrams and the conditions listed in Section II to excite maximum STR or STF delay at the fault site and propagate the transition to an observable point. Each TLG has been assigned weight values and is stored in a BDD.

Procedure GROUP returns all the minterms of a TLG that excite maximum delay at each TLG inputs [16]. The set of minterms returned by GROUP is stored as a BDD function. Another procedure of dTL, called MAP, rewrites the function returned by GROUP so that the set of minterms of the embedded TLG is expressed in terms of the primary inputs of the TN.

Algorithm GROUP is a non enumerative BDD traversal method that identifies all the fully specified input assignments (minterms) of the given TLG function which produce the minimum active weight summation for STR or the maximum active weight summation for STF [16].

The operation of GROUP is recursive. For the simplicity in the exposition, GROUP is explained when considering a STR fault. Similar procedures apply for a STF fault. Let f denote the function at a BDD node. Let the field \(M_f \) be the set of all minterms of f which produce minimum active weight summation value \(W_{1f} \) \((m_i \in M_f)\). For STR, \(M_f \) will have the set of minterms with \(W_{1f} \) denote the maximum active summation value. Let \(M_f \) denote the simplified function of outgoing edge with the variable set to true. Let \(M_f \) denote the simplified function of outgoing edge with the variable set false from the \(M_f \). The BDD functions at the two outgoing edges have the minimum active weight sums denoted by \(W_{t_f} \) and \(W_{e_f} \) respectively.

Algorithm 1: GROUP(F)
Input: Transition fault \(F \) at gate \(G \) with functionality \(f \)
Output: Set of minterms \(M_f \) with active weight summation value as \(W_{1f} \) \((m_i \in M_f)\)
1. if \(f \) is not Constant and Not Visited then
2. \(M^f = \text{GROUP} (f_{x_i}) \);
3. \(M^f = \text{GROUP} (f_{\overline{x_i}}) \);
4. \(\text{ADJUSTTHEN} (M^f, W_{t_f}) \);
5. \(\text{ADJUSETELSE} (M^f, W_{e_f}) \);
6. if \(W_{1f} \neq W_{t_f} \) then
7. if \(F \) is STR then \(W_{1f} = \min \{W_{1f}, W_{e_f}\} \);
8. if \(F \) is STF then \(W_{1f} = \max \{W_{1f}, W_{e_f}\} \);
9. if \(W_{1f} = W_{t_f} \) then \(M_f = M^f \);
10. if \(W_{1f} = W_{e_f} \) then \(M_f = M^f \);
11. else
12. \(W_{1f} = W_{t_f} \);
13. \(M_f = M^f \cup M^f \);
14. endif
15. endif
16. return \(M_f \);

An input variable which is not present in a BDD path is a don’t care variable of the path. Algorithm GROUP intends to find the fully specified product terms. Hence in GROUP, initially the \(M_f = \{x_1 x_2 \ldots x_n\} \), \(W_{1f} = \infty \) for STR and \(W_{1f} = -\infty \) for STF for each BDD node. The don’t care variables on the path of each BDD node are considered and included in the \(M_f \) depends upon their polarity. In order to find the set of input patterns which produce the minimum active weight summation value for STR fault, the \(W_{t_f} \) and \(W_{e_f} \) values should be decremented for each don’t care variable that has a negative weight value. This is accomplished by including the don’t care variable in \(M^f \) and \(M^f \). Similarly, in order to find the set of input patterns which produce the maximum active weight summation value for STF fault, the \(W_{t_f} \) and
The overview of algorithm DTL is presented in Algorithm 2. First, procedure PROPAGATION (line 1) generates the set of all pattern vectors P which ensure that the latched error propagates to an observable point. Then procedure GROUP (line 5) generates the set of input patterns set_I that produce maximum possible transition delay at the gate G. Subsequently, procedure MAP (line 6) transforms the test vectors $\{00001\}$ and $W^{I_A} = 2$ by choosing the minimum weight summation value.

The \textit{then} child of node B is the \textit{True} node and \textit{else} child is node A. Although x_7 don’t care variable on the \textit{then} path of node B, it is not added by \text{ADJUSTTHEN} due its positive weight value. This results in $M^B = \{00010\}$ and $W^I_B = 2$, and $M^B = \{00001\}$ and $W^I_B = 2$. This results in $M^B = \{00010, 00001\}$ and $W^{I_B} = 2$. Similarly, we get $M^C = \{00100\}$ and $W^{I_C} = 4$, and $M^C = \{00100, 00001\}$ and $W^{I_C} = 2$. This way all the \textit{then} path pointer nodes of root node are visited and the M^I and W^{I_I} values are updated [16].

Then the \textit{else} path pointer nodes out of the top pointer node are visited. All the pointer nodes are visited and updated in a similar manner. In our example, the top pointer node I results in $M^I = \{11010, 11001, 10110, 10101, 01111\}$ and $W^{I_I} = 12$ [16]. The set of patterns responsible for maximum rising transition delay of gate G_3 with respect to the local gate inputs obtained by procedure GROUP is shown on the right hand side of Table I.

In the case of a \textit{STF} fault, the same process is applied except that the maximum active weight summation is considered (line 8). The offset minterms of the given \text{TLG} function with highest active weight summation result in the maximum propagation delay for a falling transition. Hence the complement of the given gate functionality G_3 is used by \text{GROUP}.

In order to represent the functionality of the embedded gate \text{TLG} in terms of primary inputs, the local input variables (embedded gate inputs) are replaced by primary input variables by function substitutions. In particular, each gate input is replaced by its function. This procedure is referred as \text{MAP}. In our example, the five minterms in terms of embedded gate inputs are mapped into seven patterns expressed in terms of primary inputs and shown on the left hand side of Table I.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Patterns in Test Set} & \textbf{Gate Inputs} & \textbf{Circuit Inputs} \\
\hline
x_1 & x_2 & x_3 & x_6 & x_7 & x_1 & x_2 & x_3 & x_4 & x_5 \\
\hline
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}
\caption{Maximum Delay Vector Set for the STR fault at gate G_3.}
\end{table}
The propagation vector set is obtained by propagating SA0 at function respectively. For the are computed by procedure

Output: The obtained input patterns that excite and propagate the error on gate forms set

Table II: Final set of patterns for the STR fault at gate G3

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>S = D ∩ P</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>x2</td>
<td>x3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

in terms of primary inputs (D). Essentially, this procedure generates input patterns that brings each binary pattern in set_Mi at the inputs of gate G. Then the intersection of D and P forms set S (line 7) out of which a test vector is selected.

Algorithm dTL is explained considering the STR fault on gate G3 in the circuit in Figure 3. All patterns that propagate the matched error are kept as a function P and are computed by procedure PROPAGATION. Procedure PROPAGATION propagates the error to an observable point in the TN. It is implemented using a boolean difference operation between two functions, the fault free function and the faulty function respectively. For the STR at gate G3 in Figure 3, the propagation vector set is obtained by propagating SA0 at G3. The obtained input patterns that excite and propagate the error are listed on the left hand side of Table II.

Algorithm 2: dTL(F)
Input: Transition fault F at gate G with functionality f
Output: A test vector
1. \(P = \text{PROPAGATION}(G, F) \);
2. \(S = \phi \);
3. \(i = 1 \);
4. while \(S = \phi \) and \(f \neq \phi \) do
5. \(\text{set}_M_i = \text{GROUP}(F) \);
6. \(D = \text{MAP}(\text{set}_M_i) \);
7. \(S = D \cap P \);
8. if \(S = \phi \) then
9. \(f = f \setminus \text{set}_M_i \);
10. end
11. \(i++ \);
12. end
13. return A test vector from S;

The objective of the vector set S is to sensitize the given transition fault (STR or STF) of the selected gate G with maximum possible delay and propagate the transition to an observable point. For a STR fault, for each iteration of procedure GROUP (line 5) produces all the minterms of the function \(f \) that excites the maximum delay. The resulting \(\text{set}_M_i \) is substituted in terms of primary inputs by MAP (line 6). The final sensitization vector set \(S \) (intersection of \(D \) and \(P \)) is shown in the right hand side of Table II.

If \(D \cap P \) results in an empty set, then it indicates that no pattern that excites the highest delay at the gate propagates to an observation point. In this case algorithm dTL tries to excite the fault with patterns that excite the next possible highest delay at the gate. This is done by removing the \(\text{set}_M_i \) from function \(f \) (line 9), and then the reduced function is used to find the next highest delay patterns group by GROUP. This is repeated continuously until a non empty S is generated or function \(f \) becomes null (line 4). That way, any test vector in S guarantees that a transition (STR or STF) fault at the gate G is sensitized with the maximum possible delay and the potential error propagate to an observable point.

The systematic removal of the maximum delay patterns group \(\text{set}_M_i \) \((1 \leq i \leq n)\) maintains the unate property of the given TL function \(f \). This is a necessary condition for a function to be a TL function. If \(\text{set}_M_i \) \((1 \leq i \leq n)\) is removed arbitrarily from the function \(f \) then \(f \) becomes binate [1]. Thus, algorithm GROUP always produces the group of patterns so that all patterns in the group exhibit the same maximum delay. Each pattern in the set \(\text{set}_M_i \) excites the highest propagation delay at the fault site.

IV. ATPG to Cope with Weight Deviations
Let us assume that each weight \(w_i \) \((0 \leq i \leq n)\) during manufacturing has an absolute deviation of \(\delta_i \) \((0 \leq i \leq n)\), i.e., each manufactured weight value \(w_i \) \((0 \leq i \leq n)\) is in the range \(w_i \pm \delta_i \).

This section presents algorithm EdTL, an enhancement of dTL, which generates a set of patterns for each fault such that one of them is guaranteed to excite the maximum delay under any weight deviations.

Let \(a \) be the set of onset minterms, and \(b \) be the set of offset minterms of the given TLG function. Let \(\tau \) be the maximum allowable shift in the weight summation \(W^0 \) of any minterm \(p_i \) due to the deviation in the manufactured weights which does not affect the TLG functionality. From [1], we have that:

\[
\tau = \min \{ y_1, y_2 \} \quad (3)
\]

where
\[
y_1 = \min \{ W^k \} - w_0
\]
\[
y_2 = w_0 - \max \{ W^l \}
\]

Let us assume for simplicity, that all weight deviations have the same value \(\delta \). Then the maximum value of \(\delta \) for the given weight configuration of the TLG is [1]:

\[
\delta = \min \{ \frac{y_1}{n+1}, \frac{y_2}{n+1} \} \quad (4)
\]

It is shown below that although the manufactured weight values may deviate from the designed value, the set of patterns that excite the maximum delay are the patterns that belong to \(\text{set}_M_i \) that was generated by procedure GROUP when considering the designed weights. (This is the set of patterns expressed in terms of local gate inputs. See line 5 of Algorithm dTL.)

Patterns (minterms) belong into different groups when considering their designed weights. Consider the patterns of two separate groups \(\text{set}_M_i \) and \(\text{set}_M_j \) of a TLG so that \(i \) is less than \(j \). Under weight deviations, the patterns of any such group may further partitioned into sub groups.

Consider the gate G_1 shown in Figure 3. For the given weight configuration \((w_1, w_2, w_3, w_4) = (4, 4, 2, 2 : 5) \), we get \(\tau = 1 \) and \(\delta = 0.2 \). For the eleven onset minterms of the TLG function, we get four delay patterns groups. The
The second is called set deviation. We have that the following, we prove the case assuming that they all have a set theorem to be violated, the weight summation of minterms in range:

\[
\text{set}_{M1} \text{ contains minterms } p_5, p_6, p_9, \text{ and } p_{10} \text{ with } W^5 = 6. \\
\text{The set}_{M2} \text{ contains minterms } p_7, p_{11}, \text{ and } p_{12} \text{ with } W^7 = 8. \\
\text{The set}_{M3} \text{ contains minterms } p_{13} \text{ and } p_{14} \text{ with } W^{13} = 10. \\
\text{The set}_{M4} \text{ contains minterm } p_{15} \text{ with } W^{15} = 12.
\]

Assume that the manufactured weight values for \((w_1, w_2, w_3, w_4 : w'_i) = (4.2, 3.8, 1.8, 1.8 : 5.2)\). For this new weight configuration, calculating the weight sum for each minterm shows set deviation is further divided into two subgroups. The first is called set\(_{M1,1}\) and contains minterms \(p_5\) and \(p_6\) with \(W^5 = 5.6\). The second is called set\(_{M1,2}\) and contains minterms \(p_9\) and \(p_{10}\) with \(W^9 = 6\). Similarly, set\(_{M2}\) is divided into subgroups. The first is called set\(_{M2,1}\) and contains minterm \(p_7\) with \(W^7 = 7.4\). The second is called set\(_{M2,2}\) and contains minterm \(p_{11}\) with \(W^{11} = 7.8\). The third is called set\(_{M2,3}\) and contains minterm \(p_{12}\) with \(W^{12} = 8\). None of the minterms in set\(_{M1}\) never assigned lower delay patterns group less than set\(_{M2}\) for any deviated weight configurations. Similar results are obtained for any two separate groups set\(_{M1}\) and set\(_{M2}\).

Theorem 1: For any \(n\) input gate \(G\) of an implemented \(TN\), no patterns in set\(_{M1}\) will excite lesser or equal delay at \(G\) than a pattern in set\(_{M2}\), for any \(i < j\).

Proof: Theorem 1 is shown considering only the onset minterms. Similar arguments hold for the offset minterms. For simplicity in explanation, assume that \(n\) is even.

From Equation 4, we have that the maximum allowable shift in the weight summation for any minterm due to weight deviation is \(\tau = (n + 1) * \delta\). Consider minterms \(p_x\) and \(p_y\) in any two groups set\(_{M1}\) and set\(_{M2}\) so that \(i\) is less than \(j\).

Let \(g_{ij} = |W^x - W^y|\) for any two minterms \(p_x\) and \(p_y\) in set\(_{M1}\) and set\(_{M2}\). Due to the weight deviations during manufacturing of a TLG, the new \(g_{ij}\) value will be in the range:

\[
g_{ij} - \tau \leq g_{ij}' \leq g_{ij} \tag{5}
\]

Case 1: Assume that there is no variable that is active in both minterms \(p_x\) and \(p_y\). Let \(n_x\) and \(n_y\) be the number of active variables in \(p_x\) and \(p_y\), respectively. In order for the theorem to be violated, the weight summation of minterms in set\(_{M1}\) must increase, and those in set\(_{M2}\) must decrease. Therefore \(W^x\) is increased by \(n_x * \delta\) and \(W^y\) is decreased by \(n_y * \delta\). However, \(n_x + n_y\) is always less than or equal to \(n\). This results in \(g_{ij}'\) being no less than \(g_{ij} - (n * \delta)\).

Case 2: Assume that there is \(n_{xy}\) number of variables that are active in both minterms \(p_x\) and \(p_y\). In order for the theorem to be violated, the weight summation of minterms in set\(_{M1}\) must increase and those in set\(_{M2}\) must decrease. In the worst case either all the common active variables will have a positive deviation or all will have a negative deviation. In the following, we prove the case assuming that they all have a positive deviation. Similar arguments hold when they all have a negative deviation. We have that \(W^x\) is increased by \(n_{x} * \delta\) and \(W^y\) is decreased by \((n_y - n_{xy}) * \delta\). However, \(n_x + n_y - n_{xy}\) is always less than or equal to \(n\). This results in \(g_{ij}'\) being no less than \(g_{ij} - (n * \delta)\).

From Equation 5, we have that \(g_{ij} - g_{ij}'\) is less than \(\tau\). If the weight configuration of a TLG satisfies that \(\tau\) is not greater than \(\min\{g_{ij}\}\) then none of the minterms in the group set\(_{M1}\) will have less delay than the any minterm in the group set\(_{M2}\) for any weight deviated configurations, when \(i\) is less than \(j\). This proves Theorem 1.

Not all the test vectors of \(S\) generated by DTL using designed weights may excite the maximum delay for some deviated weight configurations. However, at least one will do. In the above example, the highest delay group (set\(_{M1}\)) of the designed weights is sub divided into two subgroups (set\(_{M1,1}\), set\(_{M1,2}\)) for one of the deviated weight configurations. Only the patterns in the set\(_{M1,1}\) excite highest delay for this deviated weight. Hence all patterns of \(S\) must be applied instead of only one. However, only the vectors in \(S\) that bring different input assignment at a gate \(G\) must be applied. Using the above, DTL is enhanced into algorithm EdTL (Enhanced DTL).

Algorithm 3: EdTL(F)

Input: Transition fault \(F\) at gate \(G\) with functionality \(f\)

Output: Test vector set \(S\)

1. \(S = \emptyset\)
2. \(set_{M_i} = \text{GROUP}(F)\)
3. \(P = \text{PROPAGATION}(G, F)\)
4. **foreach** \(p_j \in set_{M_i}\) **do**
5. \(D_j = \text{MAP}(p_j)\)
6. **if** \(D_j \cap P \neq \emptyset\) **then**
7. \(S_j = \text{A pattern in } D_j \cap P\)
8. \(S = S_j \cup S\)
9. **endif**
10. **end**
11. **return** \(S\)

The overview of the EdTL is presented in Algorithm 3. First, Group (line 2) generates the set of input patterns \(set_{M_i}\), where \(i\) is the minimum value in algorithm DTL that produces a pattern which excites maximum possible transition delay at gate \(G\). The patterns that excite and propagate the latched error to an observable point are generated by Propagation (line 3). Then procedure Map (line 5) constructs one or more input patterns \(D_j\) for each pattern \(p_j\) in \(set_{M_i}\) at the inputs of the gate \(G\). A pattern \(S_j\) which brings the distinct maximum delay pattern \(p_j\) at the gate \(G\) is formed by selecting one of the patterns in the intersection of \(D_j\) and \(P\) (line 7). That way, a collection of patterns \(S_j\) (\(j \geq 1\)) is formed, where each \(S_j\) will bring distinct \(p_j\) of \(set_{M_i}\) at the gate \(G\) which sensitizes maximum possible delay and propagate to an observable point in the \(TN\). This collection of patterns \(S_j\) (\(j \geq 1\)) is denoted by \(S\).

The vector set generation by EdTL is illustrated for the STR fault on gate \(G_3\) in the circuit in Figure 3. In this example, \(set_{M_1} = set_{M_1}\). First, the set of vectors \(set_{M_1}\) and \(P\) is determined for the given fault. The patterns in \(P\) are listed in right hand side of Table II.

The set of patterns in set\(_{M1}\) is shown in column 1 of Table III. There are five input patterns in set\(_{M1}\) which excite the maximum delay for rising transition at gate \(G_3\). Patterns \(D_j\) and \(D_j \cap P\) for each minterm \(p_j\) in set\(_{M1}\) are shown in columns 2 and 3 of Table III. There are no input patterns
that justify which bring the patterns "10101" or "11001" of set_M1 at gate G3.

Each S_j, 1 ≤ j ≤ 3 consists of one test vector from each D_j ∩ P, 1 ≤ j ≤ 3 which brings distinct input assignments that excite the maximum delay at gate G3 for STR under any weight deviations. Patterns S_j are listed in the fourth column of Table III. Observe that the number of patterns generated by EdTL to detect TF under weight deviations is reduced to three.

V. TEST SET COMPACTION

This section presents a compact ATPG which we call CEdTL (Compact EdTL). For each STR or STF fault at gate G, algorithm EdTL generates several test functions D_j ∩ P (step 6 of Algorithm 3) and then selects a test pattern S_j (step 8 of Algorithm 3). A compact test set is obtained by manipulating the test functions of several gates.

Algorithm 4: CEdTL(TN)

Input: A TN
Output: A compact test set for all TFs
1 Clustering(TN) ;
2 foreach C in TN do
3 C_i, 1 ≤ i ≤ 2 = COMPATIBLE(C) ;
4 foreach C_i, 1 ≤ i ≤ 2 do
5 return Compact Test Set = COMPACT(C_i) ;
6 end
7 end

Algorithm CEdTL is presented in Algorithm 4. Clusters of gates are formed by traversing the TN in reserve topological order. The size of each cluster is limited to a predetermined constant value c. The clustering phase helps the scalability of algorithm CEdTL. This procedure is called Clustering.

Consider a STR for gate G at some cluster C, and an immediate predecessor gate G at C which is connected to G with an input that has a positive weight. Then CEdTL will generate a compact test set by considering the test functions for a STR at G. If the weight of that input is negative then CEdTL will compact by considering the test functions for a STF at G. This is due to the unate timing property of threshold logic gates [1]. That way, two sets of test functions are formed for each cluster C: Set C1 consists of all functions that are compatible with the test functions for a STR at the output gate of cluster C, and set C2 consists of all functions compatible to a STF at the output gate of the cluster. This procedure is called COMPATIBLE.

Then a greedy algorithm is applied to the functions in C_i, 1 ≤ i ≤ 2. Any two test functions in C_i are covered by a single function as long as their intersection is non empty. The two functions must target faults at different gates in set C_i since different test functions for the same gate contain disjoint minterms. For any non-empty function intersection, the two functions are substituted by their intersection, they are not considered any further. This process is repeated for the test functions until only empty intersections are encountered among the test functions in each C_i. This greedy algorithm is called COMPACT.

Procedure COMPACT is illustrated with the help of Tables IV and V. Table IV considers a cluster C containing gate G3 of the TN of Figure 3 and its two immediate predecessor gates G2 and G1. We consider a STR at G3, i.e., procedure COMPACT operates on the set of functions C1. Since the input weights of G3 are positive, the test functions for STR at G2 and G1 are considered by COMPACT (Line 5).

The second column of Table IV contains the three test functions for gate G3. According to the notation used in algorithm EdTL, they are labeled as S1, S2 and S3. The third column of Table IV lists the two test functions S1 and S2 for gate G2. Finally, the fourth column lists the two test functions generated by EdTL for gate G1. Clearly, EdTL will return seven patterns for this cluster. For simplicity in the notation, let the test function S_i for the gate G_j be denoted as S_i(G_j).

In this example, algorithm COMPACT first considers S1(G3), and tries to determine whether there is an non-empty intersection among the test functions S_i, 1 ≤ i ≤ 2, of the predecessor gate G2. These functions are examined in increasing order. Therefore it first examines whether S1(G3) intersects with S1(G2), and this turns out to be an non-empty test function. At this point, S1(G3) and S1(G2) are covered by the intersection of sets S1(G3) and S1(G2), and are not considered any further. The test set for the gates in the cluster is already reduced by one pattern.

Next, the test function resulting from the intersection of sets S1(G3) and S1(G2) is considered for possible intersections with the two test functions S1 and S2 of gate G1 in column 4. They are considered in increasing order. The first intersection is empty but the second intersection turns out to be non-empty. Let T1 be the set resulting from the intersection of S1(G3), S1(G2), and S2(G1). Therefore the sets S1(G3), S1(G2), and S2(G1) are not considered any further. The test set for the cluster is reduced by another pattern.

Now the algorithm backtracks to the test functions in the second column of Table IV, and considers S2(G3). It does

<table>
<thead>
<tr>
<th>p_j in set_M1</th>
<th>D_j = MAP(p_j)</th>
<th>D_j ∩ P</th>
<th>S_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1 x_2 x_3 x_6 x_7</td>
<td>x_1 x_2 x_3 x_4 x_5</td>
<td>x_1 x_2 x_3 x_4 x_5</td>
<td>S_j</td>
</tr>
<tr>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>1 0 1 1 1</td>
</tr>
<tr>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>1 1 0 1 1</td>
</tr>
<tr>
<td>1 0 1 0 0</td>
</tr>
<tr>
<td>1 1 0 0 1</td>
</tr>
</tbody>
</table>

TABLE III
SENSITIZATION VECTOR SET BY EdTL

\[D_j = \text{MAP}(p_j) \]

\[D_j \cap P \]

\[S_j \]
Thus, it examines whether not examine if it will intersect with set S. This results in empty set. Now the algorithm backtracks and considers the test function and their intersection results in empty set. The basic ATPG tool called $ATPG$, the enhanced $ATPG$ called EdTL that accommodates weight variation, and the compact $ATPG$ method called CeDTL.

<table>
<thead>
<tr>
<th>Test Functions</th>
<th>Test Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_1 = S_1 (G_3) \cap S_2 (G_2)$</td>
<td>$x_1 \ x_2 \ x_3 \ x_4 \ x_5$</td>
</tr>
<tr>
<td>$T_2 = S_2 (G_3) \cap S_2 (G_2)$</td>
<td>$x_1 \ x_2 \ x_3 \ x_4 \ x_5$</td>
</tr>
<tr>
<td>$T_3 = S_3 (G_3)$</td>
<td>$x_1 \ x_2 \ x_3 \ x_4 \ x_5$</td>
</tr>
<tr>
<td>$T_4 = S_3 (G_1)$</td>
<td>$x_1 \ x_2 \ x_3 \ x_4 \ x_5$</td>
</tr>
</tbody>
</table>

VI. EXPERIMENTAL RESULTS

Experiments are presented which show that some pattern excite significantly more delay than the others and they must be selected when testing for delay defects. Then a software tool was employed to synthesize pipelined T^Ns for each ISCAS 85 and ITC 99 benchmark. Finally, the section demonstrates the efficiency of the three $ATPG$ tools presented in this paper: The basic $ATPG$ tool called dTL, the enhanced $ATPG$ called $EdTL$ that accommodates weight variation, and the compact $ATPG$ method called $CeDTL$.

All software tools were implemented in the C++ language. The experiments were conducted on a Sun-Blade 100 workstation with a 1 Gigabyte RAM on the ISCAS 85 and ITC 99 Benchmark circuits [17], [18]. As described in Sections II-V, the proposed method uses BDDs for each embedded TLG in order to identify the maximum delay pattern set for the gate, and a separate BDD for the whole circuit in order to generate the test patterns. Therefore we did not experiment with the multiplier circuit c6288 since traditional BDDs cannot easily handle such circuit functionalities. For such circuits, bi-conditional BDDs have been introduced in [19], and the proposed method can generate patterns by operating on this data structure. However, such implementation details are beyond the scope of this work.

First, an experimental study was conducted to determine the impact of the different input patterns on the delays that they excite at gates. There exist 17 representative threshold logic functions which represent all the threshold logic functions of exactly four inputs [1]. All these functions were considered. The rising transition delay value for each onset minterm of each function was calculated using Equation 2. Many minterms of a function exhibited the same delay. For each function, they were categorized into different groups set_M_i, and all the minterms in the same group set_M_i had the same delay. For each function, up to five groups were formed, i.e., set_M_1 to set_M_5 with the patterns in set_M_1 exhibiting the highest delay.

For a STR fault, Figure 5 shows the percentage reduction in the delay value for set_M_i, $i > 2$, in comparison with the delay for set_M_1. The reduction is listed for each possible four input threshold function. Note that only 16 out of 17 functions are listed because when analyzing the results of Figure 5 we observed that for one of them only set_M_1 can be formed. The reduction in the delay value for set_M_2 is at least 43% when compared with the delay of set_M_1, and 34% on average. Similarly, the reduction in the delay for set_M_3...
input combinational circuit were mapped into CMTL. On average, it was 97%.

The gates of the CMTL gate cluster can be implemented as a TLG. The fan-in bound of a TLG was set to eight.

Figure 6 presents the total number of TFs (both STR and STF) in the pipelined TN for each benchmark circuit considered for the proposed ATPG methods. The TFs of the synchronized buffers are not examined by the ATPG because the set of patterns which detects the TFs at the CMTL gate output will also detect the TFs of the synchronized CMTL buffer connected to it. Hence, we consider only the TFs (both STR and STF) at the output stem of each CMTL gate. Figure 6 also presents total number of TFs in the original CMOS Boolean circuits for each benchmark circuit. The reduction in total number of TFs in the TN is 39% in the best case when compared with the original CMOS Boolean circuit, and 28% on average.

The remainder of the section focuses on the efficiency of the presented ATPG algorithms. Figure 7 shows the fault coverage by DTL for each benchmark circuit. It shows the fault coverage is at least 96.9% and that observed in circuit c3540. The fault coverage was 99% on average among all benchmarks. The best fault coverage was 100%. Figure 7 also shows the fault coverage by considering only the patterns in set_M1. It was at least 95% and that observed in circuit c3540. On average, it was 97% among all benchmarks. The best observed fault coverage was 99%.

Figure 8 shows the time performance of the algorithm DTL. It took approximately 13 seconds to handle all the TFs in the benchmark c1908. It was also observed that the maximum execution time never exceeded 74 seconds for any of the benchmark circuit. Thus DTL is a very scalable ATPG method.

Finally, the experiments focused on the efficiency (test set reduction) and time performance of CDTL. Let |S| be the total number of patterns needed to detect all TFs by EdTL, and |C| is the total number of patterns needed to detect all TFs by CDTL. Then the percentage reduction in test set size by CDTL is calculated as by \((|S| - |C|) / |S|) * 100\).

Figure 10 shows the average percent reduction on the number of test vectors that were needed to detect all the TFs under any weight deviation in each benchmark circuit. The cluster size bound was set to four in all benchmark circuits. For circuit b11, the reduction was at least 40%. On average, the average percent reduction was at least 33% and it was 46% on average among all benchmarks. The best observed percent reduction was 94% among all benchmarks.
among all benchmark circuits, the reduction was 52%. In the best case, it was 62%.

Figure 11 shows the time performance of CEoTL (excluding the time taken by EdTL). It took approximately 4 seconds to handle all the TFs in the benchmark c1908. It was also observed that the maximum execution time never exceeded 22 seconds for any of the benchmark circuit. This is also a very scalable ATPG.

VII. CONCLUSION

In this article, we presented ATPG tools for current mode threshold logic gate circuits which are designed using CMOS technology. They use the transition fault model that can handle small delay defects due to the pipeline nature of the designs. Since different patterns excite different delays at the fault site, ATPG tools focus on generating patterns that excite the maximum possible delay for each fault. Three ATPG tools have been presented. The basic ATPG tool is very scalable and ensures very high fault coverage. A second ATPG tool was developed to handle instances where the manufactured weights differ from designed weights due to process variations. A compact ATPG has also been presented that reduce the test size for all benchmark circuits by approximately 52%.

REFERENCES

Ashok Kumar Palaniswamy received the B.E. degree in electronics and communication from the Anna University, Chennai, India, in 2006, the M.S. and Ph.D. degrees in electrical and computer engineering from Southern Illinois University, Carbondale, IL, USA, in 2009 and 2014, respectively. He is currently with Synopsys, Inc., Sunnyvale, CA, USA. His Ph.D. dissertation is in the area of synthesis and testing of circuits consisting of threshold logic gates. His research interests include Synthesis and Verification of digital circuits, VLSI Design and Test Automation, and VLSI Testing.

Spyros Tragoudas (BSc 1986, MSc 1988, PhD 1991) is Professor and Department Chair at the Electrical and Computer Engineering (ECE) Department, Southern Illinois University at Carbondale (SIUC), and the Director of the National Science Foundation (NSF) Industry University Cooperative Research Center (IUCRC) on Embedded Systems at the SIUC site. He has held prior appointments with the faculty of the ECE Department at the University of Arizona, and with the faculty of the Computer Science Dept. at SIUC.

His current research interests are in the areas of VLSI Design and Test Automation and embedded systems. Dr. Tragoudas has published over two hundred papers in journals and peer-reviewed conference proceedings in these areas, and has received three outstanding paper awards for research in VLSI Testing. His research has been funded from federal agencies and industry. He has served and current serving on the editorial board of several journals, the technical program committees of many conferences, was the program chair of the DFTS’09, and the general chair of DFTS’10.

Themistoklis Haniotakis received a B.S. degree in physics and a Ph.D. degree in Informatics from the University of Athens, Greece. His Ph.D. thesis is in the area of Self Checking Circuits. He is a faculty at the Electrical and Computer Engineering Department at Southern Illinois University at Carbondale and has held prior appointment as a faculty in University of Patras, Greece.

His interests include VLSI design, Fault-Tolerant computing, VLSI Testing and Design For Testability, RF IC Design and Test. He has 20 Journal and more than 50 Conference publications. He is a member of IEEE, has receive best paper award (ISQED), has been a reviewer in IEEE journals and conferences and has been a member of various Program Committees.