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Identifying factors which allow the evolution and persistence of cooperative 

interactions between species is a fundamental issue in evolutionary ecology. Various 

hypotheses have been suggested which generally focus on mechanisms that allow 

cooperative genotypes in different species to maintain interactions over space and 

time. Here, we emphasise the fact that even within mutualisms (interactions with net 

positive fitness effects for both partners), there may still be inherent costs, such as the 

occasional predation by ants upon aphids. Individuals engaged in mutualisms benefit 

from minimising these costs as long as it is not at the expense of breaking the 

interspecific interaction, which offers a net positive benefit. The most common and 

obvious defence traits to minimise interspecific interaction costs are resistance traits, 

which act to reduce encounter rate between two organisms. Tolerance traits, in 

contrast, minimise fitness costs to the actor, but without reducing encounter rate. 

Given that, by definition, it is beneficial to remain in mutualistic interactions, the only 

viable traits to minimise costs are tolerance-based ‘defence’ strategies. Thus, we 

propose that tolerance traits are an important factor promoting stability in mutualisms. 

Furthermore, because resistance traits tend to propagate coevolutionary arms races 

between antagonists, whilst tolerance traits do not, we also suggest that tolerance-

based defence strategies may be important in facilitating the transition from 

antagonistic interactions into mutualisms. For example, the mutualism between ants 

and aphids has been suggested to have evolved from parasitism. We describe how 

phenotypic plasticity in honeydew production may be a tolerance trait that has 

prevented escalation into an antagonistic arms race and instead led to mutualistic 

coevolution. 

 

 

 

 

 

 

 

 2



Introduction 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

 

Mutualisms are best conceptualised as reciprocally exploitative relationships 

(Thompson 1982, Janzen 1985, Bronstein 1994, Herre, Knowlton and Mueller 1999) 

and, rather than viewing mutualism and antagonism as separate fields of study, much 

can be gained from drawing parallels between the two and identifying fundamental 

coevolutionary processes that govern both types of interaction. Although mutualisms 

are defined as net positive interactions for both partners, they often comprise both 

positive and negative interaction components (van Baalen and Jansen 2001, Bruno, 

Stachowicz and Bertness 2003). Organisms benefit from maximising positive 

components towards themselves, even if this is at the expense of costs to the partner. 

Thus conflict often occurs within mutualisms, where cheats arise and try to obtain 

benefits from a partner, yet offer nothing in return, thereby making the interactions 

unstable (the problem of the successful 'defect' strategy in the Prisoner’s Dilemma 

game) (Axelrod and Hamilton 1981). These cheats are less apparent in pure ‘by-

product mutualisms’ sensu Connor (1995),where partners simply trade unwanted 

waste products or cheap services (e.g. Matsuda and Shimada 1993); but cheats are 

most problematic in ‘investment mutualisms’ where partners pay a cost for the 

interaction, and this cost can be reneged upon by cheats (e.g. Yu and Pierce 1998).  

      In this essay, we present an additional hypothesis for the formation and stability of 

mutualisms based on the type of defence trait used by species to cope with the costs of 

the interaction. We propose that tolerance traits, rather than resistance traits, facilitate 

the formation of proto-mutualistic interactions. Futhermore, tolerance traits promote 

stability in these interactions, thereby paving the way for further mutualistic 

coevolution. Interactions between ants and mutualistic aphids may be an example of 

how tolerance traits have been important in the development and maintenance of 

stability in mutualisms. 
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The distinction between tolerance and resistance traits was first recognised in plant- 

herbivore interactions (Painter 1958, Rausher and Simms 1989, Fineblum and 

Rausher 1995, Strauss and Agrawal 1999). To cope with herbivory, resistance traits 

(e.g. thorns, trichomes, leaf tannins) minimise the damage a plant experiences 

(Rausher and Simms 1989) while tolerance traits (e.g. plant compensatory growth in 

response to herbivory) reduce the fitness consequences of any damage caused (Painter 

1958). More specifically, tolerance has been defined as the slope of a regression of 

fitness on damage for a group of related individuals (Mauricio, Rausher and Burdick 

1997, Strauss and Agrawal 1999). In this context, resistance would be the ability to 

reduce damage and shift any given interaction towards the y-intercept (zero damage). 

Rather than being solely restricted to plant- herbivore interactions, however, 

resistance and tolerance traits are also apparent in other antagonistic relationships, 

such as interactions between hosts and parasites (Roy and Kirchner 2000, Koskela, 

Puustinen, Salonen and Mutikainen 2002, Miller, White and Boots 2006, Råberg, Sim 

and Read 2007).   

      Whilst damage to plants by herbivores can be reasonably assessed by measuring 

tissue loss, however, the damage caused to hosts by parasites (i.e. internal disruption 

of vital host processes) is less easy to measure directly. Surrogates for damage, such 

as parasite burden, can by used, but there is no guarantee that parasite load is directly 

proportional to the damage done by them. The only way to accurately measure 

damage to hosts is with recourse to host fitness loss. However, defining damage 

through fitness loss and then defining tolerance as the slope of damage on fitness is 

clearly not sensible. Roy and Kirchner (2000) instead define resistance in host- 

parasite interactions as traits that prevent infection or limit its extent, while tolerance 

traits do not reduce or eliminate infection but instead offset or reduce its fitness 

consequences. This definition of tolerance focuses on the reduction or elimination of 

the antagonist, rather than on ‘damage’ to the host. Indeed, by Roy and Kirchner’s 

(2000) definition of tolerance, it is conceivable that damage to hosts could be reduced 

(the definition of a resistance trait in plants), yet the trait would still be classified as 

tolerance as long as infection levels by parasites were not reduced. Roy and 

Kirchner’s (2000) definition is also very specific to host- parasite interactions, 

however, and cannot be applied to plants and herbivores. We propose more general 
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definitions of resistance and tolerance, which encompass all antagonistic interactions 

(see Box 1). In general, resistance traits limit fitness loss to an actor through reducing 

encounters with the antagonist. Tolerance traits limit fitness loss to an actor without 

reducing encounters with the antagonist. 

 

Box 1 6 

7  

8 RESISTANCE 

Resistance traits limit fitness loss by reducing encounters with an antagonist. 9 

This is achieved in one of four ways. The first three mechanisms are often regarded as 10 

‘qualitative resistance’, whilst the last as ‘quantitative resistance’: 11 

Evasion- traits that move the organism away from its antagonist (e.g. good hearing, 12 

13 smell, vision and cooperative alarm behaviours to detect predators, along with 

14 morphological and behavioural adaptations to escape them). 

Deterrence- traits that force the antagonist to move away from the actor (e.g. the 15 

16 odorous secretions of skunks; toxic secondary chemicals, thorns and trichomes in 

17 plants). 

Exclusion- traits that simply maintain an impermeable barrier between actor and 18 

19 antagonist (e.g intricate floral structures preventing nectar thieves; narrow ostioles of 

figs preventing seed parasites).  20 

Elimination/ antibiosis- traits that destroy or harm the antagonist by limiting or 21 

reducing its growth rate, thereby reducing encounter between actor and antagonist. 22 

23 (e.g. lymphocyte cells in the immune system that target pathogenic bacteria; plant 

secondary chemicals which adversely affect insect herbivores *). 24 

25  

26 TOLERANCE 

Tolerance traits minimise fitness loss to the actor but without reducing 27 

encounter rate. 28 

29 Several different categories of tolerance can be identified: 

Compensation- A given level of herbivory causes less fitness loss to plants because 30 

of efficient tissue regrowth. 31 

                                                 
* Natural selection or learning may convert antibiosis traits into deterrence if the insect begins to avoid 
the plant (antixenosis). 
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Bribes- Attacks from antagonists are reduced through the host/ prey offering 1 

2 alternative goods or services (e.g. production of high quality honeydew by aphids to 

3 divert ant predation). 

Antidotes- Antagonists may cause incidental damage to hosts that is not adaptive (i.e. 4 

5 the damage is not correlated with increased fitness of the antagonist). In this case, 

6 hosts can evolve ‘antidote’ traits that reduce consequences of damage without 

7 necessarily reducing antagonist fitness (e.g antibody-mediated neutralisation of toxins 
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Tolerance traits increase the probability of transition into mutualism 
 

We suggest that the type of defence strategy used by an actor may affect the 

probability of antagonistic interactions switching to mutualism. Resistance and 

tolerance traits have different effects on the encounter rate between actors and 

antagonists, and this will result in different implications for the fitness of antagonist 

individuals (Roy and Kirchner 2000, Tiffin 2000, Miller and Boots 2005). Reduced 

encounter rates, achieved through resistance traits, make actors less available for 

antagonists, therefore antagonist fitness is often reduced (Strauss and Agrawal 1999). 

This leads to increased selection pressure on antagonists to locate and encounter 

actors and may also increase virulence. Thus, resistance traits can lead to 

coevolutionary arms races (Clayton, Lee, Tompkins and Brodie 1999, Strauss and 

Agrawal 1999, Juenger and Lennartsson 2000, Rausher 2001).  

      Tolerance traits, in contrast, do not reduce the encounter rate between actor and 

antagonist. Their fitness effects on antagonists are often neutral (Rosenthal and 

Kotanen 1994, Strauss and Agrawal 1999, Juenger and Lennartsson 2000, Tiffin 

2000), so they do not trigger coevolutionary arms races, which are unlikely to favour 

the development of mutualism. Furthermore, sometimes tolerance traits may even 

have positive fitness effects on antagonists, increasing encounter rate, and leading to 

more stable and persistent interactions (Roy and Kirchner 2000). For example, 

herbivores may have increased performance when feeding on higher nutritive value 

regrowth tissue (Stinchcombe 2002). Such, increased interaction between two groups 

of organisms may increase the chances of a shift towards mutualism. Indeed, 

theoretical models predicting the requisite conditions for the evolution of mutualism 
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often identify the frequency of establishment of interactions (encounter rate) between 

individuals as an important factor (e.g. Roughgarden 1975, Keeler 1981).  

      If tolerance defence strategies do indeed increase the probablility of transition into 

mutualism, then it is fitting to ask what factors lead to the adoption of tolerance, rather 

than resistance, traits? It should be noted at this point that defence strategies need not 

be dichotomous, based solely on tolerance or resistance. Rather these two strategies 

form the extremes of a continuum. Actual defence strategies may be mixed, involving 

several different tolerance and resistance traits. For example, the human immune 

system comprises resistance traits such as oily skin to exclude pathogens and T-killer 

cells to destroy invaders, but also tolerance traits in the form of antibody-producing B 

cells that neutralise antigens but do not reduce pathogen load. Trees with modular 

construction may also evolve a mosaic of shifting resistance-tolerance to enable 

different parts of their canopy to endure more or less herbivory in turn (Leather 2000). 

Whereabouts a lineage’s defence strategy lies on the resistance- tolerance continuum 

is likely to determine the chances of an antagonistic relationship de-escalating into a 

mutually beneficial one. Further study is warranted in this area, although one possible 

factor affecting type of defence strategy could be the allocation cost of mounting 

tolerance or resistance traits. The shape of the curve describing the relationship 

between resource cost and amount of resistance or tolerance gained is likely to affect 

the evolution of these traits. Another factor affecting the type of defence strategy is 

the intensity of the cost on the actor imposed by the antagonist (Restif and Koella 

2004). Very costly, or virulent, antagonists are more likely to select for resistance 

traits. For example, predators that kill their prey exact the maximum possible cost, 

and it is hard to tolerate being eaten (Dawkins and Krebs 1979)! Conversely, as costs 

from the interaction decrease, then selection can favour more tolerance based defence 

traits. Finally, in mutualistic interactions between co-operator genotypes resistance 

traits become maladaptive and tolerance traits are the only viable defence strategy. 

Thus, as the cost-benefit ratio changes, so does the optimum defence strategy (Fig. 1).  

      We should clarify here that by ‘mutualistic interaction’ we refer specifically to 

reciprocally beneficial interactions between co-operating genotypes. These 

interactions form the basis for ‘mutualism’ between two species. Mutualisms, 

however, are often parasitized by cheats that threaten the stability of the positive 

interactions between species. We define the interaction between an individual of one 

species and a cheating genotype from the second species as an antagonistic 
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interaction, as there are net fitness costs upon the individual of the first species. Thus, 

mutualisms between species contain mainly mutualistic interactions with cooperators 

but also antagonistic interactions with cheats. Much previous theory has concentrated 

on mechanisms by which cooperators of different species maintain coupling through 

time (e.g. partner choice (Nilson 1988, Bull and Rice 1991, Broughton, Jabbouri and 

Perret 2000, Brouat, Garcia, Andary and McKey 2001), and partner fidelity (Bull and 

Rice 1991, Margulis and Fester 1991, Herre 1993, Herre, Knowlton and Mueller 

1999, Bot, Rehner and Boomsma 2001, Thompson 2005)) and by which antagonistic 

interactions with cheats are limited (e.g. host sanctions and punishment (Trivers 1971, 

Axelrod and Hamilton 1981, Pellmyr and Huth 1994, Johnstone and Bshary 2002, 

Hoeksema and Kummel 2003, Kiers, Rousseau, West and Denison 2003, Bshary and 

Grutter 2005, Edwards, Hassall, Sutherland and Yu 2006)). These mechanisms are 

highly important in preventing the breakdown of mutualisms. We suggest, however, 

that in addition to these mechanisms tolerance traits may be crucial in a) the formation 

of new mutualisms and, b) maintenance of stability in existing mutualisms by limiting 

any costs imposed by cooperative genotypes, yet while maintaining a net positive 

interaction. Thus, within a mutualism tolerance traits may be directed towards 

cooperative genotypes, whilst resistance traits are simultaneously directed towards 

cheats. 

 

 

 

 

 

       

Mutualistic interaction Antagonistic interaction
Predator- prey

Host- parasite
Plant- herbivore

Tolerance traits Resistance traits

Co-operator genotypes in 
mutualism Cheat genotypes in mutualism

Mutualistic interaction Antagonistic interaction
Predator- prey

Host- parasite
Plant- herbivore

Tolerance traits Resistance traits

Co-operator genotypes in 
mutualism Cheat genotypes in mutualism

 

 
Fig. 1, As the total interaction cost for the actor increases (from mutualism through to weak and then 

virulent antagonism), there is increased selection to adopt resistance defence strategies. For predator 

prey interactions, resistance traits are the only option. Weakly antagonistic interactions may result in 

both types of defence trait, while for mutualistic interactions, tolerance traits are the only viable 

defence strategy.  
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Reciprocal positive interactions between species are often transient because there is 

no co-adaptation that couples species in space and time. Similarly, interactions 

between species may sometimes be mutually beneficial under certain circumstances 

yet not under others (e.g. parasitic bacteriophages conferring antibiotic resistance to 

bacteria may be beneficial in growth media containing antibiotics (Normark and 

Normark 2002)).  

      When mutually beneficial interactions are sufficiently stable (lineages of either 

species are repeatedly in contact over adequate evolutionary time), then adaptations 

can arise that faciliate the interaction by increasing the frequency, or maintaining the 

duration of, interspecific encounters. Such mutualistic coevolution increases mutual 

benefits, but also increases reliance on the partner, as adaptations for mutualism often 

have allocation costs (Connor 1995), and can reduce the fitness of mutualistic 

genotypes in environments where the partner is absent (De Mazancourt, Loreau and 

Dieckmann 2005). Mutualistic coevolution is thus a positive feedback process, 

increasing stablility in the interactions between species. The results are the highly 

coevolved interactions that are used as textbook examples of mutualisms between 

species, such as the pollination of fig trees by highly adapted agaonid wasps (Janzen 

1979, Weiblen 2002, Cook and Rasplus 2003). What factors, however, allow transient 

positive interactions to begin this gradual process of coevolution?  

      We propose that the type of defence strategy used by a species may be very 

important in increasing the stability of positive interactions. The consideration of 

defence strategies for the formation and stability of mutualisms is relevant because 

many mutualisms have arisen from previously antagonistic interactions (Thompson 

1982, Price 1997, Saikkonen, Faeth, Helander and Sullivan 1998, Jousselin, Rasplus 

and Kjellberg 2001, Westerbergh 2004). Also, as mentioned earlier, even highly 

coevolved mutualistic interactions have inherent costs that can be minimised using 

defences. Proximate mutualisms, in which removal of each partner results in a 

decreased performance of the other (sensu De Mazancourt, Loreau and Dieckmann 

2005), can arise from antagonistic interactions through evolved dependence (e.g. 

amoeba becoming dependent on parasitic bacteria for their functioning (Jeon 1972)), 

or through context dependence, such as in antibiotic resistance-conferring phages and 

bacteria (Normark and Normark 2002). When these proximate mutualisms occur, 
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resistance traits become maladaptive, because they reduce encounter rate with the 

partner species. Any kind of evasion, deterrence, elimination or exclusion of the 

partner will reduce fitness of the actor, because the interaction is mutualistic and 

reducing encounter with a mutualist is, by definition, maladaptive. Instead, tolerance 

traits will be selected for to cope with any costs inherent in the interaction. Tolerance 

traits minimise fitness costs to the actor, but they do so without reducing encounter 

rate, and so without sacrificing the overall benefits achieved from the interaction. This 

adoption of tolerance traits rather than resistance reduces the ‘pulling apart’ of the 

focal species, i.e. it reduces the evolution of traits that create asynchrony in space and 

time between the two species. Instead, synchrony is reinforced and the stability of the 

mutualistic interaction is promoted. Furthermore, whereas resistance traits reduce the 

fitness of the second species, potentially leading to antagonistic coevolutionary arms 

races, tolerance traits may have neutral or positive fitness effects.  

      We must stress that this view of the importance of tolerance traits in the stability 

of mutualistic interactions is very provisional and would certainly benefit from further 

investigation, such as the quantitative models used to test previous mutualism theory 

(e.g. see Hoeksema and Bruna 2000 for a review). In the next paragraph, we offer an 

example of how tolerance traits may partially explain a well known mutualism. 

  

 

Ants and aphids- an example of tolerance traits facilitating a mutualism? 
 

Ants (Hymenoptera: Formicidae) and aphids (Hemiptera: Sternorrhyncha: 

Aphidoidea) present an interesting system to consider the emergence of resistance and 

tolerance traits. Ants often tend aphids for honeydew, which they use as a fuel for 

foraging, but sometimes also prey upon aphids when protein is required by the colony. 

Predation is costly, although costs are not as severe as in normal predator- prey 

interactions because aphids are clonal organisms. Instead, the loss of individual aphids 

is only a partial loss to the aphid colony, which effectively reproduces as one unit. 

Aphid colonies benefit through protection from predators, hygienic services, transport 

and shelter and the interaction with ants is often described as an overall mutualism 

(for reviews see:Way 1963, Delabie 2001, Stadler and Dixon 2005).  

      Ant-tended aphids are often well adapted for the mutualism. Large quantities of 

high quality honeydew are produced and retained on the abdomen for ants (Darwin 
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1859, Banks and Nixon 1958, Del-Claro and Oliveira 1993). Conversely, aphids that 

are not ant-attended often retain defences such as evasion behaviour or deterrent traits 

(Buckley 1987, Suzuki and Ide 2008, Tokunaga and Suzuki 2008). These different 

adaptive strategies either increase or decrease encounter rates with ants and it appears 

that tolerance and resistance type strategies respectively are being used. This is 

explained in more detail below. 

 

In ant-tended aphids, honeydew quantity (Banks and Nixon 1958, Takeda, Kinomura 

and Sakurai 1982, Del-Claro and Oliveira 1993), and quality (Yao, Shibao and 

Akimoto 2000, Fischer and Shingleton 2001, Yao and Akimoto 2002), is actively 

increased in the presence of ants. Production of low volumes, or low quality 

honeydew leads to increased predation by ants, rather than tending (Edinger 1985, 

Sakata 1995, Sakata 1999, Fischer, Hoffman and Wolfgang 2001). This conditional 

predatory behaviour by ants could be viewed as a form of punishment, which 

promotes stability in mutualisms (Pellmyr and Huth 1994, Kiers, Rousseau, West and 

Denison 2003, Bshary and Grutter 2005, Edwards, Hassall, Sutherland and Yu 2006). 

Punishment behaviour by ants alone, however, is only half the story. Aphids must 

respond to such punishment, and they often appear to do so by modifying honeydew 

quality to minimise costs of predation.  

      Predation by ants is an important cost of the interaction for aphids (Way 1963, 

Offenberg 2001) and, thus, modifying honeydew serves as a means to decrease the 

cost of the interaction for an aphid colony. Increased honeydew quality effectively 

distracts ants from predating aphids, by increasing their relative value to ants as a 

renewable honeydew source rather than as prey items. There are likely to be costs of 

modifying honeydew (Fischer and Shingleton 2001, Yao and Akimoto 2001), just as 

all defence traits have allocation costs (e.g. Strauss, Rudgers, Lau and Irwin 2002). If 

the benefits of distracting ant predation more than offset these costs, however, than 

the strategy is feasible. Indeed a number of aphid species appear able to modify 

honeydew composition (Fischer and Shingleton 2001). Considering the effect this 

modification of honeydew has on the encounter rate between the aphid colony and the 

ants, there will clearly not be a reduction in encounter rate. Indeed, the recruitment of 

ant foragers is positively correlated with the value of a food source (Bonser, Wright, 

Bament and Chukwu 1998, Katayama and Suzuki 2003, Mailleux, Deneuborg and 

Detrain 2003, Portha, Deneuborg and Detrain 2004), and high quality honeydew-
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producing aphids attract more ants per aphid (Fischer, Hoffman and Wolfgang 2001, 

Fischer, Volkl  and Hoffman 2005). Thus, phenotypic plasticity of honeydew 

production in aphids is a trait that reduces the overall cost of interacting with ants i.e. 

a ‘defence’ trait. Furthermore, the reduced interaction cost is achieved without a 

reduction in overall encounter rate. Therefore we can describe it as a tolerance rather 

than a resistance trait.  

       

In contrast to the tolerance defence strategies described above, non ant-tended aphids 

may resist encounters with ants by using resistance traits. Such traits are well 

documented and include evasion behaviour, e.g. dropping from the plant triggered by 

alarm pheromones (Roitberg and Myers 1978, Arakaki 1989, Losey and Denno 1998, 

Suzuki and Ide 2008) or increased alate production (Kunert, Otto, Röse, Gershenzon 

and Weisser 2005, Mondor, Rosenheim and Addicott 2005). Alternatively, aphids 

may employ deterrence traits, e.g. waxy coverings, hard sclerotized cuticles, cornicle 

secretions, aphid toxicity or kicking behaviour (Buckley 1987, Bristow 1991, Dixon 

1998).  

     Overall, if ant attendance is not beneficial for aphid species, it is likely that they 

will evolve traits to minimise ant attendance. Such traits are resistance traits. In 

contrast, aphids which do benefit in some part may be selected for tolerance traits. 

After this initial selection for a particular defence strategy, evolutionary trajectories 

will split, with divergence reinforced through positive feedback processes; resistance 

traits intensify coevolutionary arms races, while tolerance traits facilitate stable 

mutualistic coevolution. Ecological factors may determine the initial direction of 

splitting (see Stadler and Dixon 2005, for explanations of ant-attendance), yet once an 

evolutionary pathway is commenced upon, the type of defence strategy, resistance of 

tolerance, will be important in reinforcing the trajectory through positive feedback 

processes. As such, tolerance traits such as plasticity in honeydew production may 

facilitate the  mutualism between ants and aphids. In the absence of tolerance traits, 

aphids would be unable to reduce the costs inherent in the interaction without using 

resistance. Such resistance would reduce selection for continued mutualistic co-

adaptation, thereby reducing the stability of the interaction. 
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To summarise, we have proposed the idea that defence traits may be important in 

maintaining stability in mutualistic interactions. Tolerance traits allow the costs 

inherent in an interaction to be minimised, whilst still allowing the overall interaction 

to be maintained. In contrast, resistance traits act to reduce synchrony in space and 

time with a partner lineage. Thus, the type of defence strategy used by a species may 

affect the likelihood of transition of an interaction into mutualism, as well as 

promoting stability within mutualisms. Phenotypic plasticity of honeydew production 

by aphids could be an example of how tolerance traits can facilitate mutualistic 

interactions. Many factors, such as aphid physiology and ant nutritional requirements, 

determine the initial coevolutionary trajectory of an interaction, but positive feedback 

in defence traits can lead to further divergence.  

      Whilst resistance traits promote escalating arms races, tolerance traits may pave 

the way for mutualistic coevolution. Indeed, the adoption of tolerance traits may be 

one of the primary mechanisms in the formation of persistent cooperative interactions 

between species. Differences in tolerance between species have been shown to 

influence community structure (Stowe, Marquis, Hochwender and Simms 2000) and 

this may be even more so if tolerance traits lead to mutualisms which fundamentally 

shape communities (Christian 2001, Stachowicz 2001, Gomulkiewicz, Nuismer and 

Thompson 2003, Hay, Parker, Burkepile, Caudill, Wilson, Hallinan and Chequer 

2004). We should highlight that this theory is very provisional and would benefit from 

further theoretical work investigating the evolution of tolerance; for example, by 

considering which factors promote tolerance over resistance strategies. Immediate 

candidates are the direct allocation costs of traits and also the cost of interacting with 

antagonists, with costly interactions selecting for resistance based strategies. To 

summarise, the study of tolerance has previously been restricted to antagonistic 

interactions. We suggest that broadening our consideration of tolerance defences to 

encompass mutualistic interactions will allow a better understanding of species 

interactions. 
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