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Abstract 

 

Previous approaches to assessing the impact of climate change scenarios on 

groundwater levels and groundwater droughts have focused on modelling 

specific recharge processes or phenomena. Statistical methods, however, based 

on correlations between historic groundwater level and rainfall time series, 

provide an alternative and robust approach to predicting minimum groundwater 

levels and droughts. For the purposes of this study groundwater droughts are 

defined in terms of the return period of a given groundwater level.  A multiple 

linear regression model (regression of monthly rainfall totals for a given period 

against values of minimum annual groundwater levels for the same period) when 

used with synthetic rainfall data based on climate change scenarios, enables 

changes in future annual groundwater level minima to be modelled. The method 

is illustrated at three sites on the Chalk, Permo-Triassic sandstone and Jurassic 

limestone aquifers. 
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Introduction 

 

Climate change affects the hydrological cycle and has an uncertain impact on 

groundwater resources. There is a clear need to understand and assess the 

importance of climate change both at the scale of catchments and of public 

supply sources, and to assess the possible risks posed to groundwater resources 

under different climate change scenarios(1). These risks include, at one extreme, 

the potential degradation of groundwater-fed ecosystems and the potential 

reduction of source yields due to low groundwater levels associated with 

groundwater droughts. At the other extreme they could include possible 

groundwater flooding with associated implications for infrastructure damage and 

deleterious effects on water quality under conditions of high seasonal or shorter 

duration intense rainfall. The work described in this paper aims to reduce 

uncertainty associated with predicting the impact of climate change on 

groundwater levels during groundwater droughts. The general approach may be 

used to predict the magnitude and return period of other extreme events 

associated with groundwater level changes.  A quantitative method has also 

been developed as part of a larger project investigating source yield under 

drought conditions(2), to predict the impact of climate change on annual minimum 

groundwater levels. 

There is increasing evidence to suggest that at least part of the observed 

recent change in the global climate is due to a human-induced rise in 

atmospheric concentrations of greenhouse gases(3). The inertia in global systems 
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means that this climate-forcing is likely to continue for the foreseeable future, 

even if the rate of greenhouse gas release to the atmosphere is reduced. The 

weather in the UK is not immune to these changes(3). The current UK climate, 

particularly rainfall, is noted for its short-term variability around a relatively 

stationary mean, while sustained periods of very wet or very dry weather are 

relatively rare. Historical observations show that this pattern has been 

characteristic of the last two centuries. 

Recent years, however, have seen two phenomena that suggest that the 

UK climate pattern may be changing. One is a trend of rising temperature, at a 

rate that is unlikely to be due solely to natural climatic variations. The 1990s (up 

until 1998) were almost consistently about 0.5 °C warmer than the 1961-1990 

average, and four of the five warmest years in the 340-year Central England 

Temperature series occurred between 1988 and 1997(3). The other phenomenon 

is the apparent increasing frequency of ‘extreme’ climatic events. For example, 

the extended and marked reduction in effective rainfall across almost all of Britain 

during 1984, 1989 and 1995 is one type of extreme event. These conditions 

would be expected only once in 200 years(4) based on analysis of historical 

records. It should be noted that it is difficult to establish a causal association 

between anthropogenic induced climate change and specific ‘extreme’ events 

(add CEH / Met Office ref), however, the increased frequency of such events is 

predicted by many climate change models. Climate scenarios produced by the 

UK Climate Impacts Programme (UKCIP) suggest that these trends will 

continue(3). If they do continue, what are the implications for groundwater 
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droughts in the UK during the next few decades? Is there any reason to suppose 

that extreme events will increase in frequency and / or severity? 

To date there have been few studies of the potential impacts of climate 

change on groundwater resources and none that have provided robust 

quantitative methods or tools for investigating the effect of climate change on 

groundwater levels across a range of hydrogeological settings. Most groundwater 

studies have formed part of broader investigations that generally concentrate on 

the potential impacts on surface water resources under different future climate 

scenarios(5,6). 

Early studies reviewed the frequency and magnitude of both ‘winter’ and 

‘summer’ droughts induced by climate change and assessed their gross effects 

on groundwater resources(7,8). More recently, a number of studies have used 

process-based recharge models to try and quantify the changes in groundwater 

resources under a range of climate change scenarios(9,10,11,12). They have 

emphasized how some aquifers may be more sensitive to climate changes than 

others. For example, Price(4) noted that variation in groundwater storage 

characteristics is an important factor in mitigating the impacts of droughts caused 

by climate change.  Despite this work, however, it has proved difficult to develop 

flexible non-site specific models of groundwater level response to climate change 

due to a reliance on process-based recharge models. This problem has been 

avoided in the present study by using a statistical correlation between rainfall and 

groundwater level data. The method described in this paper quantifies historical 

relationships between groundwater levels and rainfall in such a way that 
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synthetic rainfall data generated for a range of climate change scenarios can 

then be used with calibrated groundwater hydrographs to predict future 

groundwater levels. 

 

Groundwater droughts and the problem of predicting 

annual groundwater minima 

 

Groundwater droughts 

 

A range of rainfall-based drought indices have been developed to provide a 

means of quantifying drought based on monthly rainfall data. For example, the 

standard precipitation index (SPI)(13) provides an estimate of the magnitude and 

severity of rainfall droughts of selected durations. Estimation of groundwater 

droughts, however, is not so simple. Groundwater droughts can be considered in 

terms of a period of minimum groundwater storage. They can be considered in 

environmental terms as a period of minimum baseflow, in terms of water supply 

as a period of minimum groundwater level at a supply source, or in terms of 

water demand as a period of maximum stress at a groundwater source(2). 

For the purposes of the present study a critical period groundwater 

drought is defined as the groundwater level at a representative observation 

borehole that equals the 1 in x year annual minimum groundwater level, where x 

is specified by the operator or researcher. For example, a 1 in 20 year return 

period may be appropriate for operational planning at an observation borehole, 
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but a 1 in 50, or even a 1 in 100 year groundwater drought might be used as the 

design criteria when planning new public supply sources or infrastructure. Given 

this definition, graphs of minimum annual groundwater levels against return 

period (return period graphs) provide the most complete description of critical 

period groundwater droughts for a given borehole. Return period graphs have 

been used in this study to present the predicted groundwater levels for a range of 

climate change scenarios.  

 

Predicting annual groundwater level minima 

 

The central problem in predicting the severity of groundwater droughts, and 

specifically annual groundwater level minima, under different climate scenarios is 

how to predict recharge. As noted earlier, reliance on process-based recharge 

models to predict changes in groundwater level have meant that it has not been 

possible to develop flexible non-site specific models of groundwater level 

response to climate change. The process-based recharge models have generally 

been based on assumptions regarding specific recharge process that may not be 

valid under different climatic conditions. The studies were generally site specific 

and are not easy to apply over a wide range of hydrogeological settings and 

across a variety of aquifer types. It is also difficult to undertake cross comparison 

of results from different studies. In addition, many use derived parameters such 

as potential evapotranspiration (PET) and soil moisture deficit (SMD). 
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Uncertainties associated with these derived values are propagated through the 

models and are difficult to quantify. 

The method adopted in the present study avoids these problems and is 

based on a simple statistical correlation between groundwater levels and 

rainfall(14). It has the additional benefit that the errors associated with the 

correlation are easily quantified. The basic modelling strategy that has been 

adopted was developed by Bennett(14) and is a multiple linear regression (MLR) 

model that consists of a regression of monthly rainfall totals for a given period 

against values of minimum annual groundwater levels for the same period. The 

model is flexible and could be extended to include other regression parameters 

such as mean monthly temperature or evapotranspiration if these time series are 

available. The statistical approach enables the effects of different climate 

scenarios to be modelled using different synthetic rainfall series. The following 

section describes the MLR method and shows how the calibrated regression can 

be used to predict annual groundwater minima and construct groundwater 

drought return curves. 

Methodology 

MLR method 

 

The MLR method uses groundwater level data based on the hydrometric year. 

The hydrometric year usually runs from April to March so that nearly all the 

minima occur near the middle of the hydrometric year. The annual groundwater 

level minima are recorded for each hydrometric year. As the MLR method uses 
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monthly rainfall data, daily or weekly rainfall data can be lumped into cumulative 

monthly values. In this regression analysis a number of predictors (i.e. monthly 

rainfall) are used to predict the dependent variable (i.e. annual minimum 

groundwater level), but care must be taken when using the MLR approach. The 

predictors used in the regression analysis must be independent; i.e. one month’s 

rainfall should not be highly correlated with rainfall during the subsequent month. 

A Pearson correlation matrix18 is generated to characterize the degree of 

correlation between rainfall in successive months and each correlation is tested 

for significance using the t-test.  If significant correlation is found between 

successive monthly rainfall data then the assumptions behind the MLR no longer 

hold. One way round this problem is to add two months rainfall where there is a 

significant correlation and test for correlation between the summed rainfall and 

rainfall for the subsequent month. If this correlation is not significant then the 

summed rainfall can be used instead of the monthly rainfall.  In addition, the 

dependent variable should not show significant autocorrelation.  This is tested by 

calculating an autocorrelation function for the annual groundwater level minima. 

If these assumptions can be satisfied the MLR can be performed. For the 

purposes of this study the annual minimum groundwater level was taken to be 

linearly dependent on fifteen monthly rainfall measurements, usually between 

January in one year and March the following year (the hydrometric year plus the 

three preceding months). An expression with the following form is obtained; 

 

Zmin = β1RJan0 + β2RFeb0 + β3RMar0 + β4RApr … + β15RMar + c 
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where Zmin is the minimum annual groundwater level in the hydrometric year, RApr 

… RMar are the monthly rainfalls throughout the hydrometric year and RJan0, RFeb0, 

and RMar0 are the rainfall in last three months of the preceding year. β1 to β15 are 

the fifteen regression coefficients and c is a constant. 

For each regression, a measure of the fit of the regression to the 

observations is given by the value of R2. This indicates what percentage of the 

variance is accounted for by the model. In multiple linear regression models the 

R2 statistic can be improved by using more predictors, i.e. more months rainfall, 

but even though a better fit may be obtained with the calibrated data the resulting 

model may not be any better at predicting future water levels. It is, therefore, 

common to quote the adjusted R2 statistic, Ra
2. This statistic takes into account 

both the goodness of fit of the model and the number of predictors used. 

A smaller number of predictors could be used in the MLR model. For 

example, a systematic approach to the selection of the number of predictors 

would be to investigate the Pearson correlation between monthly rainfall and 

minimum groundwater levels to see how many months rainfall prior to a 

groundwater level minimum are significant. This approach, however, could not be 

used for forward modelling purposes because, for any given future year, there is 

no way of predicting in which month the annual groundwater level minimum 

would occur and which months predicted rainfall should be used. Hence, a 

minimum of twelve months rainfall, i.e. twelve predictors, are needed for the 

forward model. Given the unlikely event that the annual minimum may fall right at 

the start of a hydrometric year, the addition of three other predictors at the end of 
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the preceding hydrometric year provide a robust fifteen-month MLR model for 

prediction.  Because fifteen predictors are being used the model requires a 

minimum of 16 years of rainfall and groundwater level data, although additional 

studies not reported here suggest that at least 20 years of time series data are 

required for this approach to be effective. 

Once a regression has been obtained the observed monthly rainfall can 

be used with the regression coefficients and constant to calculate annual 

groundwater level minima. These calculated values can be compared with 

observed annual minima to give an estimate of the accuracy of the model. 

 

Prediction of climate change impacts 

 

To predict annual groundwater level trends under different climate change 

scenarios it is necessary to generate synthetic rainfall series. These are obtained 

by perturbing historic rainfall data using changes in long-term mean rainfall and 

changes in the rainfall variability for different UKCIP scenarios. Using this 

technique, sufficiently long synthetic rainfall series, of the order of 10,000 years, 

are generated. These long synthetic rainfall series are needed to enable return 

periods of up to 1 in 200 year drought events to be estimated with a probability of 

0.05% or better. Once the long synthetic rainfall time series have been obtained, 

the synthetic rainfall data can be used with the MLR regression coefficients and 

constant to calculate predicted annual groundwater level minima. The return 
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period analysis of the annual groundwater level minima is simply based on the 

cumulative distribution function of the predicted annual minima(2). 

 

Site descriptions and results 

 

The sites 

 

The model has been applied to three sites, one on the Chalk aquifer at Little 

Bucket Farm (TR 1225 4690), one on the Permo-Triassic sandstone aquifer at 

Bussels No.7A (SX 9528 9872), and one on the Jurassic Limestones at New Red 

Lion (TF 0885 3034) (Figure 1).  

The borehole at Little Bucket Farm is sited on Middle Chalk. The 

maximum recorded water level is +86.87 m OD, less than 0.5 m below the top of 

the borehole that is 0.6 m above the ground surface. The minimum recorded rest 

water level is +56.77 m OD, close to the bottom of the borehole. These levels are 

consistent with those seen in other boreholes in the area. The hydrograph has an 

annual sinusoidal appearance with a mean annual range of 13.17 m. There are 

no licensed groundwater abstractions within 2 km of the well. 

The borehole at Bussels No.7A is sited on a river terrace above the 

Dawlish Sandstone (part of the Exeter Group of Permian age). The maximum 

recorded rest water level is +25.28 m OD and the minimum +22.91 m OD. This is 

consistent with water levels recorded in other boreholes in the region. The 

hydrograph has an annual sinusoidal appearance with an annual range of 2.2 m. 
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There are ten licensed groundwater abstractions from within 2 km of the 

borehole. Their effects on the Bussels No.7A hydrograph are unknown.  

The New Red Lion borehole is lined from the surface to a depth of 25.0 m 

where it penetrates the Lincolnshire Limestone beneath the Blisworth Limestone. 

The Lincolnshire Limestone is about 28 m thick in this area, with its top at about 

+ 9m OD. The maximum recorded rest water level for New Red Lion is +20.7 m 

OD and the minimum + 5.68 m OD. The highest water levels, therefore, rise to a 

level within the overlying Blisworth Limestone, which is cased out; but the 

minimum levels are within the Lincolnshire Limestone. The hydrograph has a 

well-defined annual sinusoidal appearance with a mean annual range of 7.9 m. 

There is one licensed groundwater abstraction within 2 km and is not thought to 

affect water levels in the observation well. 

 

 

 

Data sets used in the study 

 

Three data sets have been used in the study; groundwater level data, historic 

rainfall data, and UKCIP climate change scenarios. The groundwater level data 

has been taken from the National Groundwater Level Archive held by the British 

Geological Survey (BGS) in Wallingford.  The Archive contains long-term 

groundwater level records for a monitoring network of 175 boreholes each 

measured either weekly or monthly to the nearest 10 mm or better. Data and 
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statistics that are available for each borehole include a site name, hydrometric 

area (river catchment), national grid reference, measured groundwater level, 

period of record, and mean, maximum, and minimum annual groundwater level 

ranges. Full listings of sites in the archive can be found in the Hydrogeological 

Data UK Yearbook(15) and have been described by Doorgakant (16). 

Two types of rainfall data were used; rain gauge data and catchment 

averaged data. A long-term rain gauge record was supplied by the Environment 

Agency for the Street End gauge (ref. no. 664420001) for use with the Little 

Bucket Farm groundwater hydrograph. At the other two sites catchment 

averaged rainfall was used. This was supplied by the Centre for Ecology and 

Hydrology. The two catchments that were used were CMR 45001 Exe at 

Thorverton and CMR 30014 Pointon Lode at Pointon for Bussels No.7A and New 

Red Lion respectively(15). 

The synthetic rainfall data was generated using climate change (rainfall) 

scenarios taken from the UKCIP 10 km grid data on the UKCIP CD ROM(17). Four 

scenarios have been used in the modelling, the 2020s, 2050s and 2080s medium 

high (MH) scenarios and the 2080s high scenario. 

 

Results 

 

Ra
2 values of 0.47, 0.51, and 0.84 have been obtained for the regression models 

for Little Bucket Farm, New Red Lion and Bussels No.7A respectively. These 

indicate that between about 50% and 85% of the variance in the data is 
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explained by the MLR models. Because, however, the models are based on 

different length time series it is not possible to directly compare them using their 

respective Ra
2 values. One way to contrast the relative effectiveness of the MLR 

results between the sites is to compare the observed and calculated annual 

groundwater level minima for each of the three sites, Figure 2. The figure shows 

that the MLR models appear to provide good fits to the observed data. Averaged 

normalized differences (where differences are normalized by dividing by the 

maximum range in annual minima at a site) between observed and modelled 

annual groundwater level minima are 10%, 10% and 3% for Little Bucket Farm, 

New Red Lion and Bussels No.7A respectively. Although the models provide 

good fits to the historic data, it is not possible to quantify how well they perform 

when predicting groundwater levels outside the calibration period, i.e. how well 

they describe future groundwater level minima that may lie outside the range of 

historic minima. However, this is true of most models used for forward prediction. 

Figure 3 shows the results of the return period analysis for annual 

minimum groundwater levels for the 2020s, 2050s and 2080s medium high, and 

for the 2080s high scenarios as well as the observed historic data for the three 

sites. For example, the return period curves for Little Bucket Farm show that an 

annual minimum groundwater level of 57.7m AOD has a historic return period of 

10 years. This return period falls to between 9 and 5 years for the four climate 

change scenarios under consideration. Generally, at any giving site there is a 

small fall in annual minimum groundwater levels for a specific return period (with 

the exception of New Red Lion, where a small rise is predicted for annual 
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minimum groundwater levels for a specific return period for some of the climate 

change scenarios). 

Relative changes in annual groundwater level minima can be mode clearly 

seen in Figure 4. This figure shows the relative changes in minimum groundwater 

levels for the three sites (calculated as the difference between the predicted and 

observed annual minima divided by the mean range in minima) for the three 

medium high scenarios. For example, both New Red Lion and Bussels No.7A 

show small predicted rises in average annual minima under all three medium 

high scenarios. At Little Bucket Farm a very small rise is predicted for the 2020s 

medium high scenario but falls in annual groundwater level minima of about 4% 

and 1% are predicted for the 2050s and 2080s medium high scenarios. This 

indicates that this site may be more vulnerable under these climate change 

scenarios than the other two sites. 

The results presented in Figures 3 and 4 are intended as illustrative. A 

more systematic survey is being undertaken to investigate possible trends in 

groundwater level response as a function of aquifer type, different climate 

change scenarios and regional climatic variations across the UK, and site 

specific factors. This work will be reported at a later date. The figures, however, 

illustrate that even given climate change scenarios where there is a small 

predicted overall increase in total annual rainfall, due to changes in seasonality 

and increased frequency of drought events, annual groundwater level minima 

may fall in the future.  
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Conclusions 

 

1. Groundwater droughts may usefully be defined on the basis of 

groundwater levels that are equivalent to a 1 in x year annual minimum 

groundwater level, where x is a return period specified by the operator or 

researcher. Given this definition, graphs of minimum annual groundwater 

levels against return period (return period graphs) provide the most 

complete description of critical period groundwater droughts for a given 

borehole. 

2. A multiple linear regression (MLR) model that uses monthly rainfall levels 

as the independent variables and annual groundwater level minima as the 

dependent variables has been developed to predict annual groundwater 

level minima. For practical purposes, a minimum of 16 to 20 years of time 

series data is required for this approach to be effective. 

3. MLR models for three sites on different aquifer types can be shown to  

reproduce annual groundwater level minima to within 10 % or better of the 

range of annual minima. 

4. Using the MLR calibrated models and applying five different UKCIP 

climate change scenarios (2020s, 2050s and 2080s medium high and the 

2080s high scenarios), groundwater drought return period analyses have 

been produced for up to 1 in 200 year events. On the basis of these 

forward models it is inferred that despite an overall increase in rainfall 
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predicted by some climate change scenarios, changes in the seasonality 

and frequency of extreme events could lead to an increase in the 

frequency and intensity of groundwater droughts in some areas of the UK. 

The Chalk aquifer in southern and eastern England may be most 

susceptible to these effects. 

5. The method presented in this paper, unlike previous recharge-based 

approaches, makes no assumptions regarding recharge processes. 

Consequently, it is applicable to a wide range of hydrologic, geological 

and hydrogeological settings. In addition, the method is flexible and could 

be used to investigate year-on-year effects or to include other independent 

variables such monthly temperature variations. 
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Figure captions 

 

Figure 1. Location map. 

Figure 2. Fitted annual minima for the Little Bucket Farm (LBF), Bussels No 

7A (B No.7) and for the New Red Lion (NRL) sites. Observed 

minimum annual groundwater levels are shown as solid symbols 

and modelled values are shown as open symbols.  

Figure 3. Return period analysis plots for the Little Bucket Farm, Bussels No 

7A and for the New Red Lion sites. 

Figure 4.  Percentage change in annual minimum levels at the three sites. 
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Figure 2. 
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Figure 3.  
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Figure 4.  
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