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ABSTRACT

Coriolis flowmeters are well established for the mass flow measurement of single phase flow
with high accuracy. In recent years attempts have been made to apply Coriolis flowmeters to
measure two-phase flow. This paper presents data driven models that are incorporated in Coriolis
flowmeters to measure both the liquid mass flowrate and the gas volume fraction of a two-phase
flow mixture. Experimental work was conducted on a purpose-built two-phase flow test rig on
both horizontal and vertical pipelines for a liquid mass flowrate ranging from 700 kg/h to 14500
kg/h and a gas volume fraction between 0 and 30%. Artificial Neural Network (ANN), Support
Vector Machine (SVM) and Genetic Programming (GP) models are established through training
with experimental data. The performanceB#-ANN (Back Propagation - ANN), RBF-ANN
(Radial Basis Function ANN), SVM and GP models is assessed and coedp&xperimental

results suggest that the SVM models are superior tBR&NN, RBF-ANN and GP models for
two-phase flow measurement in terms of robustness and accuracy. For liquid mass flowrate
measurement with the SVM models, 93.49% of the experimental data yield a relative error less
than +1% on the horizontal pipeline whilst 96.17% of the results are within £1% on the vertical
installation. The SVM models predict gas volume fraction with a relative error less than £10%
for 93.10% and 94.25% of the test conditions on horizontal and vertical installations,

respectively.

Index Terms-Two-phase flow, flow measurement, Coriolis mass flowmeter, gas volume

fraction, artificial neural network, support vector machine, genetic programming.



. INTRODUCTION

Gas-liquid two-phase flow is widely seen in oil and gas fields, chemical enggeéood
processing and other industrial pro@sd he accurate measurement of the flowrate of a two-
phase mixture is challenging in industry. Significant research based on tradibemakters for
two-phase flow measurement has been conducted, such as Venturi, V-cone, turbinendortex a
slotted orifice meters [1-3]. The determination of gas volume fraction of two-phase flow is crucial
for the optimization of some industrial processResistive sensors, capacitive senselectrical
capacitance tomographglectrical resistance tomography and microwave probes have been
proposed for the phase fraction measurement of two-phase flow [4-6]. These technigites are
referred to as direct method since the systems are designed to measure the desired two-phase flow
characteristics directly. Due to the difficult nature of two-phase flow and coityplek the
sensing systems, applications of such direct two-phase flowmeters have achievedliotéss

in industry.

Indirect techniques based on traditional sensors incorporating soft-computing ailgitbh as
artificial neural network (ANN), support vector machine (SVM), least-squares SVNMx&ede

learning machine together with genetic algorithms or particle swarm optimizatiohaate.also

been applied to two-phase or multi-phase flow measurement or flow reginiéagdgon [7-10].

Coriolis flowmeters, as one of the most accurate single-phase mass flowmeters, have been
successfully applied to a range of industrial applications. In recent years, manyherschave
attempted to use Coriolis flowmeters for two-phase or multiphase flow measurehignt [
However, despite recent progress in sensor and transmitter technologies, improving the accuracy
for mass flow metering of liquid with entrained gas still remains a challendmibBle effect

model was proposed to study gas-liquid two-phase flow for Coriolis flowmeters [12], but it



cannot deal with positive errors in the mass flow measurement. Subsequently, Lili3etiaéfl

a neural network to correct mass flow errors in a Coriolis mass flowmeter which was based on a
horizontal flow tube and the flow rate was limited to 1.5~3.6 kg/s. The multi-layer perceptron and
radial basis function networks include four inputs, including temperature, damping, density drop
and flowrate to estimate mass flow errors. Although most of the mass flow errersagieced to
within £2%, the gas entrainment was not quantified and different installation coaditene not
considered. A method based on fuzzy inference was proposed to correct the mas®foof a
Coriolis flowmeter for the measurement of two-phase flow [14]. The fuzzy systeeptacc
damping, drop in density and apparent mass flowrate as inputs to generate conasied
flowrate. Lari et al [15] applied a neuro-fuzzy algorithm to the error correctianCoriolis mass
flowmeter for air-water two-phase flow measurement. However, the experimental data and results
were not explained in detail in [14] and [15]ou et al [1$ developed a digital Coriolis flow
transmitter and testemlcommercial Coriolis flowmeter. The measurement errors achieved under
gas-liquid two-phase flow conditions were corrected using a feed-forward neural netitvork

two inputs - apparent liquid mass flowrate and apparent drop in density. Xing €} apflieda
Coriolis flowmeter in combination with an ultrasonic flowmeter to measure the individual mass
flowrates of gas-liquid two-phase flow under low liquid loading. The root-mean-square errors of
gas and liquid mass flowrates were 3.09% and 12.78%, respectively. Ma&tudddl a 2%5nm

bore Coriolis flowmeter together with SVM algorithiesmeasure the overall mass flowrate of
oil-water two-phase flow and achieved relative errors within +1%. The mass tBowfa
individual phase was obtained with the maximum error of #86tvever, it is known that the gas

entrained imaliquid flow affects significantly the performance of Coriolis flowmeters, especially



under different flow regimesl]]. Moreover, very little research has been undertaken to date to

predict the gas volume fraction from the outputs of a Coriolis flowmeter.

Owning to the goodeproducibility of the measurement errors of Coriolis flowmeters under two-
phase flow conditions, data driven models suchlddl, SVM and Genetic Programming (5P

have the potential to correct the liquid mass flowrate and predictajasie fraction. In th
present study, experimental work was undertaken on a purpose-built one-inch (25 mmy)- bore air
water two-phase flow test rig. Coriolis flowmeters (KROHNE OPTIMASS 6400 S25) in
conjunction with DP transducers were applied to obtain liquid mass flowrate andlgase
fraction on both horizontal and vertical pipes. Parametric dependency alonmputhvariable
selection for the data driven models are investigated based on the Partial Mutual Information
(PMI) algorithm [19, 20]. Four data driven models based on Back Propagation(BRHINN),

Radial Basis FunctioANN (RBF-ANN), SVM and GP, respectively, are established and
validated through training and testing with experimental data. The performances fotithe
models are evaluated and compared in terms of robustness and accuracy. The basicgbrinciple
BP-ANN modelling with some preliminary results was reported at the 2016 IEEE International
Instrumentation and Measurement Technology Confereti¢eThis paper presents in detail the
principles, structures, training and performance comparisons GR#WENN, RBF-ANN, SVM

and GP models.

Il. METHODOLOGY

A Overall measurement strategy

ANN, SVM and GP are common data driven models for modelling a nonlinear system with

multiple inputs and outputs [22-26]. These techniques learn from history dagavandexamples



by constructing an input-output mapping in order to perform estimations ofdlesiguts. Fig.

1 shows the principle and structure of the measurement system. The data driven models accep
variables from a Coriolis flowmeter and a DP transducer while the output geesotrected

mass flowrate or predicted gas volume fraction. The analysis of parametric dependeinpetan
variable selection for the data driven models based on the experimental data is presented in
Section Ill. C. Since the volume of data is often limited in practice, it is approfwidisign a
separate model for each desired output. The structure of each data driven model Fdsid on

SVM and GP will be explained in detail in the following sections.

Coriolis |
flowmeter | Giatasdiiven molels ‘ Liquid mass flowrate
DP o ANNISYIIGR Gas volume fraction
transducer =

Fig. 1. Principle and structure of the measurement system.

B. BP-ANN

BP-ANN is a multilayer feed-forward neural network trained with a back-propagationriga
algorithm, which is one of the most common neural networks. A BP-ANN consists of an input
layer, one or more hidden layers and an output layer. The hidden layer connecfitreend
output layers and represents their quantitative relationship. In general, a neural netwak with
single-hidden layer of sufficient neurons is able to represent any nonlinear problem. In
consideration of the simplicity of the ANN structure, a single-hidden layer is chosen and

investigated in this study.



Input layer Hidden layer Output layer

Fig. 2. Structure of BP-ANN.

As shown in Fig. 2, x=f%, ..., 1" is aninput sample and y is the desired output. Assume y is
the linear output of the hidden neurons and a transfer function f(x) is used pautioas, the

ANN is modelled as:

L L n
i=1 j=1 i=1

where n and L are the numbers of input variables and hidden gdseghe weight connecting
the j" hidden node and the output nodsg,is the weight connecting th# input node to the"
hidden node. jgand b are the biases the [ hidden node and the output notfethis study, the
hyperbolic tangent sigmoid function is used adransfer function on hidden neurons and

presented by

2
1+e

f(x)=

-1 2)

The learning algorithm is described as a procedure that consists of adjbstimgights and
biases of a network, to minimize an error function between the network output and desired output
for a given set of inputs. The BP algorithm has been widely applisalving practical problems.

However, the BP algorithm has the disadvantage of slow convergence and long training time



Additionally, the success of the BP algorithm depends on the user-dependent paraneteas
initialization and structure of the ANN.
C. RBF-ANN

RBF-ANN has a fixed three layer structure (Fig. 3) and uses a type of radial basisnfarscéin
activation function to the hidden nodé&he output of the network is a linear combination of
radial basis functions of the inputs and neuron parameters. The radial basis function nteasures t
distance between the input vectors and weight vectors and is typically talkerthie Gaussian

function Thus the output of the network is given by
L L 1 2
yRBF:Za)]H] :ZCUJ eXp(——2||X—C]|| ) (3)
= =l 20

where G is the centre vector for th# hidden node and determined by the K-means clustering
method|x —c| is the Euclidean norm and” is the variance of the Gaussian function.

An RBF network with enough hidden nodes can approximate any continuous fundtion w
arbitrary precision. Moreover, as a local approximation network, the RBF neural network has the

advantages of simple structure, less adjective parameters and fast training.

[nput layer Hidden layer Output layer

Fig. 3. Structure of aRBFANN.



D.SW

SVM was developed by Vapnik in 1995 to solve the classification problem based on the statistic
learning theory and structural risk minimization [27]. Since then, ththadenas been extended

to the domain of regression and prediction problems [28]. As shown in Fig. 4, the input vector x is
first mapped int@an L-dimensional feature space using transfer functions and then a linear model

is constructed in this feature space

Input layer Hidden layer | Output layer

Input vector x

Fig. 4. Structure of an SVM.

The linear model in the feature space is given by

y=ax+b 4)
wherew=( w1, w»,..., L) is the weight vector and b is the bias term.
Regression estimates can be obtained by minimizing the empirical risk onnimgtdata. SVM

regression perfons a linear regression in the high dimensional feature spsiog e-insensitive
loss and tends to reduce the model complexity by minim||z>||ﬁg This can be described by
introducing slack variableg and &' (i=1,2,...,m) to measure the deviation of training samples

(X*, D) outsides-insensitive zone. X*= x2,..., x™) represents m input vectors of training
samples and £(di,d, ..., dm) is the corresponding desired output. Thus, the optimization

problem can be formulated as



@ =min ~of* +CY (& +£) (5)

i=1
where m is the number of training samples. C is a positive corsarnegularization parameter
that allows tuning the tradeoff between the flatness of the function and the tolerance of deviations
larger than € (a constant).

Minimize the risk functional of Equation (5) subject to the following constraints:

di—y <e+& (6)
y,—d <e+¢& (7)
20 (8)
=0 )

Equation (4) can be transformed into a dual problem and solved by Lagrange functional.
L
y= (o —a;)-K(x,x;)+b (10)
i=1

whereo; and o; are Lagrange multipliers and K(x) s a kernel function.

There are some optional kernel functions for SVM such as linear, polynomial, radsl basi
function and sigmoid functiorOne of the most widely-used kernel functions is the radial basis

function The final product of a training process in the SVM method can be presented by:

L
* 1
Yswm :Z(ai —a; )~e><p(—272||x—xi||2)+b (11)

i=1
E.GP
GP as an evolutionary computation technique is an extension of genetic algorithmsviaiedlyis
applied to symbolic data mining (symbolic regression, classification and optimizatioB)1].29-

Unlike traditional regression analysis, GP based symbolic regression automatically evtives bo

10



the structure and parameters of the mathematical model from the available data. Me#nwhile,
superior to other machine learning techniques due to the ability to ger@eragmpirical
mathematical equation without assuming prior form of the existing relationships. Inutiys s
multigene symbolic regression is applied to establish a model for two-phase flow measuremen

The structure o multigene symbolic regression model is shown in Fig. 5.

i i £
b0+b1><§z >§z+b2xg§ >§>+_+bnxﬁﬂy

Fig. 5. Structure of a GP model.

The GP model can be regarded as a linear combination of lower-order nonlinear transformations
of the input variables. The outpupyis defined as a vector output of n trees modified by the bias
term by and scaling parameters b., bn:

Yop = b + bty +...+ byt (22)
where t (i=1,..., n) is the (mx1) vector of outputs from tHe tree comprising a multigene
individual.

The evolutionary process starts with initial population by creating individuals containitrg&3P
with different genes generated randgnThe evolutionary process continues with an evaluation
of the fitness of the new population, two-point high-level crossover to acquire andgigiete
and low-level crossover on sub-trees. Then the created trees replace the peaseot thee
unaltered individual in the next generation through mutation operators. The bestrptbgta

appeared in any generation, the ksestar solution, defines the output of the GP algorithm [30].
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[11. EXPERIMENTAL RESULTSAND DISCUSSION

A Test Rig and Experimental Conditions

Fig. 6 shows the schematic of the two-phase flow test rig that was used stutlys The
measurement data obtained on this rig and subsequent conclusions drawn from the data are
expected to be transportable to other gas-liquid two-phase flow conditions. Timagessset to

entr to the liquid flow through a by-pass on the pipe. The liquid mass flowrate is controlled by
adjusting the pump frequency from 15 to 80%. The gas flowrate is variedljbgting the
opening of the valve in a gas flow controller. Two independent Coriolis flowmeters (KROHNE
OPTIMASS 6400 S25 and Bronkhorst mini CORI-FLOW M15) were installed before the mixe

to provide references for the individual mass flow rates of the liquid and gas phases respectively.
Both reference meters’ measurement uncertainties under single-phase conditions were verified
according to the manufacturer’s technical specification. In the downstream, two additional
Coriolis flowmeters (see Fig.) df the same type as the liquid reference meter were installed in
the vertical and horizontal test sections, respectively. These are the metetesindeassess the
performance of ANN, SVM and GP models under two-phase flow conditions. In view of the
effects of gravity and buoyancy on two-phase fluid, both horizontal and Venttallations of

the meters are considered. A DP transducer was used to record the DP value abross eac

flowmeter under test.

12



Horizontal test section

L@ ® |
| S !
: Ok

Coriolis flowmeter ! Vertical test|section
' =

g : Water phase

Water tank Pump  flowmeter

(08
Gas phase Mixer
flowmeter

Air source

Fig. 6. Schematic of the two-phase flow test rig.

Fig. 7 Photo of the test Coriolis flowmeters on 1-inch pipelines.

The data logging frequencies, as set in the data loggers for the mass flowrate, damgtgg
andDP, are 50Hz, 10Hz, 2Hz and 20Hz, respectably. Each parameter was logged over af period
100s with a time averaged value generated under each experimental conditioroluGaes

fractiona is defined and calculated as follows

q
o= v,g

- x 100% (13)
QJ,I + qv,g

where gg and g, are the calculated volume flowrates of gas and liquid phases from the reference

flow meters and the temperature and pressure in the upstream of the horizontal test meter.

13



Density drop is determined from the density of the liquid flgy) @nd the apparent density §

from the Coriolis flowmeter under test:

d=2"P 100% (14)
P

Two series of experimental tests, Tests | and Tests Il, were conducted lquitianass flow

rate ranging from 700 kg/h to 14500 kg/h and gas volume fraction from30%o The fluid
temperature during the tests was around 20°C. For the purpose of ANN training, 237 data sets
were collected from Tests | while 24 data sets recorded from Tests Isfiogtéhe performance

of the data driven models.

B. Analysis of original errors

The typical original mass flow errors of the Coriolis flowmeters in Tests | are giotteig. 8.

The Coriolis flowmeter on the vertical section gives negative errors at flowrdbes 4200 kg/h.

At a higher flowrate (>5500 kg/h), the mass flow errors become positive anthgrdss zero

line and then return to negative errors again along with increasing entrainddhigas.believed

to be due to the flow regime effects on the fluid-tube coupling system at diiffererates. At a
lower flowrate (< 2000 kg/h), the flow was nearly slug flow as observed during the testtvehi
flow regime became gradually dispersed bubbly flow as the flowrate and entrainedrgase.

For the Coriolis flowmeter on the horizontal pipeline, the range of mass flow errors is different
from that on the vertical pipeline most likely due to the effects of grawitl buoyancy on the
flow regime. Positive errors occat mass flowrates of 700 kg/h and 1000 kg/h when the gas
volume fraction below 6%. By comparing the mass flow errors at the same flowFage $rand

Fig. 9, the errors are generally reproducible for the same installation and thahies rew-
generation flow transmitter [$2For the test dataset, Test Il includes some experimental data

which were collected at different flowrates from those in Test I. The new conditions as Ih Test

14



Relative Error of Liquid Mass Flowrate (%)

Relative Error of Liquid Mass Flowrate (%)

which were conducted on a different day and obtained under different flowrate frorhares
useful to assess the models’ generalization capability and reproducibility.
20
+ 700 kg/h
o7 Y PWoe e %y ¢ O 1000 kg
+ v 7 ¥ 1750 kg/h
o Yoy er>§ A > - ® 2500 kg/h
E g LR R ~ > 9
@'%’.%3 FF % H o o A v X 3250 kg/h
10k el OJFJr N o A 4000 kg/h
a4 SECN- .O o o <>A O 4750 kgh
X X % < © A 5500 kg/h
20 L v ¥ 7000 kg/h
53 + X 8500 kg/h
30F S e < > 10000 kg/h
T o % 11500 kg/h
a0k © n 13000 kg/h
O * 14500 kg/h
_50 Il 1 1 1 1 1 ]
0 5 10 15 20 25 30 35
Gas Volume Fraction (%)
(a) Horizontal pipeline
20
+ 700 kg/h
O 1000 kg/h
1750 kg/h
® 2500 kg/h
A v % 3250 kg/h
o A 4000 kg/h
o & 4750 kg/h
g + A 5500 kg/h
o v 7000 kg/h
ox oX 8500 kg/h
-30 > 10000 kg/h
¥ 11500 kg/h
a0k 13000 kg/h
* 14500 kg/h
_50 Il Il 1 1 1 1 ]
0 5 10 15 20 25 30 35
Gas Volume Fraction (%)
(b) Vertical pipeline
Fig. 8. Original errors of the liquid mass flowrate from Test .
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(b) Vertical pipeline
Fig. 9. Original errors of the liquid mass flowrate from Test

Fig. 10 depicts the distribution of the relative errors of the measured liquid mass flowtadéhon
horizontal and vertical pipelines. Each color (blue or green) in the figure represents training or test
datasets respectively. The Coriolis flowmeter on the horizontal pipeline yields the rigsil
flowrate with a relative error between -41% and 9% whilst the meter on the vertidelggiees

an error from -25% to 11%. The difference in errors between the vertical andnkedrizo

installations is due to the fact that the bubbles in a vertical flow arédied evenly in the pipe

16



cross section due to the effect of gravity, resulting in less interruptions arbtheibration inside

the Coriolis flowmeter and hence different errors.

Qo I training 50 - ‘

I training
I test

ZeroError

[ test

50 F ZeroError

40 -

Instances

Instances
w
o

N
o
T

10

Relative Error (%) Relative Error (%)

(a) Horizontal pipeline (b) Vertical pipeline

Fig. 10. Relative error histogram of the measured liquid mass flowrate.
C. Analysis of parametric dependence
There are three important parameters feoBoriolis flowmeter, including observed density drop,
apparent mass flowrate and damping. The DP value from the DP transducelnislatter as a
potential input variable in this study. The apparent mass flowrate from a Coriolis flovandter
the DP value across the meter correlates strongly with the liquid mass flowrate under two-phase
conditions. In addition, when gas entrains in the liquid flow, a rapid rise in dampiagsdor the
fluid-conveying tube and the mixture density also deviates from the liquid deRsisyphysical
background for the fluid-tube coupling system determines that these four input vaaieliesre
important than other variables. There exists strong nonlinearities between the ougpGtsriolis
flowmeter and the flowrate being measured under two-phase flow conditions, as oliserved
other researchers [12, 13]. Such nonlinearities are also evident in Fig.8.
In order to investigate the parametric dependence of individual input parameters and the

combined effect of multiple parameters on the output of a data model, Partial Mtdtaation

17



(PMI) is utilizedto measure the partial dependence between a potential input variable and the
output, conditional on any inputs that have already been selected. The variable witingisé h
PMI scoreis added to the input set, if the Akaike information criterion (AIC) value decreases as
result from the inclusion of this variable. Detailed definitions of PMI and AIC an&blein [19,

20]. Suppose variables, x>, X3 and % represent observed density drop, apparent mass flowrate,
damping and DP, respectively, the variable selection procedures for the models fdingotiec
liquid mass flowrate and predicting the gas volume fraction are summarizedl@s Tand Il. H-

L and V-L represent the models established for horizontal and vertical pipelines, respdotively,
correct the liquid mass flowrate, while H-G and V-G stand for the models for horizoual
vertical pipelines to predict the gas volume fraction, respectively. The selection seglsence
represents the sensitivity level of each variable to the desired output. kquidhenass flowrate,

X2 (apparent mass flowrate) has more significant effect on the liquid mass flowrate. The
coefficient of determination, Rindicates the goodness of fit. A combination of the four variables
gives the highest Rwhich illustrates the combéal effect of the variables is more significant than
that ofan individual variable on the output. For the models used for predicting theoljame
fraction, X (observed density drop), plagsmore important part than other variables. Variahle x
(DP) is not usedn Models H-G and \G since the AIC value becomes increasing akdsR
reducing with the inclusion oxAs a result of these variable selection procedures, the models for
correcting the liquid mass flowrate accept the four input variables (observed density drop,
apparent mass flowrate, damping and DP) and three variables (observéy diepsiapparent
mass flowrate and damping) are taken as the inputs to the models fotipyettie gas volume

fraction.

18



Table | Variable selection procedures for models H-L dnd V-

Model H-L Model V-L
Step Variable| AIC R? | Variable| AIC R?
I X2 -1030 | 0.9795 X2 -1027 0.9793
1 X3 -971 | 0.9757 X4 -1032 0.9797
1" X4 -1040 | 0.9814 X3 -1085 0.9842
v X1 -1161 | 0.9886 X1 -1200 0.9901

Tabld Variable selection procedures for models H-G ar@d.V-

Step Model H-G Model V-G
Variable| AIC R? | Variable| AIC R?
I X1 -669.3 | 0.921 X1 -485.8 0.843
Il X3 -743.3 | 0.9434 X3 -668.1 0.9248
1] X2 -745.9 | 0.9456 X2 -691.1 0.9334
v X4 -727.4 1 0.9415 X4 -669.2 0.9272

D. Performance of theBP-ANN

The BP-ANN model is established through training with dataset | and tested with datdsat

each installation condition a separate model is established for the corrdctiom measured

liquid mass flowrate and the prediction of gas volume fraction. The inputs of tRNBIPfor

liquid mass flowrate correction include four variables, i.e. observed density drop, apparent mass
flowrate, damping and DP. The inputs of the BP-ANN for gas volume fraction prediction include
observed density drop, apparent mass flowrate and DP. The number of neyrmoribgLhidden

layer is determined using the equations belaswproposed by Hecht-Nielson and Rogers and
Dowla [33):

L<2n+1 (15)

19



L<— (16)

where n andn are the numbers of input variables and training samples, respectively. However,
equations (15) and (1@ive only the range df for BP-ANN models. The exatt for a model

can be selected by a trial-and-error method to compromise between minimizing erdors a
achieving good generalization capability. The output layer has one neuron fanedehsince
there is only one output variable.

The BP-ANN transfer function between the input and hidden layers is hyperbolic tangeoidig
transfer function. The pure linear function is taken as the transfer function connectiidgtre h
layer to the output layer. The training function is Bayesian regularization whilst the learning
function is gradient descent with momentum weight and bias learning function. Trsiopsy
when the maximum number of epochs is reached or the performance is minimizeddal tte

this study, NRMSE (Normalized Root-Mean-Square Error) is used to assessftirenance oa

data driven model, which is defined as

118 N2
NRMSE== |=>"(y; - ¥, 17
5 i:l(y %) (17)

wherey, is the reference mass flow rate of the liquid phase or gas volume fraytitve mean of

y;, V. the corrected mass flow rate or predicted gas volume fraction from thdrod&ta model

accordingly, and m the number of samples used.

As the weights and biases between the neurons are initialized randatifferent BP-ANN is
obtained for each training, resulting in different performance. A preliminary study of engrag
NRMSE of more than 200 BP-ANNSs did not show any noticeable difference. Therefore,rin orde

to minimize the effect of random initialization of an ANN, the average NRMSE oBPOANNS

20



with the same structuis calculated to assess the effect of the hidden neurons on the performance
of theANN.

For the models for liquid mass flowrate correction, the number of neurons in the lagelers

set from 4 to 9 as per equations (15) and (16). The NRMSE valudse @P-ANNs are
summarized in Figll The error bars indicate the maximum and minimum errors ofBE90
ANNSs for the same structurkn view of the errors on both training and test dataset&Rr&NN

with 7 neurons in the hidden layer performs better than other structures undeormhtal and
vertical conditions. The BP-ANN used for gas volume fraction prediction has NR&SE

when the number of the hidden neurons is 6.
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Fig. 11. Performace of BP-ANNSs with differenct numbers of neurons in the hidden layer.
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Once the structure oh BP-ANN is determined, the trained neural network which has the
minimum error with the test datagstselected. Fig. 12 shows the errors of the corrected liquid
mass flowrate from thBP-ANNSs. For the horizontal and vertical pipelines, the relative errors are
mostly less than 2% (the red dash lines in ER).with the training dataset except some larger
errors at low flowrates of 700 kg/h and 1000 kg/h. This is very likely due to larger bubbles or
slugs appearing in the flow tubes under low flowrate which affects the Coriolis flowmeter
behaving differently from smaller bubbles. The trained AN has relatively larger errors at

low flowrates and hence result in unsatisfactory performance with the test datasehersdene

experimental conditions.
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Fig. 12. Errors of the corrected liquid mass flowrate from theedBP-ANNS.

Since the gas volume fraction under the experimental conditionessiiog 0 to 30% and the
intrinsic complexity of two-phase flow, the relative errors of the predicted gas voluatierira

from the BP-ANNSs are quite large when the gas volume fraction is below 5%. A&stthened

gas increases, the errors from the training dataset are mostly within £10% (the red dash lines in
Fig. 13). For the test dataset, however, all the errors are less than +18&\@mtical pipeline,

even under the low flowrate conditions.
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Fig. 13. Error of the predicted gas volume fraction from the wedfeANNS.

E. Performance of thBBF-ANN

Fig. 14 shows the relative errors of the corrected liquid mass flowrate from the RBF-ANNS.
order to achieve more accurate results with the test dataset, the RBF-ARki¢ borizontal
pipeline disregards the errors at EmMlowrates(<2000 kg/h) and the network is trained to well fit
higher flowrates (>4000 kg/h). Consequently, the errors at bigftowrates with the training
dataset and the errors with the test dataset are reduced to £1%. Due to the imgigifiicance

in the original erra between the loer and higler flowrates on the vertical pipeline, the RBF-

ANN vyields errors between £2% with the training dataset and +1% with the test dataset.
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(a) Errors of the corrected mass flowrate on horizontalipg@lith training dataset
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Fig. 14. Errors of the corrected liquid mass flowrate from the RBIN#
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As shown in Fig. 15, the RBF-ANN for gas volume fraction prediction outperformsisagrilf/
theBP-ANN, particularly under the low entrained gas. When the gas volume fraction is below 5%,
the maximum relative errors from RBF-ANNs on both horizontal and vertical pipelines are
around +30%. The rest errors with the training dataset are well within +10%. Tlierelabrs

from the test dataset are almost less than +10%, except at the floivrB®®0 kg/h on the
horizontal pipeline. This is probably due to the fact that the samples at 1000 kgrhatéaave far

away from the centre vectors in the network.
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(b) Errors of the predicted gas volume fractorhorizontal pipeline with test dataset
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Fig. 15. Errors of the predicted gas volume fraction fronRBE-ANNS.

F. Performance of the SVM

SVM models are also established for both installation conditions. An important difference
between the&sVM and ANN models is that thBVM leads to a unique deterministic model for
each dataset while ANNs depend on a random initial choice of synaptic weightsaamot
produce the fixed results. Through a direct comparison of the performances di&wben the

four kinds of kernel function (Tablél), we know that the SVM with radial basis function

generates the smallest NRMSE among the four models.
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Table Il NRMSE of SVM with different kernel functions

Data set 1 Data set 2

Model : . Radi'al : , . . Radi_al , ,

Linear | Polynomial| basis | Sigmoid | Linear | Polynomial| basis | Sigmoid

function function
H-L 5.62% 11.12% | 0.11% | 889.50 | 7.44% | 10.97% | 0.58% | 738.32
V-L 6.32% 10.33% | 0.10% | 91190 | 9.39% | 11.42% | 0.57% | 777.32
H-G 21.37% | 28.37% | 3.44% | 606.58 | 2.6% 5.68% 3.29% | 138.03
V-G 27.27% | 34.08% 2.16% | 683.13 | 3.71% 6.78% 3.2% 171.56
From Fig. 16 (a) and (c), the SVM model performs well to fit with training data andthmit

relative errors on horizontal and vertical pipelines to +1% or less, esoe points at 700 kg/h

and 1000

kg/h, which is a common problem for the ANN and SVM models. The gernieraliza

ability of the SVM model is proven as shown in Fig. 16 (b) and (d). Most errorstii@&VM

models with the test data are reduced to +1%.
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Fig. 16. Errors of the corrected liquid mass flowrate error lt@SVMs.
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Fig. 17 indicates that, for gas volume fraction predicteless number of points from the SVM
models have an error beyond +10% with the training dataset. Since the kernel fusetian
the SVM models is radial basis function, the performance of the SVM models has the common

problem with the RBF-ANN. The relative errors in the predicted gas volume fractiothasitest

dataset at the flowrate of 1000 kgghHarger than other test data.
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Fig. 17. Errors of the predicted gas volume fraction from the SVMs.

G. Performance of the GP

Four (P models are established in this study for correcting the liquid mass flowrate and
predicting the gas volume fraction, respectively, for horizontal and vertsdllations of
Coriolis flowmeters. The parameters that were set in the GP algorithms include: popidation s
250, tournament size 25, elitism 0.7, maximum number of genes allowed in anuadi&jd
function set {x, -, +, tanh, mult3, add3}, terminal setg {, X3, x4} for models H-L and V-L and

{X1, %, xa} for models H-G and V-G.
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The GP-based formulations for the four models are given below:

Yy = 0.994x, — 2633x, +4300tanh, ) tanhfs) +13.2x,X, + 0.00571x,X; — 0.0995x,X, tanh, ) + 62.4 (18)
Y| = X, +57.6x; — 0.161x, + 29.8x,x, +871tanh&>x,) tanh, ) - 0.00913x, (X5 + X1X4) (19)
—0.122x,X,%3 +32.5

Yu_c = 0.783% + 1.6e ®x, + 0.00278x; — 0.114x,%; + 0.159x2x; + 6.82e °x3 — 0.0182 (20)
Yv_g = 1.01x; — 5.49¢ ', — 0.0217x; — 2.74e ™" tanh() — 1.05¢ *x;x, + 2.74e X, %, + 0.00253x,x3 (21)

—1.05e *x2x; — 2.746” " X,X,%5 + 0.00587
The errors of the corrected mass flowrate on the training dataset using GP areyhigbét and
25%, respectively, under horizontal and vertical installations (Fig. 18 (a) and (i, nebults in
larger errors on the test dataset (Fig. 18 (b) and (d)). As can be selmgaerrors normally

occur at low flowrates, which indicates that the GP modelaratgle to approximate all the data.
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Fig. 18. Errors of the corrected liquid mass flowrate error frar@ps.

As shown in Fig. 19, for the prediction of gas volume fraction, the outputs of GP models ha
large errors for low gas entrainment and low flowrates. The relative errors with test data5%a

and -50% on horizontal and vertical pipes, respectively.
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Fig. 19. Errors of the predicted gas volume fraction from the GP

H. Perforamce comparison betweR-ANN, RBF-ANN, SVM and GP

(1) Robustness

In order to assess the robustness of the four models for two-phase flow measutieenent,
averaged NRMSE values are shown in Fig. e models for liquid mass flowrate correction
and gas volume fraction predictioBP produces larger errors than the other three techniques.

Both BP-ANN and RBF-ANN have similar mean NRMSE with the training dataset, while the
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SVM models yield less errors. With the test dataB&tANN, RBF-ANN and SVM methods
perform similaly on Model-H-L and Model-V-L. However the SVM models are significantly
better than thé8P-ANN, RBF-ANN and GP models for the prediction of gas volume fraction.
Moreover BP-ANN and RBF-ANN have uncertain parameters to optimize which could result in
differerces in performance. However, due to ithéixed structure, the SVM models produce
repeatable results all the time. This outcome suggests that the SVM models are supetior

ANN and GP models in term of robustness.
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Fig. 20. Performance comparison between ANNs, SVMs and GPs.

(2) Accuracy

Fig. 21 depicts the relative error histograms of the ANNs, SVMs and f@Pcorrected liquid

mass flowrate. It is clear that the error distributions of the GP and ANN modetsuarewider

and dispersive than the SVM models. Through comparing the mean value and standard deviatio
of the errors between the eight error distributions (T&b)e we can see that the SVM model

with the lowest mean value and standard deviation outperforfaR#&NN, RBF-ANN and GP
models for liquid mass flowrate measurement on both horizontal and vertical pipelines. Moreover,

the data driven models (mean value 0.0008% and standard deviation 0.40%) on the vertical
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Relative Error (%)

(6) SVM: V-L

38

pipeline perform better thahose on the horizontal pipeline (mean value 0.0585% and standard

deviation 0.66%).
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Fig. 21. Relative error histogram of ANNs, SVMs ands@fP corrected liquid mass flowrate.

TablelV Mean and standard deviation of the relative error distribution for liquid mass flowregetiwor

Model BP-ANN RBFANN SVM GP

Model H-L | Mean (%) 0.0823 1.2200 0.0585 0.2405
Standard deviation (% 1.03 2.30 0.66 2.83

Model V-L | Mean(%) 0.0548 -0.0248 0.0008 0.1660
Standard deviation (% 1.50 0.61 0.40 2.77

Fig. 22 shows the relative error histograms of the four kinds of models for gas volactierfr
prediction. GP models hawedarger range of errors than all other models. The error distribution of
the SVM modelis much narrower than the ANN models for the measurement of gas volume
fraction It can be seen that most errors of the SVM models are concentrated asvanine.
Table V shows that the standard deviations of the SVM and RBF-ANN models are smaller tha

that of theBP-ANN and GP models on both horizontal and vertical pipelines.
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Fig. 22. Relative error histogram of ANNs, SVMs ands@&»MP gas volume fraction prediction.

Table V Mean and standard deviation of the relative error distribution for gas volutienfraediction

Model BP-ANN RBFANN SVM GP

Model H-G | Mean (%) 0.17 -0.26 -0.25 3.15
Standard deviation (% 11.88 6.02 6.95 17.70

Model V-G | Mean(%) -0.18 0.50 -0.38 -1.99
Standard deviation (% 9.70 4.70 5.57 20.62

TableVI Accuracy comparisons of ANN, SVM and GP models

Model H-L V-L H-G V-G

Error limit <42% <+1% <+2% <+1% <+10% <+10%
BP-ANN 91.95% 80.08% 89.66% 79.69% 79.31% 86.21%
RBF-ANN 82.76% 72.80% 97.70% 91.57% 90.80% 95.79%
SVM 96.93% 93.49% 98.85% 96.17% 93.10% 94.25%
GP 68.20% 54.41% 83.14% 67.05% 55.56% 54.79%

In order to assess the accuracy of the ANN, SVM and GP models, the percentagemkaige

data for each model which can achieve the accuracy of +2% and +1% tixedpetor liquid

mass flowrate measurement and £10% for gas volume fraction prediction is calculated and
summarized in Tablgl. For liquid mass flowrate measurement with the SVM models, 93.49% of
the experimental data yield a relative error less than £1% on the horizontal pipeline whilst 96.17%

of the results are within £1% on the vertical installation. The SVM models predict the gas volume
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fraction with a relative error less than 10% for 93.10% and 94.25% of the test@madin
horizontal and vertical installations, respectively. Therefore, the SVM model®rmerf
significantly better than theBP-ANN, RBF-ANN and GP models for two phase flow

measurement in terms of robustness and accuracy.

V. CONCULSIONS

In this paper, experimental and analytical investigations have been carried out to assess the
performance oBP-ANN, RBF-ANN, SVM and GP for gas-liquid two-phase flow measurement
using Coriolis flowmeters. Results presented have suggjtst the SVM models are superior

to the two ANN models and th&P models for two-phase flow measurement in terms of
robustness and accuracy. The SVM models perform well consistently while the performance of
ANN and GP models depends on the user-defined parameters. For liquid mass flowrate
measurement, the SVM models outperformBifReANN, RBFANN and GP on both horizontal

and vertical pipelines and the most corrected errors (>93%) are within £1%. For the gas volume
fraction prediction, the RBF-ANN and SVM models yield most relative errors (>90%) less than
+10% and outperform thBP-ANN and GP. It must be stressed that the significantly reduced
errors in mass flowrate measurement from the Coriolis mass flowmeters and gas volume fraction
prediction are achieved by using the existing data from the Coriolis flowmeters and aBinple
transducer without the use of any other devices. SVM has consistently outeerfaiN and

GP in the correction of liquid mass flow errors and prediction of gas volume fraction. This
outcome has effectively extended the applicability of Coriolis mass flownmieteicuid flow
measurement with a significant volume of entrained gas. In future work the data driven models
will be extended for the measurement of other liquids with different viscosities under two-phase

or multi-phase flow conditions.
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