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Abstract 
Linear regression methods can be used to quantify geological controls on baseflow 
index (BFI). This is illustrated using an example from the Thames Basin, UK. Two 
approaches have been adopted. The areal extents of geological classes based on 
lithostratigraphic and hydrogeological classification schemes have been correlated 
with BFI for 44 ‘natural’ catchments from the Thames Basin. When regression 
models are built using lithostratigraphic classes that include a constant term then the 
model is shown to have some physical meaning and the relative influence of the 
different geological classes on BFI can be quantified. For example, the regression 
constants for two such models, 0.64 and 0.69, are consistent with the mean observed 
BFI (0.65) for the Thames Basin, and the signs and relative magnitudes of the 
regression coefficients for each of the lithostratigraphic classes are consistent with the 
hydrogeology of the basin. In addition, regression coefficients for the 
lithostratigraphic classes scale linearly with estimates of log10 hydraulic conductivity 
for each lithological class. When a regression is built using a hydrogeological 
classification scheme with no constant term, the model does not have any physical 
meaning, but it has a relatively high adjusted R2 value and because of the continuous 
coverage of the hydrogeological classification scheme, the model can be used for 
predictive purposes. A model calibrated on the 44 ‘natural’ catchments and using four 
hydrogeological classes (low permeability surficial deposits, consolidated aquitards, 
fractured aquifers and intergranular aquifers) is shown to perform as well as a model 
based on a hydrology of soil types (BFIHOST) scheme in predicting BFI in the 
Thames Basin. Validation of this model using 110 other ‘variably impacted’ 
catchments in the Basin shows that there is a correlation between modelled and 
observed BFI. Where the observed BFI is significantly higher than modelled BFI the 
deviations can be explained by an exogenous factor, catchment urban area. It is 
inferred that this is may be due influences from sewage discharge, mains leakage, and 
leakage from septic tanks. 
 
KEYWORDS: baseflow; Baseflow Index; BFI; BFIHOST; groundwater; hydraulic 
conductivity; Thames Basin 
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INTRODUCTION 
Hydrological characteristics of catchments, such as baseflow, or measures of high and 
low stream flow, may be estimated using a variety of physical descriptors (Nash, 
1960; Hall, 1968; Nathan and McMahon, 1990a; 1992). These descriptors include 
physiographic and climatological parameters and may involve geologically or 
hydrogeologically related parameters. A hydrogeological characteristic of catchments 
that has been the focus of a number of studies, particularly in the context of modelling 
ungauged catchments, is Base Flow Index (BFI). BFI is the long-term ratio of 
baseflow to total stream flow and thus represents the slow or delayed contribution to 
river flow and may be influenced to a significant extent by catchment geology. 
However, to date the relationship between catchment geology and BFI has not been 
quantified in a systematic manner. Even though there is a tacit assumption that the 
underlying geology influences baseflow, previous studies that estimate BFI typically 
simplify the effect of catchment geology to a parameter that represents the fractional 
area of aquifers in a catchment (Nathan et al., 1996; Sefton and Howarth, 1998; 
Mwakalila et al., 2002; Mwakalila, 2003; Abebe and Foerch, 2006; Santhi et al., 
2008). Some studies have adopted a slightly more refined approach to include a 
number of discrete geologies as physical catchment descriptors (Nathan and 
McMahon, 1990b; Lacey and Grayson, 1998; Mazvimavi et al. 2005), and, rather than 
use the areas of aquifers or different lithologies as catchment descriptors, Haberlandt 
et al. (2001) used the physical properties of the aquifers (effective porosity and 
saturated hydraulic conductivity). However, because, in addition to geological 
parameters, all these studies use non-geological parameters to estimate baseflow or 
BFI they cannot provide specific insights into the relationships between the geological 
characteristics of catchments and baseflow or BFI. The motivation for this study is to 
examine geological controls on BFI independent of other catchment factors. 

 
A streamflow hydrograph describes the variation in the rate of flow of a 

stream with time and consists of four basic elements: direct surface runoff, interflow, 
groundwater flow or baseflow (Nash, 1960; Hall, 1968; Nathan and McMahon, 
1990a; Eckhardt, 2008), and channel precipitation. In most hydrograph analyses, 
interflow and channel precipitation are grouped with direct runoff (unless there is a 
need to explicitly treat them independently) and the total runoff hydrograph is made 
up of the sum of surface runoff and discharge from saturated groundwater storage or 
baseflow (Nathan and McMahon, 1990a; Viessman and Lewis, 2002). The baseflow 
component of the hydrograph represents longer-term (weeks to months) changes in 
the regional groundwater head and flow system and typically varies in response to 
relatively long seasonal changes in saturated groundwater head driven by seasonal 
changes in factors such as evapotranspiration (Wittenburg and Silvapalan, 1999). BFI 
is defined as the difference in area under the baseflow hydrograph and total runoff 
hydrographs obtained by baseflow or hydrograph separation (Institute of Hydrology, 
1980).  There are a variety of graphical or manual methods of baseflow separation. 
For example, Viessman and Lewis (2002) describe five methods and Eckhardt (2008) 
has recently compared seven different automated methods. In each case the separation 
methods are designed to separate the fast component of flow from the slower 
baseflow component by identifying the onset of rising limbs in the total stream 
hydrograph and the end of direct surface runoff towards the end of a local peak in the 
total stream hydrograph. Regardless of the details of the method used, and as Eckhardt 
(2008) notes, since the true values of the baseflow index are always unknown it is not 
possible to identify which of the methods provides the ‘best’ estimates of BFI. 
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Geological information, along with other variables, has been correlated with 
BFI using a range of approaches including: multiple linear regression techniques 
(Nathan et al., 1996; Lacey and Grayson, 1997; Mwakalila et al., 2002; Mazvimavi et 
al., 2005; Abebe and Foerch, 2006), neural network methods (Mazvimavi et al., 
2005), and regional landscape mapping (Santhi et al., 2008). The fractional area of 
aquifers, or in some cases specific lithologies, typically shows some correlation with 
BFI. Lacey and Grayson (1997) demonstrated that there was a strong relationship 
between the combined geology-vegetation groups and BFI, but suggested that the 
groups also represented other factors such as climatic history, recharge capacity and 
transmissivity. Mazvimavi et al. (2005) found that geology was not a significant 
predictor of BFI in their study area, but concluded that this was due to groundwater in 
certain formations in their study area (several catchments in Tanzania) being 
relatively deep and disconnected from surface streams. 

 
Soil data has also been used extensively in studies of baseflow and BFI in 

ungauged catchments as a surrogate for the underlying geology. The Institute of 
Hydrology low flow study developed the ‘hydrology of soil types’ (HOST) 
classification to estimate flow duration and flow frequency parameters (Gustard et al., 
1992; Boorman et al., 1995). It consists of a grouping of soil associations into classes 
based on physical properties of soils and on their hydrogeological setting. 
Multivariate regression of soil type data against BFI data for representative 
catchments in the United Kingdom produced continuous BFI catchment 
characteristics scaled on continuous soil parameters, referred to as BFIHOST (Gustard 
et al. 1992; Boorman et al., 1995). The BFIHOST methodology and data have been 
used successfully in a number of studies (Boorman et al., 1995; Sefton and Howarth, 
1998; Dunn and Lilly, 2001; Lee et al., 2005; Marechal and Holman, 2005; Young, 
2006). 

 
The present study uses a similar approach to BFIHOST, in that geological 

associations are grouped into classes, based on lithological or hydrogeological 
characteristics, which are then correlated with observed BFI. However, unlike the 
previous studies, including BFIHOST, where the aim was to build robust predictive 
models using sometimes very limited information, the central task of the present study 
is to quantify as fully as possible the relationship between geological or 
hydrogeological characteristics of an area and observed BFI independent of any other 
factors. This is possible in the Thames Basin because high quality geological mapping 
and river flow data are available. In this study, linear regression models have been 
used to quantify geological controls on BFI by correlating detailed 1:50000 scale 
geological mapping with BFI values for catchments with diverse geological and 
aquifer characteristics at the basin scale (~10000 km2). There are two complementary 
aims for the work described in this paper. The first aim is to investigate if physically 
meaningful relationships between lithological characteristics of catchments and BFI 
can be quantified at the basin scale using regression methods. The second aim is to 
show how a geologically-based model of BFI can be used to produce continuous BFI 
catchment characteristics in a similar manner to BFIHOST. The models have been 
applied to the Thames Basin, UK, as a case-study. The approach, however, is not 
basin specific and the methodology description and discussion include generic 
observations related to the application of regression modelling to the quantification of 
geological controls on baseflow regardless of basin hydrology or geology.  
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STUDY AREA 
The Thames Basin, defined by the catchment of the River Thames and its tributaries, 
is situated in the south east of the United Kingdom (Figure 1a). For the purposes of 
this study the Thames Basin is defined by the Environment Agency’s Thames River 
Basin District (Environment Agency, 2007). The source of the River Thames is in the 
Costwolds in Gloucestershire. The length of the river down to Teddington Lock, in 
west London, is approximately 235 km, and the area of the Basin is about 16100 km2. 
Teddington Lock is the lowest flow gauging station on the River Thames and marks 
the non-tidal limit of the river. Mean annual rainfall varies across the Thames Basin 
from about 600 to 900 mm and the mean flow at Teddington Lock is about 78 m3s-1 
(Natural Environment Research Council, 2003).  
 

The Thames Basin is underlain by a thick sequence of Mesozoic to Recent 
rocks that can be divided into three broad zones based on geological structure: the 
Midlands Shelf to the northwest; the London Basin in the central area; and the 
Wealden Anticline to the southeast (Figure 1b), each with their own characteristic 
lithostratigraphy. The Midlands Shelf consists of a sequence of Jurassic rocks 
(including oolitic limestones and clays), Cretaceous and Palaeogene rocks (including 
the Upper Cretaceous Chalk, the major aquifer in the Basin) are exposed in the 
London Basin, and a Lower Cretaceous sequence of clays and sands outcrop in the 
structurally distinct Wealden Anticline in the southeast of the Thames Basin. 
Palaeogene to Recent surficial deposits can be found throughout the Thames Basin 
across all three of the structural zones. 

 
The western parts of the Thames Basin are predominantly rural, whereas, the 

highly urbanised area of Greater London is located in the central and eastern part of 
the Basin and is home to about 13 million people. Just over 40% of public water 
supplies in the Basin, equivalent to ~2.25 million m3/d, come from groundwater, 
mainly from the Chalk aquifer. 

 
There is a long history of investigations into the water resources of the Basin 

and the system is highly regulated. However, there is only one basin-wide study of the 
relationships between groundwater and surface water in the peer-reviewed literature 
(Andrews, 1962).  Andrews (1962) investigated, at a basin scale, the geological 
controls on the nature of groundwater discharge to the Thames above Teddington 
Lock. For example, based on expressions for natural recession of groundwater 
discharge at Teddington Lock and at Days Weir, Andrews was able to show that the 
rate of groundwater flow at Days Weir diminishes 1.7 times faster than at Teddington 
Lock. From gaugings above Days Weir, Andrews estimated that the yield per unit 
area of the Jurassic limestones is about 25% higher than that from the Chalk, but that 
the limestones give up water more quickly and the summer and autumn discharges fall 
below those from the Chalk. 
 
MODEL METHODOLOGY  
Three least squares regression models  are described in this paper. Two related step-
wise multiple linear regression models, Models 1a and 1b, have been developed to 
quantify the relative influence of the fractional areas of lithostratigraphic classes on 
observed BFIs. A third model, Model 2, has been developed to investigate whether 
regression models based on an alternative hydrogeologically-based classification 
scheme can be used to produce continuous characteristics, similar to BFIHOST, that 
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adequately predict BFI across the Thames Basin. The lithostratigraphic and 
hydrogeological classification schemes (Table 1) for all regression models were 
developed and selected iteratively as part of the regression modelling process as 
illustrated schematically in Figure 2. The following sections describe how the 
catchments were selected; how the BFI data used in the study was obtained; how the 
geological and hydrogeological parameters used in the regression models were 
derived, and finally; the regression techniques that were used. The steps in the model 
methodology referred to in this section relate to the numbered steps shown in Figure 
2. 
 
Selection of catchments  
Based on information for available gauging stations in the Thames Basin (Natural 
Environment Research Council, 2003), 154 catchments were initially selected for use 
in this study. The successful identification of multivariate relationships between 
stream flow characteristics, such as BFI, and catchment characteristics requires good 
quality data from catchments where the flow regimes are relatively natural (Gustard et 
al 1992). However, this is particularly problematic in a basin like the Thames Basin 
where artificial influences and anthropogenic stresses and impacts, such as river 
regulation measures, river and groundwater abstraction, conjunctive use schemes and 
effluent discharge to rivers are locally significant. Consequently, the 154 catchments 
were screened to remove those with poor quality records and or significant 
anthropogenic influences. The screening criteria developed for the Institute of 
Hydrology low flow estimation programme for the United Kingdom (Gustard et al, 
1992) have been used to identify the sub-set of catchments for the regression 
modelling.  
 

Following this screening, 44 relatively ‘natural’ catchments with good or 
adequate quality flow data were identified to be used to calibrate the regression 
models. The location of these catchments is shown in Figure 1a. The remaining 110 
catchments have been used to validate Model 2. The 44 calibration catchments cover 
~7800 km2, equivalent to about 48% of the area of the Thames Basin, their areas are 
approximately log-normally distributed, and they range in size from 12 to 1016 km2 
with a geometric mean of ~103 km2. Based on a multi-scale typology classification 
system for groundwater-surface water interaction developed by Dahl et al (2007), the 
catchments in this study broadly fall into a ‘landscape type’ category, where 
groundwater flow systems are assumed to be influenced primarily by regional 
geomorphology, hydrogeological setting and aquifer structure and heterogeneity 
rather than specific riparian zone processes.  
 
 BFI data 
BFI data were taken from the Hydrometric Register for the United Kingdom (Natural 
Environment Research Council, 2003). BFI was calculated using the UKIH method 
(Gustard et al., 1992; Natural Environment Research Council, 2003). In this method, 
for each stream hydrograph minima in five-day non-overlapping consecutive periods 
are identified and then searched for turning points. The turning points are connected 
to obtain the baseflow hydrograph which is constrained to equal the observed 
hydrograph ordinate on any day when the separated hydrograph exceeds the observed. 
BFI is then calculated as the ratio of the volume beneath the baseflow line between 
the first and last turning points. BFI is based on a separation of the entire record for a 
flow gauge where typical flow records are greater than five years (Natural 
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Environment Research Council, 2003). Piggott et al. (2005) have suggested minor 
improvements to the Institute of Hydrology procedure that take into account effects 
associated with different starting points for the analysis of the five-day non-
overlapping periods and the calculation of values of baseflow that exceed 
corresponding values of stream flow. The differences in BFI estimates using the 
Institute of Hydrology method and the revised method of Piggott et al. (2005) are 
relatively small (typically up to 5% of baseflow) and the average of the difference is 
approximately zero.  As these errors are small, the published Institute of Hydrology 
BFI data have been used in this study (Natural Environment Research Council, 2003). 
Table 2 shows summary statistics for the BFIs for the 44 catchments used to calibrate 
the regression models.  
 
Identification of geological and hydrogeological parameters 
The lithostratigraphic classification scheme for Models 1a and 1b and the 
hydrogeological classification scheme for Model 2 are both based on the same 
1:50000 scale digital geological map of the Thames Basin. The geological data were 
taken from the British Geological Survey’s 1:50000 scale digital geology data set of 
the United Kingdom (British Geological Survey, 2008). The map shows >200 named 
units exposed at the land surface in the Thames Basin (step 1), many of which are 
local units that cover only a few square kilometres, such as local river terrace (sand 
and gravel) deposits. Consequently, it was necessary to reduce the number of 
geological classes to ensure that the regression models were tractable, while at the 
same time allowing a sufficient number of geological classes to characterise the 
geological and hydrogeological diversity of the Thames Basin. The geological classes 
were grouped based on expert judgement (step 2). The following approach was used: 
 

 Define a target for the number of lithological classes. In the case of the present 
study an initial target of 20 to 30 lithological classes was set (to be broadly 
comparable with the 29 classes used in the BFIHOST scheme Gustard et al., 
1992; Boorman et al., 1995). 

 Group the 1:50000 geology classes into internally consistent lithologies based 
on prior knowledge of the degree and nature of lithological variability in the 
Basin. For the purposes of this study, internally consistent was taken to mean 
that at least 85% or more of the class by area consisted of a similar lithotype 
based on the expert judgement of a hydrogeologist. 

 Because the Thames Basin consists of a thick sequence of sedimentary rocks 
with no intrusive rocks, and because there is no major faulting in the Basin at 
surface, the classes could be based on the stratigraphic column and the 
hydrogeologist started the grouping exercise with the oldest formations and 
worked progressively up the stratigraphic column. As a consequence, 
stratigraphically neighbouring groups had to be lithologically distinct. In 
practice this meant that stratigraphically alternating chronologically distinct 
units dominated by alternating carbonate, clay and sandstone lithologies were 
identified. 

 Two hydrogeologists were independently set the task of grouping the 
lithologies. The two lithological classification schemes were then compared. 
There were trivial differences between the two classification schemes which 
were then reconciled through discussion to produce the final lithological 
classes. 
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This process resulted in 19 lithological classes being identified consisting of 15 
classes of consolidated deposits and 4 classes of surficial deposits (step 3) shown in 
Figure 1b. Table 1 gives a brief description of the main geological and 
hydrogeological features of each the 19 lithological classes. 
 

Based on the initial lithostratigraphic classification, preliminary data analysis 
was undertaken before the development of the regression models (step 4). Pearson 
correlation coefficients were calculated to check for any significant correlations 
between lithological classes and to characterise the relationships between the 
dependent and independent variables used in the regression. No transformations were 
applied to any of the independent variables. As a result of this preliminary data 
analysis, eight lithological classes were rejected from inclusion in regression Models 
1a and 1b and two classes were combined. 

 
Eight geological classes (Bracklesham, Corallian, Gault, Gravels, Lias, 

Portland and Purbeck, Thanet and Clay-with-Flints) were rejected as they showed no 
consistent correlation between BFI and their catchment fractional areas due to the 
very limited number of catchments that contained these classes, or because two or 
more classes showed significant correlation, but the classes could not be combined 
due to significant lithological differences. In addition, two classes (the Greater and 
Inferior Oolites) were combined as they showed weak correlation (Pearson correlation 
coefficient of 0.57) are stratigraphically adjacent and show some hydrogeological 
similarity. Consequently, following the preliminary data analysis, 10 lithological 
classes were left for use in Models 1a and 1b (step 5). 

 
The rationale for the hydrogeological classification was to start with the 

simplest scheme and to increase the complexity of the scheme until a satisfactory 
regression could be developed with adequate predictive capabilities (step 6). The 
simplest hydrogeological classification scheme is one based on a two-fold 
classification of aquifer and aquitard (Nathan et al., 1996; Sefton and Howarth, 1998; 
Mwakalila et al., 2002; Mwakalila, 2002; Abebe and Foerch, 2006). When models 
were built with either aquifer or aquitard fractional areas as the independent variable 
(both could not be used in the same regression as the two variables are co-correlated) 
they only explained about 70% of the variation in BFI (step 7).  The next step (step 8) 
was to increase the number of hydrogeological classes to a number that would be 
significant in a regression model but would also enable independent variables to be 
identified. The aquifers were divided into aquifers where fracture flow is dominant 
(e.g. limestone aquifers) and aquifers where intergranular flow is dominant (e.g. 
consolidated sandstone aquifers). The justification for this was that it was assumed 
that differences in the permeability and storage structure of these two types of aquifer 
may be usefully discriminated in the regression model. It was hypothesised that on 
average there may be more storage available in the intergranular aquifers compared 
with fractured aquifers, but that these aquifers would drain more slowly due to their 
relatively lower hydraulic conductivity. The aquitards were divided into two classes: 
thin relatively non-permeable surficial deposits, and consolidated aquitards. Again, 
the justification for this distinction was that the two types of aquitard may show 
significantly different storage, hydraulic conductivity and drainage characteristics. 

 
The 19 lithological classes were then mapped onto the four hydrogeological 

classes using expert judgement. This was a trivial task since, as noted previously, due 
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to the simple sedimentary sequence in the Basin the lithostratigraphic classification 
had given rise to chronologically distinct units dominated by alternating carbonate, 
clay and sandstone lithologies and there was clear correspondence with the four 
hydrogeological classes. Table 1 shows how the initial 19 lithological classes (defined 
at step 3) have been mapped onto four hydrogeological classes: low permeability 
surficial deposits, aquitards, intergranular aquifers, and fractured aquifers at step 8.  
Pearson correlation coefficients were calculated for the four hydrogeological classes 
to test the degree of independence of the variables used in the regression. There were 
no significant correlations between hydrogeological classes. The spatial distribution 
of the four hydrogeological classes in the Thames Basin is shown in Figure 3.  

 
BFI may be expected to correlate with the fractional volume of the 

hydrogeological classes within a catchment. However in the absence of a detailed 3-D 
geological model of the Basin, once the lithostratigraphic and hydrogeological classes 
had been identified, as a surrogate for fractional volume, the fraction by area of the 
classes in each of the 44 catchments was estimated using a GIS. Table 2 shows 
summary statistics for the fractional area data for the final 10 lithological classes used 
in regression Models 1a and 1b (step 5) and for the four hydrogeological classes used 
in regression Model 2 (step 9).  
 
Regression methodology  
An initial multiple least square regression model was built using the lithostratigraphic 
classification for the ten lithological classes (step 10) using the 44 calibration 
catchments. This regression model had an adjusted squared multiple R value of 0.85 
and a standard error of estimate of 0.086. However, a number of the coefficients were 
not significantly different from zero. So a stepwise regression model, Model 1a (step 
11), was built based on the ten independent lithological classes. Parameters were 
removed during stepwise regression where their coefficients were not significantly 
different from zero at 90% confidence level. Jackknife (leave one out) resampling was 
performed on the result of the stepwise regression model, Model 1a, to investigate the 
sensitivity of the model to individual cases (catchments). Based on the results of the 
Model 1a jackknife, a further model, Model 1b (step 12), was built using the same 
geological classes as used in Model 1a, but with one lithological class (the Lower 
Greensand) removed. Model 2 was built by regressing data for the four 
hydrogeological classes onto the BFI data (step 9) using the 44 calibration 
catchments. A jackknife (leave one out) was performed on Model 2. In addition, 
bootstrap re-sampling (random resamples from the observed data) was performed on 
Model 2 to characterise the distribution of model coefficients and to assess usefulness 
of the coefficients for predictive modelling. Statistics from the regression coefficients 
obtained from the bootstrap resampling of Model 2 were used as the basis for Monte 
Carlo simulations to predict confidence bounds for the model predictions. Model 2 
was validated using the 110 catchments assessed as being ‘variably impacted’ during 
the catchment selection process. 
 
RESULTS 
Tables 3a, 3b and 3c show the results for the regression models, Model 1a, 1b and 2 
respectively. Figure 4 shows modelled values of BFI plotted against observed BFI for 
the forty-four calibration catchments for Models 1a, 1b and 2. It also shows the 
distribution of residuals for Models 1a, 1b and 2 as a function of the modelled values 
of BFI. 
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Model 1 
Model 1a shows that six of the ten lithological classes: Diamicton, Chalk, 

Lower Greensand, Thames, Weald Clay, and Oolites as well as the regression 
constant, have coefficients significantly different from zero. Model 1a explains about 
88% of the variance in BFI in the 44 catchments with a low residual standard error 
(0.085) associated with the model (Table 3a). Figure 4 shows the good correlation 
between modelled and observed BFI using Model 1a. However, jackknife (leave one 
out) resampling of Model 1a indicated that the model may be sensitive to the Lower 
Greensand variable in one particular case. A co-efficient for Lower Greensand of 
0.107 was obtained in one case during jackknife resampling when the mean and 
standard deviation of the coefficients for Lower Greensand for the jackknife samples 
are 0.226 and 0.021 respectively. Consequently, a second regression model, Model 1b 
(Table 3b), was built with the Lower Greensand variable removed to see if this 
produced an improved model. Model 1b explains a similar level of variance in BFI 
(88%) to Model 1a with a similar low residual standard error (0.088), it also shows a 
good correlation between the modelled and observed BFI (Figure 4).  

 
Plots of residuals for Models 1a and 1b qualitatively show homoscedasticity 

(Figure 4), there is no significant autocorrelation present in the residuals, and the 
residuals are broadly normally distributed. One-way Kolmogorov-Smirnov tests on 
the distribution of the residuals shows normal distributions with probabilities of 0.79 
and 0.95 for Models 1a and 1b respectively. In summary, both models have the same 
adjusted squared multiple R value while Model 1a has a slightly lower residual 
standard error than Model 1b. Although jackknife results for Model 1a indicate that it 
may be sensitive to a single anomalous class (catchment) associated with a high 
fractional area of Lower Greensand, removal of the Lower Greensand variable does 
not change the overall form or performance of the regression (Figure 4). 
 
Model 1 validation 
The regression constants from Model 1a and Model 1b, 0.64 and 0.69 respectively 
(Tables 3a and 3b), are representative values of BFI for the 44 catchments used in the 
calibration, while the coefficients of the lithological classes in the regression models 
indicate the degree of departure from this typical value of BFI due to each geological 
class. The values for the constants of the two models are consistent both with the 
mean value for the 44 catchments used in the calibration (0.65) and with the BFI at 
Teddington Lock (0.64), the lowest gauge in the Basin. It is inferred from the 
similarity between the model constants and observed mean BFI value and the value 
for BFI at Teddington Lock that the regression models have some physical meaning. 
This is supported by the observation that the significant lithological classes in the 
models, the signs of their coefficients and the relative magnitudes of the coefficients 
are all consistent with an understanding of the hydrogeology of the Basin. 
 

Ten lithological classes were used as the input for the stepwise regression 
(Model 1a) and six classes, Diamicton, Chalk, Lower Greensand, Thames Clay, 
Weald Clay, and Oolites, were found to be significant. These lithological classes 
cover just over 50% of the area of the Basin (about half of the remaining area is 
covered by thin shallow deposits such as sands and gravels ~10%, alluvium ~9%, and 
the Clay-with-Flints ~5%) and include the Chalk, the most important aquifer in the 
Basin (Allen et al 1997, Jones et al 2000), as well as two other major aquifers, the 
Oolites, and, in Model 1a, the Lower Greensand. They also include the single most 
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extensive aquitard in the Basin, the London Clay (part of the ‘Thames’ lithological 
class, Table 1). The signs and magnitudes of the coefficients for each of the 
lithological classes in Models 1a and 1b are consistent with their hydrogeological 
characteristics. The Chalk and Oolite classes have positive coefficients as would be 
expected of aquifers, while the Diamicton, Thames and Weald Clay classes represent 
aquitards and have negative coefficients. The Chalk co-efficient is greater than that 
for the Oolites and this is consistent with the observations of Andrews (1962) that 
groundwater discharges from the Jurassic Limestones above Days Weir yield water 
more quickly than the Chalk in the Lower Thames. It is interesting to note that 
Diamicton is identified as having a significant negative co-efficient in Models 1a and 
1b. Diamicton is not a regionally significant aquitard, such as the London Clay and 
the Weald Clay. It is a stiff, brown, yellow and grey mottled sandy clay glacial till that 
covers mainly Chalk in the north east of the Basin, Figure 1b. Although it only 
reaches a maximum thickness of ~25m (Millward et al., 1987), the clay content of 
Diamicton appears to be sufficiently high to contribute to relatively low values of BFI 
in catchments where it is present. 

 
If, as assumed, the regression models have some physical meaning, it should 

be possible to correlate the regression coefficients with aquifer properties for each of 
the lithological classes. Baseflow may be expected to scale with a parameter such as 
hydraulic diffusivity, D   (K/SS, where K is hydraulic conductivity and SS is specific 
storage). Since hydraulic conductivity is likely to range over many orders of 
magnitude, but specific yield for aquitard and aquifer materials typically ranges from 
0 to ~0.3 (Freeze and Cherry, 1979), as a first approximation hydraulic conductivity is 
a good surrogate for hydraulic diffusivity and is an appropriate parameter to attempt 
to correlate with the regression coefficients.  

 
Each geological class will have a range of hydraulic conductivities depending 

on the scale of observation (Neuman, 1990) and heterogeneities in their pore 
structure, fabrics and larger-scale lithological variations (e.g. Anderson, 1997). For 
the purposes of this study we have considered the range of hydraulic conductivities 
that could be expected as derived from a typical pumping test or at the river reach 
scale (i.e. a scale of 10s m to 100s m)  for each geological class. Table 5 lists 
representative values for hydraulic conductivity for each of the geological classes with 
notes on how the representative values were inferred. Hydraulic conductivity data 
from the Thames Basin is available for the Chalk, Lower Greendsand, Oolites and 
Thames classes. Representative values for Diamicton and Weald Clay have been 
taken from Freeze and Cherry (1979, Table 2.2). 

 
 Figure 6 is a plot of these representative values of hydraulic conductivities 
against the regression coefficients for each of the geological classes in Model 1a. Note 
that in Model 1a the coefficients for the Lower Greensand and the Oolites are almost 
identical as are their inferred representative hydraulic conductivities so the two points 
plot effectively on top of each other. The hydraulic conductivity of the Chalk is 
known to be relatively high in valleys and low under interfluves (Allen et al., 1997). 
This has been represented by the range bar for the Chalk in Figure 6.  The large range 
bars on the hydraulic conductivity of the Diamicton and Weald Clay represent the 
range of values for the respective lithologies taken from Freeze and Cherry (1979, 
Table 2.2) with the representative value being taken as the median of the range. 
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Figure 6 shows that there is a positive linear relationship between the regression 
coefficients and log10 hydraulic conductivity for the geological classes in Model 1a. 
 

If the regression coefficients in Models 1a and 1b indicate the degree of 
departure from the typical or basin wide value of BFI represented by the constant 
terms in the regressions, the hydraulic conductivity associated with a regression 
coefficient of zero in Figure 6 may represent a class-independent value of hydraulic 
conductivity for a basin. Based on Figure 6, a representative hydraulic conductivity in 
the range of 10-5 to ~10-9 m/s can be inferred for the Thames Basin as shown by the 
range of values defined by the dashed lines. This value is consistent (albeit towards 
the lower end of the range) with representative values for aquifers i.e. 10-1 to 10-8 m/s 
(Manning and Ingebritsen, 1999, Figure 1), for estimated basin scale values of 
hydraulic conductivity, e.g. 10-7 to 10-11 m/s (Willet and Chapman, 1989; Deming, 
1993), and for modelled values of ‘equivalent hydraulic conductivity’ of 
heterogeneous sedimentary sequences, e.g. 10-7 to 10-8 m/s  (Zhang et al., 2007). 
Consequently,  Figure 6 is taken as further support for the assertion that Models 1a 
and 1b have physical meaning. 
  
Model 2 

Regression Model 2, Table 3c, shows that the coefficients for all four 
hydrogeological classes are significantly different from zero and that the model 
explains about 97% of the variance in BFI in the 44 catchments. A jackknife resample 
of Model 2 showed that the model is not sensitive to any particular cases. Figure 4 
shows a good correlation between modelled and observed BFI based on Model 2. 
Residuals from Model 2 qualitatively show homoscedasticity (Figure 4), there is no 
significant autocorrelation in the residuals, and the residuals are broadly normally 
distributed. A one-way Kolmogorov-Smirnov test on the residuals indicates a normal 
distribution with a probability of 0.76. In addition, no spatial correlation was seen in 
the distribution of the residuals for the cases (catchments across the Basin). 

 
Bootstrap statistics were generated for the regression coefficients in Model 2 

based on 10000 bootstrap samples each with 44 cases. Table 4 gives summary 
statistics for the results from the bootstrap resampling of Model 2.  Confidence 
bounds have been calculated for the modelled BFI data for Model 2 based on the 
bootstrap statistics. Assuming a normal distribution for each coefficient and using the 
mean and standard deviation of each coefficient from the bootstrap resampling, Monte 
Carlo simulations were performed, based on 10000 simulations for each case 
(catchment), to produce a distribution of predicted BFI values. Figure 4 shows the 
confidence bounds on the modelled values of BFI based on 95%tile and 5%tile values 
for the Monte Carlo simulations using the bootstrap statistics. The range in predicted 
BFI values for a given case is relatively small (typically 0.05), and there is no 
significant correlation between width of the confidence bands and the observed BFI, 
indicating the robustness of Model 3 for predictive purposes. 
 
Model 2 validation 

As a validation of Model 2, BFI predicted using the hydrogeological 
classification scheme can be compared with BFI calculated using BFIHOST for the 
44 calibration catchments (Marsh and Hannaford, 2008). Figure 5 is a plot of 
predicted BFI against observed BFI for the respective models. It shows that there are 
no systematic differences in the range or magnitude of predicted BFI between the two 
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models across the range of observed BFIs. In addition, linear regressions through the 
predicted and observed data for each model have similar slopes and that the 90% 
confidence bounds for the two regression overlap (Figure 5), although BFIHOST 
systematically predicts slightly lower BFIs by about 0.06. From these observations, it 
is inferred that predictions of BFI based on the Model 2 hydrogeological classification 
scheme (this study) and BFIHOST are comparable and that Model 2 performs as well 
as BFIHOST as a predictive tool. 

 
Unlike Models 1a and 1b, Model 2 provides continuous BFI catchment 

estimates scaled on the independent hydrogeological parameters (in a similar manner 
to BFIHOST, Gustard et al., 1992; Boorman et al., 1995). Because the four 
hydrogeological classes cover the whole of the Basin the model calibrated using the 
44 baseline catchments, can be used to predict BFI values for the remaining 110 
catchments in the Thames Basin. If, as has been assumed, the 44 catchments used for 
calibration of Model 2 are largely un-impacted by anthropogenic effects then the 
degree of deviation of observed BFI from modelled BFI in the other 110 catchments 
in the Thames Basin should be a function of exogenous factors not related simply to 
catchment hydrogeology, including anthropogenic factors. Any systematic deviations 
of observed from modelled BFI that can be correlated with non-hydrogeological 
factors would provide additional validation for the regression model. 

 
Figure 7 shows predicted BFI, based on Model 2, as a function of observed 

BFI for the 110 catchments in the Thames Basin. As expected, there is a wider scatter 
of predicted values for the 110 catchments compared with the 44 calibration 
catchments (Figure 5) due to both poorer quality flow records and a range of artificial 
influences and anthropogenic stresses and impacts on baseflow. Despite the larger 
scatter in predictions, there is still a good positive correlation between predicted and 
observed BFI and this correlation can be used to identify outliers. Based on the 
difference between observed and modelled BFIs, outliers have been identified as 
being either greater than or less than one standard deviation of the mean difference, 
Figure 7. The cases where observed BFI is higher than modelled BFI indicate that 
there is an apparent excess of baseflow above that which would be expected under 
natural conditions. Conversely, the cases where observed BFI is lower than modelled 
BFI indicate that the river has lower baseflow than that which would be expected 
under natural conditions. But do these outliers show systematic relationships with any 
anthropogenic factors or other characteristics of the catchments? Land cover data are 
available for the catchments, including urban coverage (Centre for Ecology and 
Hydrology, 2008; Marsh and Hannaford, 2008), and for this study percentage urban 
area of the catchments has been taken as a surrogate for the degree of anthropogenic 
impact on the catchments. Figure 8 is a plot of observed BFI as a function of urban 
area for the two classes of outliers identified in Figure 7. For catchments where the 
observed BFI is significantly higher than the modelled BFI there is a good negative 
correlation over a wide range of BFIs, but there is no similar correlation between 
observed BFI and urban area for catchments where observed BFI is less than the 
modelled BFI. 

 
A number of studies have shown that urbanisation may cause increased 

surface runoff in annual streamflow including an increased magnitude of peak runoff 
(Chin and Gregory, 2001; Rose and Peters, 2001; Burns et al., 2005). However, Burns 
et al. (2005) in a study of the effects of suburban development on runoff generation 
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also noted that baseflow during dry periods was greatest in high-density residential 
catchments and attributed this to discharge of septic tank effluent through the shallow 
groundwater system to streams. Because the negative correlation between observed 
BFI and urban area (for catchments where BFI is higher than expected) identified by 
this study holds over a wide range of absolute values of BFI and urban area, a single 
factor is unlikely to influence this relationship. Consequently, it is inferred from 
Figure 8 that a number of factors may contribute to the ‘excess’ observed baseflow 
that could include sewage discharge, mains leakage, and leakage from septic tanks. 
However, it is clear from Figure 8 that factors directly associated with urbanisation 
are not related to the catchments that show unexpectedly low values of BFI. These 
catchments are mainly rural (<20% urban area), sometimes relatively small (on 
average ~75km2) and most are highly impacted by groundwater abstraction. Some are 
affected by sewage discharges and a few of them have notably poor flow records 
(Marsh and Hannaford, 2008). A combination of these and possibly other factors must 
account for their anomalously low values of BFI.  
 
DISCUSSION 
Geological controls on BFI 
By regressing fractional areas of discrete lithologies within catchments onto BFI and 
by demonstrating that the resulting regression models have some physical meaning, 
this study has shown that BFI can be considered as an integrated expression of the 
fractional areas of discrete lithologies within catchments. This can be done because 
only geological factors were considered during model calibration enabling the role of 
geology to be quantified independent of other factors. However, it has previously 
been demonstrated, using a variety of methods, that other parameter sets, including 
topographic, soil, vegetational and climatic factors (Nathan et al., 1996; Sefton and 
Howarth, 1998; Mwakalila et al., 2002; Mwakalila, 2003; Abebe and Foerch, 2006; 
Santhi et al., 2008), can explain observed variations in BFI equally well. How can 
these observations be reconciled? 
 

Lacey and Grayson (1998) note that ‘geology affects baseflow in at least two 
ways. The first effect is direct: groundwater is stored in rocks … and this contributes 
to baseflow. The second effect is the formation of soil: different types of rocks tends 
to produce different types and depths of soil … and hence differences in recharge, 
groundwater and baseflow’. However, the interrelationships between geology and 
other catchment parameters are likely to be far more complex than described by Lacey 
and Grayson (Tetzlaff et al., 2008). The underlying lithological characteristics of a 
catchment certainly effect the nature and depth of soils, but these in turn can influence 
vegetation type, land cover and land use. The underlying lithological characteristics of 
the catchment will affect long-term weathering and hence physiographic 
characteristics of the catchment and this in turn will effect soil and veretation 
development and may even influence to some small extent the distribution and 
magnitude of precipitation across the catchment. A combination of all these 
interactions will influence the nature and extent of recharge to the aquifer and all 
these factors and interactions will have a bearing on baseflow and BFI as an empirical 
measure of baseflow. Given the above, it is reasonable to conceptualise the underlying 
geology in catchments, as characterised by lithological variations and the associated 
variations in hydraulic and storage characteristics of those formations across a 
catchment, as a primary factor in affecting baseflow and BFI. However, because of 
the complex interrelationships between different catchment parameters it is not 
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possible to simply say that a measure of one parameter set, e.g. a geology or soils 
index, is responsible for a given percentage of the variation in BFI.   

  
A generic methodology 
It has been shown that regression methodologies can be used to describe physically 
meaningful relationships between litholgical characteristics of catchments and their 
associated BFI in the Thames Basin (Models 1a and 1b), and that a regression model 
relating hydrogeological characteristics of catchments to BFI (Model 2) can be used 
to produce continuous BFI catchment characteristics with useful predictive 
capabilities for the Thames Basin (in a manner similar to BFIHOST). The details of 
the methods used in this study are specific the Basin, however, the generic approach 
has a wider application to other basins. 
 

For models based on a lithological classification scheme the first step is to 
identify the lithological classes to be used in the step-wise regression models. In this 
study we used an expert judgement approach, although, depending on the type and 
quality of geological mapping information available, statistical techniques such as 
cluster analysis could be used to help inform the initial classification scheme prior to 
regression modelling. This step could even be removed by using an all possible 
subsets regression approach to entirely automate the regression process. Where an 
expert judgement approach is used, this study shows that it is helpful to have explicit 
targets (number of classes), assessments undertaken by independent workers to 
compare resulting initial lithological classification schemes, and rules appropriate to 
the basin and stratigraphic sequence being assessed. The target for the initial number 
of lithological classes may be limited by the available geological mapping. For 
example, the British Geological Survey has published three digital geological maps 
that cover the Thames Basin at 1:625000, 1:250000 and 1:50000 scales. The 1:50000 
scale map was used as this gave the best resolution to the geological linework when 
estimating fractional areas of geologies in different catchments. The 1:625000 
mapping shows 17 lithological classes in the Thames Basin. If this had been the only 
mapping available then the first step, to identify the lithological classes to be used in 
the regression, would not have been needed as all the mapped units at 1:625000 could 
have been used in the stepwise regression, but the model would less accurately 
represent the fractional areas of the different lithological classes. 

 
The particular rules used by the independent workers to establish the expert 

judgement-solicited initial lithological classification are particular to the Thames 
Basin, but a generic approach can be identified. As previously noted, because the 
Basin consists of a sequence of sedimentary rocks the classes was be based on the 
stratigraphic column, and, as a consequence, stratigraphically neighbouring groups 
had to be lithologically distinct. This scheme is broadly applicable, however, for other 
basins in other geological and tectonic settings, for example, where there are major 
faults that cut-out sections of the stratigraphy or where there are intrusive units, the 
simple grouping of  stratigraphically neighbouring units into lithologically coherent 
classes is not possible. In this case the hydrogeologists need to develop specific rules 
related to the grouping of units associated with faulting or intrusions. For the Thames 
Basin lithological classes were defined on the degree of internal coherency of 
lithology. For sequences that are faulted or contain intrusions then similar 
considerations can apply except that stratigraphically-, lithologically- and structurally-
based grouping schemes could be developed and combined.   
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For the regression models based on a hydrogeological classification scheme it 
is necessary to identify hydrogeologically representative classes that are continuous 
over the entire basin. In this study we developed the most simple classification 
scheme for which a satisfactory regression could be developed with adequate 
predictive capabilities. This entailed identifying four hydrogeologicaly distinct classes 
and mapping the lithological classification onto those units. Because the lithological 
classification for the Thames Basin had produced a series of chronologically distinct 
units dominated by alternating carbonate, clay and sandstone lithologies the task was 
trivial. An alternative more generic approach would be to use standard 
hydrogeological mapping conventions (UNESCO, 1983) to identify  the 
hydrogeological classes. This may give more than the four hydrogeological classes 
used in this study, but would enable a similar regression model to be built. 
 
SUMMARY  
Despite a common assumption that underlying geology in catchments influences 
baseflow, to date the relationship between catchment geology and BFI has not been 
quantified in a systematic manner. In this study, relationships between lithological 
characteristics of catchments and BFI are quantified at the basin scale by multiple 
linear regression methods using the Thames Basin, UK, as a case-study. Multiple 
linear regression methods have been used before to relate catchment parameters to 
BFI, however, because these studies used geological and non-geological parameters to 
estimate BFI they cannot provide specific insights into the relationships between the 
geological characteristics of catchments and BFI. 
 

Standard stepwise multiple linear regression methods are used in this study to 
relate geological and hydrogeological parameters to BFI. Two similar regression 
models have been developed to quantify the relative influence of the fractional areas 
in catchments of different lithostratigraphic classes to BFI, and a second model has 
been developed to quantify the relationship between a simple hydrogeological 
classification scheme and BFI. The latter enables continuous characteristics to be 
modelled across the Basin, in a manner similar to the BFIHOST methodology. 

 
Results suggest that for linear regression models built using lithological 

classifications schemes a physically meaningful regression model can be obtained if a 
constant term is included in the regression. The models have been validated by 
comparing the regression constant with a BFI value for the outflow stream for the 
whole basin, and by comparing the regression coefficients for each of the lithological 
classes with the known hydrogeological characteristics of those lithologies across the 
basin. The coefficients were found to scale linearly with estimates of log10 hydraulic 
conductivity for each of the lithological classes. 

 
For a linear regression model built using a simple four-fold hydrogeological 

classification scheme, the model provides continuous BFI catchment estimates that 
are comparable to those obtained by BFIHOST. The model based on the 
hydrogeological classification scheme was validated using 110 ‘variably impacted’ 
catchments in the Thames Basin. Significant deviations between observed and 
modelled BFI can be explained in part by consideration of an exogenous variable to 
the model, urban area. For cases, where the observed BFI is significantly greater than 
the modelled BFI, i.e. for catchments where there is an apparent excess of baseflow, 
the BFI is negatively correlated with urban area.  
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The study has shown that BFI can be considered as an integrated expression of 
the fractional areas of lithologies in catchments. Previous studies have shown that 
other parameter sets, including topographic, soil, vegetational and climatic factors can 
also explain observed variations in BFI equally well. Depsite the complex correlations 
and interdependencies between different catchment parameter sets catchment 
lithology can be considered a first order or primary factor in affecting baseflow and 
BFI. 

 
This study describes an expert judgement approach to selecting the initial set 

of geological parameters to be used in the stepwise linear regression models. The 
approach is generic, and can be applied to basins with a range of geological and 
structural settings, however, other statistical methods could easily be substituted to 
obtain the initial geological parameters. For the regression models based on a 
hydrogeological classification scheme it is necessary to identify hydrogeologically 
representative classes that are continuous over the entire basin. In this study we 
developed the most simple classification scheme for which a satisfactory regression 
could be developed with adequate predictive capabilities. An alternative more generic 
approach would be to use classes associated with standard hydrogeological mapping 
conventions. 
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Tables 
 
Table 1. Description of main geological and hydrogeological features of the 
lithological classes. The hydrogeological classification used in the study is given in 
parenthesis after the name of each lithological class.  
 
Lithological class Description 
Surficial deposits 
Alluvium 
(low-permeability 
surficial deposit) 

Recent unconsolidated deposits consisting of clay, silt, sand and gravel. Present in 
many river valleys in the Basin.  

Gravel 
(intergranular 
aquifer) 
 

Quaternary to Recent unconsolidated gravels and sands. Mainly present in river 
valleys, although older River Terrace deposits and glaciofluvial deposits found 
away from valley axes. Locally important aquifer particularly when in contact with 
underlying Chalk aquifer.  

Clay-with-Flints 
(low-permeability 
surficial deposit) 

Stiff Clay-with-flints found as a weathered residual deposit derived from the Chalk. 

Diamicton  
(low-permeability 
surficial deposit) 

Till of glacial origin. Unconsolidated, very poorly sorted deposit with significant clay 
fraction.  

Consolidated units 
Ancholme  
(aquitard) 

Ancholme Group, including the Oxford Clay, Kellaways Formation, Ampthill Clay 
and Kimmeridge Clay.  

Bagshot and 
Bracklesham 
(aquitard) 

Bagshot Formation and Bracklesham Group. Fine-grained sands with thin silt or 
clay lenses.  

Chalk  
(fractured aquifer) 

The Chalk Group. Dual porosity limestone with local hardbands and marl seams. 
The major aquifer in the Basin, with highest hydraulic conductivities associated 
with the larger river valleys and lower hydraulic conductivity below interfluves and 
with depth. Locally sub-karstic. 

Corallian 
(fractured aquifer) 

Corallian Group. Fine-grained calcareous sandstones and limestones. Local minor 
aquifer. 

Gault 
(aquitard) 

The Gault Formation. Grey mudstones and silty mudstones. Acts as an aquitard. 

Lias 
(aquitard) 

Lias Group. Mainly clay aquitard. 

Lower Greensand 
(intergranular 
aquifer) 

Lower Greensand Group. Variably cemented fine to medium-grained sandstones 
with minor mudstones. A locally important aquifer in the Thames Basin. 

Oolite, Greater 
(fractured aquifer) 

The Great Oolite Group. Mixed lithologies dominated by oolitic and shelly 
limestones with minor mudstones and silty and sandy limestones. Locally 
important aquifer.  

Oolite, Inferior 
(fractured aquifer) 

The Inferior Oolite Group. Mixed lithologies dominated by oolitic and shelly 
limestones with minor mudstones and silty and sandy limestones. Locally 
important aquifer. 

Portland and 
Purbeck 
(fractured aquifer) 

Portland and Purbeck Beds. Mixed lithologies containing marls, shelly and oolitic 
limestones and local glauconitic sands. Local minor aquifer. 

Thames 
(aquitard) 

Thames Group, including the London Clay Formation. Clay, locally silty with fine 
sands at base. Aquitard throughout the Basin, but more permeable westward. 

Thanet 
(low-permeability 
surficial deposit) 

Lambeth Group (including the Reading Woolwich and Upnor Formations) and the 
Thanet Sands Formation. Highly variable fine grained sands, mottled clays, flint 
pebble beds and shelly clays. Aquitard or local minor aquifers depending on clay 
content. 

Upper Greensand 
(intergranular 
aquifer) 

The Upper Greensand Formation. Glauconitic, calcareous siltstones, sands and 
sandstones, variably cemented. Locally may act as a minor aquifer. 
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Weald Clay 
(aquitard) 

Weald Clay Formation. Mudstone. Aquitard. 

Wealden Sand 
(intergranular 
aquifer) 

Hastings Beds. Sandstone with minor mudstones. Local minor aquifer. 

 
 
Table 2. Summary statistics for BFI, and fractional area of each lithological and 
hydrogeological class exposed in each watershed used in regression Models 1a, 1b, 
and 2. 
 

Class Model Number of  
observations 

Minimum Maximum Mean SD 

BFI 1, 2 & 3 44 0.190 0.980 0.648 0.243 
Diamicton 1 & 2 44 0.000 0.900 0.107 0.235 
Chalk 1 & 2 44 0.000 0.800 0.180 0.243 
Lower 
Greensand 

2 44 0.000 0.656 0.042 0.132 

Thames 1 & 2 44 0.000 0.931 0.179 0.281 
Weald 
Clay 

1 & 2 44 0.000 0.706 0.041 0.140 

Oolites 1 & 2 44 0.000 0.912 0.086 0.240 
Non-
permeable 
surficial 

3 44 0.000 0.903 0.283 0.257 

Aquitards 3 44 0.000 0.931 0.267 0.287 
Sandy 
aquifers 

3 44 0.000 0.857 0.175 0.192 

Limestone 
aquifers 

3 44 0.000 0.912 0.274 0.293 

 
Table 3a. Model 1a regression.  
 
Model 1a: model coefficients 

 Coefficient Std. error t value Pr (>t) 

Constant 
0.640 

0.047 13.700 <0.001 

Diamicton -0.236 0.078 -3.002 0.005 

Chalk 0.533 0.089 5.955 <0.001 

Lower 
Greensand 

0.228 0.119 1.908 0.064 

Thames -0.391 0.074 -5.264 <0.001 

Weald 
Clay 

-0.545 0.118 -4.639 <0.001 

Oolites 0.229 0.081 2.835 0.007 

 
Model adjusted squared multiple R: 0.878 
Model residual standard error 0.085  
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Table 3b. Model 1b regression.  
 
Model 1b: model coefficients 

 Coefficient Std. error t value Pr (>t) 

Constant 
0.693 

0.039 17.676 <0.001 

Diamicton -0.303 0.072 -4.216 <0.001 

Chalk 0.449 0.082 5.496 <0.001 

Thames -0.462 0.067 -6.884 <0.001 

Weald 
Clay 

-0.602 0.119 -5.056 <0.001 

Oolites 0.158 0.075 2.105 0.042 

 
Model adjusted squared multiple R: 0.885 
Model residual standard error 0.088  

 
Table 3c. Model 2 regression.  
 
Model 2: model coefficients 

 Coefficient Std. error t value Pr (>t) 

Non-
permeable 
surficial 0.557 

0.055 10.105 <0.001 

Non-
permeable 
aquifers 

0.241 0.053 4.548 <0.001 

Limestone 
aquifers 

1.090 0.050 21.648 <0.001 

Sandy 
aquifers 

0.724 0.083 8.713 <0.001 

 
Model adjusted squared multiple R: 0.970 
Model residual standard error 0.121 
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Table 4. Summary statistics for the bootstrap re-sampling of Model 2. 
 

Class Model Number of  
re-samples 

Minimum Maximum Mean SD 

Non-
permeable 
surficial 

3 10000 0.382 0.937 0.565 0.069 

Aquitards 3 10000 -0.026 0.463 0.243 0.055 
Sandy 
aquifers 

3 10000 -0.309 0.922 0.709 0.091 

Limestone 
aquifers 

3 10000 0.936 1.441 1.094 0.055 

 
Table 5. Summary of hydraulic conductivity data used in Figure 6. 
 
Lithostratigraphic 
class 

Hydraulic 
conductivity (m/s) 

Notes 

Diamicton 1E-5 to 1E-11 
1E-8 (typical value) 

Typical range for glacial till is from 1E-5 m/s 
to 1E-11 m/s (Freeze and Cherry, 1979). 
There is no available data for the till in the 
north of the Thames Basin. 

Chalk 2E-3 to 1E-5 Ranges from 2E-3 m/s, a typical value in 
valleys, to 1E-5 m/s, typical value under 
interfluves (Allen et al. 1997) 

Lower Greensand 9.6E-4 Based on a typical transmissivity value of 250 
m2/d for the Lower Greensand (Allen et al., 
1997) and assuming and effective aquifer 
thickness of 30 m. 

Thames 1E-9 Ranges from 3E-8 m/s to 3E-10 m/s (Ellison 
et al., 2004) 

Weald Clay 5.0E-10 Typical range for unweathered marine clay is 
from 1E-9 m/s to 1E-12 m/s (Freeze and 
Cherry, 1979). 

Oolites 8.1E-4 Based on a typical transmissivity value of 350 
m2/d for the Great and Inferior Oolites (Allen 
et al. 1997) and assuming and effective 
aquifer thickness of 50 m. 
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Figure captions 
 
Figure 1. Maps of the Thames Basin showing, a. physiography, rivers and the 44 
catchments used in the study for calibration, and b. the distribution of the nineteen 
lithological classes used as the basis of regression Models 1a and 1b.  
 
Figure 2. A schematic illustration of the regression methodology showing the iterative 
development of the models. Models 1a and 1b were developed based on 
lithostratigraphic classification of geological mapping, and Model 2 was based on a 
hydrogeological interpretation of the lithological classification. 
 
Figure 3. Map of the Thames Basin showing the distribution of the four main 
hydrogeological classes used in regression Model 2. 
  
Figure 4. Plots of modelled BFI against observed BFI and model residuals for the 44 
calibration catchments for Models 1a, 1b, and 2. Confidence bounds on BFI values for 
Model 3 are based on the 5%tile and 95%tile values for a Monte Carlo simulation 
using bootstrap statistics for the model. 
 
Figure 5. Comparison between observed and modelled BFI for the 44 calibration 
catchments for this study and for BFIHOST. The 90% confidence bounds to linear 
regressions through the two respective data sets are also shown.    
 
Figure 6. Relationship between regression coefficients for Model 1a and estimates of 
the hydraulic conductivity for each lithostratigraphic class in the model. The dashed 
lines bracket the inferred range of representative hydraulic conductivity for the Basin 
as a whole  
 
Figure 7. Modelled against observed values of BFI for 110 ‘variably impacted’ 
catchments in Thames Basin based on Model 2 with outliers identified. 
 
Figure 8. Observed BFI as a function of percentage urban area for the outliers 
identified in Figure 7.  


