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Resumo

Os avanços nos domínios da Inteligência Artificial (IA) e da Aprendizagem Automática
(AA) permitiram obter resultados impressionantes em vários problemas. Estes avanços
podem ser atribuídos, em grande medida, aos algoritmos de aprendizagem profunda, es-
pecialmente às Redes Neuronais Convolucionais (RNCs). O sucesso crescente das RNCs
deve-se principalmente ao engenho e aos esforços de engenharia de especialistas que con-
ceberam e otimizaram arquiteturas de redes neuronais poderosas, obtendo resultados
sem precedentes numa vasta panóplia de tarefas. No entanto, a aplicação de um método
de AA a um problema para o qual não foi especifícamente concebido traduz-se normal-
mente em resultados sub-óptimos, que, em casos extremos, pode levar a desempenhos
medíocres, dificultando assim a sustentabilidade dos sistemas e a massificação da sua
utilização por não-especialistas. A conceção de RNCs para problemas específicos é uma
tarefa difícil, uma vez que muitas escolhas de conceção das redes não são independentes
umas das outras. Assim, tornou-se imperativo automatizar este processo através da con-
ceção e desenvolvimento de métodos de Pesquisa Automática de Arquiteturas (PAA).

As arquiteturas encontradas com base em métodos de PAA alcançaram desempenhos
notáveis em várias tarefas, superando as redes concebidas por humanos. No entanto, os
métodos de PAA ainda enfrentam vários problemas. A maioria destes métodos depende
fortemente de pressupostos definidos por humanos que restringem a pesquisa, como a
estrutura da arquitetura, o número de camadas, heurísticas para a definição de parâmet-
ros e os espaços de pesquisa. Os espaços de pesquisa mais comuns consistem em mó-
dulos repetíveis (células), em vez de explorarem totalmente o espaço de pesquisa da ar-
quitetura através da conceção de arquiteturas completas (pesquisa macro), necessitando
assim de conhecimento humano, restringindo a pesquisa a definições pré-definidas e lim-
itando a exploração de arquiteturas novas e diversas, devido à existência de regras pré-
definidas. Mais ainda, a necessidade de grandes capacidades de computação é ainda iner-
ente à maioria dos métodos PAA e apenas alguns podem efetuar uma pesquisa macro.

No plano desta tese, o objetivo principal foi desenvolver novas soluções para mitigar
os problemas mencionados anteriormente. Em primeiro lugar, apresentamos uma aná-
lise exaustiva dos componentes, métodos e benchmarks de PAA. Para este último, reali-
zamos um estudo sobre a importância das diferentes operações, avaliando a influência
que o conjunto de operações dos espaços de pesquisa tem sobre o desempenho das ar-
quiteturas geradas. De seguida, estudámos o comportamento de várias redes neuronais
em diferentes problemas de classificação e propusemos dois novos métodos para melho-
rar as redes neuronais existentes com PAA: i) procurando um novo componente de classi-
ficação e ii) procurando um método de fusão que permita efetuar uma classificação mul-
timodal. De seguida, procurámos melhorar o custo de pesquisa dos métodos de PAA, pro-
pondo uma estratégia de estimativa que classifica as arquiteturas na fase de inicialização
através da análise da matriz Jacobiana e uma pesquisa evolutiva que gera arquiteturas
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com base em operações de mutação, tirando partido da estimativa de custo zero para ori-
entar eficazmente o processo de pesquisa. Para melhorar ainda mais as capacidades dos
métodos de PAA, estendemos o estudo sobre arquiteturas em fase de inicialização, pro-
pondo um segundo método de custo zero, que analisa o Neural Tangent Kernel de uma
arquitetura gerada para inferir o seu desempenho final caso esta seja treinada. Propuse-
mos também um novo espaço de pesquisa que aproveita extratores de características pré-
treinados (RNCs) e força a pesquisa apenas para uma pequena arquitetura que aprende
uma nova tarefa baseado nas informações geradas pelas redes maiores. Com estes dois
métodos, mostrámos que redes de grande dimensão podem ser eficientemente aproveit-
adas para aprender novas tarefas sem necessidade de qualquer afinação ou de grandes
recursos computacionais. De forma a aprimorar os custos de pesquisa e de memória dos
métodos de PAA, propusemos o MANAS. Este método formula o problema de otimiza-
ção de PAA como um problema de multi-agentes. Este utiliza agentes independentes que
procuram operações de forma distribuída, repartindo assim o espaço de pesquisa. Com
o MANAS, mostrámos que tanto o custo de pesquisa como os recursos de memória po-
dem ser significativamente reduzidos, melhorando em simultâneo, o desempenho final.
Por fim, para levar a área de PAA a espaços e configurações de pesquisa menos restri-
tos, propusemos o LCMNAS, um método de PAA que efetua uma macro-pesquisa sem
depender de heurísticas predefinidas ou de espaços de pesquisa restritivos. O LCMNAS
introduz três componentes para o melhorar a otimização de PAA: i) ummétodo que apro-
veita as informações sobre arquiteturas existentes para autonomamente gerar espaços de
pesquisa complexos com base em grafos pesados com parâmetros ocultos, ii) uma estraté-
gia de pesquisa evolutiva que gera arquiteturas completas a partir do zero e iii) uma abor-
dagem de estimação de desempenho misto que combina informações sobre arquiteturas
na fase de inicialização e estimativas de fidelidade reduzida para inferir a capacidade de
treino de uma arquitetura, assim como a sua capacidade de modelar funções complexas.

Os resultados obtidos pelos métodos propostos mostram que é possível melhorar os
métodos de PAA no que respeita aos custos de pesquisa e de memória, bem como em
termos de computação necessária, obtendo resultados competitivos. Todos os métodos
propostos foram avaliados em vários espaços de pesquisa e em vários conjuntos de dados,
mostrando desempenhos elevados, requerendo ao mesmo tempo apenas uma fração do
tempo e das necessidades de computação dos métodos de PAA anteriores.

Palavras-chave

PesquisaAutomática deArquitecturas, AutomatizaçãodeAprendizagemAutomática, Apren-
dizagem Automática, Visão Computacional, Aprendizagem Profunda, Redes Neuronais
Convolucionais, Otimização de Parâmetros.
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Resumo Alargado

Os avanços nos domínios da Inteligência Artificial (IA) e da Aprendizagem Automática
(AA) permitiram obter resultados impressionantes em vários problemas. Estes avanços
podem ser atribuídos, em grande medida, aos algoritmos de aprendizagem profunda, es-
pecialmente às Redes Neuronais Convolucionais (RNCs). O sucesso crescente das RNCs
deve-se principalmente ao engenho e aos esforços de engenharia de especialistas que con-
ceberam e otimizaram arquiteturas de redes neuronais poderosas, obtendo resultados
sem precedentes numa vasta panóplia de tarefas. No entanto, a aplicação de um método
de AA a um problema para o qual não foi especifícamente concebido traduz-se normal-
mente em resultados sub-óptimos, que, em casos extremos, pode levar a desempenhos
medíocres, dificultando assim a sustentabilidade dos sistemas e a massificação da sua
utilização por não-especialistas. A conceção de RNCs para problemas específicos é uma
tarefa difícil, uma vez que muitas escolhas de conceção das redes não são independentes
umas das outras. Assim, tornou-se imperativo automatizar este processo através da con-
ceção e desenvolvimento de métodos de Pesquisa Automática de Arquiteturas (PAA).

As arquiteturas encontradas com base em métodos de PAA alcançaram desempenhos
notáveis em várias tarefas, superando as redes concebidas por humanos. No entanto, os
métodos de PAA ainda enfrentam vários problemas. A maioria destes métodos depende
fortemente de pressupostos definidos por humanos que restringem a pesquisa, como a
estrutura da arquitetura, o número de camadas, heurísticas para a definição de parâmet-
ros e os espaços de pesquisa. Os espaços de pesquisa mais comuns consistem em mó-
dulos repetíveis (células), em vez de explorarem totalmente o espaço de pesquisa da ar-
quitetura através da conceção de arquiteturas completas (pesquisa macro), necessitando
assim de conhecimento humano, restringindo a pesquisa a definições pré-definidas e lim-
itando a exploração de arquiteturas novas e diversas, devido à existência de regras pré-
definidas. Mais ainda, a necessidade de grandes capacidades de computação é ainda in-
erente à maioria dos métodos PAA e apenas alguns podem efetuar uma pesquisa macro.
De forma a mitigar os problemas mencionados, esta tese apresenta várias contribuições
descritas ao longo de oito capítulos.

O primeiro capítulo define o âmbito e o problema na qual esta tese se enquadra. Além
disso, são também descritos os principais problemas de métodos de PAA, assim como
os objetivos do presente trabalho de investigação. Por fim, são também apresentados os
principais avanços tecnológicos fruto deste trabalho que contribuíram para umamelhoria
dos domínios de AA e PAA.

No segundo capítulo apresentámos uma revisão abrangente dos conceitos que com-
põem ummétodo de PAA e como os benchmarks podem ser um passo importante para se
efetuarem avaliações comparativas de forma justa. Primeiro, introduzimos o problema de
conceber RNCs e como os métodos de PAA automatizam esse processo com base em três
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componentes: o espaço de pesquisa, a estratégia de pesquisa e a estratégia de estimativa
de desempenho. Para cada um deles, analisamos diferentes métodos, as suas vantagens
e como essas propostas influenciam um método de PAA. Baseado nisso, mostramos que
os métodos de PAA são ainda dependentes de diversas escolhas de desenho, afetando em
grande escala o desempenho final e a computação necessária para efetuar uma pesquisa
por redes neuronais. Efetuar comparações justas é extremamente difícil, pois diferentes
métodos têm diferentes protocolos de treino e espaços de pesquisa. Deste modo, apresen-
tamos também uma revisão sobre benchmarks de PAA e analisamos detalhadamente os
três mais populares de forma a analisar o impacto das operações no resultado das redes
geradas. Com isto, descobrimos que as camadas convolucionais são essenciais para se
gerar arquiteturas com elevado desempenho e descobrimos também que a distribuição
dos intervalos de desempenho é enviesada, sugerindo que nestes benchmarks não é difí-
cil encontrar arquiteturas com precisões mais próximas do limite superior, uma vez que
vários padrões, como o seu posicionamento de operações numa célula e as combinações
de certas operações tendem a produzir arquiteturas com desempenhos competitivos.

O terceiro capítulo é inicialmente dedicado ao estudo do funcionamento e do comporta-
mento de diferentes redes neuronais na tarefa de deteção de defeitos de superfície e na
análise multimodal de sentimentos, com base em texto e imagem. Com base nos resulta-
dos obtidos através da avaliação de várias redes neuronais, propomos dois métodos para
a deteção de defeitos: CNN-Fusion, que funde as classificações de várias RNCs apenas
numa classificação final, e o Auto-Classifier, que aproveita as capacidades de extração de
características de uma RNC e complementa-as com base numa pesquisa automática por
umnovo componente de classificação. Para a análise de sentimentos de formamultimodal
propomos ummétodo que realiza uma análise individual do texto e de imagens, fundindo
essas classificações com base num componente de fusão, automaticamente gerado utiliz-
ando mecanismos de PAA. Os resultados obtidos pelos três métodos propostos mostram
que o aprimoramento de RNCs com PAA pode melhorar ainda mais as suas capacidades
de classificação.

O quarto capítulo apresenta dois métodos: EPE-NAS, uma estratégia de estimativa de
desempenho que avalia arquiteturas em fase de inicialização de forma a obter uma cor-
relação com o seu desempenho, caso sejam treinadas, e um algoritmo evolucionário que
aproveita o primeiro método para obter informações sobre o espaço de pesquisa de forma
rápida para orientar a pesquisa eficientemente. Primeiro, mostramos que, ao aproveitar
as informações sobre os gradientes na camada de saída de uma arquitetura em relação aos
dados de entrada, um método capaz de estimar o desempenho pode inferir com precisão
se a arquitetura gerada é boa em menos de um segundo, sendo capaz de avaliar milhares
de arquiteturas em questão de minutos. De seguida, apresentamos a estratégia evolutiva
que força uma pesquisa com base nas arquiteturas com melhor desempenho através da
geração de descendentes, e uma exploração do espaço de pesquisa através da realização
demutações. Ométodo proposto guia a evolução gerando várias arquiteturas e avaliando-
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as na fase de inicialização utilizando o método de estimativa de desempenho. Após esta
avaliação inicial, apenas a arquitetura commelhor classificação é treinada emantida para
a geração seguinte. A criação de múltiplas arquiteturas a partir de uma arquitetura exis-
tente na população em cada geração permite uma extração constante de conhecimento
sobre o espaço de pesquisa sem comprometer o desempenho. Os resultados de ambos
os métodos mostram que podem obter resultados excelentes, sendo extremamente efi-
cientes relativamente ao custo da pesquisa. Além disso, neste capítulo, mostramos que
usando uma simples pesquisa aleatória acoplada à estratégia de estimativa proposta, é
possível gerar arquiteturas de alto desempenho em segundos, capazes de superar muitos
dos métodos de PAA atuais.

No quinto capítulo, apresentamos duas abordagens eshorar os métodos de PAA. A
primeira é um espaço de pesquisa que utiliza grandes redes neuronais como extratores
de características. Isto permite aproveitar o poder de modelos pré-treinados, focando a
pesquisa apenas numa pequena arquitetura que aprende a resolver uma nova tarefa. O
segundo, é um novo mecanismo de estimativa de desempenho inspirado na utilização
de Neural Tangent Kernels (NTK) e no alinhamento entre vetores próprios para avaliar
arquiteturas em fase de inicialização. Ao incorporar grandes redes neuronais como ex-
tratores de características, o espaço de pesquisa proposto beneficia das capacidades efi-
cientes e robustas de representação de dados destas redes, permitindo o desenho de
pequenas arquiteturas que aprendem novas tarefas com base nas representações geradas.
Além disso, a arquitetura gerada centra-se na aprendizagem de uma tarefa utilizando as
representações criadas pelas redes neuronais de grande dimensão, eliminando a necessi-
dade de as voltar a treinar ou afinar em conjuntos de dados mais pequenos. Quanto ao
método de estimativa de desempenho, que avalia as arquiteturas com base no seu NTK
e tirando partido do alinhamento entre os vetores próprios, o método proposto propor-
ciona uma forma rápida e eficiente de avaliar arquiteturas sem necessidade de qualquer
treino. Os resultados dos vários testes efetuados validam a eficácia dos métodos propos-
tos. Mais ainda, o estudo da capacidade de generalização, utilizando diferentes espaços
de pesquisa, com diferentes métodos de pesquisa e diferentes mecanismos de estimativa
de desempenho, mostram o desempenho melhorado das arquiteturas geradas, onde es-
tas obtêm resultados competitivos, sendo capazes de melhorar os vários métodos de PAA
avaliados.

No sexto capítulo formulamos a PAA como um problema de otimização por múltiplos
agentes e propomos o método MANAS, uma ferramenta de aprendizagem multi-agente
e online. O método proposto tem duas implementações diferentes, sendo estas computa-
cionalmente leves, necessitando de poucamemória gráfica. As implementações propostas
diferem no que diz respeito à criação de arquiteturas e à atribuição de recompensas dur-
ante o treino. Ao formular PAA como um problema de otimização com base emmúltiplos
agentes, o método proposto é capaz de superar o estado da arte, reduzindo o consumo de
memória numa ordemde grandeza, aomesmo tempo que obtém excelentes desempenhos
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em termos de precisão e de tempo de pesquisa. Além disso, neste capítulo, propomos a
utilização de três conjuntos de dados que já foram exaustivamente utilizados em proble-
mas de visão computacional, mas não em NAS: Sport-8, Caltech-101 e MIT-67. Nestes,
mostramos empiricamente a eficácia do método proposto e avaliamos o desempenho de
diferentesmétodos deNAS, tais como pesquisa aleatória. Por fim, este capítulo, ao avaliar
múltiplos métodos de NAS, corrobora as preocupações levantadas em trabalhos recentes
que afirmam que alguns dos algoritmos de PAA mais utilizados obtêm frequentemente
pequenos ganhos comparativamente a uma pesquisa aleatória de arquiteturas.

O sétimo capítulo propõe uma nova abordagemde PAA, capaz de efetuarmacro emicro-
pesquisa sem restrições. Para tal, concebemos três novos componentes para o método
de PAA. Para o desenho do espaço de pesquisa, propomos um método capaz de gerar
autonomamente espaços de pesquisa complexos através da criação de grafos pesados
com propriedades ocultas a partir de RNCs existentes. A estratégia de pesquisa proposta
efetua micro e macro-pesquisa por arquiteturas por meio de evolução sem necessitar de
restrições definidas pelos utilizadores, comoo esqueleto das arquiteturas, definições de ar-
quiteturas iniciais ou heurísticas. De forma a avaliar rapidamente as arquiteturas geradas,
propomos a utilização de uma estratégia de desempenhomisto que combina informações
sobre arquiteturas em fase de inicialização com o seu desempenho em um conjunto de
validação após um treino parcial em um pequeno conjunto de dados. Os testes efetua-
dos mostram que ométodo proposto é capaz de gerar excelentes arquiteturas na pesquisa
baseada em células, superando os métodos atuais em onze conjuntos de dados diferentes,
e em três conjuntos de dados quando efetuado uma macro-pesquisa, onde o método con-
segue gerar arquiteturas a partir do zero comum requisitomínimo de computação gráfica,
alcançando erros de teste de 2,96% no CIFAR-10, 20,94% no CIFAR-100 e 43,35% no
ImageNet16-120. Além disso, neste capítulo é também estudada a importância de difer-
entes componentes que formam ummétodo de PAA, permitindo extrair conclusões sobre
a escolha de desenho de arquiteturas. Osmétodos propostos neste capítulo servem o obje-
tivo de expandir as fronteiras de PAA para espaçosmenos restritos, onde a experiência hu-
mana para a conceção de estruturas para arquiteturas e espaços de pesquisa é reduzida,
ao mesmo tempo que é capaz de gerar arquiteturas de uma forma eficiente, permitindo
assim um passo em direção à utilização generalizada de métodos de PAA para diferentes
problemas e conjuntos de dados.

Por último, os principais resultados deste trabalho de investigação são resumidos no
capítulo oito. Além disso, são também apontados, com base no trabalho desenvolvido e
nas contribuições desta tese, aqueles que acreditamos ser os passos futuros mais interess-
antes para a área de PAA.
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Abstract

Advances in Artificial Intelligence (AI) and Machine Learning (ML) obtained impress-
ive breakthroughs and remarkable results in various problems. These advances can be
largely attributed to deep learning algorithms, especially Convolutional Neural Networks
(CNNs). The ever-growing success of CNNs is mainly due to the ingenuity and engineer-
ing efforts of human experts who have designed and optimized powerful neural network
architectures, which obtained unprecedented results in a vast panoply of tasks. However,
applying aMLmethod to a problem forwhich it has not been explicitly tailor-made usually
leads to sub-optimal results, which in extreme cases can even lead to poor performances,
thus hindering the sustainability of a system and the wide-spread application of ML by
non-experts. Designing tailor-madeCNNs for specific problems is a difficult task, asmany
design choices depend on each other. Thus, it became logical to automate this process by
designing and developing automated Neural Architecture Search (NAS) methods.

Architectures found with NAS achieve state-of-the-art performance in various tasks,
outperforming human-designed networks. However, NASmethods still face several prob-
lems. Most heavily rely on human-defined assumptions constraining the search, such
as the architecture’s outer-skeletons, number of layers, parameter heuristics, and search
spaces. Common search spaces consist of repeatable modules (cells) instead of fully ex-
ploring the architecture’s search space by designing entire architectures (macro-search),
which requires deep human expertise and restricts the search to pre-defined settings and
narrows the exploration of new anddiverse architectures by having forced rules. Also, con-
siderable computation is still inherent to most NAS methods, and only a few can perform
macro-search.

In this thesis, we focused on proposing novel solutions to mitigate the problems men-
tioned above. First, we provide a comprehensive review of NAS components, methods,
and benchmarks. For the latter, we conduct a study on operation importance to evaluate
how the operation pool of search spaces influences the performance of generated archi-
tectures. Following, we studied how different neural networks behave for different classi-
fication problems and proposed two novel methods to improve upon existing neural net-
works with NAS by i) searching for a new classification head and ii) searching for a fusion
method that allows performing multimodal classification. We then looked into improv-
ing the search cost of NAS methods by proposing a zero-proxy estimation strategy that
scores architectures at initialization stage through the analysis of the Jacobianmatrix and
an evolutionary strategy that generates architectures by performing operation mutation
and by leveraging the zero-cost proxy estimation to efficiently guide the search process.
To further improve the capabilities of NAS methods, we extend the analysis of architec-
tures at initialization stage by proposing a second zero-cost proxy method, which looks
at the Neural Tangent Kernel of a generated architecture to infer its final performance if
trained. With this, we also propose a novel search space that leverages large pre-trained
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feature extractors (CNNs) and forces the search only to a small middleware architecture
that learns a downstream task. These two methods showed that large models can be effi-
ciently leveraged to learn new tasks without requiring any fine-tuning or extensive com-
putational resources. To further improve the search and memory costs of NAS methods,
we proposed MANAS. This method frames NAS as a multi-agent optimization problem
and uses independent agents that search for operations in a distributed manner. With
MANAS, we showed that both the search cost and the memory resources can be heavily
reduced while improving the final performance. Finally, to push NAS to less constrained
search spaces and settings, we proposed LCMNAS, a NAS method that performs macro-
search without relying on pre-defined heuristics or bounded search spaces. LCMNAS in-
troduces three components for the NAS pipeline: i) a method that leverages information
about well-known architectures to autonomously generate complex search spaces based
on weighted directed graphs with hidden properties, ii) an evolutionary search strategy
that generates complete architectures from scratch, and iii) a mixed-performance estim-
ation approach that combines information about architectures at initialization stage and
lower fidelity estimates to infer their trainability and capacity tomodel complex functions.

Results obtained by the proposed methods show that it is possible to improve NAS
methods regarding search andmemory costs, as well as computation requirements, while
still obtaining state-of-the-art results. All proposed methods were evaluated in multiple
search spaces and several data sets, showing improved performances while requiring only
a fraction of previous NAS methods’ time and computation needs.

Keywords

Neural Architecture Search, AutomatedMachine Learning, Machine Learning, Computer
Vision, Deep Learning, Convolutional Neural Networks, Parameter Optimization.
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Chapter 1

Introduction

1.1 Problem Definition and Research Objectives

The ever-growing success of Artificial Intelligence (AI) andMachine Learning (ML) ap-
plications created a demand for intelligent systems that can be used off the shelf without
care for their inner components. This success is mostly attributed to deep learning al-
gorithms, especially neural networks, which have been used with great success [5, 6]. Ad-
vances in deep learning and especially Convolutional Neural Networks (CNNs), can be
largely attributed to the ingenuity and engineering efforts of human experts who have
designed and optimized powerful neural network architectures that have been extens-
ively applied with great success to different problems, obtaining unprecedented results
[5, 6, 7, 8]. However, applying a ML algorithm to a problem for which it has not been
explicitly tailor-made usually leads to sub-optimal results, which in extreme cases can
even lead to poor performances, thus hindering the sustainability of a system and the
wide-spread application of ML by non-experts. Designing tailor-made ML algorithms for
specific problems is a difficult task, as many design choices are dependent on one an-
other. This is especially true when designing CNNs. The design and engineering of CNNs
is a grueling endeavor that heavily relies on human expertise and results from years of
expertise and extensive architecture engineering. Design choices, such as selecting the
appropriate types of layers, defining their connections, setting hyper-parameters, choos-
ing activation functions, deciding when and where to normalize feature maps, and more,
all contribute to the complexity of the task.

Given the complexity of designing efficient ML systems and recent advances in hard-
ware, it became logical to (re-)explore automated approaches for this process [9, 10].
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Figure 1.1: Comparison between traditional ML workflow and the workflow of an AutoML method.
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The field of AutoML is a field of research whose aim is to develop methods and tools to
provide efficient and automated mechanisms that can be used to design tailor-made ML
algorithms for a user’s problems [10]. AutoML systems typically automate the process of
data processing and feature preprocessing steps for a given data set, as well as algorithm
search, which might include the design of the model’s hyper-parameters. In massified
ML systems, these steps are typically performed by the users (except for feature extrac-
tion when using deep neural networks) [11]. A generalist comparison of the difference
between traditional ML and AutoML workflows is depicted in Figure 1.1.

Within AutoML, there are two other significant andmore focused fields of research (Fig-
ure 1.2). The first one is hyper-parameter optimization, which focuses on choosing a set of
optimal hyper-parameters for a learning algorithm that ultimately leads to the right com-
bination of values that allow a ML method to perform well on the given data. The second
one, NAS, intends to automate architecture engineering and design for neural networks,
which are amongst the most complex ML methods [12, 10]. This topic shares some simil-
arities with hyper-parameter optimization whenever NAS methods optimize not only the
architecture but also the layer’s weights and associated hyper-parameters [13, 14]. The
topic of NAS is relatively recent, as it has been overlooked due to its complexity and hard-
ware inefficiencies [13]. Then, in 2016, Barret Zoph and Quoc Viet Le (re-)ignited the
topic by formulating NAS as a Reinforcement Learning (RL) problem, where a control-
ler is trained over time to sample efficient architectures [15]. Several NAS methods have
since been proposed and applied to a vast panoply of problems, including Image Classi-
fication (IC) [16, 2, 17, 18], semantic segmentation [19, 20], object detection [21], image
generation [22, 23], biometrics [24, 25, 26], natural language processing [27, 28], speech
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recognition [29, 30], andmany others [31, 32, 33, 34, 35]. In general, NASmethods can be
broken down into three distinct components: i) the search space, which defines the pool
of possible operations and, thereby, the types of architectures that can be designed; ii)
the search strategy, which is the approach used to explore the search space and generate
architectures; and iii) the performance estimation strategy, which is how the generated
architectures are evaluated during the search process (we refer the reader to chapter 2
for an extensive description). The search strategy can be further classified into two main
categories: micro-search and macro-search. Micro or cell-based search NAS focuses on
creating cells or blocks that are replicated multiple times to form an architecture, while
in macro-search, NASmethods aim to either design architectural connections or, in more
unconstrained scenarios, entire architectures.

Formally, NAS can be considered an optimization problem where the goal is to maxim-
ize an objective function [36]. To define NAS optimization problem, we first define a deep
learning algorithm, L, as a mapping from the space of data sets, D and architectures, A,
to the space modelsM,L : D ×A → M . For any data set d ∈ D, and architecture a ∈ A,
themapping returns the solution to the problem, which consists ofminimizing a loss func-
tion, L, using a regularization mechanism, R, with respect to the model,m, parameters θ,
architecture a, and the given data d:

L(a, d) = argmin
m(a,θ)∈M(a)

L(m(a,θ), d(train)) +R(θ) (1.1)

Thus, NAS can be defined as a nested optimization problem that given a data set, d,
and a search space, A, the optimization problem goal is to find the optimal architecture,
a∗ ∈ A, that maximizes the objective functionQ, on the validation set:

a∗ = argmax
a∈A

Q(L(a, d(train)), d(valid)) (1.2)

In IC problems,Q(·) usually takes the form of classification accuracy. However, as NAS
goal is to design optimal neural networks for a given problem, NAS methods should al-
low the design of architectures for problems rather than IC, such as segmentation and
regression, broadening the automation design to different problems.

Even though NAS research is very active and state-of-the-art methods perform well in
designing CNNs, there are still significant limitations and drawbacks that disallow its use
in a wider context:

• Most prominent NAS methods require substantial computational power, which
translates to dozens or even hundreds of GPUs [12, 37].

• The time required to search for an architecture is considerable, where in some cases
can ascend to thousands of GPU days [38, 15];
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• Designed architectures can have a high inference latency (time to process an input)
due to the architecture’s structure growing in both breadth and depth dimensions
[39].

• Search spaces depend heavily on human definitions and are usually small with
forced operations [40, 41].

• The search is primarily performed in a cell-based manner, where NAS methods
search for small cells that are later replicated in a human-defined outer-skeleton
[42, 2].

• Architecture’s parameters, such as the number of layers, inner-layer parameters
(e.g., the kernel size, output channels), the final architecture skeleton, fixed oper-
ations, and head and tail of the final architectures are usually defined by the authors
[40, 1, 41].

• Few methods can perform macro-search, and those that do still have considerable
search costs, precluding wide-spread application [12, 43].

• Reproducing results from the literature is challenging due to the complexity of the
algorithms and possible lack of detailed description of all the optimization and tools
used [40, 1, 44].

More, pre-defining rules and carefully designing search spaces and architecture’s struc-
ture undoubtedly induces human biases in the loop, which was found to often impact
the final result of the architectures more than the search strategy itself, as it pushes NAS
to constrained search spaces with very narrow accuracy ranges [40, 45]. Pre-defining
rules also jeopardizes the generalization of NAS methods, even to simpler settings [42, 1].
The overall idea of heading to NAS to avoid needing deep knowledge regarding architec-
ture design (Figure 1.1) ends up being frustrated since human involvement is required to
design the search space, the outer-skeleton scheme, the pool of operations, and all the
fixed hyper-parameters to ensure that a cell-based space is capable of designing efficient
CNNs. So, the general objective of this thesis is to study and develop novel methods to
improve NAS state-of-the-art, and ultimately AutoML by proposing a set of novel and
reproducible methods to mitigate the aforementioned problems. This research has the
following objectives as pillars:

• Evaluation and study of current state-of-the-art NAS methods and their inner com-
ponents. More, study how impactful are benchmarks and their search spaces in the
evaluation of NAS methods.

• Proposal of a new method that leverages NAS and AutoML to augment existing
neural networks in useful time. For this, the goal is not only to design new architec-
tures but to extend the use of already existing human-defined ones to understand
how they work and how these can be further improved.

4



Improving Neural Architecture Search

• Design and develop newmechanisms to evaluate generated architectures efficiently
and quickly, thus reducing the time taken by the most timely and expensive com-
ponent – the performance estimation.

• Development of several methods that reduce the time taken to perform the search
while also remaining competitive in terms of the performance of the generated ar-
chitectures.

• Improvement of existing NAS optimization strategies by allowing the search space
to be progressively analyzed, possibly in a distributed way, therefore allowing NAS
methods to efficiently search over very large search spaces, potentially unbounded.

• Development and validation of a novel NAS method that leverages information of
human-designed networks without limiting or enforcing the search space or explor-
ation. This should extend the field of NAS by heavily reducing human intervention
and the need for user-specified rules or heuristics.

• Extend the use of NAS from cell-based search to macro-search, thus providing a
mechanism for NASmethods to search for entire architectures from scratch without
pre-defined rules or outer-skeletons.

1.2 Main Contributions

In the following paragraphs, a brief description and summary of themain contributions
achieved throughout the development of this thesis and associated research initiatives to
advance the state-of-the-art in NAS are presented.

The first contribution of this thesis is a review of the state-of-the-art inNAS. This review
includes a study of NASmethods and 3 components that define amethod: search strategy,
performance estimation mechanism, and search space. The resulting study is shown in
chapter 2.

The second contribution is a comprehensive review of NAS benchmarks and a study
and evaluation of the impact that the different operations (layers), their combination, and
their occurrences have in the final performance. More, in this study, an evaluation of the
analyzed search spaces in terms of their architecture’s performance distribution is also
provided. This study resulted in a research paper submitted to a journal and is currently
in the second review stage [41]. This study is included in chapter 2.

The third contribution of this thesis is a novel defect detection method based on im-
proving CNNs by automatically searching for a new classification component. For this,
a set of image classifiers (CNNs) were implemented and studied. Based on the results,
an ensemble method and a novel method that searches for a new classifier to be concat-
enated to the best individual CNN were proposed. This work has been published in the
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International Conference on Neural Information Processing (ICONIP) 2020 [46]. This
contribution paved the way for the fourth one, where a deeper analysis of different image
and text classifiers was performed for sentiment analysis. Based on the results, a new
multimodal sentiment analysis method was proposed by leveraging AutoML and NAS to
design a fusion component that combines the individual classifications of the text and im-
age classifiers. This work was published in the International Joint Conference on Neural
Networks (IJCNN) 2021 [47]. These contributions are included in chapter 3.

The fifth contribution of this work introduced a zero-proxy estimation mechanism that
allows the evaluation of neural networks at initialization stage. With this proposal, NAS
methods can be significantly optimized, as this proposal scores architectures without re-
quiring any training, thus speeding up the search stage. This proposal was published at
the International Conference on Artificial Neural Networks (ICANN) 2021 and was awar-
ded the best paper award (“1st Springer & ENNS Best Paper Award @ ICANN21”) [48].
This work is presented in chapter 4.

The sixth contribution regards the proposal of an efficient evolutionary algorithm that
evolves architectures throughmutation and guides the search based on a quick evaluation
of the generated architectures. This work was initially accepted and presented at a Neur-
IPS 2021 workshop [49] and later improved and published in the Genetic and Evolution-
ary Computation Conference (GECCO) 2022 [50]. The proposed method was improved
by using a zero-proxy estimator to guide the search efficiently, and a full version with ex-
tended experiments and justifications on multiple data sets and benchmarks is currently
under review at a journal [51]. These are discussed in chapter 4.

The seventh contribution introduces a new way to leverage large CNNs trained on ex-
tensive data sets by combining their feature maps and designing a middleware architec-
ture that receives those featuremaps and learns to solve a downstream task. Coupled with
this, a new zero-proxy estimator that evaluates architectures at initialization stage by look-
ing at the alignment between the eigenvectors of the architecture’s Neural Tangent Ker-
nel (NTK) is proposed. The resulting work is in the submission stage. This contribution
is the basis for chapter 5.

The eighth contribution of this work is framing NAS as a Multi-Agent (MA) problem
and allowingmultiple agents to collaborate in order tomove the solution toward the global
minima (generating efficient architectures). In this, the search space can be efficiently dis-
tributed by coupling each decision with an agent, where each agent is only responsible for
sampling one operation (layer) on a cell-based search problem. This resulted in memory
and speed gains, which allows direct search on large data sets, including searching for
multiple cells at once. This was accepted for publication in Springer Machine Learning
[52] and is part of chapter 6.
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The ninth and final contribution of this work is a NAS method capable of perform-
ing macro-search, i.e., searching for entire architectures from scratch and without pre-
defined rules, generating search spaces from existing CNNs without requiring human in-
tervention, and quickly and efficiently evaluate architectures by combining a zero-proxy
estimator with a low-fidelity estimate. This work intends to push NAS boundaries to less
constrained spaces, where human-expertize for the design of inner-architecture paramet-
ers and search spaces is reduced while at the same time generating architectures in a very
efficient way. Therefore allowing a step towards wide-spread use of NAS for different
problems and data sets. This has been submitted to a journal and is in the second review
stage [43].

It is worth noting that the contributions of this research have been publicly disclosed,
and the code is available on GitHub to promote advances in the field. During this work, a
library to work with different NAS benchmarks has also been put publicly available, which
allows researchers to quickly and effortlessly work with different benchmarks without
needing to worry with the inner settings1 2 3 4 5 6.

1.3 Thesis Outline

The remainder of this thesis document is organized as follows: Chapter 2 introduces the
background ofNAS, presents a literature review, and a study ofNASbenchmarks. Chapter
3 describes the proposed methods to augment CNNs by searching for new classification
components and fusion mechanisms through NAS and AutoML. Chapter 4 presents the
proposed zero-proxy estimator that calculates statistics over an untrained architecture
to infer its performance and presents an evolutionary strategy that efficiently guides the
search by generatingmultiple architectures throughmutation and quickly evaluating their
possible performance with the zero-proxy estimator. Chapter 5 extends the use of zero-
proxy estimators by proposing a mechanism for evaluating architectures based on an ar-
chitecture’s NTK. More, this chapter also describes the search space proposed to leverage
large CNNs in downstream tasks by generating amiddleware architecture that takes their
feature maps as inputs. Chapter 6 discusses and presents a mechanism that uses a MA
framework to distribute the search space over different agents, thus providing a way to
quickly and efficiently perform cell-based search over a high number of cells. Chapter 7
describes the contributions of this thesis that show how NAS can be extended to a macro-
search setting and the associated proposedmethods to reduce the need for human expert-
ise when designing search spaces while remaining search efficient with excellent results.
Finally, chapter 8 summarizes thework done, provides conclusions, and presents possible
directions for future work.

1https://github.com/VascoLopes/AutoClassifier
2https://github.com/VascoLopes/Text-Classification
3https://github.com/VascoLopes/EPE-NAS
4https://github.com/VascoLopes/GEA
5https://github.com/VascoLopes/NAS-Benchmark-Evaluation
6https://github.com/VascoLopes/LCMNAS
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Chapter 2

RelatedWork

2.1 Introduction

Advances in the field of deep learning obtained impressive breakthroughs and remark-
able results in various problems. These advances can be largely attributed to the ingenu-
ity and engineering efforts of human experts who have designed and optimized powerful
neural network architectures. CNNs revolutionized the field of Computer Vision (CV) by
obtaining remarkable success in various tasks and became the backbone of many state-
of-the-art algorithms and applications in image understanding [7, 53, 54, 5, 6, 7, 8]. The
excellent results and popularity of CNNs can be greatly attributed to their ability to auto-
matically learn hierarchical representations from raw input data, capturing both low-level
and high-level visual features without requiring human-engineered features.

CNN is a type of deep learningmodel inspired by the organization of the visual cortex in
the human brain [55]. It consists of multiple layers of interconnected nodes, called neur-
ons, that try tomimic the behavior of neurons in the humanbrain. The key concept behind
CNNs is the use of convolutional layers, which perform local receptive field operations to
detect patterns and features in the input data, allowing the recognition of patterns that
are shifted (translation invariant), tilted or slightly warped within images. These layers
are typically followed by pooling layers to reduce spatial dimensions and increase compu-
tational efficiency. The final layers of a CNN are usually fully connected layers that map
the learned features to specific output classes or predictions.

CNNs consist of different types of layers, which in the context of NAS are commonly re-
ferred to as operations. Each operation serves a specific purpose in the learning process.
The most common layers found in a CNN include convolutional layers, pooling layers,
and fully connected layers. Most learnable layers, such as convolutional an pooling layers,
applies a set of filters, also referred to as kernels, to the input data. In the case of con-
volutional layers, they perform local receptive field operations by convolving learnable
filters, with the input data, thus extracting spatial features and preserving the spatial rela-
tionship between the input and the learned features. During the forward pass, the kernel
slides across the height and width dimensions of the input, producing a high-dimensional
representation of the input, usually referred to as an activation or feature map.

By combining different layers and components in varied configurations, CNN can ef-
fectively capture and extract meaningful features from input data. The design choices and
configurations of these layers have a significant impact on the network’s learning capacity
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Figure 2.1: Examples of some of the most influential neural networks for CV applications and associated
main contributions.

and performance. Different CNN architectures have gradually been proposed, increment-
ally showing that CNNs can be improved, by revising the architecture itself, adding ad-
ditional components such as residual connections, reducing the number of parameters,
the size or inference time, as well as the proposal of new and more efficient operations
[56, 57, 58, 59, 60, 61]. Some examples of the most influential neural networks for CV
applications are shown in Figure 2.1, where the associated contributions are depicted.

However, designing CNNs is a grueling endeavor that heavily relies on human expertise.
Design choices, such as selecting the appropriate types of layers, defining their connec-
tions, setting hyper-parameters, choosing activation functions, deciding when and where
to normalize feature maps, and more, all contribute to the complexity of the task. Design-
ing efficient CNNs results from years of expertise and extensive architecture engineering.
Thus, given the complexity of designing efficient CNNs, it has become logical to explore
automated approaches to this process [10]. In the next sections, we dive deeper into the
field of NAS and its inner components.

2.2 Neural Architecture Search

Deep learning, especially CNNs, automated the feature extraction and learning task,
thus removing a laborious step from theMLpipeline, leaving the architecture design prob-
lem to human experts. However, given the complexity of designing efficient CNNs, as it
requires years of expertise and extensive architecture engineering, it has become logical to
explore automated approaches to this process. NAS is a topic of research that aims to auto-
mate architecture engineering and design by autonomously designing high-performance
architectures for a given problem [12]. The origins of NAS and, more broadly, an auto-
mated design of neural networks can be traced back to neuroevolution, particularly with
the development of NEAT by Stanley and Miikkulainen in 2002 [62]. NEAT combined
evolutionary algorithmswith neural networks, allowing an automatic generation and evol-
ution of neural architectures. NEAT demonstrated promising results in various domains,
and follow-up work improved upon NEAT by proposing different evolutionary strategies,
optimization techniques, and extending it for new problems [63, 9, 64, 65, 66]. How-
ever, the application of neuroevolution was limited by the computational complexity and
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Figure 2.2: General flow of a NAS approach, where a controller generates an architecture A from a
predefined space of possible architectures,A. The generated architecture is then evaluated, and its

performance is used as a reward to update the controller. In this thesis, we propose several methods for all
three NAS components: search space, search strategy and the performance estimation strategy.

scalability challenges associated with evolving complex neural network architectures. For
an in-depth analysis of neuroevolution, we refer the reader to the comprehensive overview
presented in [67].

In 2016, B. Zoph andQ.V. Le re-ignited the topic of automating the design of neural net-
works by formulating NAS as a RL problem [15]. Here, a controller was trained based on
how well the generated architectures performed on IC tasks. This work demonstrated re-
markable success by achieving state-of-the-art performance on various challenging tasks,
including IC and language modeling, highlighting the potential of using automated meth-
ods to discover architectures that surpass the performance of manually designed ones.
Albeit yielding excellent results, it required more than 21900 days of GPU computation
to search for an architecture. So, as a follow-up work, the authors tackle this problem
by performing a cell-based search in a novel search space containing 13 operations [38].
Different NAS strategies have been proposed to improve upon initial results, including
novel RL strategies, evolutionary strategy mechanisms, gradient-based methods, one-
shot strategies andmore [68, 69, 70, 71, 72, 73, 74, 75]. Follow-upworks propose different
search spaces, optimization mechanisms and applications of NAS to different problems,
such as IC [16, 2, 17, 18], semantic segmentation [19, 20], object detection [21], image
generation [22, 23], biometrics [24, 25, 26], natural language processing [27, 28], speech
recognition [29, 30], and many other tasks [31, 32, 33, 34, 35], while consistently achiev-
ing state-of-the-art results.

In general, NAS methods can be broken down into three distinct components: i) the
search space, which defines the pool of possible operations and, thereby, the types of net-
works that can be designed; ii) the search strategy, which is the approach used to explore
the search space and generate architectures; and iii) the performance estimation strategy,
which is how the generated architectures are evaluated during the search process. A dia-
gram outlining the general interaction between these NAS components is depicted in Fig-
ure 2.2. The search strategy can be broadly classified into two main categories: micro-
search and macro-search. Micro-search NAS focuses on creating cells or blocks that can
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Figure 2.3: Main topics of research and development under each NAS component.

be replicated multiple times to form a complete architecture, while in macro-search, NAS
methods aim to design entire network architectures. With an increasing number of NAS
methods being proposed, the focus has been on optimizing the search process to reduce
the required computations while simultaneously improving the performance of the gen-
erated architectures, mainly on cell-based constrained settings [12, 76, 74, 77, 78].

In the following sections, we dive deeper into each component and present an overview
of several NAS proposals and their contributions. The structure of the following sections
follows the one depicted in Figure 2.3, where for each NAS component, we present several
topics of research.

2.2.1 Search Space

The search space refers to the set of all possible architectures that can be explored dur-
ing the search process. It defines the pool of possible operations (layers), the space of
architectural configurations, and, thereby, the types of architectures that can be designed.

A search space can be represented as a set of candidate architectures denoted by A.
Depending on the search space definition, each architecture a ∈ A represents a specific
configuration of architectural decisions or choices, such as the number of layers, the type
of operations, connectivity patterns, or hyperparameters. Typically, a generated archi-
tecture is represented as a vector, adjacency matrix, sequence of actions, or as a string,
depending on the search strategy used. The search space A is usually discrete, allowing a
graph representation, commonly defined as a Directed Acyclic Graph (DAG). The excep-
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tion is some gradient-based methods that perform a relaxation of optimization problem
during the search process.

The choice of search space is crucial for NAS algorithms, as it directly impacts the ex-
ploration and efficiency of the search process. Different search space definitions can lead
to completely different architectures. The search space A is typically defined with con-
straints and assumptions about the architecture structure. These constraints include lim-
itations on the number of layers, the total number of parameters, or specific architectural
patterns. These definitions undoubtedly introduce human-biases in the search space’s
design. By forcing specific rules, sizes, and operations, search spaces are often so restric-
ted that NAS algorithms easily find good architectures [1, 40, 45].

In the next sections, we detail three types of search spaces: micro or cell-based, macro,
and hierarchical.

Micro Search Space

The most popular type of search space in NAS is the cell-based search space (also re-
ferred to as micro search space). In cell-based search spaces, the architecture consists of
a fixed outer-skeleton, and a set of searchable cells make up the micro-structure. Instead
of searching for the entire network architecture from scratch, cell-based search spaces
propose searching over smaller, modular cells and stacking them in a pre-defined outer-
skeleton to form the overall architecture. In this approach, the search algorithm focuses
only on finding optimal cell architectures, as these cells are repeated throughout the net-
work. Each cell, sometimes referred to as a motif, represents a set of inter-connected
operations usually represented as DAG, with operations as either the edges or nodes, de-
pending on the search space design, and feature maps as the result of those operations.

Cell-based search spaces are built upon the observation that effective handcrafted archi-
tectures are oftenmade with repetitions of fixed structures [58, 59]. This allows formulat-
ing the NAS as a narrower and smaller problem, thus reducing the search complexity. The
down-side with cell-based search spaces is that they require considerable human involve-
ment, as the design choices such as the outer-skeleton, number of layers, operation pool,
cell structure, andmore are pre-defined by human experts. By smoothing the search prob-
lem with pre-defined settings and rules, there are undoubtedly human biases introduced
into the optimization problem, and even though the impact of forcing these rules remains
unclear, many works have shown that cell-based search spaces often have a very narrow
performance distribution and redundancy, which restricts the search ofNASalgorithms to
easily find good architectures and hides the true contributions of NASmethods [1, 40, 45].

In [38], Zoph et al. introduced the NASNet search space as one of the first cell-based
search spaces. This search space is comprised of two types of cells: normal cells and re-
duction cells. These cells share the same structure, but reduction cells handle tensor di-
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mensionality reduction by employing initial operations with a stride of two to reduce the
spatial resolution. The operation pool of NASNet has 13 different operations, including
several convolutional layers, pooling operations, and identity.

Roughly at the same time, Zhong et al. proposed a cell-based search space, where in-
stead of using reduction cells, max-pooling layers are used to handle feature dimension-
ality reduction [69]. And since these initial search spaces, several other cell-based search
spaces have been proposed that follow a similar structure to the NASNet search space.
The main differences are the design of the outer-skeleton, the cell structure, and the op-
eration pool. In [79], the authors propose a variant of the NASNet, but instead of using
two types of cells, here a search strategy only searches for one type of cell, and within the
fixed outer-skeleton, some cells are pre-defined with a stride of two to reduce the feature
map dimensionality. Also, in this search space, the operation pool was reduced to 8 by
removing the lesser-used operations. Differently, DPP-Net proposed the use of a densely
connected cell-based search space, where the operation pool has 3 normalization layers
and 6 convolution layers optimized for inference, such as group and depth-wise convolu-
tions [80].

DARTS is the most used cell-based search [2]. In this, operations are placed in the
DAG’s edges and the goal is to search for both normal and reduction cells, each with 8

searchable edges. The operation pool in DARTS is composed of 8 different operations:
3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated separable convolutions, 3×3

max pooling, 3 × 3 average pooling, identity, and zero. NAS-Bench-101 and NAS-Bench-
201 are other two common search spaces. NAS-Bench-201 follows a similar definition
as DARTS but in a more constrained and simpler setting. Here, the operation pool has
5 different operations, and the goal is to search for a cell with 6 edges. Differently, NAS-
Bench-101 defines the nodes of a DAG as operations, with the cell structure having 7 nodes
with an operation pool of size 3.

Cell-based search spaces have also been used in different applications other than IC.
TransNAS-Bench-101 proposes the use of the NAS-Bench-201 cell structure for 7 differ-
ent CV tasks. In this, the operation pool was reduced to only 4 operations. [81] ex-
tends a DARTS-alike search space for human parsing and pose estimation by design-
ing encoder-decoder architectures. NAS-Bench-ASR looks into cell-based design for
Automatic Speech Recognition (ASR) [30], AutoGAN for image generation [22], and sev-
eral proposals have looked into using cell-based search spaces for Natural Language Pro-
cessing (NLP) [27, 2, 70].

Cell-based search spaces are popular due to their ease of use and simplicity. By allowing
the design of architectures based on repeated patterns, cell-based search spaces heavily
reduce the complexity of the NAS optimization problemwhile allowing the design of state-
of-the-art architectures in various tasks [82, 76, 83, 45]. However, given the aforemen-
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tioned problems, such as human-induced biases and forced rules and restrictions, cell-
based search spaces restrict the search in such a manner that it is impossible for a NAS
method to design novel architectures that disrupt the design of current architectures.

Macro Search Space

Macro-search spaces in NAS refer to the exploration of architectures at a higher level of
granularity, where the focus is on macro-level structure. In the literature, there are two
types of macro search spaces: spaces that focus on the design of hyper-parameters and
block connections, or search spaces that encode an entire architecture and allow a NAS
method to search for all necessary components of an architecture. The latter allows NAS
methods to operate at a coarser level, making architectural decisions that encompassmul-
tiple cells or blocks and, at the same time, force a granular search by requiring decisions
about the type of operations to be sampled. This approach allows for a more diverse set of
architectures with different macro-structures. In [15, 84, 85], the authors propose the use
of macro search space in the sense that the search strategy decides the operations and the
topology of a DAG. Differently, some proposals focus on forcing the architecture struc-
ture and allowing the design of the hyper-parameters of the layers [86, 87]. In Chapter 7,
we show how a novel macro search space allows for an unbounded and less constrained
search.

Several NAS methods also proposed using macro search spaces by designing architec-
tures as a chain-structure. Chain-structured search spaces simplify the problem by redu-
cing the complexity of designing and implementing macro-search search spaces where all
decisions are open. In this, each sampled operation (layer) receives as input only the last
layer [38], and an architecture is generated until a certain number of layers are sampled
[15, 84]. Follow-up work proposed an extension on chain-structure architectures by in-
corporating the design of branches by allowing multi-layer connections, such as residual
connections [38, 72, 12]. This type of macro search space has also been proposed with the
use of existing architectures as initialization, where a neural network, such as ResNet or
DenseNet, is used as the initial configuration, and the goal is to modify the architecture
by adding or pruning operations, connections and hyper-parameters [16, 88, 89]. This
initialization of the search space is leveraged by network morphism NAS methods [90].

Macro-search spaces differ from cell-based search spaces in the sense that they oper-
ate at a coarser level, making architectural decisions that go beyond cell design to also
the design of the outer-skeleton. If not heavily restricted by human-defined rules, macro
search spaces offer advantages regarding architecture diversity and the ability to explore
a broader range of architecture designs. They allow for more complex and adaptive ar-
chitectures that can provide solutions for the intricacies of different tasks and datasets.
However, the search process in macro-search spaces can bemore challenging and compu-
tationally expensive. Given that the search space has higher complexity and is broader, it
is more challenging to find high-performing architectures.
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Hierarchical Search Space

Hierarchical search spaces provide a structured framework for optimizing both macro
and micro architectures. Instead of considering architectures as a single entity, hierarch-
ical search spaces break down architectures into multiple levels or stages, each represent-
ing a different level of architectural complexity. These search spaces consist of multiple
levels of motifs, where the motifs represent architectural patterns or building blocks. The
first level often includes single operations, followed by motifs that connect these primit-
ive operations, similar to cells, and if available, higher-level motifs encode connections
between second-level motifs [73, 19, 91].

This hierarchical approach allows for a systematic exploration of architectural designs
while providing control over the complexity and composition of the architecture. In [19],
the authors propose the use of a two-level hierarchical search space, where cells are first
designed and then a network level architecture search is performed. A three-level hier-
archical search space was proposed in [92], whereas [73] proposes a multi-level search
space, where the first level refers to single operations and higher-level motifs are de-
signed by combining lower-level motifs (single operations if designing a second level mo-
tif) through the design of a DAG.

Hierarchical search spaces offer a structured and modular approach to NAS, allowing
for a systematic and potentially progressive exploration of architectures through reusable
motifs and incremental complexity. They provide benefits in terms of modularity, com-
position, incremental search complexity, and the ability to optimize architectures at mul-
tiple levels. However, designing hierarchical search spaces and determining the number
of levels and connections betweenmotifs require complex engineering and domain know-
ledge. Both micro andmacro search spaces can be seen as single-level hierarchical search
spaces, where decisions are made entirely on a single level and are not combined to form
higher-level motifs.

2.2.2 Search Strategy

The search strategy refers to the optimization performed by the NAS algorithm to find
optimal architecturewithin the defined search space. Broadly, the search strategy refers to
themethodology employed to explore the search space and generate architectures, encom-
passing the algorithms and techniques used to search the space of possible architectures
and identify promising candidates. Ultimately, the search strategy determines how archi-
tectures are generated and how the search progresses. Deciding on which optimization
strategy to use depends on the task, resources available and the search space, as some
optimization mechanisms are bound to specific settings. This section discusses various
search strategy approaches in NAS, including RL, Evolutionary Algorithm (EA), Gradient
Boosting (GB) methods, and Bayesian Optimization (BO).
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Reinforcement Learning

RL-based NAS approaches treat architecture search as a sequential decision-making
problem. A controller, often a Recurrent Neural Network (RNN), generates architectures
by iteratively sampling decisions fromaprobability distribution to forma final action state.
The set of decisions can include operations, connections, or hyper-parameters. The con-
troller is trained using policy gradient methods, with rewards based on the performance
of the generated architectures [93, 12].

NAS was formulated as a RL problem in 2016 by B. Zoph and Q.V. Le [15], in which a
controller was trained based on howwell the generated architectures performed on image
classification tasks. Albeit yielding excellent results, it required more than 21900 days of
GPU computation to search for an architecture. Follow-up work [38] reduced the search
cost by proposing the use of a cell-based search space. In this, forming entire architectures,
generated cells were stacked according to pre-defined rules. Even thought it still required
more than 2000 days of GPU computation, it prompted many follow-up RL proposals to
focus on cell-based designs.

Early NAS works focused on improving RL mechanisms. In [68], the authors use Q-
learning to train a sampler agent. Similarly, [69] performs NAS by sampling blocks of
operations instead of cells/architectures, which can then be replicated to form networks.
More recently, ENAS [70], using a controller to discover architectures by searching for an
optimal subgraph within a large computational graph, showed that it was possible to use
RL in useful time, requiring only a few computational days by leveraging weight sharing.
RL methods also differ in the way the controller is trained. Most proposals use REIN-
FORCE [94] to update the policy [15, 16, 95], while some explore the use of proximal policy
optimization [38, 96]. InstaNAS optimizes the search by sampling multiple architectures
(actions) in each iteration to speed up the search while maintaining multi-objectives con-
straints, such that the generated architectures are both efficient in terms of performance
and fast in terms of inference speed [97]. Several proposals have looked into different
ways of sampling architectures, improving the search cost or mechanisms for rewarding
the controller agent [98, 71, 52].

Evolutionary Search

Evolution-based search is one of the most used NAS optimization strategies to explore
the space of architectures. EA draw inspiration from natural evolution processes, employ-
ing mechanisms such as mutation, crossover, selection, and reproduction to iteratively
improve the population of architectures based on their performance [74].

Evolving neural networks can be traced back to neuroevolution, particularly with the
development of NEAT [62]. NEAT showed that an automatic generation and evolution of
neural architectures was possible, obtaining promising results. Follow-up neuroevolution
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methods extended the applicability to new problems and focused on optimizing the search
stage [63, 9, 64, 65, 66]. However, neuroevolution was limited by the computational com-
plexity and scalability challenges associated with evolving complex neural network archi-
tectures. In 2017, Esteban Real et al. proposed an EA that evolves deep CNNs through
mutations [84]. The problem with this proposal is that it requires a tremendous amount
of computation to generate and evaluate architectures. REA, a follow-up work, improved
the evolution process by evolving architectures through operation mutation and by em-
ploying a regularization mechanism for the population [72]. Even though REA required
more than 2750GPU days of computation, it showed capable of generating competitive ar-
chitectures with smaller sizes than RL-basedmethods, thus prompting researchers to use
evolutionary strategies, as they are flexible, easy to use and through different evolutionary
processes can effectively search through a large search space [74, 12].

Several EA have been proposed to incrementally improve the performance of the
method by designing novel heuristics to perform the evolution [73, 74, 75], by designing
novel regularization mechanisms that favor different parameters, by employing rules for
selecting parents to generate offsprings by ranking [99, 100, 101], niching [102, 103] and
many others [84, 73, 104, 105, 106], as well as performing multi-objective search, where
the goal is to find the architectures that satisfy performance and other objectives, such as
size and inference speed [107, 108, 109, 110, 111, 112].

EA-based NAS search is popular, as it is versatile, flexible, and can handle complex
constraints and incorporate domain-specific knowledge into the search process. EA can
effectively explore and optimize non-differentiable and discrete spaces while easily adapt-
ing to different search space definitions.

Gradient-based

GB methods utilize gradient information to guide the search process. These methods
typically involve formulating NAS optimization problem as a differentiable optimization,
allowing architectures to be optimized via gradient descent. DARTS, one of themost prom-
inent gradient-based NAS methods, relaxes the discrete decisions in architecture design
to continuous variables, enabling efficient gradient-based optimization [2].

DARTS was the first gradient-based method capable of performing NAS in useful time
by performing a continuous relaxation of the parameters and performing a bi-level gradi-
ent optimization [2]. This work was then improved using regularization mechanisms [17]
and served as the basis for many others [98, 113, 16, 114]. NAO [115], instead of repres-
enting architectures as strings, as in DARTS, it uses a variational auto-encoder to learn a
latent representation of candidate architectures and a performance predictor that uses the
latent representation (vector) to predict the performance of an architecture. To reduce the
computational cost of evaluating architectures during the search process, gradient-based
NAS methods often leverage weight-sharing techniques. Often, gradient-based methods
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work with an hypernetwork [116, 117] or a supernetwork to speed-up the search [2, 118].
By training the hypernetwork or the supernetwork, methods perform a One-shot (OS)
approach to train all architectures in the search space. The use of hypernetworks allows
methods to generate weights for candidate architectures, while supernetworks are large
architectures that encompass all possible architectures in the search space [83].

GB methods are amongst the most popular and powerful approaches in NAS. By em-
ploying gradient computation, optimization algorithms, and differentiation strategies,
these methods efficiently explore the search space and guide the search. When compared
with non-optimized RL and EA approaches, GB NAS methods show improved perform-
ance.

Bayesian Optimization

BO can be categorized as a sequential design strategy for global optimization of black-
box functions [119]. This definition broadly encompasses most NAS methods, especially
the ones previously mentioned – EA, GB and RL. As these were described in detail in
previous sections, here we look into BO methods that leverage probabilistic models to
construct surrogate models to approximate the performance of generated architectures
[83].

BO is a powerful NAS search strategy that combines probabilisticmodeling and optimiz-
ation techniques to efficiently explore and exploit the search space and optimize expensive
functions. It aims to find an optimal architecture for a given problem by iteratively gener-
ating new candidates architectures based on their potential performance, training it, and
updating the surrogate model to guide the subsequent iteration [120, 12, 83, 85, 121, 122].
The selection and sampling of candidate architectures is guided by an acquisition function,
which measures the utility or potential of evaluating a candidate based on the current sur-
rogate model and plays a pivotal role in balancing exploration and exploitation during the
search process. Common approaches look into selecting candidate architectures based on
evolutionary approaches and random search [123, 124, 125, 126, 50]

At its core, BO maintains a surrogate model that approximates the objective function
that maps architectures to a performance score. This surrogate model is updated as new
evaluations are performed, continuously improving its performance. Initially, researchers
proposed the use of Gaussian processes to evaluate candidate architectures [127, 85, 128].
More recently, new proposals looked into the problem of evaluating architectures by us-
ing neural networks [127, 123], graph neural networks to leverage the inherent graph
structure of architectures [129, 130, 125], tree-based approaches, such as random-forests
[13, 131], and zero-proxy estimators [132].
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2.2.3 Performance Estimation Strategy

Performance estimation strategy is a crucial component of NAS methods. It aims at
estimating the performance of generated architectures, playing a crucial role in guiding
the search process by determining the promising architectures to explore further. The
choice of the performance estimation strategy or method has a tremendous impact on the
search cost, as it is often the most computationally intense NAS component.

Albeit training and evaluating each architecture in the search space for a large number
of epochs is the most reliable mechanism to rank it, this is extremely inefficient, being
computationally expensive and time-consuming [15, 38, 79]. Therefore, researchers fo-
cused on proposing efficient and effective strategies to estimate the performance of archi-
tectures based on limited resources. In this section, we present the most used optimiza-
tion techniques for estimating the performance of generated architectures – low-fidelity
estimates, learning curve extrapolation, zero-cost proxies, and weight inheritance. Note
that OSmethods usually combine the search strategy and the performance estimation into
one single component. Meta-learning is another approach to speed up the search, as it in-
tends to use past knowledge to learn a new task [133]. However, meta-learning was out
of the scope for this thesis work.

Low-fidelity Estimates

Low-fidelity estimates are approximations of the performance of a given architecture
if trained until convergence and are typically used to perform a ranking of architectures.
These estimates are used to guide the search process andmake it computationally cheaper
by reducing the resources required for evaluating architectures. There are several tech-
niques for obtaining low-fidelity estimates. One common approach is to train architec-
tures on a subset of the data [68, 38, 134, 135]. By using a smaller portion of the training
data, the computational cost is significantly reduced. Another approach to low-fidelity
estimates is training architectures for a smaller number of epochs [69, 136, 1, 137, 131],
where instead of training an architecture until convergence, it is trained for a fraction of
the total training. TSE creates a correlation between the training speed of an architecture
with its final test performance, thus accelerating the evaluation of generated architectures
by reducing the training required [138]. Differently, using downscaled architectures (such
as fewer cells) [38, 72, 2] provides low-fidelity estimates that researchers leverage to speed
up the search and architecture’s evaluation cost.

The main challenge with low-fidelity estimates is balancing computational efficiency
and accurate performance estimation. If the difference between the low-fidelity estimate
and the true performance of an architecture is too significant, it can lead to unstable rank-
ings and potentially misleading results [109, 139, 140, 141]. More, low-fidelity estimates
undoubtedly introduce biases to the search process as the performance estimate is based
on a limited amount of information, which may not accurately represent the performance
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of architectures if trained, as different architectures behave differently for different data
sets and parameters.

Learning Curve Extrapolation

Learning curve extrapolation is a promising approach to estimating the performance
of architectures without fully training them. The idea here is to make predictions about
the performance of an architecture based on its initial learning progress [142, 12, 83]. The
process of learning curve extrapolation involves training architectures for a fraction of the
total training until convergence and then extrapolating their performance based on the
observed learning progress, thus making predictions about the architecture’s potential.

In [143, 144], the authors leverage a continuous halving of the population by ignoring
architectures that present bad learning progress. Even though no surrogatemodel is built,
by continuously evaluating architectures andprioritizing the ones that present faster train-
ability, it extrapolates a future learning curve. However, a more common variation of
learning curve extrapolation involves training a surrogate model. Instead of extrapolat-
ing the learning curves of individual architectures, a surrogate model is trained to predict
the performance of novel architectures based on an architecture encoding and, if present,
an initial training [120, 145, 146, 123, 147, 130, 148, 149].

Learning curve extrapolation, especially surrogatemodels, are often combined different
search strategies and performance estimation mechanisms [123, 150], presenting a way
to accelerate the performance estimation process in NAS if training the surrogate model
does not hinder the process.

Zero-cost Proxies

Zero-cost proxy estimators estimate the performance of candidate architectures with
minimal computational cost by scoring architectures at initialization stage. These estim-
ators provide a way to approximate the performance of architectures using inexpensive
computations or heuristics. Instead of training architectures until convergence, zero-cost
proxy estimators analyze characteristics or properties of the architectures, such as the
design or modeling capabilities [151, 152].

NAS-WOT was one of the first zero-cost proxies for NAS, showing remarkable success
when scoring untrained architectures by looking at the separability of the input data into
different linear regions [153]. Follow-up work tried to improve zero-cost proxies by re-
moving the need for data [154, 155], by looking at the conditioning and spectrum of an
architecture’s NTK [156, 4], by pruning-at-initialization techniques [154, 157, 158], and
by looking at evaluating regions of the search space [159] based on the evaluation of oper-
ations independently [160]. EZNAS looks into automating the process of designing zero-
proxy estimators by directly evolving policies focused on interpretability and generability
properties [161].
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Krishnakumar et al. showed that zero-cost proxies can efficiently score architectures
with good correlations with the final performance [151], and White et al. conducted
a comprehensive evaluation of 31 different performance estimation strategies, many of
which are zero-cost-proxies, showing that the combination of zero-cost proxies with other
strategies yields the best results [162].

Weight Inheritance

Weight inheritance is an approach to speed up the performance estimation process
by leveraging the knowledge extracted from previously trained architectures. Instead of
training each new architecture from scratch, weight inheritance initializes the weights of
an architecture based on the weights of architectures that have been trained before [90].

Network morphisms allow modifying an architecture while maintaining an identical
output for the same input [163]. Thismeans that themodified architecture can inherit the
weights of the original architecture without sacrificing its performance. By progressively
applying networkmorphisms, architectures can be successively expanded and retain high
performance without the need for training from scratch [163, 12, 164, 165, 112, 127, 166,
84]. RandGrow performs morphisms based on random-search [167], and a follow-up
work, Petridish, used gradient boost to further improve upon RandGrow [168].

One advantage of weight inheritance approaches, such as network morphisms, is that
they enable the search space to have flexible architecture without constraining the max-
imum size of an architecture, thus promoting a search strategy closer to macro-search.
However, it’s important to note that most network morphism methods can only make
architectures larger, which may lead to overly complex architectures. In [12], this is ad-
dressed by allowing architectures to be shrunk.

Weight inheritance techniques can significantly reduce the computational resources
required for NAS. Initializing architectures with pre-trained weights can accelerate the
training process and allow architectures to converge faster. However, network morph-
ism requires architectures to share components with transferable weights, thus forcing
the search to small increments upon base architectures and restricting the search of novel
architectures.

2.3 Neural Architecture Search Benchmarks

Evaluating and comparing NAS methods is challenging, as different search spaces and
training protocols difficult a fair comparison and hinder a true evaluation of how well a
NAS method behaves. Researchers have continuously analyzed different NAS baselines
to propose proper comparisonmetrics [44, 169, 170]. Li and Talwaker extensively studied
Random Search (RS) in NAS and found that it presents a strong baseline for comparison,
outperforming several NAS proposals [1]. Then, Yang et. al. conducted an extensive study
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to evaluate the impact of the training protocols on the results of a generated architecture,
showing that well-engineered training protocols usually have amore significant impact on
the final performance of a NASmethod than the search strategy, thus suggesting that NAS
methods should provide results using the same protocols to ensure fair comparisons [40].
In [45], the authors analyzed popular cell-based search spaces. They found that existing
search spaces contain a high degree of redundancy and generated architectures from dis-
tinctNASmethods have similar patterns. Studies to evaluateNASperformance predictors
in terms of their correlation to the final architecture’s performance, inference, and initial-
ization time have also been conducted [171, 162, 152]. However, evaluating different NAS
methods is still a challenge due to the human-defined search spaces and training proto-
cols.

To address the aforementioned issues, NAS benchmarks have been proposed to facil-
itate the design and evaluation of NAS methods. These benchmarks allow NAS methods
to access information about a unified search space and force fairer comparisons between
methods by fixing hyper-parameters and training protocols [44, 172]. Nonetheless, little
attention has been devoted to analyzing the benchmarks to ensure that these provide fair
and competitive settings that can and should be used as common ground for NAS meth-
ods’ comparisons. In the following sections, we provide a detailed overview of NAS bench-
marks and a comprehensive study on how the operation pool of each benchmark out of
the three most used ones influences the performance of generated architectures.

2.3.1 Overview

There are two types of benchmarks: tabular and surrogate. Tabular benchmarks
provide pre-computed information on all possible architectures trained in one or more
data sets, while surrogate benchmarks provide amodel capable of predicting the perform-
ance of an architecture, along with pre-computed information about some of the architec-
tures. By providing access to information through a tabular setting or a surrogate model,
benchmarks can reduce the need for computational resources, enabling quick and effi-
cient evaluations.

Table 2.1 provides an overview of the existing NAS benchmarks. NAS-Bench-101 [173]
was the first tabular benchmark proposed and provides information about the validation
and test accuracy of the 423, 624 cell-based architectures that make up the search space.
Each architecture was trained on CIFAR-10 with different initialization random seeds.
NAS-Bench-1Shot1 [175] leverages the information in NAS-Bench-101 by defining sub-
sets of the search space with a fixed number of nodes, enabling one-shot NAS methods.
The NDS benchmark [174], on the other hand, focuses on evaluating different randomly
sampled architectures from five search spaces.

Another tabular benchmark, NAS-Bench-201 [42], proposes a smaller search space but
with more data sets. This benchmark includes 15, 625 trained architectures on CIFAR-
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Table 2.1: Overview of NAS benchmarks and categorization based on their properties.

Benchmark Size
Search Type

#Ops
Data

Task License Year Venue
Scheme Tab. Surr. sets

NAS-Bench-101 [173] 423k cell 3 3 1 IC A2.0 2019 ICML

NDS [174] 139M cell 3† 5-8 2 IC MIT 2019 ICCV

NAS-Bench-1Shot1 [175] 364k cell 3 3 1 IC A2.0 2020 ICLR

NAS-Bench-201 [42]
NATS-Bench [86]

15k
32k

cell
macro

3 5 3 IC MIT
2020
2021

ICML
TPAMI

LatBench [176] 15k cell 3 5 3 IC A2.0 2020 NeurIPS

TransNAS-Bench-101 [87]
4k
3k

cell
macro

3 4 7 CV MIT 2021 CVPR

NAS-Bench-Macro [177] 6k macro 3 3 1 IC A2.0 2021 CVPR

NAS-Bench-ASR [30] 8k cell 3 8 1 ASR A2.0 2021 ICLR

NAS-Bench-111 [178] 423k cell 3 3 1 IC A2.0 2021 NeurIPS

NAS-Bench-311 [178] 1018 cell 3 8 1 IC A2.0 2021 NeurIPS

NAS-Bench-NLP11 [178] 1053 cell 3 7 1 NLP A2.0 2021 NeurIPS

HW-NAS-Bench-201 [179] 15k cell 3 3 3 IC MIT 2021 ICLR

HW-NAS-Bench-FBNet [179] 1021 chain 3 9 1 IC MIT 2021 ICLR

BLOX [180] 91k macro 3 5 1 IC CC 2022 NeurIPS

JAHS-Bench-201 [181] 270k cell 3 5 3 IC MIT 2022 NeurIPS

NAS-Bench-NLP [27] 1053 cell 3† 7 1 NLP A2.0 2022
IEEE
Access

NAS-Bench-301 [182]
(Surr-NAS-Bench-DARTS)

1018 cell 3 8 1 IC A2.0 2022 ICLR

Surr-NAS-Bench-FBNet [182] 1021 chain 3 9 1 IC A2.0 2022 ICLR

NAS-Bench-MR [183] 1023 cell 3 - 9 CV BSD 2022 ICLR

† only a small subset of the entire search space was fully trained and provided as a tabular benchmark.

10, CIFAR-100, and ImageNet16-120. LatBench augments NAS-Bench-201 by provid-
ing latency information about all the architectures in six different devices. Similarly,
HW-NAS-Bench [179] proposes two benchmarks: HW-NAS-Bench-201, an extension of
NAS-Bench-201, and HW-NAS-Bench-FBNet, which uses the FBNet search space. These
benchmarks focus on measuring and estimating the latency and energy consumption of
all architectures in the initial search spaces in six different devices. The authors of NAS-
Bench-201 also proposed NATS-Bench [86], which provides a macro search space with
tabular information for 32, 768 architectures. More, JAHS-Bench-201 [181] also extends
the search space proposed by NAS-Bench-201 to a joint optimization of the architecture
design and hyper-parameters. The authors designed a combination of the 15, 625 architec-
tures with different hyper-parameters, totaling 270, 000 configurations for which 20 per-
formance metrics in 3 data sets were evaluated, thus providing more than 161 million
surrogate data points.

Benchmarks that provide a macro search space enable the evaluation of NAS methods
beyond traditional operation sampling, extending to decisions about node connections,
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operation parameters, or the architecture skeleton. One such benchmark is NAS-Bench-
Macro [177], which proposes a search spacewith 6, 561 architectures. The goal when using
this benchmark is to search for 8 layers with a pool of 3 possible blocks. Another macro-
based benchmark is Blox [180], which provides tabular information about 91, 125 unique
architectures. These architectures are designed by fixing an outer-skeleton and searching
for 3 blocks with diverse connectivities.

First NAS benchmarks focused on evaluating architectures in IC tasks. However, more
recent benchmarks have expanded to allow the evaluation of NAS methods in terms of
generability and transferability to different tasks. One example is TransNAS-Bench-101,
which offers both a cell-based and macro-based search space and evaluates architectures
over seven different CV problems, with the aim of providing a framework for evaluating
NAS transferability across tasks [87]. Another example is NAS-Bench-MR, which offers
a surrogate benchmark for four different CV tasks, including segmentation [183]. To fur-
ther expand the scope of NAS applications, NAS-Bench-ASR proposes a cell-based search
space with 8, 242 trained architectures for ASR [30], while NAS-Bench-NLP proposed a
benchmark for NLP, providing tabular information for a subset of the entire search space
[27].

Surrogate benchmarks have been proposed to enable the design and evaluation of larger
search spaces by training a set of architectures and then fitting a surrogate model capable
of inferring the performance of newly generated architectures. Two such benchmarks
are NAS-Bench-301 and Surr-NAS-Bench-FBNet, which fully train a set of architectures
and fit surrogate models to estimate the final performance of the remaining architectures
[182]. However, surrogate benchmarks often provide only the final surrogate perform-
ance estimation, which does not support the development of multi-fidelity NAS meth-
ods. To address this issue, the authors of [178] propose NAS-Bench-x11, which provides
a surrogate method for predicting the full learning curve of an architecture. By using this
method, the authors extend three existing benchmarks (NAS-Bench-101, NAS-Bench-301,
and NAS-Bench-NLP) to include the full learning curve, enabling the development and
evaluation of NAS methods that rely on the training curve.

NAS benchmark suites aim to unify various benchmarks by providing a common inter-
face to query them, allowing for easy transferability and evaluation of NAS methods. The
first suite, NAS-Bench-360 [184], introduced the use of 2D and 1D data sets in a unified
way. NAS-Bench-Suite [172] is a more comprehensive suite, consisting of 28 different
tasks. To further improve NAS-Bench-Suite, NAS-Bench-Suite-Zero [151] provides pre-
computed information about several zero-cost proxy estimators. These suite benchmarks
make it easier for researchers to evaluate and compareNASmethods across different tasks
and data sets, ultimately aiding in the development of more effective and generalizable
NAS methods.
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Figure 2.4: Representation of the NAS-Bench-201 and TransNAS-Bench-201 cell structure (a), and the
pre-defined outer-skeleton (b). A cell is composed of 4 nodes and 6 edges, where edges perform operations
from an input node and add them to a posterior node. There are 5 possible operations to be used as edges in
NAS-Bench-201 and 4 in TransNAS-Bench-101. A cell is used as the building block of the outer-skeleton.

Asmany NASmethods use benchmarks to evaluate their performance, it is crucial to be
certain that NAS benchmarks are well designed and that comparisons between methods
when using NAS benchmarks are fair and well justified. The benchmark design plays a
crucial role in determining the performance of the architecture pool and thus indirectly
influences the success of NASmethods that learn the underlying operation preference. To
evaluate this, we extensively study the importance of different operations in a benchmark
search space and if it contains common patterns that jeopardize fair comparisons. In
detail, we assess the impact that the operations, their combination, and their occurrences
have in the final validation accuracy of an architecture in NAS-Bench-101, NAS-Bench-
201, andTransNAS-Bench-101, aswell as evaluating the search space distribution in terms
of the architecture’s accuracy and their correlation between data sets. The analysis shown
in the following sections extends prior works that looked into proposing best practices for
NASmethods and that evaluated search spaces in terms of their redundancy as well as the
impact that the training protocols had in the final performance of a generated architecture
[44, 40, 45, 172].

2.3.2 Studied Benchmark’s Design

NAS-Bench-101

NAS-Bench-101 is a tabular benchmark used for evaluating the performance of different
NASmethods. It consists of a cell-based search space comprising 423, 624neural networks
trained on CIFAR-10 for 108 epochswith 3 different weight initializations. All the architec-
tures in this benchmark share a common outer-skeleton, and their differences lies in the
cells placed in the outer-skeleton. The cells in NAS-Bench-101 are defined as DAG with
a maximum of 7 nodes and 9 edges and are encoded as a 7 × 7 upper-triangular matrix.
The operation pool consists of three possible layers: convolution 1×1 (C1×1), convolution
3× 3 (C3×3), and 3× 3max pooling (MP3×3).

NAS-Bench-201

NAS-Bench-201 is a tabular cell-based search space with 15, 625 possible architectures,
each composed of a fixed cell-based design with 5 possible operations: none, skip con-
nection (SC), C1×1, C3×3, and average pooling 3 × 3 (AP3×3). The structure of a cell is
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Figure 2.5: Normalized histogram of all architectures, based on their validation accuracy (%) in
NAS-Bench-101.

represented as a DAG with 6 edges and 4 nodes, where edges represent operations. All
architectures share a common outer-skeleton and are designed by interleaving searched
cells with residual down-sampling blocks. The benchmark provides information about
the learning curve and final performance of the architectures on CIFAR-10, CIFAR-100,
and ImageNet16-120, recorded and provided as a tabular benchmark. Figure 2.4 depicts
the representation of the cell structure and the outer-skeleton.

TransNAS-Bench-101

TransNAS-Bench-101 benchmark provides the performance of architectures across
seven CV tasks, including classification, regression, pixel-level prediction, and self-
supervised tasks. By having multiple tasks that can be evaluated using the same input,
TransNAS-Bench-101 provides an easy setup to evaluate the generality and transferability
of NAS across different tasks. This benchmark has two types of search spaces: a cell-based
search space containing 4096 possible cells and a macro skeleton search space based on
residual blocks containing 3256 architectures. For both search spaces, the pool of oper-
ations has four possible candidates: zeroize, SC, C1×1, and C3×3. TransNAS-Bench-101
provides tabular information about the training and performance of all architectures in
the search space using the same training protocols and hyper-parameters within each task.
In this study, we focus on the cell search space. The representation of the cell structure is
depicted in Figure 2.4.
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Figure 2.6: Normalized histogram of all architectures, based on their validation accuracy (%), for all the
data sets in NAS-Bench-201.
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Figure 2.7: Normalized histogram of all architectures, based on their performance on all the data sets in
TransNAS-Bench-101. Metrics were scaled to positive values to match accuracy ranges.

2.3.3 Evaluation

To assess the significance of the different operations in a search space across vari-
ous benchmarks, we conduct several experiments: i) performance distribution analysis,
where we look at the shape of the distribution of all architectures based on their final per-
formance; ii) operation presence, wherewe evaluate architectures based on having at least
once a given operation; iii) operation occurrence, where we evaluate how architectures
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Figure 2.8: Mean accuracy (%) of all the architectures that have at least one operation of a given type in
NAS-Bench-101.

perform based on having different occurrences of the same operation (1, ..., N ; where N
is the number of edges in a DAG); iv) operation positioning, where we evaluate an archi-
tecture based on having specific operations in specific positions of the DAG; v) operation
combination, where architectures are evaluated based on combining operations 2 by 2;
and the last experiment is evaluating the ranking of the architectures based on their per-
formance on each data set and the inter-data set Kendall’s tau correlation. The following
sections present each evaluation in detail.

Performance Distribution

By providing tabular information about trained architectures, NAS benchmarks allow
direct querying of an architecture performance while searching. Given the information
on all architectures, we evaluated the distribution of the architecture’s performance in
NAS-Bench-101, NAS-Bench-201, and TransNAS-Bench-201. For NAS-Bench-101, Fig-
ure 2.5 shows a negatively skewed distribution of architecture performances, with a higher
percentage (density) of architectures closer to the upper bound of validation accuracy.
This indicates that there are many good architectures with slight differences, making it
challenging to compare different NAS methods. Similarly, NAS-Bench-201 also shows a
negatively skewed distribution, as seen in Figure 2.6. However, the skewed distributions
are more evident on CIFAR data sets, suggesting that ImageNet16-120 is a more compet-
itive data set with more likelihood of showing more differences between different NAS
methods. Regarding TransNAS-Bench-201, shown in Figure 2.7, a large number of archi-
tectures are closer to the optimal performance in all tasks, with semantic segmentation
and room layout being the tasks with the sparsest distribution. This observation suggests
that it is important for NAS methods to indicate the results of RS when comparing on a
specific benchmark to demonstrate how well a RS method can sample the search space.
Additionally, when comparing gains in performance, it is important to compare with the
most optimal architecture in each task to ensure that small increments in performance
are significant if closer to the upper-bound.
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Figure 2.9: Mean accuracy (%) of all the architectures that have at least one operation of a given type in
NAS-Bench-201. Architectures with at least one convolutional layer show higher mean validation

accuracies (%) in all data sets.
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Figure 2.10: Mean performance of all the architectures with at least one operation of a given type in
TransNAS-Bench-101. Architectures with at least one convolutional layer show higher mean performance in

all data sets except in Autoencoding, where SC has the best mean performance.

Operation Presence

Wenow focus on evaluating the impact of each operation on the final architecture accur-
acy. First, we look at the mean performance of all architectures that contain at least one
operation of a given type. This means that we evaluated all architectures that contain one
ormoreC3×3 independently of the rest, and so on and so forth for all operations. What we
found is that on all benchmarks and all data sets, convolutional layers yield the best mean
performances, with the exception of the TransNAS-Bench-101 Autoencoding task, where
SC has the best mean results. Radar graphs are depicted in Figures 2.8, 2.9 and 2.10 for
NAS-Bench-101, NAS-Bench-201, and TransNas-Bench-101, respectively, which show the
mean performance of all architectures with at least one operation of a given type. We jus-
tify the importance of convolutional layers due to the fact that cells were carefully designed
and have fixed operations that perform pooling and residual connections, which benefit
from receiving rich feature maps that can be obtained by performing convolutional oper-
ations. On the opposite spectrum, architectures with the operation None have the worst
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Figure 2.11: Boxplot analysis of the mean accuracy (%) of all architectures based on the number of
occurrences of the different operations on a cell in NAS-Bench-101.
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Figure 2.12: Boxplot analysis of the mean accuracy (%) of all architectures based on the number of
occurrences of the different operations on a cell in NAS-Bench-201. The top figure presents results on

CIFAR10, the middle one on C100 and the bottom one on ImageNet16-120.

results, which indicates that all edges and nodes on a small cell are important and benefit
from having an operation that computes features.
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Operation Occurrence

We also evaluated how architectures behave based on different operation occurrences.
In NAS-Bench-101, we evaluated architectures based on a cell having 0 to 5 occurrences of
a given operation and from 0 to 6 on NAS-Bench-201 and TransNas-Bench-101. Note that
a cell with n occurrences of a given operation means that n operations in the cell are of
the same type (e.g., C3×3), while the rest (until the cell is completed) are other operations
(e.g., C1). Boxplot graphs shown in Figures 2.11, 2.12 and 2.13 depict the minimum, first
quartile, median, third quartile, maximum, and outlier values for all possible occurrences
of all possible operations for NAS-Bench-101, NAS-Bench-201, and TransNAS-Bench-101
respectively. The results corroborate the hypothesis that convolutional layers yield better
cells, as increasing the number of occurrences of such operations consistently increases
meanperformances. In all benchmarks,meanperformances show thatC3×3 is the optimal
layer, followed by C1×1, and when present, SC. More, increasing occurrences ofNone or
pooling operations have a negative impact on the architecture’s performance. This negat-
ive impact on the performance further corroborates the hypothesis that the structure of
the cells is dependent on operations that are capable of creating rich features and that the
fixed outer-skeleton and pre-defined operations perform enough data normalization for
the data sets analyzed. These results indicate that NAS methods that exhaustively search
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Figure 2.13: Boxplot analysis of the mean performance of all architectures based on the number of
occurrences of the different operations on a cell in TransNAS-Bench-101. Tasks from top to bottom: object
classification, scene classification, autoencoding, surface normal, semantic segmentation, room layout, and

jigsaw.

only for convolutional layers will yield satisfactory results. Therefore, researchers should
promote the indication of the performance of NASmethods over time and, if possible, rep-
resentations of the designed cells, therefore promoting discussion if the method is indeed
capable of searching or quickly falls into looking only for convolutional layers.
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Operation Positioning

Given that convolutional layers, especially the ones with larger kernel sizes, lead on av-
erage to better results, we then focused on evaluating the performance of the architectures
based on having an operation on specific edge positions. For this, we analyzed the mean
performance and standard deviation of all architectures that contain an operation on a
given edge position i, for i = 1, ..., I , where I is the maximum number of edges in a given
benchmark. The rationale behind this evaluation is to further corroborate that the pre-
defined structure of the cells and the outer-skeletons significantly impact the decisions
that a NAS method makes while searching. NAS-Bench-101 allows operations in 5 out of
the 7 positions, where the remaining 2 are reserved for input and output operations. The
results in Table 2.2 show that architectures with C3×3 in any position yield the highest
mean validation accuracies, followed by C1×1 with an exception for the second position,
whereMP3×3 has a higher mean validation accuracy, which is justified by the fact that the
second position is the first to receive the input values from previous cells, thus operations
that reduce the complexity of the input feature maps can have a direct impact in the final
performance. Results for NAS-Bench-201, shown in Table 2.3, further show that convo-
lutional layers are preferable, yielding the best results in all possible positions for all data
sets. Results also indicate that SC layers show improved importance in positions that
connect earlier nodes to later nodes in the cell, which benefit from residual connections.
Also, None operations tend to be better in the middle of the cell, and AP3×3 stays con-
sistent throughout. These findings suggest that convolutions are preferable throughout
the cell structure, but other operations, such as SC, can be important if placed strategic-
ally in specific cell positions. Similarly, in all data sets of TransNAS-Bench-101 except
for Autoencoding, C3×3 yields the best results, whereas in Autoencoding, SC is the best
operation to use in all positions (Table 2.4). SC and C1×1 behave similarly in TransNAS-
Bench-101, achieving better results earlier in the cell, whereasC3×3 consistently performs
throughout all possible positions in the cell. None operation has the worst mean perform-
ances in all data sets, further promoting the idea that all cell operations have an impact
on the final architecture’s performance. Results in all data sets show that convolutional
layers have the most positive impact on an architecture’s performance and that, in some
specific cases, a skip connection interleaved with convolutional layers can be fruitful.

Operation Combination

We further extended the evaluation of the operation’s importance by looking at two con-
secutive combinations of operations as subsequent operations in the cell’s structure. This
analysis evaluates not only the importance of a single operation but how they behave if
combined. For this, we looked at all possible combinations of two operations and calcu-
lated the mean performance and standard deviation of all architectures that contain such
combinations. Results for NAS-Bench-101, shown in Table 2.5, further promote thatC3×3

operations yield the best results, even when combined with any other operation. Further-
more, C1×1 follows the same pattern by achieving the next higher mean performances
when combined with any convolutional operation, followed by MP3×3. In NAS-Bench-
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Table 2.2: Mean validation accuracy (%) and standard deviation of all architectures that contain an
operation on a specific edge in NAS-Bench-101.

Operation
Position

2 3 4 5 6

CIFAR-10

C1×1 89.64± 7.67 89.99± 6.36 90.13± 5.71 90.30± 5.00 90.58± 4.43

C3×3 90.92± 7.92 91.19± 5.63 91.27± 4.82 91.45± 3.89 91.70± 3.13

MP3×3 90.18± 4.96 89.56± 8.62 89.34± 9.48 89.01± 10.22 88.22± 10.66

201, the same behavior is seen. Results in Table 2.6 show that combining convolutional
layers results, on average, in the best performant architectures. From the table, it is also
possible to see that combining operations with None and AP3×3 leads to worse perform-
ant architectures and that a SC combinedwith convolutional layers, achieves results close
to the best combination, further suggesting that in some specific cases, SC layers associ-
ated with convolutional layers result in good cell designs. Finally, the evaluation of the
operation combinations on TransNAS-Bench-101 is shown in Table 2.7, where in all tasks,
the combination of twoC3×3 achieves the highest mean performances, with the exception
for Autoencoding, where combining two SC has the best results. From the results, it is
possible to see that for all tasks, except for Autoencoding, combining an operation with
None always yields the worst results, whereas combining any operation withC3×3 consist-
ently achieves better results when compared with combining with other operation. Fur-
thermore, the results show that in TransNAS-Bench-201, C1×1 and SC operations have
similar results when combined with other operations, further suggesting that operations
that create rich features are preferred, but when not present, operations that help redu-
cing the complexity of the feature maps are good trade-offs, as they achieve good results
by having a significant impact on the flatness of the loss landscape, as shown in previous
works [185]. Results across all benchmarks corroborate the hypothesis that the operation
pool and the structure of the cells (search space) have a high influence on the quality of
the final architectures, which is shown by the consistent results that convolutional and
skip connection layers have in all three benchmarks.

Cell’s Ranking and Inter-data set Correlation

Lastly, we evaluate cells based on their ranking by sorting them using the performance
on the validation set. The intuition behind looking at the ranking of the top cells is that
it allows a direct analysis of the top cells based on their operation diversity and on bench-
marks with more than one data set or task it allows an evaluation of how the different
data sets correlate with each other. First, we look at the top 10 performant architectures
in NAS-Bench-101. The cells are shown in Table 2.8, where on the left, the operations in
each position are shown, and on the right, the associated rank and validation accuracy are
depicted. The table shows that convolutional layers are the preferred operation on all posi-
tions, with the optimal cell entirely designed withC3×3 operations. Overall, convolutional
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Table 2.3: Mean validation accuracy (%) and standard deviation of all architectures that contain an
operation on a specific edge in NAS-Bench-201.

Operation
Position

1 2 3 4 5 6

CIFAR-10

None 79.02± 20.17 81.02± 17.68 83.40± 13.34 75.04± 24.02 81.18± 17.68 78.99± 20.17

C1×1 86.62± 7.93 85.59± 9.93 84.51± 11.87 87.33± 2.41 85.37± 10.12 86.34± 8.24

C3×3 87.61± 7.98 86.31± 10.00 84.93± 11.93 88.31± 1.99 85.99± 10.09 87.15± 8.13

AP3×3 81.32± 11.08 81.91± 12.15 82.58± 13.38 81.46± 8.74 82.32± 12.09 82.11± 11.08

SC 83.81± 10.59 83.54± 11.85 82.95± 13.26 85.33± 7.38 83.50± 11.85 83.77± 10.62

CIFAR-100

None 56.83± 17.16 58.90± 15.43 61.05± 12.23 54.47± 20.13 59.03± 15.41 56.80± 17.13

C1×1 64.95± 7.53 63.51± 9.47 62.37± 11.11 65.27± 4.30 63.34± 9.74 64.56± 8.00

C3×3 66.35± 7.43 64.58± 9.48 63.03± 11.11 66.87± 3.54 64.35± 9.57 65.85± 7.67

AP3×3 57.81± 11.64 58.82± 12.23 59.76± 12.97 57.96± 10.38 59.17± 12.16 58.61± 11.63

SC 60.47± 11.13 60.60± 11.91 60.20± 12.84 61.84± 9.40 60.52± 11.89 60.58± 11.24

ImageNet16-120

None 29.77± 11.43 31.47± 10.86 33.22± 9.43 27.42± 12.38 31.74± 10.81 29.75± 11.38

C1×1 37.32± 6.65 35.75± 7.70 34.59± 8.87 37.83± 4.79 35.46± 8.18 36.54± 7.43

C3×3 38.29± 6.68 36.77± 7.75 35.38± 8.98 39.19± 2.98 36.36± 8.13 37.76± 7.31

AP3×3 30.10± 8.97 31.26± 9.33 32.62± 9.37 29.78± 8.93 31.82± 9.05 31.17± 8.57

SC 33.77± 8.17 33.70± 8.84 33.15± 9.25 34.74± 7.69 33.59± 8.82 33.75± 8.30

layers represent 84% of the operations present in the top-10 cells in NAS-Bench-101 (not
considering the fixed input and output operations), thus suggesting that operations other
than convolutional ones have a small positive impact on the final performance of the cell.
This indicates that a NASmethod that searches solely for convolutional layers will achieve
high results without requiring exploring the search space for other operations. By looking
at NAS-Bench-201 in Table 2.9, we see the same behavior, where convolutional layers rep-
resent 77% of the top cells considering all three data sets, having a representation of 75%
in CIFAR-10, 80% in CIFAR-100 and 77% in ImageNet16-120. This further indicates that
NAS-Bench-201 is heavily dependant on convolutional layers in top-scoring architectures.
More, in all three data sets, it is possible to see patterns of combination between the pos-
sible two convolutional layers (C1×1 and C3×3), as well as skip connections on the fourth
position of the cell structure. These skip connections allow residual connections from the
input node to the output node, which, combined with different position permutations of
the convolutional layers, yield the best results. Most of the best architectures for all three
data sets contain convolutional layers as the first and fifth operations and an SC as the
fourth. Hence, one could envision a NAS procedure where these three operations would
be fixed, and only the remaining ones would be the target of the search, thus achieving
excellent results across the three data sets, considering only a subspace related to half of
the original number of operations. Furthermore, the cell’s ranking between data sets sug-
gests that top-scoring architectures on one data set will have good results on other data
sets if transferred. This is more explicit between CIFAR-10 and CIFAR-100, as these two
data sets have similarities at the level of the problem itself. To further study this, we evalu-
ated the inter-data set ranking and cross-correlation between data sets in Figure 2.14. To
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Table 2.4: Mean performance and standard deviation of all architectures that contain an operation on a
specific edge in TransNAS-Bench-101.

Operation
Position

1 2 3 4 5 6

Cls. Object (Acc. (%) ↑)

None 36.45± 6.89 37.95± 6.67 39.07± 6.24 37.10± 6.88 38.05± 6.66 36.50± 6.91

SC 40.36± 4.87 39.95± 5.33 39.57± 5.93 39.87± 5.36 39.67± 5.90 40.10± 5.60

C1×1 39.47± 5.99 39.17± 6.15 39.66± 5.90 38.36± 6.38 39.66± 5.85 40.06± 5.56

C3×3 42.57± 3.73 41.77± 4.68 40.54± 5.51 43.52± 0.64 41.46± 4.60 42.19± 3.69

Cls. Scene (Acc. (%) ↑)

None 38.52± 14.57 41.67± 14.12 43.84± 12.68 40.30± 15.49 41.97± 13.81 38.69± 14.36

SC 46.27± 9.93 45.43± 10.86 44.92± 12.08 44.89± 9.79 44.74± 11.75 45.47± 11.16

C1×1 44.86± 11.85 44.33± 12.28 45.05± 12.16 42.79± 12.83 45.06± 11.90 45.97± 11.23

C3×3 51.26± 7.54 49.49± 9.54 47.11± 11.43 52.93± 0.84 49.14± 9.71 50.78± 7.73

Autoencoding (SSIM ↑)

None 0.42± 0.14 0.43± 0.13 0.46± 0.11 0.38± 0.15 0.43± 0.13 0.42± 0.14

SC 0.49± 0.07 0.48± 0.09 0.46± 0.10 0.53± 0.01 0.48± 0.09 0.48± 0.08

C1×1 0.46± 0.09 0.45± 0.09 0.46± 0.10 0.44± 0.06 0.46± 0.09 0.46± 0.08

C3×3 0.47± 0.07 0.47± 0.08 0.46± 0.10 0.48± 0.03 0.47± 0.08 0.47± 0.07

Surf. Normal (SSIM ↑)

None 0.49± 0.07 0.50± 0.07 0.51± 0.06 0.49± 0.08 0.50± 0.07 0.49± 0.08

SC 0.53± 0.04 0.52± 0.05 0.52± 0.06 0.53± 0.03 0.52± 0.06 0.52± 0.05

C1×1 0.52± 0.06 0.51± 0.06 0.52± 0.06 0.51± 0.06 0.52± 0.06 0.52± 0.05

C3×3 0.55± 0.04 0.54± 0.05 0.53± 0.06 0.55± 0.01 0.54± 0.05 0.54± 0.04

Sem. Segment. (mIoU ↑)

None 17.10± 6.68 18.48± 6.44 19.36± 5.78 17.81± 7.25 18.55± 6.38 17.12± 6.69

SC 20.32± 4.08 20.00± 4.64 19.81± 5.48 20.00± 3.31 19.67± 5.24 20.01± 4.91

C1×1 19.45± 5.52 19.36± 5.73 19.88± 5.53 18.44± 6.16 19.90± 5.44 20.24± 5.14

C3×3 22.92± 3.57 21.95± 4.42 20.75± 5.18 23.54± 0.88 21.67± 4.38 22.42± 3.52

Room Layout (L2 Loss ↓)

None 0.79± 0.15 0.76± 0.14 0.74± 0.12 0.79± 0.16 0.76± 0.14 0.79± 0.15

SC 0.71± 0.10 0.72± 0.11 0.73± 0.12 0.72± 0.10 0.72± 0.11 0.71± 0.11

C1×1 0.73± 0.11 0.73± 0.11 0.73± 0.11 0.75± 0.10 0.73± 0.11 0.72± 0.10

C3×3 0.68± 0.08 0.69± 0.10 0.71± 0.11 0.66± 0.02 0.70± 0.09 0.69± 0.08

Jigsaw (Acc. (%) ↑)

None 62.08± 35.94 68.13± 33.58 74.14± 30.10 62.40± 36.16 69.08± 33.38 62.27± 35.98

SC 83.16± 18.51 80.60± 22.42 76.46± 28.29 84.10± 11.54 77.31± 27.62 79.41± 25.60

C1×1 73.84± 29.95 73.30± 30.57 76.42± 28.18 67.65± 34.49 77.18± 27.43 79.12± 25.49

C3×3 87.21± 17.53 84.26± 22.14 79.27± 26.43 92.14± 1.77 82.71± 22.09 85.50± 17.72

Table 2.5: Mean validation accuracy (%) and standard deviation of all architectures, evaluated based on the
combination of 2 operations in NAS-Bench-101.

Operation Input C1×1 C3×3 MP3×3 Output

Input – 89.65± 7.60 90.92± 7.90 90.19± 4.83 83.16± 0.00

C1×1 – 89.24± 6.59 91.46± 3.77 89.29± 7.58 90.64± 4.40

C3×3 – 91.48± 3.98 91.66± 4.10 90.32± 8.36 91.83± 3.00

MP3×3 – 90.00± 5.19 91.06± 5.47 87.67± 12.22 88.36± 10.46

Output – – – – –
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Table 2.6: Mean validation accuracy (%) and standard deviation of all architectures, evaluated based on the
combination of 2 operations in NAS-Bench-201.

Operation None C1×1 C3×3 AP3×3 SC

CIFAR-10

None 70.78± 28.43 83.63± 14.53 84.65± 14.65 79.38± 15.28 82.10± 15.05

C1×1 83.73± 14.52 87.00± 6.60 87.80± 6.59 84.77± 7.58 86.12± 7.05

C3×3 84.80± 14.66 87.84± 6.59 88.10± 6.56 85.55± 7.65 86.87± 7.11

AP3×3 79.10± 15.22 84.57± 7.69 85.36± 7.67 79.31± 12.09 81.25± 11.96

SC 82.11± 15.01 86.10± 7.14 86.78± 7.19 81.38± 11.93 82.76± 11.50

CIFAR-100

None 49.70± 23.23 61.65± 12.68 63.24± 12.75 56.44± 13.81 59.26± 13.51

C1×1 61.81± 12.63 65.42± 6.45 66.62± 6.33 62.04± 8.37 63.55± 7.75

C3×3 63.42± 12.77 66.65± 6.35 67.12± 6.25 63.25± 8.29 64.73± 7.66

AP3×3 56.17± 13.75 61.83± 8.49 63.03± 8.35 55.20± 12.89 57.30± 12.87

SC 59.15± 13.42 63.51± 7.84 64.66± 7.72 57.41± 12.82 58.90± 12.50

ImageNet16-120

None 24.91± 13.43 33.68± 9.34 34.94± 9.60 28.17± 10.10 31.91± 9.86

C1×1 33.89± 9.23 37.67± 6.10 39.11± 5.85 34.09± 7.46 35.90± 6.78

C3×3 35.38± 9.44 39.02± 5.93 38.91± 5.78 35.25± 7.36 37.44± 6.66

AP3×3 27.74± 10.10 33.82± 7.69 35.04± 7.51 28.10± 8.96 30.89± 9.02

SC 31.69± 9.70 35.98± 6.95 37.46± 6.71 31.04± 8.88 32.80± 8.44

analyze the correlation between data sets, we used Kendall’s τb correlation as:

τb =
(P −Q)√

(P +Q+X)× (P +Q+ Y )
(2.1)

where P is the number of concordant pairs, Q the number of discordant pairs, X the
number of ties only on the x-variable, and Y the number of ties on the y-variable [186].

In Figure 2.14-(a), we present the top-50 architectures on CIFAR-10 and their rank-
ings on CIFAR-100 and ImageNet16-120, and on the right (b), the correlation between
data sets in terms of the performance of all architectures. The results show a high posit-
ive correlation between all data sets, particularly between CIFAR data sets. These results
suggest that NAS-Bench-201 should not be used alone when evaluating the generability of
a NAS method in different data sets. More, when using NAS-Bench-201, it is paramount
to show results by directly searching in each data set, and since ImageNet16-120 has the
lowest correlation with other data sets, it allows a better understanding of how good a
NAS method is. As for the position of the operations in the top cells of TransNAS-Bench-
101, we see in Table 2.10 that convolutional layers have a smaller representation across
all tasks, with 58% of the possible operations being convolutional layers, 31% SC and 11%
None. Looking at specific tasks, semantic segmentation has the highest percentage of con-
volutional layers, with 80% and 66% respectively, while autoencoding, room layout, and
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Table 2.7: Mean performance metric and standard deviation of all architectures, evaluated based on
combination of 2 operations in TransNAS-Bench-101.

Operation None SC C1×1 C3×3

Cls. Object (Acc. (%) ↑)

None 34.43± 7.07 38.11± 6.23 37.42± 6.69 40.94± 5.11

SC 38.05± 6.12 39.69± 5.29 39.60± 5.51 42.20± 4.03

C1×1 37.29± 6.71 39.34± 5.80 38.72± 6.21 41.71± 4.51

C3×3 41.18± 5.09 42.20± 4.20 41.79± 4.49 42.74± 3.05

Cls. Scene (Acc. (%) ↑)

None 34.30± 15.69 41.74± 12.63 40.86± 13.75 48.15± 11.15

SC 41.79± 12.44 44.58± 10.25 44.60± 10.98 50.03± 7.90

C1×1 40.56± 13.72 44.12± 11.43 43.40± 12.44 49.59± 9.11

C3×3 48.52± 10.89 49.93± 8.19 49.70± 9.15 51.79± 6.29

Autoencoding (SSIM ↑)

None 0.36± 0.17 0.47± 0.11 0.43± 0.11 0.45± 0.10

SC 0.47± 0.12 0.51± 0.06 0.49± 0.07 0.50± 0.06

C1×1 0.42± 0.11 0.48± 0.08 0.45± 0.08 0.46± 0.07

C3×3 0.45± 0.10 0.50± 0.07 0.46± 0.07 0.47± 0.06

Surf. Normal (SSIM ↑)

None 0.46± 0.09 0.51± 0.06 0.50± 0.07 0.53± 0.06

SC 0.51± 0.06 0.53± 0.04 0.52± 0.05 0.54± 0.03

C1×1 0.49± 0.07 0.53± 0.05 0.51± 0.06 0.54± 0.05

C3×3 0.53± 0.06 0.54± 0.04 0.54± 0.04 0.55± 0.03

Sem. Segment. (mIoU ↑)

None 15.18± 7.36 18.55± 5.55 17.91± 6.48 21.41± 5.09

SC 18.63± 5.39 19.71± 4.03 19.58± 4.79 21.93± 3.38

C1×1 17.66± 6.50 19.36± 5.06 18.81± 5.87 21.80± 4.33

C3×3 21.60± 5.09 21.99± 3.49 21.95± 4.36 23.12± 2.95

Room Layout (L2 Loss ↓)

None 0.84± 0.17 0.75± 0.13 0.77± 0.13 0.71± 0.11

SC 0.75± 0.13 0.72± 0.10 0.72± 0.10 0.68± 0.08

C1×1 0.77± 0.13 0.73± 0.10 0.74± 0.11 0.69± 0.08

C3×3 0.71± 0.11 0.68± 0.08 0.69± 0.08 0.68± 0.06

Jigsaw (Acc. (%) ↑)

None 50.57± 38.75 72.82± 29.02 65.32± 34.60 79.96± 25.76

SC 73.50± 27.72 81.67± 19.14 78.76± 24.37 87.38± 15.53

C1×1 63.77± 35.21 76.62± 26.85 70.90± 31.92 83.43± 22.59

C3×3 80.98± 25.54 87.20± 16.32 83.96± 22.50 88.34± 14.39

object classification have the lowest, with 42%, 50% and 51% respectively. More, in those
in which the percentage of convolutional layers is lower, SC represents a larger part, with
approximately 42% in all three. As TransNAS-Bench-101 uses the same cell structure as
NAS-Bench-201, we see the same pattern in terms of operation position, where SC is fre-
quently present in the fourth position to create residual connections between the input
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Table 2.8: Top 10 cells on NAS-Bench-101 based on the validation accuracy (%).

Operations CIFAR-10

1 2 3 4 5 6 7 Rank Val. Acc (%)

Input C3×3 C3×3 C3×3 C3×3 Output - 1 95.18%

Input C1×1 MP3×3 C3×3 C3×3 C1×1 Output 2 95.11%

Input C1×1 C3×3 C3×3 C1×1 Output - 3 95.11%

Input C3×3 C3×3 C1×1 C3×3 Output - 4 95.07%

Input MP3×3 C3×3 C1×1 C3×3 C1×1 Output 5 95.06%

Input C3×3 MP3×3 C3×3 C1×1 C3×3 Output 6 95.04%

Input C3×3 MP3×3 C3×3 C1×1 Output - 7 95.03%

Input C3×3 MP3×3 C3×3 C3×3 Output - 8 94.99%

Input MP3×3 C3×3 C1×1 C3×3 Output - 9 94.95%

Input MP3×3 C3×3 C1×1 C3×3 Output - 10 94.94%

and output nodes, and convolutional layers are the preferred operation in the first posi-
tions. However, the evaluated tasks allow for a more diverse use of operations, requiring
NAS methods to be more general and capable of learning which patterns are essential for
each task, which is further justified by the inter-task ranking, where we see that a good
architecture in a specific task will not guarantee a good result when transferred to other
tasks. This is further studied in Figure 2.15, where on the left, the top-50 architectures on
object classification appear as top architectures in other tasks. On the right figure, Kend-
all’s Tau correlation suggests that the tasks are not as correlated as NAS-Bench-201, and
Autoencoding is the task with the lowest correlation with any other. By having a lower cor-
relation between tasks, TransNAS-Bench-101 becomes an interesting benchmark to eval-
uate the generability of NAS methods, as transferring architectures searched on a single
task to others does not directly translate to good results. This is particularly important,
as it allows evaluating if a NAS method is capable of generating suitable architectures for
different data sets or if it only generates good architectures for data sets that are very sim-
ilar.

2.3.4 Best Practice Suggestions

The presented results shed insights on the importance of the different operations in a
NAS search space, how they are influenced by their positioning, their combinations, and
how this influences the performance of an architecture. Based on those, we consider that
they have a two-fold application: 1) on how NAS methods should be evaluated, and 2)
what researchers should take into consideration when designing and creating new NAS
benchmarks. The following suggestions extend those proposed by NAS researchers [44,
40, 45, 172], and we do believe that they contribute to fairer comparisons and better NAS
designs.
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Table 2.9: Top-10 cells for each one of the data sets on NAS-Bench-201. Validation accuracy (%) is given
only for the top-10 cells in each data set, while the ranking is also presented for the architectures outside the

10 best, allowing inter-data set comparison.

Operations Rank / Val. Acc. (%)

1 2 3 4 5 6 C10 C100 IN16-120

C3×3 C3×3 C3×3 SC C3×3 C1×1 1 91.61% 11 74
AP3×3 C3×3 None SC C1×1 C3×3 2 91.57% 202 1083
C3×3 C3×3 C3×3 SC C3×3 C3×3 3 91.55% 1 73.49% 12
C3×3 None C3×3 SC C1×1 C1×1 4 91.55% 52 87
C3×3 C1×1 SC SC C3×3 C1×1 5 91.54% 219 112
C3×3 C1×1 C3×3 SC C3×3 C3×3 6 91.53% 3 73.13% 14
C3×3 C3×3 C1×1 SC C3×3 C1×1 7 91.52% 31 20
C3×3 C3×3 None SC C3×3 C1×1 8 91.51% 38 188
C3×3 C3×3 C3×3 SC C1×1 C3×3 9 91.50% 2 73.31% 66
C3×3 C1×1 C3×3 SC C1×1 C3×3 10 91.48% 21 16
C3×3 C3×3 None SC C1×1 C3×3 20 4 73.09% 94
C3×3 C3×3 SC SC C3×3 C1×1 128 5 73.02% 253
C1×1 C3×3 C1×1 SC C3×3 C3×3 27 6 72.98% 134
C3×3 C3×3 C1×1 SC C1×1 C3×3 31 7 72.96% 142
C3×3 C3×3 C3×3 SC C1×1 C1×1 12 8 72.95% 18
C1×1 C3×3 C3×3 SC C1×1 C3×3 18 9 72.86% 85
C1×1 C3×3 C3×3 SC C3×3 C3×3 23 10 72.77% 77
C3×3 C1×1 C1×1 SC C3×3 C3×3 32 19 1 46.73%

C3×3 C1×1 C3×3 SC C3×3 C1×1 11 12 2 46.56%

C3×3 C1×1 C3×3 C1×1 None C3×3 414 270 3 46.52%

C3×3 None C3×3 SC C3×3 C1×1 48 40 4 46.50%

C1×1 C3×3 C3×3 SC C3×3 C1×1 15 26 5 46.50%

C3×3 C1×1 C3×3 SC C1×1 C1×1 29 75 6 46.49%

C3×3 C1×1 C3×3 C1×1 SC C1×1 753 728 7 46.47%

C1×1 C3×3 C3×3 SC C1×1 C1×1 280 55 8 46.45%

C3×3 SC C3×3 SC C1×1 C3×3 39 53 9 46.40%

C1×1 C1×1 C3×3 SC C3×3 C3×3 83 22 10 46.38%

Evaluating NASMethods

Our findings suggest that specific operations, such as C3×3, have a considerable impact
on the final performance of an architecture. To promote a thorough evaluation of NAS
methods, we recommend that a NAS evaluation method consider:

• Evaluating NASmethods over time, reporting performance as an average and stand-
ard deviation at regular intervals to allow the analysis of the performance and train-
ability of the method.

• Analyzing the cell’s design to determine if a NASmethod focuses only on a small sub-
set of the operation pool, which can hinder optimal results. If this is done over time,
it can provide information about how well a NAS method generalizes and learns.

• Evaluating NASmethods onmultiple benchmarks, not just a single one, especially if
the analyzed task allows most architectures to attain high performance, such as the
CIFAR-10 data set. This corroborates past suggestions and findings [44, 40, 45, 172],
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Table 2.10: Top cells for each task on NAS-Bench-201. Performance is given only for the top-10 cells in each
task while ranking is also presented for architectures outside the top 10, promoting inter-task comparison.

Operations Rank / Performance

1 2 3 4 5 6
Cls.
Object

Cls.
Scene

Autoencoding
Surf.
Normal

Sem.
Segment.

Room
Layout

Jigsaw

C3×3 None C3×3 SC C1×1 C1×1 1 46.32 534 791 172 582 2072 126
C3×3 SC C3×3 SC SC C3×3 2 46.23 469 1124 495 1645 1057 1460
C3×3 SC SC C1×1 C3×3 SC 3 46.06 920 116 310 1191 736 111
C3×3 SC C1×1 C1×1 None SC 4 45.98 369 1367 1331 2153 316 477
C3×3 SC SC SC C3×3 SC 5 45.98 292 390 701 2259 1 0.59 146
SC C1×1 C3×3 C3×3 SC C3×3 6 45.88 115 768 332 519 752 1567
C3×3 SC C3×3 SC None SC 7 45.86 543 49 234 2504 74 150
C3×3 C3×3 C1×1 SC C3×3 SC 8 45.86 331 85 437 553 748 534
SC C3×3 None C1×1 SC C3×3 9 45.86 178 344 192 1442 1595 240
C3×3 C3×3 SC SC C3×3 SC 10 45.81 297 1206 902 1536 115 778
C3×3 C3×3 C1×1 SC C3×3 C1×1 61 1 54.94 218 52 800 1647 423
C3×3 SC C3×3 SC C1×1 C1×1 148 2 54.93 958 1728 2269 13 974
C3×3 C3×3 C3×3 SC None C1×1 213 3 54.87 565 307 1871 1836 344
C3×3 C3×3 C3×3 SC C3×3 C3×3 572 4 54.87 1411 266 1274 2191 32
C3×3 None SC C1×1 C3×3 SC 1129 5 54.86 3019 187 117 2214 790
C3×3 C1×1 C3×3 None SC SC 1132 6 54.86 3020 188 118 2215 791
C3×3 C1×1 C3×3 C1×1 SC SC 1490 7 54.85 2724 547 796 1772 153
C3×3 SC C1×1 C1×1 SC C1×1 93 8 54.80 2296 1834 229 1298 197
C3×3 C3×3 None C1×1 SC C3×3 928 9 54.79 1906 339 23 1058 1323
C3×3 SC C1×1 C3×3 C3×3 SC 381 10 54.77 127 361 1287 310 123
SC C1×1 None C3×3 SC None 529 2545 1 0.58 1355 2367 995 1839
SC C1×1 SC C3×3 SC None 530 2546 2 0.58 1356 2368 996 1840
SC C3×3 C1×1 SC None SC 1704 2619 3 0.57 1192 2454 380 502
C1×1 SC C3×3 C3×3 C1×1 SC 390 1208 4 0.57 607 2598 11 1119
C3×3 SC SC SC None SC 1042 2754 5 0.57 2432 2535 365 2312
C1×1 SC C3×3 SC C3×3 None 2314 2159 6 0.57 2205 1612 1161 836
SC SC C3×3 SC None SC 1445 2821 7 0.57 2549 2789 234 953
C3×3 C1×1 C3×3 SC C1×1 None 313 348 8 0.57 906 2042 1241 30
SC C1×1 C3×3 SC SC C3×3 145 790 9 0.57 1894 2647 21 431
SC C3×3 C3×3 None SC C1×1 468 404 10 0.57 1431 1781 1406 827
C3×3 C3×3 SC C3×3 C3×3 C1×1 1011 203 2933 1 0.60 97 2643 1089
C3×3 C3×3 None SC SC C1×1 173 206 384 2 0.59 685 242 503
SC C3×3 None SC C1×1 C3×3 96 96 1102 3 0.59 1847 38 1099
C3×3 SC C3×3 C1×1 SC SC 20 76 246 4 0.58 1539 364 871
C3×3 C1×1 SC SC C1×1 C1×1 598 766 141 5 0.58 1937 1069 625
C3×3 SC C3×3 SC None C1×1 672 1203 1352 6 0.58 1385 1221 275
C3×3 C1×1 C3×3 C3×3 C1×1 C1×1 2488 51 2304 7 0.58 12 2368 1471
SC C3×3 None SC None C3×3 663 15 364 8 0.58 864 240 9 94.90

SC C3×3 C1×1 C3×3 SC SC 614 2518 825 9 0.57 629 610 1129
C3×3 None C3×3 C1×1 C3×3 SC 953 785 2451 10 0.57 414 2456 2023
C3×3 C3×3 C3×3 C1×1 SC C3×3 845 24 1782 101 1 26.27 2250 781
C1×1 None C3×3 C3×3 C3×3 C3×3 1448 1324 2708 1187 2 26.10 2622 1910
C3×3 None C3×3 SC C1×1 C3×3 30 224 912 342 3 25.95 2184 175
C3×3 SC C3×3 C3×3 C3×3 C1×1 658 210 3139 44 4 25.91 1464 136
C3×3 C1×1 C3×3 C3×3 None SC 362 540 1928 206 5 25.83 1693 1957
C3×3 None C3×3 C3×3 C1×1 C3×3 2081 788 2778 197 6 25.82 1923 2194
C3×3 C3×3 C3×3 C1×1 C3×3 C1×1 1802 620 2358 36 7 25.80 2713 2172
C3×3 C3×3 C3×3 C1×1 C3×3 SC 703 507 2552 367 8 25.79 2617 1598
C3×3 None C3×3 None C1×1 C1×1 2848 2103 3500 1208 9 25.78 2697 2822
C3×3 C3×3 C3×3 None C1×1 C1×1 2707 1878 3260 971 10 25.76 2573 2821
C3×3 C1×1 None SC C3×3 None 344 59 510 252 1391 2 0.60 1263
C3×3 C1×1 SC SC C3×3 None 345 60 511 253 1392 3 0.60 1264
SC C3×3 C3×3 SC SC C1×1 241 1246 103 1927 2559 4 0.60 938
SC C3×3 C3×3 SC C1×1 SC 2058 2406 552 291 1383 5 0.60 292
C3×3 SC SC SC C3×3 C3×3 461 70 1118 15 2081 6 0.60 684
C3×3 C1×1 None C1×1 C1×1 C1×1 862 1389 2117 1659 370 7 0.60 1148
SC C3×3 C3×3 SC SC C3×3 15 529 1306 512 1805 8 0.60 599
C3×3 SC None SC C3×3 SC 125 384 25 53 2323 9 0.60 346
SC C3×3 SC SC C3×3 C3×3 307 807 1072 54 2595 10 0.60 1709
C3×3 C3×3 None SC C3×3 C1×1 428 95 1241 186 613 887 1 95.37

C3×3 C1×1 SC SC None C1×1 1431 1059 402 1357 2361 144 2 95.22

C3×3 C3×3 None SC SC None 1405 2652 1309 1761 2619 213 3 95.00

C3×3 C3×3 SC SC SC None 1407 2653 1310 1762 2620 214 4 95.00

None C3×3 C1×1 C1×1 C1×1 C3×3 2671 321 2855 352 1529 2302 5 95.00

C3×3 C1×1 C1×1 C3×3 SC SC 1275 361 1404 311 958 1245 6 94.99

C3×3 None None SC C1×1 C1×1 328 1158 1172 1681 2442 649 7 94.96

C3×3 C3×3 C1×1 C1×1 SC C1×1 2146 493 1975 169 209 2041 8 94.91

C1×1 SC C1×1 C3×3 SC SC 922 2121 196 1249 2145 421 10 94.88

andwould allowaproper evaluation of themethod’s generability, as it could be easily
overfitting a setting from a small search space on a given benchmark.

• Evaluating NASmethods by directly searching on all benchmark data sets. It is com-
mon that NAS methods search on a small data set (e.g., CIFAR-10) and transfer the
generated architecture to other data sets based on human-defined heuristics (e.g.,
ImageNet) [2, 40]. However, NAS methods should be capable of generating archi-
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Figure 2.14: Evaluation of NAS-Bench-201 architectures regarding their inter-data set ranking and the
correlation between data sets. On (a) we show the ranking of the top-50 architectures from CIFAR-10 when
transferred and evaluated to CIFAR-100 and ImageNet16-120; and (b) Kendall’s Tau correlation between

data sets.
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Figure 2.15: Evaluation of TransNAS-Bench-101 architectures regarding their inter-task ranking and task
correlation. On (a) we show the ranking of the top-50 architectures from object classification when

transferred and evaluated to other tasks; and (b) Kendall’s Tau correlation between tasks.

tectures in different scenarios and constraints. Thus it is important that the authors
report the performance of directly searching different data sets.

Designing NAS benchmarks

Based on the findings presented in this section, we propose several suggestions for re-
searchers interested in designing and creating new NAS benchmarks. Firstly, it is im-
portant to note that within the search space of all three benchmarks evaluated, there are
operations that have the most importance – convolutional layers and SC. This suggests
that a subset of the operations pool is sufficient to generate the best architectures in the
studied benchmarks. Additionally, our results show a high correlation between data sets
within a benchmark, hindering the evaluation of NAS methods in terms of generability
and transferability. To address these, researchers should consider the following when
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designing NAS benchmarks:

• The cell structure greatly impacts the final architecture performance. This is seen in
NAS-Bench-201 and TransNAS-Bench-101 when SC layers are often placed in the
fourth position. Therefore, researchers should consider this when designing their
benchmarks by progressively analyzing the architectures as the benchmark is de-
veloped. This can be done by looking at a small set of architectures and partially
training them. In this, looking at the learning curve and zero-proxy estimators can
help obtain quicker estimates of how the operations and the cell structure impact
the final performance.

• Small search spaces could lead to operation overfitting, suggesting that, if possible,
authors should create an operation space that contains more operations than exist-
ing ones. This could be manageable by reducing the cell structure, fixing specific
operations, and increasing the operation pool to include more operations, such as
activation layers and a wider range of pooling operations.

• New benchmarks should strive to increase the number of architectures. While a
small number of architectures is required due to the extreme computational costs
of training thousands of architectures, benchmarks could be designed with a larger
search space and similar computational costs by training the architectures with a
smaller number of epochs or simplifying the architecture’s outer-skeleton to reduce
the number of parameters. In the studied benchmarks, NAS-Bench-101 is the only
one with a large set of possible architectures, with over 423k candidates. In contrast,
NAS-Bench-201 only has 15k architectures, and TransNAS-Bench-101 cell space has
approximately 4k possible architectures.

• NAS benchmarks should include different types of constraints and information re-
garding the architectures, such as latency, power consumption, and model size,
among others. This will allow the evaluation of NAS methods that search architec-
tures that meet different practical constraints.

• Benchmarks should provide a comprehensive evaluation metric that considers
both accuracy and practical constraints to evaluate the overall performance of the
searched architectures. Thiswill ensure that the searched architectures are accurate,
practical, and feasible for real-world applications.

• NAS benchmarks would benefit from going beyond training architectures with dif-
ferent seeds to evaluating architectures with different training protocols. With this,
a NASmethod could be evaluated on the performance of the generated architectures
with a specific training protocol (e.g., different loss criteria). This would further al-
lowNASmethods to go beyond architecture design to also select the proper training
protocol.

Furthermore, as architectures become less dependent on convolutional layers, their
training time will be reduced. Convolutional layers are known for their excellent feature
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extraction capabilities but come with the cost of more parameters. To reduce inference
time and the number of parameters, researchers can use convolutional layers that reduce
computational costs, such as depth-wise separable convolutions [187]. These layers have
been used extensively in the DARTS search space [2].

2.4 Conclusions

In this chapter, we presented a comprehensive review of the concepts that make up a
NAS method and how NAS benchmarks can be a step forward into fair evaluations. First,
we introduced the problem of designing CNNs and how NAS automates the process by
having 3 components: the search space, the search strategy, and the performance es-
timation strategy. For each, we reviewed different methods, their advantages, and how
these proposals impact a NAS method. With this, we showed that NAS methods still de-
pend on many design choices, greatly affecting the final performance and computation
required to perform the search. Performing fair comparisons is extremely hard, as dif-
ferent methods have different training protocols and search spaces, so we also presented
an extensive overview of NAS benchmarks and analyzed three popular NAS benchmarks
regarding their operations. We found that convolutional layers are essential to have ar-
chitectures with high performance and also found that the distribution of the accuracy
ranges is skewed, suggesting that finding architectures with accuracies closer to the up-
per bound is not hard, as several operation patterns, such as their positioning in a cell
and their combinations, tend to yield top-scoring architectures.

Based on the comprehensive review presented in this chapter, in the next chapter, we
focused on evaluating different neural networks for two different problems and proposed
improvements on their architectures based on NAS-searched classifiers.
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Chapter 3

Improving Convolutional Neural Networks
Through Method Fusion

3.1 Introduction

In this chapter, we focus on understanding different neural network architectures and
study how NAS and AutoML can be used to improve their structure without the need to
search for an entirely new architecture. For this, we focused on evaluating different CNNs
and RNNs in two different problems: defect detection and sentiment analysis. Then,
based on the evaluation of several state-of-the-art neural networks, we propose three dif-
ferent methods: i) CNN-fusion, an ensemblemethod that combines all CNNs and outputs
a final prediction; ii) Auto-Classifier, which uses the best CNN and further improves it
using NAS and AutoML by automatically searching for a new classifier component; and
iii) Auto-fusion, which combines two individual classifiers into a final decision by lever-
aging a searched fusion model. The problems used to evaluate the proposed methods
were chosen since they provide completely different settings: industrial defect detection
and social media information, as well as because existing solutions still flounder to solve
them efficiently [3, 188, 189, 190, 191, 192]. This makes the chosen problems suitable
for the analysis of different neural networks in the tasks of single classification and mul-
timodal analysis. With this, we use NAS and AutoML to improve upon the classifiers in a
controlled way, where the goal is not to search for new architectures but to improve upon
existing ones with new searched methods. The use of NAS and AutoML also allows us to
have a deep understanding of how it can be used to create new neural networks, which
was crucial for the rest of this thesis work.

The rest of this chapter is organized as follows. Section 3.2 presents and discusses the
proposedmethods for defect detection and sentiment analysis. Section 3.3 showcases the
conducted experiments and discusses the results, while section 3.4 provides the conclu-
sions of this chapter.

3.2 Proposed Methods

In this section, we present two CNN-basedmethods for classifying texture defects in 2D
images and one formultimodal sentiment analysis. For this, we evaluate the performance
ofmultiple state-of-the-art architectures in IC problems: VGG{11, 16, 19} [57], ResNet{18,
34, 50, 101, 152} [59], and DenseNet{121, 161} [60]. In text sentiment analysis, we evalu-
ated the performance of Vader [193], TextBlob [194], Long-Short Term Memory (LSTM)
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[195], LSTMwith Attention [196], Bi-directional LSTM [197], RNN [198], Recurrent Con-
volutional Neural Network (RCNN) [199], TextCNN [200] and VDCNN{9, 17, 29, 49}
[201] (Section 3.2.2). Then, based on the evaluation of all neural networks, we propose
three methods: i) CNN-fusion, an ensemble method that combines all CNNs and outputs
a final prediction (Section 3.2.2); ii) Auto-Classifier, which uses the best CNN, based on
the initial performance evaluation, and then improves it by using NAS and AutoML to
automatically search for a new classifier component (Section 3.2.3); and iii) Auto-fusion,
which combines two individual classifications: one from the text classifier and one from
the image classifier, into a single one by leveraging a searched fusion model.

3.2.1 Deep Neural Networks

In this section, we sought to evaluate the performance of different state-of-the-art Deep
Neural Networks (DNNs) that are known to do well in a variety of classification problems.
By looking closely at different neural networks on textual and visual problems and evalu-
ating those in defect detection and sentiment analysis problems, we obtained information
about their performance, but more important to this thesis, we were forced to implement
and deeply understand how their inner components are combined to form entire architec-
tures.

In the context of defect detection, we looked at CNNs for visual classification, and for
sentiment analysis, we used both CNNs for visual classification and several different types
of neural networks for text analysis. In the rest of this section, we detail the neural net-
works that were implemented and evaluated.

Vision-based Neural Networks

For IC, we focused on using VGG{11, 16, 19} [57], ResNet{18, 34, 50, 101, 152} [59], and
DenseNet{121, 161} [60]. These 3 families of CNNs allow a deep understanding of fun-
damental topics of deep learning: designing deep models, understanding vanishing and
exploding gradients, and residual and dense connections. There are other image classifi-
ers such as transformers-basedmodels [202] and Xception-based architectures [187] that
work efficiently, but for simple IC purposes, the 3 CNNs families examined show excellent
results, often outperforming all others.

VGG was one of the first proposed CNN architectures with a deep structure [57]. It
was introduced by researchers at Oxford University, and their main proposal was to use a
simple and unified architecture for performing classification tasks. The main advantage
of VGG is its simplicity and uniformity. VGG only uses 3 × 3 convolutional layers with a
fixed number of filters in each layer, followed by max pooling layers to downsample the
feature maps. The architecture is simple to implement and can be easily modified to fit
different image sizes and data sets. When first proposed, VGG achieved state-of-the-art
performance on the ImageNet data set.
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ResNet (short for Residual Network) is a deep CNN [59] that introduced the notion of
residual connections. Its main proposal is to overcome the vanishing gradient problem
that can occur in very deep neural networks. This problem arises because the gradients
that are propagated through the layers can become very small, making it difficult for the
network to learn effectively. The main advantage of ResNet is that it allows designing
very deep neural networks (hundreds of layers) that can still be trained effectively. This is
achieved by proposing the use of residual connections, which allow the network to learn
a residual mapping in addition to the mapping that is learned by the convolutional layers.
By doing so, the gradient can be directly propagated to earlier layers during training, mak-
ing it easier to train deep architectures. ResNets achieved state-of-the-art performance on
awide range of CV tasks, including IC, object detection, and segmentation. Its success has
led to the development of many other deep residual networks, such as ResNeXt [203] and
Wide ResNet [204].

DenseNet (short for Dense Convolutional Network) is a deep convolutional neural net-
work architecture that further improves upon the idea of learning residual connections
by proposing the use of densely connected architectures [60]. The main advantage of
DenseNet is that it promotes feature reuse by connecting each layer to every other layer in
a feed-forward fashion. This is achieved through dense connections, where the output of
each layer is concatenated with the output of all previous layers. By doing so, each layer
can have access to all of the feature maps that were produced by previous layers, which
helps to mitigate the vanishing gradient problem. DenseNets have achieved state-of-the-
art performance on a wide range of CV tasks [54].

Text-based Neural Networks

For text classification, we evaluated lexicon and rule-based methods and different
DNNs. The implementedDNNs can be categorized into two types: CNNs, which are based
on convolutional layers, and RNNs, which promote temporal information throughout the
architecture. Specifically, we looked into: Vader [193], TextBlob [194], LSTM[195], LSTM
withAttention [196], Bi-directional LSTM [197], RNN [198], RCNN [199], TextCNN [200]
and VDCNN{9, 17, 29, 49} [201]. The next paragraphs introduce each in more detail.

VADER and TextBlob are tools for sentiment analysis in natural language processing.
Both VADER and TextBlob are lexicon and rule-based sentiment analysis tools designed
to handle social media texts with non-standard language, sarcasm, and other nuances.
These methods provide a good baseline for comparison with deep learning methods.

FastText is a shallow network architecture that can be quickly trained [205]. The idea
behind FastText is that instead of representing each word as a single vector, FastText rep-
resents each word as a bag of character n-grams, which allows it to capturemorphological
information and handle unseen words [206]. In this work, we implemented a two-layer
FastText architecture with a hidden size of 256.
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RNNs were designed to allow neural networks to have temporal information, which
simple neural networks didn’t have [198]. Basically, RNNs forma chain structure inwhich
each node receives as input the output from the predecessor node and one part of the input
sequence (e.g., a word or a vector). Each node outputs a value both to the successor node
and to the next layer. So, what an RNN layer does is, for each input element, it computes:

hit = tanh(Whhht−1 + bih +
∑
j<i,x

Wxjhx
j
t + bih) (3.1)

where ht is the hidden state at time t, xt is the input at time t, h(t−1) is the hidden state of
the previous layer at time t−1 or the initial hidden state at time 0,Whh is the weight of the
recurrent neuron,Wxih is the weight of input neuron x from layer i, and bhh are the bias
weights. The architecture implemented is an Embedding layer followed by a multi-layer
Elman RNN with 2 recurrent layers and a final linear layer.

LSTM is a type of RNNarchitecture designed to address the vanishing gradient problem
that can occur in traditional RNNs while also being able to remember or forget previous
inputs selectively. Its main advantage is the ability to handle long-term dependencies
in sequential data. LSTM accomplishes this by using a memory cell, which allows the
network to retain or discard information from previous timesteps selectively. Formally,
an LSTM layer computes for each element in the input sequence:

it = σ(Wiixt + bii +Whih(t−1) + bhi) (3.2)

gt = tanh(Wigxt + big +Whgh(t−1) + bhg) (3.3)

ot = σ(Wioxt + bio +Whoh(t−1) + bho) (3.4)

ct = ft ◦ c(t−1) + it ◦ gt (3.5)

ht = ot ◦ tanh(ct) (3.6)

where ht is the hidden state at time t, ct is the cell state at time t, xt is the input at time t,
h(t−1) is the hidden state of the layer at time t−1 or the initial hidden state at time 0, and it,
ft, gt, ot are the input, forget, cell, and output gates, respectively. σ is the sigmoid function,
and ◦ is the element-wise product. The implemented architecture has 1 embedding layer,
1 LSTM layer with 256 hidden states, and 1 linear layer.

LSTM with attention (LSTM-Attn) is a variant of the LSTM architecture that uses an
attention mechanism to improve the handling of long-term dependencies in sequential
data [196, 207]. The main advantage of LSTM with attention is its ability to selectively
focus on different parts of the input sequence, allowing it to better capture important in-
formation and handle long-term dependencies. The attention mechanism calculates a
weight for each input timestep, indicating how much attention the network should give
to each input component. This allows the network to selectively focus on the most relev-
ant parts of the input sequence while ignoring irrelevant or redundant information. In
our implementation, the attention layer is a global attention mechanism that computes
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the soft alignment score between the output of the LSTM and its final hidden state. The
implemented architecture is similar to the aforementioned LSTM, with the addition of an
attention layer before the linear layer.

Bi-directional LSTMs (Bi-LSTM) are an extension of traditional LSTMs that can better
capture the context and dependencies in sequential data by processing it in both forward
and backward directions [197]. Themain advantage of Bi-LSTMs is their ability to capture
dependencies between past and future contexts of a sequence, allowing a better under-
standing of the meaning and context of each word. Bi-LSTM accomplishes this by using
two separate hidden layers for each timestep of the input sequence, one for the forward
direction and one for the backward direction. The outputs of these hidden layers are then
concatenated to produce the final output at each timestep. In our implementation, we
followed the same architecture scheme as for LSTM but with a bi-directional LSTM and
two linear layers with max and average pooling in between.

RCNN is a type of neural network architecture that combines the strengths of RNNs and
CNNs to process sequential data. Its main advantage is the ability to capture both local
and global context in sequential data, allowing it to better infer the meaning and context
of each word. RCNN accomplishes this by using a sliding window of fixed size to extract
features from the input sequence, and then passing these features through a bi-directional
RNN to capture the context and dependencies between words. The implemented RCNN
architecture is: an embedding layer, a bi-directional LSTM followed by a dropout. Then, a
linear layer processes the embeddings from the bi-LSTM and finally, a max pooling layer
and a linear layer complement the architecture.

TextCNN is a type of neural network architecture that uses CNNs to process textual data
[200]. The main advantage of TextCNN is its ability to capture local context in sequen-
tial data, allowing it to extract information about the meaning and context of each word.
TextCNN accomplishes this by using convolutional layers to extract features from the in-
put sequence and then using max-pooling to reduce the dimensionality of the features.
In our implementation, the architecture is composed of an embedding layer followed by
five convolutional blocks and a final linear layer. Based on TextCNN, we defined a second
CNN-based network to perform text classification, which we named sCNN. The architec-
ture is similar, but instead of having 5 blocks of Convolutions-ReLU-Max Pooling, it has
only 3 with kernel sizes of 1, 3, and 5 respectively.

Similar to TextCNN, VeryDeepCNNs is a neural network that uses convolutional neural
networks to process text data. Themain advantage of VDCNN is its ability to capture both
local and global context in sequential data, allowing it to infer the meaning and context of
each word. VDCNN accomplishes this by using convolutional layers with increasing filter
sizes to extract features from the input sequence and then usingmax-pooling to reduce the
dimensionality of the features. The resulting features are then passed through a series of
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fully connected layers to make the final prediction. We implemented 4 architectures with
different depths: 9, 17, 29, and 49. Every architecture starts with an embedding layer,
followed by a 1D convolutional layer and a pre-defined number of convolutional blocks
(depth size of the architecture). The architecture’s head is then composed of amax pooling
layer and three linear layers.

3.2.2 Convolutional Neural Networks Fusion

By leveraging the implemented CNNs (Section 3.2.1) and training those on a visual task
of detecting defects, we created a pool of architectures that are specifically trained for the
problem at hand and that can be combined to form an ensemble model. For this, we har-
ness all individual networks and propose CNN-Fusion, an ensemble method created with
all CNNs in the pool. CNN-Fusion allows a combination of all the predictions of the indi-
vidually trained CNNs into a final and unique classification. The proposed CNN-Fusion
works by fusing all the individual predictions into a final, weighted, prediction by making
a weighted sum of each class, where each CNN votes using a normalized weight based on
the Area Under The Roc Curve (AUC) obtained in the validation set during training. The
weights are obtained with the following expression:

wi =
Vi∑n
j=1 Vj

, i ∈ 1, ..., n (3.7)

where n is the number of CNNs, and V is a vector with the AUC values for all CNNs.

Hence, the final classification using the normalized contribution of the individual for a
given input can be calculated with:

argmaxi(Pij · wj),
i ∈ 1, ..., c,

j ∈ 1, ..., n
(3.8)

where c is the number of classes, n the number of CNNs, and Pij represents the output
classification of network j for class i.

The idea behind CNN-Fusion is that by balancing the importance of each CNN through
the process of normalization, where networks that have higher AUC scores in the valid-
ation set have higher confidence, we can perform weighted voting that improves upon
classifying the existence of defects using individual CNNs.

3.2.3 Auto-Classifier

CNNs are usually composed of two components: the feature extraction and the classi-
fication component. The idea is: CNNs start by extracting simple representations of the
input as features maps, which gradually increase in complexity at deeper layers of the net-
work, then, these feature maps are fed into fully connected layers that provide the output
of the network (activation patterns), normally in the form of a classification map.

52



Improving Neural Architecture Search

(a) Individual CNN. (b) Auto-Classifier.

Figure 3.1: Visual representation of the difference between a CNN and the Auto-Classifier method. A CNN
is composed of two components: Feature Extraction and Classification. In the Auto-Classifier, the

classification component has been replaced by another one, represented by a gradient boosting machine.

To further improve the use of CNNs, we propose Auto-Classifier that uses NAS and
AutoML to increment upon a CNN instead of searching entirely for a new one. Auto-
Classifier improves upon the best individual CNN, by replacing its classification compon-
ent with a new one. For this, we leverage the feature extraction capabilities of a CNN
and remove its classification component. Then, a RS is performed over a pool of different
methods, composed of: random forest, gradient boosting machines, neural network, XG-
Boost gradient boosting machine, extremely randomized forest, random grid of XGBoost,
random grid of gradient boostingmachines, and a random grid of DNNs [208, 209]. After
the search, a post-processing step in which the best models found are stacked is also con-
ducted. This process is efficient, as the sampled methods are evaluated only on the final
feature map created by the CNN and a performance metric is drawn by evaluating a small
number of epochs.

We hypothesize that training a CNN from scratch and then partially or entirely remov-
ing its classification component and replacing it with other types of classificationmethods
will increase the CNN capabilities and outperform the initial architecture. This is because
other classifiers, such as random forests, have shown to be very good in different classifica-
tion problems. The problem with many classifiers is that to be able to process and classify
images correctly, they require extensive processing power, translating into huge models.
By processing the image with the feature extraction of a CNN, complex and rich feature
maps are created, which can then be used by a classifier without the need to perform any
feature extraction or feature processing. So, the proposedmethod, Auto-Classifier, works
by initially using an individual CNN, from which the classification component is partially
removed. Then, we use RS to generate a new classifier based on the output features of the
modified CNN. In our experiments, we use the feature extraction capabilities of a CNN
and allow the first layer of the CNN’s classification component to be kept for dimensional-
ity reduction purposes. This ultimately enables more types of classifiers to work with that
data.

In short, the proposed Auto-Classifier is composed of two parts: i) the best individual
CNN without the classification component, leaving a trained CNN that outputs a rich rep-
resentation map of the input; ii) an automated search for a new classification component
that receives as input the representations generated in the previous step. Then, the final
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Positive

Neutral

Negative

Pre-processing Classification

Thank you Phuket Sunset
Weddings for using Wedding
Flowers Phuket. Waiting the

happy couple.

AutoML Fusion

Figure 3.2: Proposed multimodal architecture. The first container represents the pre-processing
component that removes noise and non-important information. The second container shows both

classification components, where the image and the text are individually classified using CNNs. The third
container represents the fusion method that receives the concatenation of the individual classifications and
performs a final classification using the model searched – represented by a gradient boosting machine.

model is composed by the partial CNN, sequentially followed by the new searched clas-
sifier. In Figure 3.1, we present the difference between a CNN and the Auto-Classifier
method. In this, the Auto-Classifier method (b), based on the CNN presented in (a), has
a new classification component.

3.2.4 Auto-Fusion

In this section, we propose Auto-Fusion that, similarly to Auto-Classifier, leverages NAS
and AutoML and designs a fusion mechanism. For this, we improve upon CNN-Fusion
by combining different classifiers. In the case of sentiment analysis, this means: one text
and one image classifier are combined to perform a final classification. With this, we can
perform a multimodal classification by leveraging individual data-specialized models.

To create Auto-Fusion, we used a similar approach to the one proposed in the previous
section (Section 3.2.3), where the goal is to create an optimalmodel to classify a given data
set without requiring extensive human modeling. However, in this case, we focused on
creating a fusion model that receives two separate inputs from different neural networks.
For this, the first step is to get the finalX based on Yimg and Ytext, where Y represents the
classification vector and img and text represent the respective classifiers, and fuse them
into a unique feature map: X = Yimg

⊕
Ytext, whereX will be the input for the optimiza-

tion problem (final classifier). Here, the objective functionO is defined as accuracy in the
task of 3-class sentiment classification.

GivenX, we search for the optimal machine learning model using the RS strategy over
the search space discussed in Section 3.2.3. After the search, the model with the best
performance on the validation set is the one selected to be the fusing method of Auto-
Fusion. Figure 3.2 shows Auto-Fusion’s architecture. Initially, the pre-processing model
is used to normalize the images, resizing the images to 224×224×3, tokenizing the textual
data as well as removing the stop words.
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3.3 Experiments

(a) Data set 1. (b) Data set 2.

(c) Data set 3. (d) Data set 4.

(e) Data set 5. (f) Data set 6.

Figure 3.3: Examples of defects in each DAGM2007 data set.

To evaluate the proposed methods and compare them with baseline approaches, we
conduct experiments on several data sets. CNN-Fusion and Auto-classifier are evaluated
on a defect detection problem, and Auto-Fusion on a multimodal sentiment analysis task.
All the experiments were conducted using a computer with a single GeForceGTX 1080 Ti,
16Gb of RAM, and an AMD Ryzen 7 2700 processor.

In the following sections, we detail the data sets used, present the results obtained and
provide a discussion for each task independently.
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(a)Negative: “His eyes
speak of the horror of war
that no one should go

through. War doesn’t help, it
only kills. Pls Stop.”

(b)Neutral: “And they say
it’s grim up north...”

(c) Positive: “Thank you
Phuket Sunset Weddings for
using Wedding Flowers

Phuket. Waiting the happy
couple.”

Figure 3.4: Examples of images and the correspondent texts of the three different classes in B-T4SA. (a)
shows a negative example; (b) a neutral one; and (c) a positive example.

3.3.1 Data Sets

For the task of classifying the presence of defects, we used theDAGM2007 set of problems.
It consists of six different data sets, each with 1150 images. For which, 1000 images are
of background textures without defects and 150 with a type of defect. For each data set,
we performed a stratified split into 3 sets: 70% for the train set, 15% for the validation set,
and 15% for the test set. The train and validation sets were used to train the algorithms,
and the test set to evaluate the final performance. The test set is never used for training
purposes, and for the proposed defect detection methods, the best individual CNN was
selected based on its validation AUC. Figure 3.3 shows an example of the type of defect
present in each data set of the DAGM2007.

As for the multimodel problem, we used the B-T4SA data set, which is a data set with
Twitter information for sentiment analysis. Each data point of the 470 thousand has both
text and image information [210]. In Figure 3.4, we show an example of an image and the
corresponding text for each class (negative, neutral, positive). In B-T4SA all classes are
balanced, and the splits are stratified. The train set has approximately 80% of the data
set, while both the validation and test sets have 10% each. To conduct transfer learning,
we also leveraged the Stanford Sentiment Treebank [211] for the text classification and
Flickr and Instagram Data set [212] for the IC component. The first has 5 classes and 215

thousand phrases, while the latter has 8 classes and approximately 23 thousand images.

3.3.2 Results and Discussion on Detecting Defects

To validate the proposedmethods on the problem of defect detection, we conducted three
experiments: i) evaluate the performance of multiple state-of-the-art CNN architectures;
ii) evaluate the performance of the CNN-fusionmethod by fusing all individual CNNs; and
iii) evaluate the performance of the Auto-Classifier method.
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To evaluate the performance of state-of-the-art CNNs, we fixed the same settings for
all of them: Stochastic Gradient Descent (SGD) with a batch size of 10, a learning rate
of 1e−3, and momentum of 0.9 for 100 epochs of training. As for loss function, we used
cross-entropy loss. For testing purposes, the CNN’s weights are the ones that yielded the
highest validation AUC while training. Note that this testing step is only used to compare
the different individual CNNs under the same conditions and is not used in any situation
nor to select the best CNNs to be used in the proposed methods. The results presented in
the first 9 columns of Table 3.1 show that amongst all the individual CNNs tested, VGG16
was the one that achieved the best results – 99.9% mean accuracy and 99.7% mean AUC.
The use of AUC as ametric for evaluating performance is extremely important because the
accuracy metric is not, by its own, a good representative of a good classifier when using
unbalanced data sets, whilst AUC is sensitive to class imbalance.

Table 3.1: Results of different state-of-the-art CNNs architectures and the two proposed methods in the task
of defect detection using the DAGM2007 data sets. Accuracy and AUC values are shown in percentages.

Problem
VGG11 VGG16 VGG19 ResNet18 ResNet34 ResNet50 ResNet101 Densenet121 CNN-Fusion Auto-Classifier

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

1 100 100 100 100 85.0 50.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100

2 85.0 50.00 100 100 100 100 100 100 100 100 100 100 99.4 98.1 100 100 100 100 100 100

3 100 100 100 100 100 100 86.1 53.9 97.1 90.4 99.4 98.1 100 100 99.4 98.1 100 100 100 100

4 100 100 99.4 98.1 99.4 98.1 98.8 97.7 100 100 99.4 98.1 99.4 98.1 100 100 100 100 100 100

5 98.8 96.2 100 100 100 100 98.8 96.2 98.8 96.2 99.4 98.1 99.4 98.1 99.4 98.1 99.4 98.1 100 100

6 100 100 100 100 100 100 100 100 100 100 98.8 96.2 99.4 100 98.3 94.2 100 100 100 100

µ 97.3 91.0 99.9 99.7 97.4 91.4 97.3 91.3 99.3 97.8 99.5 98.4 99.6 99.1 99.5 98.4 99.9 99.7 100 100

We believe the reason that VGG16 achieves the best results in almost all the six data
sets and the best overall mean performances when compared to other individual CNNs is
because, even if ResNets and DenseNets are more powerful, their larger number of layers
is a drawback when using small data sets. In DAGM2007, we only have 1150 images per
data set, which makes it a challenging data set for large models. Even though residual
connects and short circuits in the mentioned architectures can mitigate problems such
as the vanishing gradient, their bigger complexity is a factor that will undermine their
performance in problems where data sets are small.

By having the validation AUC for each CNN, we can complete the process of CNN-
Fusion by combining the individual classifications into a final one by first normalizing
the validation AUC values, and then performing weighted voting using the CNN’s classi-
fications. The results for the CNN-Fusion are shown in 10th column of Table 3.1, achiev-
ing a mean accuracy of 99.9% and mean AUC of 99.7%. CNN-Fusion achieved the same
mean values as VGG16. However, the difference is that CNN-Fusion perfectly identified
defects in problems one to four and six, having some miss-classifications in problem five,
while VGG16 had some miss-classifications in problem four and perfectly solved all the
other problems. Moreover, CNN-Fusion was capable of achieving an overall high per-
formance, but in problem five, as many individual CNNs had classification errors, the
CNN-Fusion was not capable of having 100% AUC. This can be justified due to the fact
that all CNNs have good individual performances, meaning that the differences between
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the normalized weights for the CNN-Fusion are minimal. A possible improvement would
be to perform a non-linear normalization, where better models have a larger difference
from their neighbors. The problem with using CNN-Fusion in a fast-paced environment,
e.g., quality control in industrial production lines, is that it takes more time to have a
final classification, as it requires all CNNs to perform their classification. If done in
parallel, the time taken to perform a classification will be the maximum time, t, from
the set of times, T , that contain the time taken for each CNN to perform a classifica-
tion for a given input, plus the time taken, tfusion, to perform the final classification:
mtime = max{T (x) : x = 1, .., n} + tfusion, where n represents the number of individual
CNNs. The problem is that in most systems, conducting a forward pass in all the indi-
vidual CNNs in a parallel manner is extremely challenging. When done sequentially, the
mtime will be increasingly higher: mtime = (

∑n
x=1 T (x)) + tfusion.

The Auto-Classifier solves the problem of having an inference time that is dependent
on all individual CNNs by using the feature extraction capabilities of only the overall best
CNN on the validation set (VGG16 in our experiments) and improving its classification
component. We partially removed the classification component of VGG16, by removing
the last two fully connected layers, leaving only the first one to serve the purpose of dimen-
sionality reduction. To generate a new classification component we ran RS for 2 hours for
each problem, and at the end, we selected the best candidate on the validation set to be
coupled to the modified VGG16 to create a final model – Auto-Classifier. The best clas-
sifier from the search step was a gradient-boosting machine model. The results of Auto-
Classifier on the test sets are shown in the last column of Table 3.1, where it is possible
to see that it not only improved upon the individual CNNs, but it also correctly classified
each data point in all the six data sets from DAGM2007.

When using ML methods in industrial systems, it is of utmost importance to take into
consideration the time required to train themodels. Models that have a quick training step
allow quick changes and experimentation. Moreover, the inference time is also critical, as
real-time inference is often required. The overall mean time and standard deviation to
train each CNN, was: 50.7 ± 0.18 minutes for VGG11, 95.2 ± 0.33 minutes for VGG16,
115.6 ± 0.71 minutes for VGG19, 17.0 ± 0.02 minutes for ResNet18, 28.8 ± 0.02 minutes
for ResNet34, 44.8± 0.04minutes for ResNet50, 71.1± 0.09minutes for ResNet101, and
47.63 ± 0.02 minutes for Densenet121. From this, we can infer that the time required
to train any of the CNNs studied here is feasible in an environment with rapid changes
since the CNN that took the longest time to train was VGG19, requiring less than 2 hours.
Regarding CNN-Fusion, it requires no further training, as it is the combination of training
all individual CNNs, and for the Auto-Classifier, the search cost was limited to 2 hours. By
adding it to the time required by VGG16 to train, it required 235.6minutes on average to
create the complete model. As for the inference times, all CNNs were capable of executing
in real-time, with the fastest one being ResNet18 with an inference time of 0.057 ± 0.016

seconds, and the slowest one VGG19, with an inference time of 0.269± 0.002 seconds. As
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for VGG16, the one selected to be the feature extraction component of Auto-Classifier, it
obtained an inference time of 0.225±0.002 seconds, which is enough for detecting surface
defects in real-time (approximately 5 frames per second). CNN-fusion, in a serial manner,
has an mtime of 1.152 seconds, which is not suitable for real-time defect detection. As
for the Auto-Classifier, which consists of the partial VGG16 and the new classification
component, we found that it is extremely fast, requiring only 0.100 ± 0.004 seconds to
classify an image, which is justified by having an efficient new classifier that uses less,
and faster operations than the removed layers.

Table 3.2: Comparison of different methods in the task of defect detection in DAGM2007 problems
regarding the True Positive Rate, True Negative Rate, and Average Accuracy.

Problem
Auto-Classifier

(Ours)
CNN-Fusion

(Ours)
VGG16
(Ours)

Deep CNN
[213]

Statistical
features [190]

SIFT and
ANN [191]

Weibull
[214]

True Positive Rate (%)
1 100 100 100 100 99.4 98.9 87.0

2 100 100 100 100 94.3 95.7 -
3 100 100 100 95.5 99.5 98.5 99.8

4 100 100 99.3 100 92.5 - -
5 100 99.3 100 98.8 96.9 98.2 97.2

6 100 100 100 100 100 99.8 94.9

True Negative Rate (%)
1 100 100 100 100 99.7 100 98.0

2 100 100 100 97.3 80.0 91.3 -
3 100 100 100 100 100 100 100

4 100 100 100 98.7 96.1 - -
5 100 100 100 100 96.1 100 100

6 100 100 100 99.5 96.1 100 100

Average Accuracy (%)
100.0 99.9 99.9 99.2 95.9 98.2 97.1

Finally, we compare our two proposed methods and the best individual CNN with the
methods proposed in the literature that achieve the best results in the DAGM2007 defect
classification in Table 3.2. In this, it is possible to see that both the proposed methods
in this section achieved the highest average accuracy, which is calculated by summing the
true positive rate and true negative ratemeans, and divide it by two: (TPR+TNR)/2. It is
also worth noting that our proposed method, Auto-Classifier, not only achieved a perfect
classification on all DAGM2007 problems, but outperformed all other methods in this set
of data sets.

3.3.3 Results and Discussion on Multimodal Sentiment Analysis

First, we evaluate all text classifiers to choose the best text sentiment analysis model
to use in Auto-Fusion. For this, we evaluated each model three times in classifying sen-
timents using only textual data in the B-T4SA data set, using the Adam optimizer [215],
and cross-entropy loss.

In Table 3.3, the results for the evaluation of the training and validation set are shown.
In this, the first block represents the results for two lexicon-based models (VADER and
TextBlob), the second block shows the results for deep learning models, and the third
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Table 3.3: Mean accuracy and standard deviation on B-T4SA data set. The first block shows the results for
lexicon-based methods. The second block shows the result of the implemented deep learning methods. In
the third block, we show the results of the best method from the second block (RCNN), pre-training on SST

and fine-tuning on B-T4SA. Each model was evaluated three times under the same conditions.

Mean Accuracy (%)

Method Train Validation

VADER 41.04± 0 41.02± 0

VADER-PP 56.84± 0 56.82± 0

Textblob 64.22± 0 64.27± 0

Textblob-PP 64.88± 0 64.78± 0

FastText 42.86± 0.03 42.76± 0.05

LSTM 33.33± 0.04 33.13± 0.00

LSTM-Attn 97.36± 0.03 93.48± 0.57

BI-LSTM 96.56± 0.97 94.35± 0.07

RNN 90.72± 0.78 91.24± 0.48

RCNN 98.12± 1.10 94.61± 0.03

TextCNN 95.47± 0.86 93.73± 0.00

sCNN 90.69± 0.10 92.69± 0.02

VDCNN9 94.18± 0.81 93.33± 0.23

VDCNN17 88.29± 2.28 92.05± 0.52

VDCNN29 93.90± 0.65 93.19± 0.18

VDCNN49 92.61± 0.33 92.81± 0.11

RCNN-sst ft B-T4SA FC 86.73± 0.69 86.51± 0.67

RCNN-sst ft B-T4SA 98.60± 1.29 94.60± 0.03

block represents the best model of the previous block with fine-tuning. In the first block,
we show two results for both methods without the pre-processing step and with (“-PP”).
Both methods achieved better results with the pre-processing step, showing that cleaning
textual data to remove noise allows the methods to yield better results. In the second and
third blocks, all experiments were conducted using pre-processed data. Here, it is pos-
sible to see that, except for FastText, which achieved approximately 42% and LSTM that
was incapable of learning how to solve the task (even with different learning rates, hidden
features, and optimizers), all models achieved a mean accuracy of over 90%. This is well
above the plug-and-play methods and the state-of-the-art [3], which used TextBlob meth-
ods to achieve 64.27% accuracy. The best method was RCNN, which achieved a mean
accuracy of 94.61%, outperforming all others. This can be justified due to the strong cap-
ability of RCNNs to evaluate a word based on its embeddings coupled with the right and
left context, which are extracted by the recurrent structures. This combination allows fea-
tures to be extracted more accurately when working on problems that require context, on
which sentiment analysis is highly dependent. On the third block of the table, the results
of fine-tuning the RCNNmodel are presented. In this case, the fine-tuningwas performed
by initially training the model on the SST-5 data set and then replacing its final classifica-
tion layer to output three values instead of five. In detail, “RCNN-sst ft B-T4SA FC” was
initially trained on SST-5 and then only on the linear layers were fine-tuned using B-T4SA,
whereas “RCNN-sst ft B-T4SA” is fine-tuned entirely on B-T4SA. By conducting such ex-
periments, it is possible to see that fine-tuning the entire model yields better results when

60



Improving Neural Architecture Search

compared to only transfer learning and fine-tuning the last classification layers. However,
these results do not improve upon the original model.

From the evaluation of all text classifiers, we selected RCNN as the text classifier for the
proposed method since it presented the best performance in the validation set.

Table 3.4: Train and validation accuracy (%) of several neural networks in sentiment classification.

Method
RGB RGB+LBP RGB

Train Val Train Val Train Val

Pre-trained × × ✓

ResNet18 47.4 47.7 47.4 47.9 46.6 49.7

ResNet34 47.2 49.8 47.3 48.0 45.6 49.8

ResNet50 46.3 46.4 47.2 47.4 48.5 48.7

ResNet101 44.9 45.1 47.1 47.1 47.6 47.7

ResNet152 44.5 44.5 45.9 45.9 47.1 47.5

DenseNet161 46.9 47.1 47.5 47.5 47.2 47.3

Regarding the selection of the model to perform the IC, we first evaluated the pool of
neural networks in the task of image sentiment analysis. Table 3.4 shows the results for
all neural networks. Note that every network was evaluated using the same learning rate
(1e−3), Adam optimizer, and cross-entropy loss. The second row of the table indicates if
the experiment was done using transfer learning, where models were initially trained on
the Flicker and Instagram data set. We also evaluated how the different models behave
with RBG images, and RBG with local binary patterns [216]. In the latter, the models
receive four inputs channels, where the last is the local binary patterns. The goal of adding
the fourth channel is to promote texture analysis, which can contribute for the sentiment
polarity. The results show that classifying the sentiment of an image is challenging,mainly
due to the subjectivity of the image and inter-class similarities, where images that belong
to different classes are visually similar. Neither the addition of the local binary patterns
nor pre-training the models improved the results when compared to using only RGB with
randomly initializedweights. Furthermore, all models performed similarly, but ResNet34
was the best one, achieving 49.8% accuracy on the validation set.

Table 3.5: Accuracy (%) in the test set for the proposed method and a baseline using SVM.

Method Test Accuracy (%)

SVM 95.16

AutoML-based Fusion (ours) 95.19

Based on the text classifier, RCNN, and the image classifier, ResNet34, we evaluated the
performance of Auto-Fusion as a whole. For this, we searched for a fusion model using
the method described in 3.2.4 with a maximum budget of two hours. The resulting fusion
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method was a gradient boosting machine, which was the model that obtained the highest
validation performance. Evaluating Auto-Fusion on the B-T4SA test set obtained an ac-
curacy of 95.19% (Table 3.5). To validate that the performance of the proposed method
is competitive, we evaluate the model with the same settings but with a different fusion
classifier. For this, we used a Support Vector Machine (SVM), which achieved a final per-
formance of 95.16%. The difference between the searched fusion method and the SVM
classifier is small, 0.03%, but the automatically searched method has several advantages:
the time required to train is substantially less, requiring only two hours while SVM re-
quired several hours. More, SVMs tend not to scale well. The more features are added to
the training data, the slower they can fit the data. In the case of Auto-Fusion, the proposed
methodology to search for a classifier is extremely robust to the number of features in the
training set, as the search space contains methods that can handle a large number of fea-
tures without becoming untenable. The SVM baseline consolidates the proposed method
by showing that the proposed architecture can obtain excellent performance.

Table 3.6: Comparison of the proposed methods with the state-of-the-art. TM stands for substituting the
text classifier from [3] for the one selected in our experiments.

Method
B-T4SA

Test Accuracy (%)

Random Classifier 33.33

Hybrid-T4SA FT-F [210] 49.90

Hybrid-T4SA FT-A [210] 49.10

VGG-T4SA FT-F [210] 50.60

VGG-T4SA FT-A [210] 51.30

Information Fusion [3] 60.42

Information Fusion [3] (TM) 76.35

SVM-fusion (ours) 95.16

AutoML-based Fusion (ours) 95.19

To further validate the results obtained by Auto-Fusion we compare it with state-of-the-
art methods in Table 3.6. In this, it is possible to see that Auto-Fusion outperforms exist-
ing approaches by more than 35%. More, we also improved upon the proposedmethod in
[3] by replacing its text classifier with our RCNN, resulting in a 15.9% accuracy improve-
ment (represented in the table by Information Fusion (TM)). However, this is still 18.8%
below Auto-Fusion, showing that the proposed method of fusing the individual classific-
ations and then performing a random search to find the optimal fusion classifier is an
efficient method.

3.4 Conclusions

This chapter was initially devoted to studying how different neural networks work and
behave in the task of detecting surface defects and multimodal sentiment analysis. Then,
based on the results obtained by evaluating several neural networks, we propose twometh-
ods for defect detection: CNN-Fusion, which fuses the different CNN classifications into
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a final one, and Auto-Classifier, which leverages the feature extraction capabilities of a
state-of-the-art CNNs and complements them by performing an automated search for a
new classifier component; and one method for multimodal sentiment analysis that per-
forms individual text and ICs and fuses them with a searched ML that performs a final
classification.

The results obtained by the three proposedmethods show that improving existing state-
of-the-art CNNs with AutoML and NAS can further improve their classification capabilit-
ies. With this, we are motivated and convinced that NAS can be used to generate archi-
tectures (or components) to solve different CV problems, if the search can be executed in
useful time.

In the next chapter, we focus on extending NAS field by proposing twomethods: a zero-
proxy estimator that is capable of scoring architectures at initialization stage as a metric
to their performance if trained, and a EA that efficiently guides the search by quickly eval-
uating architectures to extract knowledge of the search space.
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Chapter 4

Guided Neural Architecture Search Through
Efficient Performance Estimation

4.1 Introduction

Despite excellent results obtained by architectures designed with prominent NASmeth-
ods, the computational cost ofmostNAS approaches is high, which in some cases can be in
the order of months of GPU computation [15, 217, 38]. To mitigate this, approaches focus
on a cell-based design, where NASmethods design small cells that are replicated through
an outer-skeleton, thus alleviating the complexity of the search space [218, 15, 38, 219].
Furthermore, several performance estimation strategies have been proposed to reduce the
time constraint of NAS methods, by mainly conducting low-fidelity estimates, learning
curve extrapolations, statistical approaches [162, 12] or by proposing one-shot methods,
where the weights of the generatedmodels are inherited from a super-network [2, 70, 114].
However, searching through high-dimensional search spaces is highly complex, even
when there is some prior knowledge about the space. The most reliable approach to ob-
tain information about the search space while searching is to fully train generated archi-
tectures and optimize the search based on the most performant ones. However, this is
extremely costly, and results are highly dependent on the training schemes and initializa-
tion setups [40].

To mitigate the aforementioned problems, in this chapter we propose a zero-proxy es-
timation mechanism and an evolutionary-based NAS search method that uses the former
to efficiently guide the search. By evaluating how the gradients of an architecture behave
with respect to the input, we show that it is possible to score untrained architectures, elim-
inating the need to train generated architectures to update parameters. Coupling this
scoring with an evolutionary strategy where operations aremutated and younger architec-
tures are preferred, the proposed search method can efficiently search a complex search
space while forcing exploitation of the most performant architectures, and exploration
of the search space by performing mutations. By doing so, the proposed method is cap-
able of continuously extracting knowledge about the search space without compromising
the search, resulting in state-of-the-art results in NAS-Bench-101, NAS-Bench-201, and
TransNAS-Bench-101 search spaces. Figure 4.1 shows the process of evaluating generated
architectures.

The contributions of the methods proposed in this chapter can be summarized as:

• We propose a novel performance estimation strategy that can score untrained archi-
tectures to infer their final performance if trained, which can be easily integrated
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Figure 4.1: Example of scoring two different architectures using the same input. Generated architectures in
each generation are ranked based on a score that correlates with their final performance, which determines

which architecture is selected to be part of the population.

into almost any NAS method.

• We propose a guided NAS method based on evolutionary strategies and zero-proxy
estimation to generate image classifier architectures (CNNs).

• We empirically show that guided mechanisms can be used without compromising
time efficiency or the generatedmodel’s performance. Also, we detail the algorithm,
emphasizing the accessible transferability of the guiding mechanism.

• We achieve state-of-the-art results on all data sets of NAS-Bench-101, NAS-Bench-
201, and TransNAS-Bench-101 benchmarks, thus showing the generability of the
proposed search method.

• We perform extensive ablation studies and show the importance of different para-
meters and regularization, thus shedding insights for the design ofNAS evolutionary
models.

The remainder of this chapter is organized as follows. Section 4.2 describes the pro-
posed zero-cost proxy performance estimator and the proposed guided evolutionary al-
gorithm to perform the search. Section 4.3, presents the experiments performed, the res-
ults, and a discussion. Finally, a conclusion is drawn in Section 4.4.
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4.2 Proposed Method

4.2.1 Zero-cost Proxy Performance Estimation

In this section, we propose a zero-cost proxy performance estimation strategy, whose
goal is to estimate the performance of generated architectures without requiring any train-
ing, neither for the generated architectures nor for the performance estimator. To do this,
we score untrained architectures as an indicator of their accuracy when trained.

To evaluate the generated architectures, we look at the behavior of local linear operators
using different data points at initialization stage. The local linear operators are obtained
by multiplying the linear maps at each layer interspersed with the binary rectification
units. To do this, one can define a linear mapping, wi = g(xi), which maps the input
xi ∈ RD, through the architecture, g(xi), where xi represents an image that belongs to
a batch X, and D is the input dimension. Then, the Jacobian of the linear map can be
computed using:

Ji =
∂g(xi)

∂xi
(4.1)

This allows us to evaluate the architecture’s behavior for different images by calculating
Ji for different data points, g(xi), of a single batchX, i ∈ 1, · · · , N :

J =
(
∂g(x1)
∂x1

∂g(x2)
∂x2

· · · ∂g(xN )
∂xN

)⊤
(4.2)

J contains information about the architecture’s output with respect to the input for sev-
eral data points (images). Based on those, we can evaluate how points belonging to the
same class correlate with each other, allowing the evaluation of how an untrained archi-
tecture is capable ofmodeling complex functions. Explicitly, a flexible architecture should
simultaneously be able to distinguish local linear operators for each data point but also
have similar results for similar data points, which in a supervised approachmeans that the
data points belong to the same or very similar classes. In a perfect scenario, an untrained
architecture would have a low correlation between data points from different classes, and
a higher correlation between data points from the same class, meaning that the architec-
ture would easily learn to distinguish the two data points during training. Tomeasure this
behavior, we evaluate the correlation of J values with respect to their class, by splitting J
into several sets, where each set,Mk, contains all Ji that belong to the same class k. Then,
we can calculate a per-class correlation matrix, ΣMk

, using the obtained sets,Mk, where
k = 1, ...K.

Individual correlation matrices allow the analysis of how an untrained architecture be-
haves for images from each class, which is an indication of the ability of the local linear
operators to perceive differences between classes. However, different correlationmatrices
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might yield different sizes, as the number of images per class differs. To be able to com-
pare different correlation matrices, they are individually evaluated:

Ek =


∑N

i=1

∑N
j=1 log(|(ΣMk)i,j |+ t), ifK ≤ τ

∑N
i=1

∑N
j=1 log(|(ΣMk)i,j |+t)√

#ΣMk

, otherwise

(4.3)

where t is a small-constant with the value of 1× 10−5,K is the number of classes in batch
X, and# represents the number of elements.

Finally, an architecture is scored based on the individual evaluations of the correlation
matrices by:

z =


∑K

w=1 |ew|, ifK ≤ τ

∑K
i=1

∑K
j=i+1 |ei−ej |
#e , otherwise

(4.4)

where e contains all the correlation matrices’ scores. The final score is dependent on the
number of classes present in X, as data sets with a higher number of classes commonly
havemore noise, which is mitigated by conducting a normalized pair-wise difference. For
the conducted experiments, we empirically defined τ = 100, based on the search space
and data sets used.

We can then use z to rank the generated architectures, providing an efficient mechan-
ism of differentiating between good and bad architectures, thus allowing the search to be
guided towards better settings without compromising the search cost.

4.2.2 Guided Evolution

In this section, we propose GEA, aNAS searchmethod that leverages the proposed zero-
cost proxy estimation mechanism to score untrained architectures and efficiently guide
the search through evolution. GEA is summarised in Algorithm 1. In detail, GEA starts
by randomly generating c architectures from the search space of possible architectures,
A. The architectures that belong to the search space have equal probabilities of being ran-
domly sampled. Sampled architectures are then evaluated using the proposed zero-proxy
estimator to score the architectures at initialization stage, without requiring any train-
ing (the zero-proxy estimation mechanism is detailed in section 4.2.1). Then, from the c
scored architectures, only the top p scoring ones are added to the population and trained
to extract their fitness, f . The fitness, f , is the validation accuracy after a partial train
(small number of epochs). By scoring c architectures at initialization stage, GEA acquires
knowledge of the search space, which is then exploited by selecting the top performant
architecture, therefore guiding the upcoming search by weeding out bad architectures.
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Algorithm 1 Guided Evolution
population← empty queue ▷ Population.
history ← ∅ ▷Models history.
while#population < c do ▷ Initialize population.

model.arch← RANDOMARCHITECTURE()
model.accuracy ← ZEROPROXY(model.arch)
addmodel to right of population ▷ Force model age

end while
drop the c− p worst individuals from population
formodel ∈ population do

model.accuracy ← TRAINANDEVAL(model.arch)
addmodel to history

end for
while#history < c do

sample← s random candidates from the population (with replacement)
parent← highest-accuracy model in sample
generation← ∅
while#generation < p do

child.arch←MUTATE(parent.arch)
child.accuracy ← ZEROPROXY(child.arch)
add child to generation

end while
top_child← highest-performant model in generation
top_child.accuracy ← TRAINANDEVAL(top_child.arch)
add top_child to right of population
add top_child to history
remove dead from left of population ▷ Oldest model.

end while
return highest-accuracy model in history ▷Most performant.

Once the initial population is defined, the evolution takes place for c cycles. In each
generation, the first step is to perform a tournament selection. For this, s architectures
are randomly and uniformly sampled from the population. Then, the architecture with
the highest fitness score, f , from the pool of s architectures is selected to be the parent
of the next generation (cycle). To generate new architectures, GEA performs a mutation
over the parent architecture. Themutation works by randomly mutating one operation of
the architecture for another one from the pool of operations. An example of a mutation
using the NAS-Bench-201 search space is visually represented in Figure 4.2. p new archi-
tectures are generated in each generation by performing operation mutations over the se-
lected parent, which are then scored using the zero-proxy estimator. The highest-scoring
architecture is kept and added to the population after evaluating its fitness. Generating
and evaluating p architectures strengthens the search method to find the best direction
for the parent’s evolution across the search space. This allows the method to be guided
through a complex space without jeopardizing the time required to perform the evolution
or the searchmethod’s complexity. When a new architecture is added to the population, a
regularizationmechanism (survivor selection) takes place, where the oldest architecture is
removed and discarded, thus forcing exploration of the search space by favoring younger
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Figure 4.2: Example of mutating one operation of a cell using the NAS-Bench-201 search space: operation
Identity becomes Conv. 3× 3.

architectures that represent new settings evolved by prior acquired knowledge.

Inherently, higher p values represent a higher degree of exploration of the search space,
while higher s values represent higher exploitation by increasing the probability of the
best architectures in the population being selected as parents for the next generation.

4.3 Experiments

To evaluate the effectiveness of the proposed NAS method, we utilize three different
search spaces: NAS-Bench-101 [173], NAS-Bench-201 [42] and TransNAS-Bench-101
[87] benchmarks. As benchmarks were designed to have tractable NAS search spaces
with metadata for the training of thousands of architectures within those search spaces, it
allows evaluating the proposed method in a common setting and fairly comparing it with
previous proposals (detailed description of NAS benchmarks in Section 2.3).

Table 4.1: Mean test accuracy (%) and standard deviation across 50 runs in NAS-Bench-101 CIFAR-10 data
set. Experiments with REA and GEA were performed with p/s/c = 10/5/200.

Method Search Time (s) ↓ Mean
Test Accuracy (%)

↑

RS [220] N/A 90.38± 5.51

REA [72] 26676.49 93.12± 0.48

GEA (ours) 30128.32 93.99± 0.25
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Figure 4.3: Mean accuracy and standard deviation over 25 runs of the proposed search method, GEA, and
direct comparison with REA for different cycles (c) across CIFAR-10, CIFAR-100, and ImageNet16-120 data

sets.

Table 4.2: Comparison of manually designed architectures and several NAS methods using the
NAS-Bench-201 benchmark. Performance is shown in terms of accuracy (%) with mean and standard
deviation, on CIFAR-10, CIFAR-100, and ImageNet-16-120. Search times are the mean time required to
search for cells in CIFAR-10. Search time includes the time taken to train architectures as part of the

process where applicable.

Method
Search
Time (s)↓

CIFAR-10 CIFAR-100 ImageNet-16-120

Val. Acc (%)↑ Test Acc. (%)↑ Val. Acc (%)↑ Test Acc. (%)↑ Val. Acc (%)↑ Test Acc. (%)↑

Manually designed
ResNet [59] - 90.83 93.97 70.42 70.86 44.53 43.63

Weight sharing
RSPS [1] 7587 84.16± 1.69 87.66± 1.69 59.00± 4.60 58.33± 4.34 31.56± 3.28 31.14± 3.88

DARTS, 1st order [2] 10890 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00 16.43± 0.00 16.32± 0.00

DARTS, 2nd order [2] 29902 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00 16.43± 0.00 16.32± 0.00

GDAS [156] 28926 90.00± 0.21 93.51± 0.13 71.14± 0.27 70.61± 0.26 41.70± 1.26 41.84± 0.90

SETN [221] 31010 82.25± 5.17 86.19± 4.63 56.86± 7.59 56.87± 7.77 32.54± 3.63 31.90± 4.07

ENAS [70] 13315 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00 16.43± 0.00 16.32± 0.00

Non-weight sharing
RS [220] 12000 90.93± 0.36 93.70± 0.36 70.93± 1.09 71.04± 1.07 44.45± 1.10 44.57± 1.25

REINFORCE [94] 12000 91.09± 0.37 93.85± 0.37 71.61± 1.12 71.71± 1.09 45.05± 1.02 45.24± 1.18

BOHB [137] 12000 90.82± 0.53 93.61± 0.52 70.74± 1.29 70.85± 1.28 44.26± 1.36 44.42± 1.49

REA [72]† 26070 91.22± 0.25 93.97± 0.31 72.36± 1.07 72.14± 0.86 45.09± 0.92 45.55± 1.02

GEA (ours)† 26911 91.26± 0.20 93.99± 0.23 72.62± 0.77 72.36± 0.66 45.97± 0.72 46.04± 0.67

† Results of 25 runs using the same settings: p/s/c = 10/5/200, using a single 1080Ti GPU.

4.3.1 Results and Discussion

First, we evaluate the proposed method on NAS-Bench-101. For this, we fixed p/s/c =

10/5/200, following standard settings used and assessed by prior works [42, 72], and dir-
ectly compare it against RS and REA [72]. In Table 4.1 we present this comparison in
terms of search cost, in seconds, and mean test accuracy and standard deviation, calcu-
lated from running GEA and REA 50 times. From the results, it is clear that GEA outper-
forms REA and heavily improves when compared to RS. GEA is highly efficient, requiring
only 0.35 GPU days to complete each run. The results show that the guiding mechanism
can improve the search, promoting regions that yield better architectures in terms of ac-
curacy.

Then, we evaluated GEA using the NAS-Bench-201 search space. The first experiment
in this search space was to directly compare GEA with REA for a different number of
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generations/cycles, c. This also allows evaluating the importance of c, which is the main
parameter that inherently defines the time required for the search procedure. Higher c
values will take longer to finish. More, c establishes the number of architectures that are
evaluated: c × p architectures (p per cycle) are generated and evaluated using the zero-
proxy estimation method to provide information about the search space, from which c

architectures (1 per cycle) are selected and trained. The results presented in Figure 4.3
are expressed as mean test accuracy and standard deviation as colored areas, obtained by
the best architecture found by each method for different c values over 25 different runs.
In this experiment, the p/s used to allow a fair comparison was set to p/s = 10/5, follow-
ing typical settings used by prior works [42, 72]. The results show that across all data sets,
GEA consistently outperforms REA, and is capable of converging to better results even for
small numbers of c. These results demonstrate that the search method converges more
quickly to regions of the search space that contain better architectures by leveraging the
guided mechanism. Also, on ImageNet16-120, the noisier data set on NAS-Bench-201,
the result from the T-test analysis was ρ = 0.033, thus showing a statistical significance
between the results obtained by GEA when compared to REA. Note that for our proposed
method, GEA, p value means that at any given time of the search, the population is equal
to 10 architectures and that those, a pool of parents is sampled, where 5 architectures
are sampled with replacement. From the pool of possible parents, one is selected. The
sampled parent then generates p architectures throughmutation per cycle, which are eval-
uated using the zero-proxy estimator wherein only the top-scoring architecture is selected
to integrate the population. By selecting s >= 1 architectures to have the opportunity of
being a parent, we are leveraging the intrinsic exploitation characteristics of the evolu-
tionary strategy, whereas by generating p architectures, we are forcing exploitation that
guides the search more effectively.

In Table 4.2 we further compare GEA, using p/s/c = 10/5/200, against several state-
of-the-art methods on the NAS-Bench-201 search space, using as evaluation metrics the
mean accuracy, standard deviation, and search time in seconds. Across all 3 data sets,
GEA consistently outperforms bothweight sharing and non-weight sharingNASmethods,
achieving state-of-the-art results. Moreover, GEA is extremely efficient in terms of search
time, requiring only 0.3GPUdays to complete the search. Even thoughGEA evaluates c×p
architectures with the zero-proxy estimator and further evaluates c architectures by par-
tially training them, it requires a similar search time as REA under the same settings and
considerably less than most weight-sharing methods. Lower standard deviation further
indicates that GEA is precise and capable of generating high-performant architectures,
which is especially valid in ImageNet16-120, a data set with low-resolution images and
high levels of noise, in which GEA considerably outperforms existing NAS methods.

Finally, we evaluate GEA on all 7 tasks from TransNAS-bench-101. Evaluating GEA on
several tasks contributes to validating its generability and transferability across different
problems, which is where NAS methods commonly fail [40, 42, 45]. For this, we conduc-
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Table 4.3: Performance comparison of different NAS methods on TransNAS-Bench-101. The first block
shows the results for directly searching on each task. The second block shows the transferred versions of
different methods, which are pretrained on the least time-consuming task, i.e., Jigsaw. The final row shows

the possible best result in each task.

Tasks Cls. Object Cls. Scene Autoencoding Surf. Normal Sem. Segment. Room Layout Jigsaw

Metric Acc. (%) ↑ Acc. (%) ↑ SSIM ↑ SSIM ↑ mIoU ↑ L2 loss ↓ Acc. (%) ↑

RS [220] 45.16± 0.4 54.41± 0.3 55.94± 0.8 56.85± 0.6 25.21± 0.4 61.48± 0.8 94.47± 0.3

REA [72] 45.39± 0.2 54.62± 0.2 56.96± 0.1 57.22± 0.3 25.52± 0.3 61.75± 0.8 94.62± 0.3

D
ir
ec
tS
ea
rc
h PPO [96] 45.19± 0.3 54.37± 0.2 55.83± 0.7 56.90± 0.6 25.24± 0.3 61.38± 0.7 94.46± 0.3

DT 42.03± 5.0 49.80± 8.6 51.20± 3.3 55.03± 2.7 22.45± 3.2 66.98± 2.3 88.95± 9.1

BONAS [222]† 45.50 54.56 56.73 57.46 25.32 61.10 94.81

weakNAS [223]† 45.66 54.72 56.77 57.21 25.90 60.31 94.63

Arch-Graph-single [224]† 45.48 54.70 56.52 57.53 25.71 61.05 94.66

GEA (Ours) 45.98± 0.2 54.85± 0.1 57.11± 0.3 58.33± 1.0 25.95± 0.2 59.93± 0.5 94.96± 0.2

GEA-Best (Ours)† 46.32 54.94 57.72 59.62 26.27 59.38 95.37

REA-t [72] 45.51± 0.3 54.61± 0.2 56.52± 0.6 57.20± 0.7 25.46± 0.4 61.04± 1.0 -
PPO-t [96] 44.81± 0.6 54.15± 0.5 55.70± 1.5 56.60± 0.7 24.89± 0.5 62.01± 1.0 -

Tr
an
sf
er
Se
ar
ch CATCH [225] 45.27± 0.5 54.38± 0.2 56.13± 0.7 56.99± 0.6 25.38± 0.4 60.70± 0.7 -

BONAS-t [222]† 45.38 54.57 56.18 57.24 25.24 60.93 -
weakNAS-t [223]† 45.29 54.78 56.90 57.19 25.41 60.70 -
Arch-Graph-zero [224]† 45.64 54.80 56.61 57.90 25.73 60.21 -
Arch-Graph [224]† 45.81 54.90 56.58 58.27 25.69 60.08 -
GEA-t (Ours) 46.03± 0.3 54.86± 0.1 56.99± 0.3 58.21± 0.9 25.88± 0.3 59.85± 0.5 -
GEA-t-Best (Ours)† 46.32 54.94 57.72 59.62 26.27 59.38 -

Global Best 46.32 54.94 57.72 59.62 26.27 59.38 95.37

† Results provided for the best run only.

ted two different experiments: i) directly searching on each task independently; and ii)
performing transfer search. For the latter, we followed common procedures [87], where
we first search on jigsaw and use the final population as initialization for the evolution
when searching on the other tasks. The results for both experiments are shown in Table
4.3. From the results, it is possible to see that: first, directly searching on each task is
an effective approach, where GEA is capable of achieving a higher mean performance ob-
tained from 25 runs, which, in all tasks, than any other NAS method. Also, when looking
only at the best result, GEA is capable of achieving the best possible results in TransNAS-
Bench-101, meaning that GEA is capable of generating the most optimal architecture for
each task. The same behaviors are present when transferring the knowledge from jigsaw
to other tasks, where GEA-t achieves state-of-the-art results on all tasks. When compared
to directly searching on each task, GEA-t has a slight improvement only on classification
tasks, meaning that GEA does not require prior information to achieve state-of-the-art
performances when compared to other NAS methods.

The obtained results in all 3 benchmarks, which contain 11 different data sets, show that
an evolutionary strategy, coupled with a mechanism to quickly evaluate architectures to
guide the search, can achieve state-of-the-art results while still having competitive search
times. Despite the complexity of search spaces and severe difficulty in obtaining their
global information, the results show that guiding mechanisms powered by scoring archi-
tectures at initialization stages have the advantage of acquiring preliminary information
regarding in which direction the search should evolve. Therefore, GEA can quickly con-
verge to better results by avoiding local minima, while still being efficient in terms of the

73



Improving Neural Architecture Search

required time.

Table 4.4: Comparison of different performance estimation methods on NAS-Bench-201 benchmark.
Performance is shown in accuracy with mean and standard deviation, on CIFAR-10, CIFAR-100, and

ImageNet-16-120. Search times are the mean time required to search for cells in CIFAR-10, using a single
1080Ti GPU. Search time includes the time taken to train architectures as part of the process where

applicable. For each sample size, the optimal architecture is also shown.

Method
Search
Time (s)

CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

Training-free
NAS-WOT (N = 10) [153] † 3.1 89.56± 0.56 92.47± 0.04 69.36± 1.55 69.20± 1.05 42.08± 1.61 42.20± 1.37

Ours+RS (N = 10) 2.3 89.90± 0.21 92.63± 0.32 69.78± 2.44 70.10± 1.71 41.73± 3.60 41.92± 4.25

NAS-WOT (N = 100) [153] † 25.7 89.91± 0.80 91.41± 2.24 67.13± 4.03 67.18± 4.14 41.39± 1.13 41.42± 1.53

Ours+RS (N = 100) 20.5 88.74± 3.16 91.59± 0.87 67.28± 3.68 67.19± 3.82 38.66± 4.75 38.80± 5.41

NAS-WOT (N = 500) [153] † 126.8 88.73± 0.81 91.71± 1.37 67.62± 1.61 67.54± 2.23 39.37± 3.01 39.84± 3.68

Ours+RS (N = 500) 105.8 88.17± 1.35 92.27± 1.75 69.23± 0.62 69.33± 0.66 41.93± 3.19 42.05± 3.09

NAS-WOT (N = 1000) [153] † 252.6 89.60± 0.90 91.20± 2.04 68.57± 0.41 68.95± 0.72 38.01± 1.66 38.08± 1.58

Ours+RS (N = 1000) 206.2 87.87± 0.85 91.31± 1.69 69.44± 0.83 69.58± 0.83 41.86± 2.33 41.84± 2.06

Optimal (N = 10) N/A 90.00± 0.95 93.41± 0.45 70.11± 1.70 70.11± 1.70 44.67± 1.87 44.67± 1.87

Optimal (N = 100) N/A 91.12± 0.11 94.12± 0.21 72.73± 0.78 72.73± 0.78 46.31± 0.47 46.31± 0.47

Optimal (N = 500) N/A 91.15± 0.12 94.13± 0.22 72.83± 0.64 72.83± 0.64 46.06± 0.66 46.06± 0.66

Optimal (N = 1000) N/A 91.24± 0.21 94.19± 0.15 72.92± 0.53 72.92± 0.53 46.57± 0.59 46.57± 0.59

Surrogate Estimator with Training
SVM (N = 10) 359426.3‡ 89.74± 1.10 92.80± 0.97 65.21± 6.48 65.46± 6.37 37.50± 8.56 37.31± 8.66

SVM (N = 100) 359449.4‡ 87.03± 2.33 92.68± 1.47 62.82± 5.75 63.25± 5.70 41.57± 3.55 41.73± 3.55

SVM (N = 500) 359547.7‡ 87.37± 2.63 93.05± 0.71 66.83± 4.34 67.36± 4.28 41.84± 1.38 41.49± 1.39

SVM (N = 1000) 359666.2‡ 87.06± 3.14 91.24± 2.28 68.40± 0.48 69.02± 0.84 41.32± 1.31 41.19± 1.29

† Results obtained by running the author’s publicly available code 3 times with the same settings as the proposed method.
‡ Includes the time required to train, which was done using information about the performance of 100 fully trained
architectures, which collectively required 4.16 training days.

Table 4.5: Ablation studies for the number of parent candidates, s, the population size, p, and the
regularization mechanism to remove individuals from the population. Results are shown in mean validation

accuracy (%) and standard deviation from 5 runs in NAS-Bench-201 CIFAR-10 data set.

Parameter Value
Mean

Validation Accuracy (%)

s

1 91.09± 0.45

3 91.45± 0.20

5 91.41± 0.24

7 91.47± 0.16

10 91.56± 0.05

Highest 91.50± 0.19

Lowest 89.93± 0.55

p

1 91.19± 0.10

3 91.45± 0.09

5 91.58± 0.02

7 91.55± 0.06

10 91.41± 0.24

Regularization
Oldest 91.56± 0.05

Highest 90.59± 0.46

Lowest 91.30± 0.23
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4.3.2 Ablation Studies

This section extends the study about the importance of different parameters used by
the proposed method. First, we look into the importance of the parameter s by i) incre-
mentally increasing its value from 1 to 10, and ii) randomly sampling s architectures from
the pool of candidates by simply selecting the architectures from the population pool with
the highest and lowest fitnesses. For these experiments, p and c were fixed to 10 and 200

respectively. In Table 4.5, a clear pattern can be seen, where the best results are obtained
when s is higher. Logically, sampling the lowest-scoring individual to be the parent of the
next generation yields the worst results, as this forces the evolution to follow the worst-
known settings. p = 10 achieved a better mean validation accuracy than sampling the
highest-scoring individual. We justify that this is due to the fact that by having a high p

value, it allows that most of the time, one of the best architectures is chosen to be parent,
while at the same time, promoting exploration of the search space by not using the best-
known setting every time. A visual representation of the evolution of the best architecture
for the different parameter values, over 5 different runs, can be seen in Figure 4.4.

We also evaluate the importance of the population size, p. Similarly to s, we increment-
ally increase p from 1 to 10. From Table 4.5, it is possible to see that higher values of p
achieve better results than lower values and the best results are obtained with p = 5. This
is due to the fact that a smaller population size promotes exploitation, as the candidates
sampled to be parents are more often among the best individuals, thus leading the search
to better regions of the search space. In Figure 4.5 it is possible to see the evolution of the
best architecture found by GEA for each p value evaluated over 5 different runs.
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Figure 4.4: Mean validation accuracy (%) throughout the evolution for different parent sampling, s,
schemes using NAS-Bench-201 CIFAR-10 for 5 runs.
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Figure 4.5: Mean validation accuracy (%) throughout the evolution for different population sizes, p, using
NAS-Bench-201 CIFAR-10 for 5 runs.
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Figure 4.6: Mean validation accuracy (%) throughout the evolution for different regularization schemes
using NAS-Bench-201 CIFAR-10 for 5 runs.

More, we evaluated the importance of the regularization mechanism that removes in-
dividuals from the population. For this, we assessed the already discussed elimination
by age by removing the oldest individual in the population. Also, we evaluated the res-
ults if the best (highest fitness) and the worst (lowest fitness) individuals were removed
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instead. From Table 4.5, it is clear that removing the best individual is the worst possible
strategy, as it forces the search to ignore the best-known settings so far. Then, comparing
removing the worst and the oldest, the best results are yielded when the oldest individual
is removed, as it promotes further exploration of the search space. The results shown in
Figure 4.6 for the evolution of the different regularization mechanisms clearly show that
removing the oldest individuals yields the best results.

Finally, we evaluated the proposed estimation performancemechanism outside an evol-
utionary setting. For this, we combined the proposed performance estimationmechanism
with a RS strategy. In this setting, an architecture is randomly sampled from the search
space, and instead of training it, we infer its performance by scoring it at initialization
stage. Table 4.4 shows the results for scoring architectures sampled using RS for differ-
ent sample sizes n, where n represents the number of architectures evaluated. We also
evaluate using an SVM as a performance predictor to further showcase how good the pro-
posed zero-cost proxy estimator performance method is. The SVM was trained with in-
formation about 100 trained architectures. The input received by the SVM totaled 4.16
GPU days of computation to train all 100 architectures. When the SVM is trained, there is
no need to further train any architecture, as the SVM infers the performance of untrained
architectures. From the results presented in Table 4.4, it is possible to see that the pro-
posed performance estimationmethod is extremely efficient in evaluating an architecture
(search cost), andwhen comparedwith otherNASmethods (previously presented in Table
4.2), it requires orders of magnitude less time to search for efficient architectures. When
directly compared with NAS-WOT and the surrogate SVM, it is faster and capable of se-
lecting high-performant architectures without losing precision when increasing n, which
is of extreme importance, as it is improbable that the optimal architectures are present in
small sample sizes.

To further evaluate the gains in search cost when compared to NAS-WOT, we explored
howbothmethods behave in scoring an architecturewith images of increasing sizes, which
can be seen in Figure 4.7. The proposed performance estimation method can evaluate
images with sizes 256 ∗ 256 ∗ 3 in approximately 5 seconds, whereas NAS-WOT requires
23% more time, approximately 6.5 seconds. As for images with a size of 512 ∗ 512 ∗ 3, it
can evaluate an architecture in under 23 seconds, whereas NAS-WOT requires 34 seconds,
approximately 34%more. This shows that the proposedmethod can also improve current
NAS methods that solely search for architectures in CIFAR-10 due to the reduced image
size. With our method, NAS methods that were incapable of searching on larger data sets
due to time complexity can now use the proposed method to directly search architectures
in larger data sets.

The reason why the proposed method is capable of outperforming NAS-WOT in terms
of time is directly linked with the time complexity of creating a correlation matrix, which
is highly dependent on the number of data points and features. By evaluating individual
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Figure 4.7: Comparison of the time, in seconds, required to score a single architecture using our proposed
method (in blue) against NAS-WOT (in orange) for different image sizes (x-axis). The image size represents

the image’s width and height, with 3 channels (RGB).

correlation matrices, one per class, we reduce each correlation matrix’s size, allowing for
faster computations.

Considering the mean time required to evaluate 1000 architectures by our method
(Table 4.4), the proposed performance estimation method also allows exhaustive explor-
ation of a search space, as it is capable of evaluating over 1 million architectures in just
two days of GPU computing when using 32 ∗ 32 ∗ 3 image sizes. Therefore, this method
could be used to evaluate a search space’s behavior, providing prior information to the
search method, which is a significant benefit when considering large, possibly unboun-
ded, search spaces where information about their shape is limited. More, the proposed
zero-cost proxy can easily be incorporated in almost any NAS method either as the sole
method that evaluates architectures or as a complementary method to perform mixed
training, where the reward to update the controller parameters is a combination of com-
plementary evaluations (e.g., combining it with the inference/latency of the architecture
in a mobile setting [226, 227]).

4.4 Conclusions

In this chapter, we presented two methods: EPE-NAS, a performance estimation
strategy that scores untrained architectures with a high correlation to their trained per-
formance, and a guided EA that leverages the zero-proxy estimator to obtain information
about the search space and efficiently guide the search.
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First, we showed that by leveraging information about the gradients of the output of an
architecture with regards to its input, a scoring method can accurately infer if the gener-
ated architecture is good in less than one second, being capable of evaluating thousands
of architectures in a matter of minutes. Then we presented the evolutionary strategy that
forces exploitation of the most performant architectures by descendant generation and
an exploration of the search space by performing mutations. The proposed EA guides the
evolution by generating several architectures in each generation and evaluating them at
the initialization stage using a zero-proxy estimator, where only the highest-scoring archi-
tecture is trained and kept for the next generation. The generation of multiple architec-
tures from an existing one in the population at each generation allows constant extraction
of knowledge about the search space without compromising the search itself.

The results for both methods in all data sets of NAS-Bench-101, NAS-Bench-201, and
TransNAS-Bench-101 benchmarks show that they can obtain state-of-the-art results while
being extremely efficient regarding search cost. More, in this chapter, we showed that us-
ing a simple RS coupled with the proposed estimation strategy, it is possible to sample
high-performant architectures in seconds that can outperform many current NAS meth-
ods.

In short, the results obtained provide evidence that the proposals described in this
chapter contribute to the state-of-the-art in NAS, not only by allowing efficient and fast
evaluation of architectures but also by providing amechanism to guide the search without
compromising performance. The proposed EA approach can be extended to multiple
strategies, where the search method can be further improved by incorporating new reg-
ularisation and mutation mechanisms. Also, the components of the guiding mechanism
can easily be transferred to other evolutionary algorithms, allowing existing NAS evolu-
tionary methods to be further improved.

In the next chapter, we extend the use of zero-proxy estimators by looking at evaluating
architectures based on their NTK and by proposing a search space that allows combin-
ing large vision classifiers by searching for amiddleware architecture that learns to solve
downstream tasks.
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Chapter 5

Designing Architectures with Neural Tangent
Kernel and Large Feature Extractors

5.1 Introduction

In the previous chapter, we proposed a zero-proxy estimator based on the evaluation
of the Jacobian J of an architecture. With this, a new evolutionary search method that
efficiently guides the search by quickly evaluating architectures based on the zero-proxy
estimatorwas proposed. However, the proposed zero-proxy estimator still has some short-
comings: i) for optimal results, τ in Eq. 4.4 has to be empirically defined for different data
sets; and ii) results on NAS-Bench-201 using RS on noisy data sets (ImageNet16-120) still
have a considerable gap to the optimal architectures (Table 4.4). To further improve the
evaluation of NAS methods and their applicability, in this chapter, we propose a novel
approach that combines two key components to advance the state-of-the-art in NAS: an
enhanced search space and a zero-proxy estimator based on NTK.

The first component of our approach focuses on proposing a novel search space. We
build upon the popular cell-based search spaces and introduce a novel extension by in-
corporating large vision classifiers as feature extractors. Traditionally, large models have
been primarily used for processing input data independently, where they are fine-tuned
to learn new tasks. However, in our approach, we exploit the feature maps generated by
these large models as inputs to amiddleware architecture. Themiddleware architecture,
which is the target of the search, is responsible for learning to leverage these extracted
features effectively. This design allows us to search for compact architectures while simul-
taneously capitalizing on the representation power of large models in downstream tasks.
By leveraging large models as feature extractors, we introduce a hierarchical approach
that mitigates the limitations of conventional cell-based search spaces and enhances the
overall performance of the discovered architectures.

The second component of our approach introduces a zero-proxy estimator based on
NTK – NTKInner. Evaluating the performance of candidate architectures during the
search process is a computationally expensive task, as seen in the last chapter. To address
this challenge, we draw inspiration from using NTK in evaluating the behavior of DNN
during training and the fact that the alignment between eigenvectors serves as a strong
indicator of a network’s generability [228, 229, 228]. Leveraging this concept, we pro-
pose a novel performance estimator that efficiently evaluates the trainability of generated
architectures. By utilizing the information captured by NTK, we show that our estimator
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offers a computationally efficient alternative to traditional evaluation methods, enabling
faster and effective performance estimation.

These two components, the enhanced search space and the zero-proxy estimator, im-
prove the effectiveness and efficiency of NAS and extends the use NAS by leveraging of
existing knowledge in the form of large models. By leveraging those as feature extractors,
our search space allows the design of small architectures to exploit the learned repres-
entations from the large models to learn downstream tasks. Moreover, the zero-proxy
estimator based on NTK provides a computationally efficient way of evaluating the train-
ability of generated architectures, enabling faster exploration of the search space and easy
integration on several existing NAS methods. By combining these two components, our
approach offers significant improvements over the state-of-the-art NAS methods, lead-
ing to the discovery of highly performant architectures. To evaluate the proposed search
space, we conducted experiments using different NAS methods, including different zero-
proxy estimators (section 5.3.4). As for the evaluation of NTKInner, experiments were
conducted on the proposed search space, the DARTS search space, and NAS-Bench-201
(section 5.3.3). In short, the contributions of this chapter can be summarized as:

• We propose extending the conventional cell-based search spaces by incorporating
large vision classifiers as feature extractors. This approach allows searching for
small architectures that leverage the representation power of large models to solve
downstream tasks. Without re-training those large models.

• We propose NTKInner, a performance estimator that efficiently evaluates the train-
ability of generated architectures by leveraging NTK and the alignment between ei-
genvectors.

• We conduct exhaustive experiments to evaluate the performance and effectiveness
of the proposed NTKInner, and the behavior of the introduced search space. Res-
ults show that the proposed NTKInner achieves state-of-the-art results and that the
proposed search space helps generate competitive architectures, especially in more
challenging data sets (like CIFAR-100).

The remainder of this chapter is organized as follows. Section 5.2 describes the pro-
posed search space and zero-proxy estimator. Section 5.3, presents the experiments and
the results, and finally, section 5.4 draws a conclusion.

5.2 Proposed method

5.2.1 Performance Estimation Mechanism

NTK is an important concept for understanding a neural network training via gradient
descent [230]. At its core, NTK allows explaining how updating the model parameters on
one data sample affects the predictions for other samples. In [230, 231, 232], it was found
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that the NTK of a neural network converges during training and is independent of the
initialization of the random parameters. These are crucial for evaluating architectures,
as it allows defining a scoring to estimate how trainable an architecture is based on its
NTK. In this section, we present NTKInner, an improved zero-proxy estimator based on
the analysis of the NTK inspired by the findings of [4].

To capture the training dynamics of neural networks, the finite width NTK has been
defined as [230, 231, 233, 4]:

Θ̂(x,x′) = J(x)J(x′)T , (5.1)

where J(x) is the Jacobian evaluated at a point x. [231] provided additional evidence
that wide neural networks evolve as linear models through gradient descent. This study
demonstrated that the training dynamics of these networks can be characterized by ordin-
ary differential equations:

µt(xtrain) = (I− e−ηΘ̂(xtrain,xtrain)t)ytrain (5.2)

where µt(x) is the output of the network on the training set, η is the learning rate, xtrain

and ytrain are obtained from the training data, and t defines the training time step. Then
based on the findings of [234, 4] Eq. 5.2 can be estimated based on the spectrum of Θ̂:

µt(xtrain)i ≈ (I− e−ηλit)ytrain,i. (5.3)

where λi are the eigenvalues of Θ̂(xtrain,xtrain).

In [234], Eq. 5.3 is used to measure the trainability of a network. Also, in [4] the au-
thors stated that Eq. 5.3 indicates that each eigenmode requires a different amount of
time, as expressed by (I− e−ηλit)ytrain,i. Thus, the diversity in learning speeds among ei-
genmodes affects the network’s optimization difficulty. A greater diversity implies a more
challenging optimization task. Based on these findings and inspired by the fact that the
alignment between eigenvectors has been shown as a good metric to evaluate the general-
ization of a neural network [228, 229, 228], we evaluate the trainability of an untrained
neural network by looking at the NTK:

κ = E
xtrain∼Dtrain

θ∼N (0, 2
Nl

)

Vmax(Θ̂(xtrain,xtrain)) · Vmin(Θ̂(xtrain,xtrain)) (5.4)

where parameters θ are drawn from theHe initialization: N (0, 2
Nl
),Nl is the width at layer

l [235], and V represents the eigenvectors. Since the parameters of the architecture are
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initialized randomly, κ is evaluated at initialization phase when the architecture is not
yet trained. In this way, κ can be used as an evaluation measure for comparing different
untrained architectures, where the lower κ is, the better the trainability of the architecture.

5.2.2 Leveraging Large Feature Extractors Search Space

NAS methods tend to focus on designing cells that are then replicated to generate new
architectures for a given problem [2, 42]. The exception is network morphism, where
methods use CNNs as starting point and change its structure based on morphism [90].
However, these methods overlook the potential benefits of utilizing existing large DNNs
as effective feature extractors in solving downstream tasks. In this section, we propose
a novel NAS search space that integrates large vision models as feature extractors and
focuses the search on a middleware architecture. By doing so, we harness the power of
largemodels trained on extensive data sets without the need for re-training or fine-tuning
them for smaller data sets.

The search space builds upon previous works [38, 72, 2], as it considers the design of
a computation cell as the fundamental building block of the final architecture. The cell is
represented by a DAG with V nodes andN edges, where each vertex x(i) denotes a latent
representation for i ∈ 1, . . . , V . The directed edges (i, j) with i < j correspond to opera-
tions o(i,j) that connectsx(i) tox(j), using the operation o ∈ O, whereO defines the pool of
operations. The intermediate node values are computed by summing the transformations
applied to their preceding nodes, resulting in x(j) =

∑
i<j o

(i,j)(x(i)).

In the proposed search space, there are two types of cells: normal cells, which produce
feature maps of the same dimension, and reduction cells, which generate scaled-down
feature maps with reduced height and width by a factor of two. All cells consist of N = 7

nodes, and the output of a cell is defined as the concatenation of all preceding nodes except
for the input nodes. We follow the operation poolO fromDARTS [2], which includes eight
possible operations: 3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated separable
convolutions, 3× 3max pooling, 3× 3 average pooling, identity, and zero.
The outer-skeleton of the architecture (Figure 5.1) consists of interleaved cells, where re-
duction cells are placed at 1/3 and 2/3 of the skeleton. Additionally, the architecture
functions as a middleware, receiving the concatenation of feature maps from different
pre-trained large models as the initial input. This setup forces the architecture to learn
to solve the downstream task based on the representations created by the large models.
At 1/3 of the architecture, the feature maps are concatenated with new inputs from the
large models, enabling the generated architecture to receive deeper feature maps from
the feature extractors. We justify this architecture because large CNNs when trained on
extensive data sets (e.g., ImageNet21k) produce high-quality feature representations of
the input, and searching for a specialized architecture for the downstream task is cheaper
than re-training largemodels. More, trained CNNs tend to follow a rule of generating gen-
eric features in the early stages of the convolutional layers, becoming more task-specific
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Figure 5.1: Illustration of the proposed search space, where pre-trained models serve as feature extractors
and amiddleware architecture is searched to learn downstream tasks.

the deeper in the network [236]. Since large CNNs possess a higher capacity to represent
inputs in a multidimensional space, the early and mid-stage convolutional layers yield
more informative feature maps than smaller architectures. Therefore, combining these
feature maps in a compactmiddleware architecture allows us to leverage the representa-
tional power of large vision models while facilitating an efficient search process.

5.3 Experiments

To evaluate the performance of the proposedmethods, the experiments conducted con-
sist of two stages: architecture search in different search spaces with multiple NAS meth-
ods to evaluate the generability of NTKInner (section 5.3.3), and architecture search in
the proposed search space, including the use of the proposed NTKInner (section 5.3.4).

5.3.1 Search Spaces

To allow comparison with the state-of-the-art, we follow NAS literature [172, 4, 153]
and evaluate the effectiveness of NTKInner in the problem of cell-based NAS in three
different search spaces: the proposed one that leverages pre-trained feature extractors;
DARTS [2], in which cells have 7 nodes and the operation pool is composed of 8 different
operations; and NAS-Bench-201 [42], which is a cell-based with 6 possible layers per cell
and an operation pool of 5 operations. Formore details on the search spaces, we reference
the reader to Chapter 2.
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5.3.2 Implementation Details

In terms of studying the performance gains of different NAS methods when combined
with NTKInner and in the proposed search space, we focused on studying: RS-approach
[14, 1], anEA [51, 72], aRL-basedmethod [94, 4], DARTS [2] andTENAS [156]. Following,
we dive deeper into each one.

Random Search

As a baseline, we implement a RS strategy, where 256 architectures are randomly
sampled, and the best-scoring one is selected as the final architecture. By using RS as
a baseline, it allows evaluating the complexity of the search space, but also how good a
zero-proxy estimator is, as this shows the true gains of the scoring method, as no complex
NAS sampling method is involved.

Evolutionary Algorithm

For the evolutionary algorithm, we followed the previously implementation on Chapter
4 and the proposed methods in [72, 4] to promote a fair comparison. The evolution starts
by randomly sampling 256 individuals. In each generation, 64 individuals are sampled
from the population, and the top-scoring one is selected to generate a new individual. The
new individual is generated based on operation mutation and added to the population.
At the same time, a regularization mechanism removes the oldest individual to promote
exploration. At the end of 1000 generations, the best scoring architecture is selected and
trained from scratch.

Reinforce

The implemented RL-based method solves the NAS optimization problem as sequen-
tial decision-making where a policy agent chooses a sequence of actions (operations) and
learns by using the performance metric as a reward. For this we followed the implement-
ations of [94, 4]. In this, the method maintains an internal state, denoted as θA, which
serves as a representation of the architecture search space. During training, the RL agent
samples one architecture per iteration, denoted as at, from the distribution A, and it
learns by updating the representation of the architecture search space, θA, through policy
gradients [4]:

θA
t+1 = θA

t − η · ∇θAf(θA
t ) t = 1, · · · , T (5.5)

where f(θA
t ) represents the objective function, defined as: f(θA

t ) = − log(σ(θA
t ))·(rt−bt),

rt denotes the reward obtained at iteration t, while bt is an exponential moving average of
the rewards, denoted by: bt = γbt−1 + (1 − γ)rt, starting at b0 = 0 and with a smoothing
operator γ = 0.9. During training, the reward is obtained using a zero-proxy estimator
that scores an untrained architecture to try to infer its final performance if trained.
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For setting the parameters of the RL agent, we follow [4] to ensure fair comparisons
with the state-of-the-art. The RL agent is trained for 500 steps with a learning rate of
η = 0.04 on NAS-Bench-201 and η = 0.07 on DARTS and the proposed search space.

DARTS

We analyse how DARTS behaves in the proposed search space. For this, we follow the
proposed DARTS method [2], where the goal is to solve a bi-level optimization problem
on the weights and the architecture:

α⋆ = min
α
L(val)(α,w⋆(α)) s.t. w⋆(α) = argmin

w
L(train)(α,w). (5.6)

where α represents an architecture, w the associated weights, and L the loss function.
DARTS solves this problem by relaxing the discrete set of candidate operations and with
gradient descent. For our experiments, we follow the settings initially proposed in [2].

TENAS

The last NASmethod used to perform the search was TENAS [156]. This method works
by pruning a super-network until a single-path network is found. In [156], the authors
perform this pruning by evaluating the trainability and expressitivy of an architecture to
measure the importance of an operator. By doing this evaluation iteratively for the super-
network without a single operator, the method can quickly evaluate which operator is
the the least important. In our implementation, when using NTKInner to calculate the
trainability of an architecture, we update algorithm 1 in [156] to calculate K using the
proposed NTKInner.

5.3.3 Results and Discussion On Performance Estimation

We first focused on evaluating the proposed performance estimation mechanism –
NTKInner. For this, we looked into coupling it with different methods and evaluated it
on NAS-Bench-201 and DARTS search space. Results are shown in Table 5.1. The first
block of the table depicts human-engineered architectures, the second one depicts state-
of-the-art NAS methods, and the third shows the results for three different NAS methods
with and without the proposed NTKInner. From the results is possible to see that NTKIn-
ner is capable of improving the final performance of EA (Evolution), RL (REINFORCE),
and pruning-based NAS methods (TE-NAS), consistently achieving state-of-the-art res-
ultswhile still being extremely efficient in terms of search cost. ForREINFORCEandEvol-
ution NASmethods we directly compare NTKInner with the zero-cost proxy TEGNAS [4]
and the results showan improved performancewhenusing the proposed estimationmech-
anism. When compared to NASWOT [153], NTKInner augmented NAS methods achieve
much higher performances, especially on ImageNet16-120, a noisier data set. The over-
all results shown in Table 5.1 bespeak the performance of NTKInner and its capability of
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Table 5.1: Search Performance from NAS-Bench-201. “Optimal” indicates the best test accuracy achievable
in the space.

Architecture CIFAR-10 CIFAR-100 ImageNet-16-120
Search Cost
(GPU sec.)

Search
Method

ResNet [59] 93.97 70.86 43.63 - -

RSPS [1] 87.66 ± 1.69 58.33 ± 4.34 31.14 ± 3.88 8007.1 RS
ENAS [70] 54.30 ± 0.00 15.61 ± 0.00 16.32 ± 0.00 13314.5 RL
DARTS, 1st order [2] 54.30 ± 0.00 15.61 ± 0.00 16.32 ± 0.00 10889.9 GB
DARTS, 2nd order [2] 54.30 ± 0.00 15.61 ± 0.00 16.32 ± 0.00 29901.7 GB
GDAS [156] 93.61 ± 0.09 70.70 ± 0.30 41.84 ± 0.90 28925.9 GB
DrNAS [237] 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00 - GB
RLNAS [238] 93.45 70.71 43.70 - GB
GEA [51] 93.98 ± 0.18 72.12 ± 0.35 45.94 ± 0.71 18567 GB
β-DARTS [239] 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00 11520 GB
Single-DARTS [240] 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00 - GB
NASWOT (N = 1000) [153] 91.20 ± 2.04 68.95 ± 0.72 38.08 ± 1.58 252.6 training-free

TE-NAS 92.99 70.04 42.27 452 training-free
TE-NAS + ours 93.99 71.40 45.20 395 training-free
REINFORCE + TEGNAS 90.48 69.06 44.90 1407 training-free
REINFORCE + ours 90.86 70.99 45.75 1427 training-free
Evolution + TEGNAS 90.04 69.46 44.90 3457 training-free
Evolution + ours 90.97 70.17 45.19 4182 training-free

Optimal 94.37 73.51 47.31 - -

being implemented with different search strategies while improving their performances.

Then, we evaluated the proposed estimation method on DARTS, a larger cell-based
search space. For this, we focused on improving upon RS, EA (Evolution), RL (REIN-
FORCE), and pruning-based NAS methods (TE-NAS) by coupling them with NTKInner.
The results shown on Table 5.2 show that when directly comparing the results obtained
baseline NAS with the results when augmented with NTKInner, its clear that NTK greatly
improves the final performance while still designing architectures that are competitive in
terms of the number of parameters. RS is a good NAS baseline, as it was found to be com-
petitive in most search spaces [1, 45] and in our experiments, by random sampling 256 ar-
chitectures, we obtained a test error of 3.29%. When using NTKInner, the top-scoring ar-
chitecture from the 256 is selected as the final architecture, obtaining a test error of 2.63%,
which is on par with state-of-the-art NASmethods that use complex search strategies and
represents a 0.66% improvement upon the baselineRSwith only 0.06GPUdays of compu-
tation. When comparing EA and RL-based NASmethods with TEGNAS and the proposed
NTKInner we further see a consistent improvement in terms of accuracy, 0.34% in RL and
0.27% in EA, without added computational costs. The results obtained show the efficiency
of the proposed NTKInner and validate that the proposed method is a fast and accurate
zero-proxy estimator that can be coupled with different search strategies.

5.3.4 Results and Discussion On Combining Large Vision Classifiers

To evaluate the proposed search space, we first analyzed how different NAS methods
perform when directly searching in it using CIFAR-10. Table 5.3 shows the results for
using a ResNet20, which is a human-designed architecture, and 4 NAS methods: RS, EA,
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Table 5.2: Search Performance using DARTS space on CIFAR-10. The last 4 blocks shows direct
comparisons of NTKInner against other zero-cost proxy methods with different search methods.

Architecture
Test Error

(%)
Params
(M)

Search Cost
(GPU days)

Search
Method

AmoebaNet-A [72] 3.34 3.2 3150 EA
PNAS [217] 3.41 3.2 225 SMBO
ENAS [70] 2.89 4.6 0.5 RL
NASNet-A [38] 2.65 3.3 2000 RL

DARTS, 1st order [2] 3.00 3.3 1.5 GB
SNAS [98] 2.85 2.8 1.5 GB
GDAS [156] 2.82 2.5 0.2 GB
BayesNAS [241] 2.81 3.4 0.2 GB
NASP [242] 2.83 ± 0.09 3.3 0.1 GB
P-DARTS [113] 2.50 3.4 0.3 GB
PC-DARTS [114] 2.57 3.6 0.1 GB
R-DARTS (L2) [17] 2.95 ± 0.21 - 1.6 GB
SGAS [243] 2.66 ± 0.24 3.7 0.3 GB
SDARTS-ADV [244] 2.61 3.3 1.3 GB
DrNAS [237] 2.46 ± 0.03 4.1 0.6 GB
β-DARTS [239] 2.53 ± 0.08 3.75 ± 0.15 0.4 GB
Single-DARTS [240] 2.46 3.3 - GB

TE-NAS [156] 3.83 2.8 0.04 training-free
TE-NAS + TEGNAS 3.71 3.8 0.04 training-free
TE-NAS + ours 3.50 3.4 0.04 training-free

Evolution + TEGNAS 2.98 3.0 0.4 training-free
Evolution + ours 2.71 3.3 0.4 training-free

RS [2] 3.29 3.2 − RS
RS + TEGNAS 2.77 3.6 0.06 training-free
RS + Ours 2.63 3.5 0.06 training-free

REINFORCE + TEGNAS 3.09 4.2 0.1 training-free
REINFORCE + ours 2.75 3.2 0.1 training-free

prune-based NAS and DARTS. First, ResNet20 was used to evaluate if the accuracy when
trained on CIFAR-10 would improve if the same pre-trained large feature extractors were
used instead of receiving an image as input. The results show an0.71% improvement in ac-
curacy, thus suggesting that the use of featuremaps from large pre-trained CNNs is benefi-
cial. Then, we evaluated the use of RS with three different zero-cost proxies: TEGNAS [4],
EPE-NAS [48] and the proposedNTKInner, showing that NTKInner is a superiormethod,
obtaining 2.12% higher accuracy than when using TEGNAS to augment a RS. More, the
results of using RS with NTKInner are competitive to the results of DARTS in the pro-
posed search space, but with orders of magnitude less computation required. The results
of using an EA strategy further show the superiority of the proposed NTKInner and fur-
ther cement that the proposed search space is capable of yielding excellent architectures
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Table 5.3: Comparison of different NAS methods and zero-proxy estimator’s in the proposed search space
that leverages large feature extractors.

Method
Test Error

(%)
Search Cost
(GPU Days)

Search
Method

ResNet20 8.75 - manual
ResNet20 † 8.04 - manual

RS + TEGNAS † 6.82 0.006 training-free
RS + EPE-NAS † 5.14 0.005 training-free
RS + NTKInner † 4.70 0.006 training-free

Evolution + TEGNAS † 5.84 0.012 training-free
Evolution + EPE-NAS † 6.67 0.009 training-free
Evolution + NTKInner † 5.75 0.012 training-free

TENAS † 7.26 0.130 training-free
DARTS † 4.43 4 GB

† Using the proposed search space where large vision models serve as feature extractors.

without forcing all NAS methods to good results, which is noticeable with TENAS.

Finally, we evaluate the proposed search space in the task of IC with CIFAR-100. For
this, we evaluated DARTS, RS with TEGNAS and EA with the proposed NTKInner. Res-
ults are depicted in Table 5.4, showing that DARTS fails to generalize, which further sug-
gests that the proposed search space does not hold only good architectures, and the results
obtained when using RS and EA are very competitive. A comparison with several other
methods that usedCIFAR-100 but theDARTS search space is shown in 5.5, where the eval-
uated EA with the zero-cost proxy obtained state-of-the-art results with an improvement
of 2.59% when compared to the previous best result (NAT-M4), while still only requiring
a fraction of the search cost.

Table 5.4: Performance in test error obtained by the three evaluated methods in the proposed search space
using the CIFAR-100 data set.

Method
Top-1 Test
Error (%)

Top-5 Test
Error (%)

Search Cost
(GPU Days)

Search
Method

DARTS † 41.08 16.8 4 EA
RS + TEGNAS † 15.34 0.95 0.01 RS
Evolution + NTKInner † 9.11 0.2 0.006 EA

† Using the proposed search space where large vision models serve as feature extractors.
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Table 5.5: Comparison of different NAS methods and zero-proxy estimator’s in CIFAR-100.

Architecture
Test Error(%) Params

(M)
Search Cost
(GPU days)

Search
Methodtop-1 top-5

MetaQNN [68] 27.14 - 11.2 80 RL
NasNet-A [38] 16.82 - 3.3 1800 RL
ENAS [70] 19.43 - 4.6 0.45 RL
AmoebaNet-A (REA) [72] 18.93 - 3.1 3150 EA
DARTS, 2nd order [2] 17.54 - 3.4 4 GB
DARTS † 41.08 16.8 3.3 4 GB
SNAS [98] 17.55 - 2.8 1.5 GB
GDAS [156] 18.13 - 2.5 0.2 GB
P-DARTS [113] 15.92 - 3.6 0.3 GB
R-DARTS (L2) [17] 18.01 - 3.4 - GB
PC-DARTS [114] 16.90 - 3.6 0.1 GB
DOTS [245] 16.28 - 3.5 0.3 GB
DARTS- [246] 17.51 - 3.4 0.4 GB
DU-DARTS [247] 16.74 - 3.1 0.4 GB
β-DARTS [239] 16.24 - 3.8 0.4 GB
NAT-M4 [248] 11.70 - 9.0 6.3 EA
DARTS-PRIME [249] 17.44 - 3.16 0.5 GB

RS + NTKInner † 15.34 0.95 2.7 0.01 training-free
Evolution + NTKInner † 9.11 0.2 3.7 0.01 training-free

† Using the proposed search space where large vision models serve as feature extractors.

5.4 Conclusions

In this chapter, we presented two approaches to improve NAS methods. The first is a
search space that leverages large vision models as feature extractors. This allows harness-
ing the power of pre-trained models and focuses the search on amiddleware architecture
that learns how to solve a downstream task. The second is a new zero-cost proxy estimator
inspired by the use of NTK and the alignment between eigenvectors to evaluate architec-
tures at initialization stage.

By incorporating large vision models as feature extractors, the proposed search space
benefits from their rich representation capabilities, enabling the design of small archi-
tectures that learn downstream tasks based on these rich representations. Furthermore,
the searched middleware architecture focuses on learning a downstream task using the
representations created by the large models, eliminating the need for re-training or fine-
tuning them on smaller data sets. As for the proposed zero-cost proxy estimator, by evalu-
ating architectures based on their NTK and leveraging the fact that the alignment between
eigenvectors has been shown to be a good indicator of an architecture generability, the
proposed method provides a quick and efficient way to evaluate generated architectures
without requiring any training.
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The results of our experiments using different NAS methods validate the effectiveness
of the proposed methods. Extensive evaluations in different search spaces, with different
NAS searchingmethods and different performance estimationmechanisms, shows the im-
proved performance of the generated architectures, where generated architectures obtain
state-of-the-art results, improving upon baseline NAS methods.

In the next chapter, we focus on improving NAS in terms ofmemory and time efficiency
by proposing a multi-agent framework that allows distributed search.
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Chapter 6

Neural Architecture Search as a Multi-Agent
Problem

6.1 Introduction

Researchers have used a wealth of techniques ranging from RL, where a controller net-
work is trained to sample promising architectures [15, 38, 70, 250], to EA that evolve a
population of networks for optimal architecture design [72, 73, 43], to optimization on
random graphs [251]. Alas, most of these approaches are inefficient and can be extremely
computationally and/or memory intensive as some require all tested architectures to be
trained from scratch or that all possible operations on a super-network are loaded into
memory. Gradient-based frameworks enabled efficient solutions by introducing a con-
tinuous relaxation of the search space. For example, DARTS [2] uses this relaxation to op-
timize architecture parameters using gradient descent in a bi-level optimization problem,
while SNAS [98] updates architecture parameters and network weights under one generic
loss. Still, due to memory constraints, DARTS has to perform the search on 8 cells, which
are then stacked 20 times to form the final architecture. This approach has received criti-
cisms in [17, 40, 45], which showed that the training protocols overshadow the impact of
the NAS search and that RS usually outperforms NAS methods. More, these techniques
cannot easily scale to large data sets, e.g., ImageNet, relying on human-defined heuristics
for architecture transfer. In fact, in this chapter, we show that searching directly over 20
cells leads to a reduction in test error (8% relative to [2]).

Due to the large architecture parameter space, lack of efficiency is a key bottleneck pre-
venting NAS from its practical use. Even in the current settings where flexibility is limited
by expertly-designed search spaces, NAS problems are computationally very intensive
with early methods requiring hundreds or thousands of GPU-days to discover state-of-
the-art architectures [15, 84, 217, 73]. In the previous chapter, we looked into proposing
a zero-proxy estimator for quick evaluation of cells at initialization stage. In this chapter,
we focus on mitigating efficiency problems of gradient-based methods by framing NAS
as a multi-agent problem where agents control a subset of the network and coordinate to
reach optimal architectures, allowing direct design of 20 cells instead of 8.

To enable large-scale joint optimization of deep architectures, in this chapter, we pro-
pose MANAS, a multi-agent learning algorithm for NAS. MANAS combines the memory
and computational efficiency of multi-agent systems, achieved through action coordina-
tion with the theoretical rigor of online machine learning, allowing a balancing between
exploration versus exploitation optimally. MANAS leverages multi-agents, where each
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agent is associated with one layer selection and a global network is optimized based on
each agent decision (detailed in Section 6.2.3). Themulti-agent framework is inspired by a
multi-arm bandit setting [252]. Multi-arm bandit algorithms are a class of reinforcement
learning algorithms used to balance exploration and exploitation in a decision-making
process. This class of algorithms has been widely explored to solve a panoply of problems
[253], such as designing recommendation systems [254]. By employing a multi-arm ban-
dit, MANAS allows for a distributed space search through multiple agents with a global
optimization goal.

Due to its distributed nature, MANAS enables large-scale optimization of deeper net-
works while learning different operations per cell. We show that our method achieves
state-of-the-art accuracy results among methods using the same evaluation protocol but
with significant reductions in memory (1/8th of [2]) and search time (70% of [2]). The
MA framework is inherently scalable and allows us to tackle an optimization problem that
would be extremely challenging to solve efficiently otherwise: the search space of a single
cell is DARTS search space is 814 and there is no fast way of learning the joint distribution,
as needed by a single controller. More cells to learn exacerbates the problem, which is
why a multi-agent framework is required, as for each agent, the size of the search space is
always constant.

To validate the proposed method, we performed experiments on CIFAR-10 and Im-
ageNet, conducted additional experiments on three alternative data sets, evaluated
MANAS with complexity constraints, and two network configurations. Aware that RS
with weight-sharing and RS are effective baselines, we evaluate these throughout. When
compared with other NAS optimization methods that use the same search space, MANAS
achieves better performance and requires less memory.

In short, the contributions of this chapter can be summarised as:

• Framing NAS as a multi-agent learning problem (MANAS) where each agent super-
vises a subset of the network; agents coordinate through a credit assignment tech-
nique which infers the quality of each operation in the network, without suffering
from the combinatorial explosion of potential solutions.

• Proposal of two lightweight implementations of our framework that are theoretically
grounded. The algorithms are computationally and memory efficient, and achieve
state-of-the-art results on CIFAR-10 and ImageNet when compared with competing
methods. Furthermore, MANAS allows searching directly on large data sets (e.g.
ImageNet).

• Presenting 3 news data sets for NAS evaluation to minimize algorithmic overfitting;
offering a fair comparison with the often ignored RS with weight-sharing [1] and
RS [40, 170] baselines; as well as presenting a complexity constraint analysis of
MANAS.
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The remainder of this chapter is organized as follows. Section 6.2 provides an intro-
duction to the problem, describes the MA setting, and describes the proposed method.
Section 6.3, presents the experiments, the results, and presents a discussion. Finally, a
conclusion is drawn in Section 6.4.

6.2 Proposed Method

6.2.1 Preliminary: Neural Architecture Search Cell Search

For MANAS, we consider NAS as formalized in DARTS [2]. At a higher level, the archi-
tecture is composed of a computation cell that is a building block to be learned and stacked
to form the final architecture. The cell is represented by a DAGwith V nodes andN edges
in which edges connect all nodes i, j from i to j where i < j. Each vertexx(i) is a latent rep-
resentation for i ∈ {1, . . . , V }. Each directed edge (i, j) (with i < j) is associated with an
operation o(i,j) that transforms x(i). Intermediate node values are computed based on all
of the predecessors asx(j) =

∑
i<j o

(i,j)(x(i)).For each edge, aNASmethodneeds to select
one operation (layer) o(i,j) from a finite set ofK operations,O = {ok(·)}Kk=1, where opera-
tions represents some function to be applied to x(i) to compute x(j), e.g., convolutions or
pooling layers. Each o

(i,j)
k (·) is associated with a set of operational weights w(i,j)

k that need
to be learned (e.g. the weights of a convolution filter). Additionally, a parameter α(i,j)

k ∈ R
characterises the importance of operation k within the pool O for edge (i, j). The sets of
all the operational weights {w(i,j)

k } and architecture parameters (edge weights) {α(i,j)
k } are

denoted byw and α, respectively. DARTS defines the operation ō(i,j)(x) as:

ō(i,j)(x) =
K∑
k=1

eα
(i,j)
k∑K

k′=1 e
α
(i,j)

k′
· o(i,j)k (x) (6.1)

in which α encodes the architecture, and the optimal choice of architecture is defined by:

α⋆ = min
α
L(val)(α,w⋆(α)) s.t. w⋆(α) = argmin

w
L(train)(α,w). (6.2)

The final objective is to obtain a sparse architecture Z⋆ = {Z(i,j)}, ∀i, j where Z(i,j) =

[z
(i,j)
1 , . . . , z

(i,j)
K ] with z

(i,j)
k = 1 for k corresponding to the best operation and 0 otherwise.

That is, for each pair (i, j) a single operation is selected.

6.2.2 Online Multi-agent Learning

NAS suffers from a combinatorial explosion in its search space. A recently proposed
approach to tackle this problem is to approximate the discrete optimization variables
(i.e., edges in our case) with continuous counterparts and then use gradient-based op-
timization methods. DARTS [2] introduced this method for NAS, though it suffers from
two important drawbacks. First, the algorithm is computationally and memory intensive
(O(NK)) with K being the total number of operations between a pair of nodes and N

the number of nodes) as it requires loading all operation parameters into GPU memory.
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Figure 6.1: MANAS with single cell. Between each pair of nodes, an agentAi selects action a(i) according to
π(i). Feedback from the validation loss is used to update the policy.

As a result, DARTS only optimizes over a small subset of 8 repeating cells, which are
then stacked together to form an architecture of 20. Naturally, such an approximation
is bound to be sub-optimal. Second, evaluating an architecture on a validation set re-
quires the optimal set of network parameters. Learning these, unfortunately, is highly
demanding since for an architecture Zt, one would like to compute L(val)t (Zt,w

⋆
t ) where

w⋆
t = argminw L(train)t (w,Zt). DARTS, uses a weight-sharing mechanism that updateswt

once per architecture, with the hope of tracking w⋆
t over learning rounds. Although this

technique leads to a significant speed-up in computation in comparison with previous
work, it is not clear how this approximation affects the validation loss function.

In the following paragraphs, a novel methodology based on a combination of multi-
agent and online learning to tackle the above two problems is detailed (Figure 6.1). Not-
ably, MA learning scales the proposed algorithm by reducing memory consumption by an
order of magnitude fromO(NK) toO(N); and online learning enables understanding of
the effect of trackingw⋆

t over learning rounds.

NAS as a Multi-Agent Problem

To address the computational complexity we use the weight-sharing technique used
in DARTS. However, here the effect of approximating L(val)t (Zt,w

⋆
t ) by L

(val)
t (Zt,wt) is

handled in amore theoretically groundedway. Indeed, such an approximation can lead to
arbitrary bad solutions due to the uncontrollable weight component. To analyze the learn-
ing problem with no stochastic assumptions on the process generating ν = {L1, . . . ,LT }
MANAS uses an adversarial online learning framework.
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Algorithm 2 GENERAL FRAMEWORK: [steps with asterisks (*) are specified in sec-
tion 6.2.3]
1: Initialize: πi

1 is uniform random over all j ∈ {1, . . . N}. And randomw1 weights.
2: For t = 1, . . . , T
3: * Agent Ai samples ai

t ∼ πi
t(a

i
t) for all i ∈ {1, . . . , N}, forming architecture Zt.

4: Compute the training loss L(train)t (at) = L(train)t (Zt,wt)
5: Updatewt+1 for all operation ai

t in Zt fromwt using back-propagation.
6: Compute the validation loss L(val)t (at) = L(val)t (Zt,wt+1)

7: * Update πi
t+1 for all i ∈ {1, . . . N} using Z1, . . . ,Zt and L(val)1 , . . . ,L(val)t .

8: Recommend ZT+1, after round T , where ai
T+1 ∼ πi

T+1(a
i
T+1) for all i ∈ {1, . . . , N}.

Neural Architecture Search as Multi-Agent Combinatorial Online Learning

In Section 6.2.1, NAS cell-based search is defined as a problem where one out of K
operations needs to be recommended (“sampled”) for each pair of nodes (i, j) in a DAG.
Here, each pair of nodes is associated with an agent in charge of exploring and quantifying
the quality of these K operations to recommend one ultimately. The only feedback for
each agent is the loss associated with a global architectureZ, which depends on all agents’
choices.

We introduce N decision makers, A1, . . . ,AN (see Figure 6.1 and Algorithm 2). At
training round t, each agent chooses an operation (e.g., convolution or pooling layer)
according to its local action-distribution (or policy) aj

t ∼ πj
t , for all j ∈ {1, . . . , N}

with aj
t ∈ {1, . . . ,K}. These operations have corresponding operational weights wt

that are learned in parallel. Altogether, these choices at = a1
t , . . . ,a

N
t define a sparse

graph/architecture Zt ≡ at for which a validation loss L(val)t (Zt,wt) is computed and
used by the agents to update their policies. After T rounds, an architecture is recommen-
ded by sampling aj

T+1 ∼ πj
T+1, for all j ∈ {1, . . . , N}. These dynamics resemble bandit al-

gorithmswhere the actions for an agentAj are viewed as separate arms. Multi-armbandit
algorithms allow balancing exploration and exploitation in a decision-making process. By
employing amulti-arm bandit, MANAS allows for a distributed space search throughmul-
tiple agents with a global optimization goal, achieving bothmemory and time efficiency as
a result. The employed MA framework leaves open the design of 1) the sampling strategy
πj and 2) how πj is updated from the observed loss.

Minimization of Worst-Case Regret Under Any Loss

The following two notions of regret motivate the proposed NASmethod. Given a policy
π the cumulative regret R⋆

T,π and the simple regret r⋆T,π after T rounds and under the
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worst possible environment ν, are:

R⋆
T,π = sup

ν
E

T∑
t=1

Lt(at)−min
a

T∑
t=1

Lt(a), (6.3)

r⋆T,π = sup
ν

E
T∑
t=1

Lt(aT+1)−min
a

T∑
t=1

Lt(a) (6.4)

where the expectation is taken over both the losses and policy distributions, and a⃗ =

{a(Aj)}Nj=1 denotes a joint action profile. The simple regret leads to minimizing the loss
of the recommended architecture aT+1, while minimizing the cumulative regret adds the
extra requirement of having to sample, at any time t, architectures with close-to-optimal
losses. The proposed models and solutions in Section 6.2.3 are designed to be robust to
arbitrary Lt(at).

Because of the discrete nature of the NAS problem, during the search, the loss can take
on large values or alternate between large and small values arbitrarily. Gradient-descent
methods perform best under smooth loss functions, which is not the case in NAS. The
worst-case regret minimization is a theoretically-grounded objective that we use in order
to provide guarantees on the convergence of the algorithmwhenno assumptions aremade
on the process generating the losses.

Factorizing the Regret

Let us first formulate the multi-agent combinatorial online learning in a more formal
way. At each round, agentAi samples an action from a fixed discrete collection {a(Ai)

j }Kj=1.
Therefore, after each agent chooses its action at round t, the resulting architecture Zt

is described by joint action profile a⃗t = {a(A1),[t]
j1

, . . . ,a
(AN ),[t]
jN

} and thus, Zt and a⃗t are
used interchangeably. Due to the discrete nature of the joint action space, the validation
loss vector at round t is given by L⃗(val)

t =
(
L(val)t

(
Z(1)
t

)
, . . . ,L(val)t

(
Z(KN )
t

))
and for the

environment one can write ν =
(
L⃗(val)

1 , . . . , L⃗(val)
T

)
. The interconnection between joint

policy π and an environment ν works in a sequential manner: at round t, the architecture
Zt ∼ πt(·|Z1,L(val)1 , . . . ,Zt−1,L(val)t−1 ) is sampled and the validation loss L

(val)
t = L(val)t (Zt)

is observed. As mentioned previously, assuming linear contribution of each individual
action to the validating loss, one goal is to find a policy π that keeps the regret:

RT (π, ν) = E

[
T∑
t=1

βT
t Zt − min

Z∈F

[
T∑
t=1

βT
t Z

]]
(6.5)

small with respect to all possible forms of environment ν. We justify here with the cu-
mulative regret the reasoning applies as well to the simple regret. Here, βt ∈ RKN

+ is a
contribution vector of all actions, andZt is a binary representation of architecture Zt and
F ⊂ [0, 1]KN is set of all feasible architectures1. In other words, the quality of the policy

1Here, an architecture is feasible if and only if each agent chooses exactly one action.
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is defined with respect to worst-case regret:

R∗
T = sup

ν
RT (π, ν) (6.6)

The linear decomposition of the validation loss allows rewriting the total regret (Eq. 6.5)
as a sum of agent-specific regret expressionsR(Ai)

T

(
π(Ai), ν(Ai)

)
for i = 1, . . . , N :

RT (π, ν) = E

 T∑
t=1

 N∑
i=1

β
(Ai),T
t Z

(Ai)
t −

N∑
i=1

min
Z(Ai)∈B(K)

||·||0,1
(0)

[
T∑
t=1

β
(Ai),T
t Z(Ai)

]
=

N∑
i=1

E

 T∑
t=1

β
(Ai),T
t Z

(Ai)
t − min

Z(Ai)∈B(K)
||·||0,1

(0)

[
T∑
t=1

β
(Ai),T
t Z(Ai)

]
=

N∑
i=1

R(Ai)
T

(
π(Ai), ν(Ai)

)
(6.7)

where βt =
[
βA1,T
t , . . . ,βAN ,T

t

]T
and Zt =

[
Z

(A1),T
t , . . . ,Z

(AN ),T
t

]T
, Z =[

Z(A1),T, . . . ,Z(AN ),T
]T are decomposition of the corresponding vectors on agent-specific

parts, joint policy π(·) =
∏N

i=1 π
(Ai)(·), and joint environment ν =

∏N
i=1 ν

(Ai), and
B(K)
||·||0,1(0) is unit ball with respect to || · ||0 norm centered at 0 in [0, 1]K . Moreover, the

worst-case regret (Eq. 6.6) also can be decomposed into agent-specific form:

R⋆
T = sup

ν
RT (π, ν) ⇐⇒ sup

ν(Ai)

R(Ai)
T

(
π(Ai), ν(Ai)

)
, i = 1, . . . , N. (6.8)

This decomposition allows us to significantly reduce the search space and apply the two
algorithms described in the next section for each agent Ai in a parallel fashion.

6.2.3 Adversarial Implementations

The following subsections describe the proposed approaches for NAS when consider-
ing adversarial losses. The two algorithms presented are MANAS and MANAS-LS, which
implement two different credit assignment techniques specifying the update rule in line 7
of Algorithm 2. The first one approximates the validation loss as a linear combination of
edge weights, while the second handles non-linear losses.

In this context, adversarial refers to the adversarial multi-arm bandit [252] framework:
we model the fact that a weight-sharing super-network returns noisy rewards as having
an adversary that explicitly tries to confuse the learner. Adversarial multi-arm bandit
is the strongest generalization of the bandit problem, as it removes all assumptions on
the distribution. The proposed MA formulation and algorithm explicitly account for this
adversarial nature.
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MANAS-LS

Linear Decomposition of the Loss. A simple credit assignment strategy is to ap-
proximate edge-importance (or edge-weight) by a vector βs ∈ RKN representing the
importance of all K operations for each of the N agents. βs is an arbitrary, potentially
adversarially-chosen vector and varies with time s to account for the fact that the oper-
ational weights ws are learned online and to avoid any restrictive assumption on their
convergence. The relation between the observed loss L(val)s and the architecture selected
at each sampling stage s is modeled through a linear combination of the architecture’s
edges (agents’ actions) as:

L(val)s = βT
s Zs (6.9)

whereZs ∈ {0, 1}KN is a vectorised one-hot encoding of the architecture Zs (active edges
are 1, otherwise 0). After evaluating S architectures, at round t, β can be estimated by
solving the following via least-squares:

Credit assignment: B̃t = argmin
β

S∑
s=1

(
L(val)s − βTZs

)2
. (6.10)

The solution gives an efficient way for the agents to update their corresponding action-
selection rules and leads to implicit coordination. In Section 6.2.2 it is demonstrated that
theworst-case regretR⋆

T (Eq. 6.3) can actually be decomposed into an agent-specific form
Ri

T

(
πi, νi

)
defined as: R⋆

T = supν RT (π, ν) ⇐⇒ supνi Ri
T

(
πi, νi

)
, i = 1, . . . , N . This

decomposition allows us to significantly reduce the search space complexity by letting
each agent Ai determine the best operation for the corresponding graph edge.

Zipf Sampling for r⋆T,π. Ai samples an operation k proportionally to the inverse of

its estimated rank ⟨̃k⟩
i

t, where ⟨̃k⟩
i

t is computed by sorting the operations of agentAi w.r.t
B̃i

t[k], as

Sampling policy: πi
t+1[k] = 1

/
⟨̃k⟩

i

tlogK where logK = 1 + 1/2 + . . .+ 1/K. (6.11)

Zipf explores efficiently, is parameter-free, minimizes optimally the simple regret in
multi-armed bandits when the losses are adversarially designed, and adapts optimally to
stationary losses [255].

MANAS

Coordinated Descent for Non-Linear Losses. In some cases, the linear approx-
imation may be crude. An alternative is to make no assumptions on the loss function and
have each agent directly associate the quality of their actions with the loss L(val)t (at). This
results in all the agents performing a coordinated descent approach to the problem. For
this, each agent updates for operation k its B̃i

t[k] as:
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Credit assignment: B̃i
t[k] = B̃i

t−1[k] + L
(val)
t · 1ai

t=k/π
i
t[k]. (6.12)

Softmax Sampling for R⋆
T,π. Following EXP3 [256], actions are sampled from a

softmax distribution (with temperature η) w.r.t. B̃i
t[k]:

Sampling policy: πi
t+1[k] = exp

(
ηB̃i

t[k]
)/ K∑

j=1

exp
(
ηB̃i

t[j]
)
. (6.13)

Using this sampling strategy, EXP3 [256] is run for each agent in parallel. If the regret
of each agent is computed by considering the rest of the agent as fixed, then each agent has
regretO

(√
TK logK

)
which sums over agents toO

(
N
√
TK logK

)
. For this, a simplified

notion of regret is considered, where each agent is considering the rest of the agents as part
of the adversarial environment. Now, the goal is to minimize:

N∑
i=1

R⋆,i
T (π(Ai)) =

N∑
i=1

sup
a−i,ν

E

[
T∑
t=1

L(val)t (a
(Ai)
t ,a−i)− min

a∈{1,...,K}

[
T∑
t=1

L(val)t (a,a−i)

]]
, (6.14)

where a−i is a fixed set of actions played by all agents to the exception of agent Ai for the
T rounds of the game and ν contains all the losses as ν = {L(val)t (a)}t∈{1,...,T},a∈{1,...,KN}.

The proposedMA formulation thus provides a gradient-free, credit assignment strategy.
Gradient methods are more susceptible to bad initialization and can get trapped in local
minima more easily than our approach, which, not only explores more widely the search
space, but makes this search optimally according to multi-armed bandit derived regret
minimization. Concretely, MANAS can escape from local minima as the reward is scaled
by the probability of selecting an action (Eq. 6.12). Thus, the algorithmhas a higher chance
of revising its estimate of the quality of a solution based on new evidence. This is import-
ant as one-shot methods (such as MANAS and DARTS) change the super-network—and
thus the environment—throughout the search process. Put differently, MANAS’ optimal
exploration-exploitation allows the algorithm tomove away from ‘good’ solutions towards
‘very good’ solutions that do not live in the former’s proximity. In contrast, gradient meth-
ods will tend to stay in the vicinity of a ‘good’ discovered solution.

6.3 Experiments

To evaluate the efficiency ofMANAS, experiments onCIFAR-10 and ImageNetwere per-
formed, and the obtained results are compared with existing NAS methods. More, abla-
tion studies were performed to further showcaseMANAS efficiency: i) comparedMANAS,
DARTS, RS and RS with weight-sharing [1] on three new data sets for NAS (Sport-8,
Caltech-101, MIT-67); and ii) evaluated MANAS with inference time as complexity con-
straint. The performance of two algorithms, MANAS and MANAS-LS is reported for all
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experiments except the complexity constraint. More, with the exception of the results
marked as +AutoAugment, all experiments were performed with the same final training
protocol as DARTS [2], to allow a fair comparison. As for computational resources, ex-
periments in ImageNet were conducted on multi-GPU machines with 8× Nvidia Tesla
V100 16GB GPUs (used in parallel), while the remaining experiments were performed on
a single GeForce GTX 1080 GPU.

6.3.1 Search Space and Search Protocols

To evaluate MANAS, we use the same CNN search space proposed by DARTS [2]. This
search space focuses on cell-search on a DAG, where the edges represent operations over
the feature map of the input nodes. The operation pool of the search space has 8 possible
operations: {3×3, 5×5} separable convolutions; {3×3, 5×5} depth separable convolutions;
3× 3max pooling; identity and zero.

Since MANAS is memory efficient, it can search for the final architecture without need-
ing to stack a posteriori repeated cells. Therefore, all MANAS’ searched cells are unique.
For a fair comparison, we use 20 cells on CIFAR-10 and 14 on ImageNet. Experiments on
Sport-8, Caltech-101 and MIT-67 use both 8 and 14 cell networks. In both MANAS vari-
ants, the number of agents is defined by the search space and is not tuned. Specifically,
there exists one agent for each pair of nodes tasked with selecting the optimal operation.
As there are 14 pairs (edges) in each cell, the total number of agents is 14×C, withC being
the number of cells (8, 14 or 20, depending on the experiment).

For data sets other than ImageNet, 500 epochs were used in the search phase for archi-
tectures with 20 cells, 400 epochs for 14 cells, and 50 epochs for 8 cells. All other hyper-
parameters are as in [2]. For ImageNet, we use 14 cells and 100 epochs during the search.
In our experiments on the three new data sets, we rerun the DARTS code to optimize an
8 cell architecture, while for 14 cells the best cells were simply stacked for the appropriate
number of times.

6.3.2 Data Sets

Wedirectly search and evaluate the proposedmethod on five different data sets: CIFAR-
10 [257], in which we followed standard data pre-processing and augmentation tech-
niques [2, 70], i.e. subtracting the channel mean and dividing the channel standard de-
viation, centrally padding the training images to 40×40 and randomly cropping them
back to 32×32; and randomly flipping them horizontally. ImageNet [258] with data
pre-processing and augmentation techniques proposed in previous NAS methods [2, 70],
i.e. subtracting the channel mean and dividing the channel standard deviation, cropping
the training images to random size and aspect ratio, resizing them to 224×224, and ran-
domly changing their brightness, contrast, and saturation, while resizing test images to
256×256 and cropping them at the center. And 3 data sets for which we used the same
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pre-processing and data-augmentation techniques as for ImageNet: Sport-8, an action
recognition data set containing 8 sport event categories with a total of 1579 images [259],
Caltech-101, which contains 101 unbalanced categories [260], and MIT-67 that has 67

classes, totaling 15, 620 images of different sizes. The small size of Sport-8 and MIT-67
allows stressing the generalization capabilities of a NAS method.

Table 6.1: Comparison with state-of-the-art image classifiers on CIFAR-10. The four blocks represent:
human-designed, NAS, MANAS search with DARTS training protocol and best searched MANAS retrained
with an extended protocol (AutoAugment (AA) + 1500 Epochs + 50 Channels). Unless specified, all MANAS

architectures use 20 cells.

Method
Test Error

(%) ↓
Params
(M) ↓

Search Cost
(GPU Days) ↓

Search
Method

DenseNet-BC [60] 3.46 25.6 – manual

NASNet-A [38] 2.65 3.3 1800 RL
AmoebaNet-B [72] 2.55 2.8 3150 EA
PNAS [217] 3.41 3.2 225 SMBO
ENAS [70] 2.89 4.6 0.5 RL
SNAS [98] 2.85 2.8 1.5 GB
DARTS, 1st order [2] 3.00 3.3 1.5† GB
DARTS, 2nd order [2] 2.76 3.3 4† GB
SDARTS-ADV [244] 2.61 3.3 4.3 GB
DARTS- [246] 2.63 3.5 4† GB
GDAS [261] 3.75 3.4 0.2 GB
NPENAS-BO [130] 2.52 4.0 2.5 EA
EffPNet [262] 3.49 2.54 3 EA
BANANAS [123] 2.64 − 11.8 BO + predictor
RS + cutout [2] 3.29 3.2 – –
RS + weight-sharing [1] 2.85 4.3 9.7 RS

MANAS (8 cells) 3.05 1.6 0.8† MA
MANAS 2.63 3.4 2.8† MA
MANAS–LS 2.52 3.4 4† MA

MANAS + AA 1.97 3.4 – MA
MANAS–LS + AA 1.85 3.4 – MA

† Search cost is for 4 runs and the test error is for the best result (for a fair comparison with other methods).

6.3.3 Results and Discussion

The first experiment to evaluate the proposed methods was conducted using CIFAR-
10, for this we follow DARTS’s protocol [2]: MANAS is executed 4 times with different
random seeds and pick the best architecture based on its validation performance. We
then randomly reinitialize the weights and retrain for 600 epochs. During the search stage,
half of the training set is used as validation. To fairly compare with more recent methods,
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the best searched architecture is re-trained using AutoAugment and Extended Training
[263].
Results depicted in Table 6.1 show that both MANAS implementations perform well on
CIFAR-10 using DARTS search space. The proposed method was designed to perform
comparably to [2] but with an order of magnitude less memory. However, MANAS is ac-
tually capable of achieving higher accuracy. The reason for this is that DARTS is forced
to search for an 8 cell architecture and subsequently stack the same cells 20 times, while
MANAS can directly search on the final number of cells, thus leading to better results.
Results for MANAS searching for only 8 cells are also shown in Table 6.1. Even though
the network is much smaller, it still performs competitively with 1st-order DARTS. In
terms of memory usage with a batch size of 1, MANAS 8 cells required only 1GB of GPU
memory, while DARTSv1 utilized more than 8.5GB and DARTSv2 required 9.6GB, mak-
ing both versions of DARTS unpractical to work with data sets with larger image sizes.
Lastly, when training the best MANAS/MANAS-LS architectures with an extended pro-
tocol (AutoAugment + 1500 Epochs + 50 Channels, in addition to the DARTS protocol)
the results obtained clearly outperform state-of-the-art NAS methods, while also provid-
ing memory and time efficiency gains.

Table 6.2: Comparison with state-of-the-art image classifiers on ImageNet (mobile setting). The four blocks
represent: human-designed, NAS, MANAS search with DARTS training protocol and best searched MANAS

retrained with an extended protocol (AutoAugment (AA) + 600 Epochs + 60 Channels).

Method
Test Error

(%) ↓
Params
(M) ↓

Search Cost
(GPU Days) ↓

Search
Method

ShuffleNet 2x (v2) [264] 26.3 5 — manual

NASNet-A [38] 26.0 5.3 1800 RL
AmoebatNet-C [72] 24.3 6.4 3150 EA
PNAS [217] 25.8 5.1 225 SMBO
SNAS [98] (search on C10) 27.3 4.3 1.5 GB
DARTS [2] (search on C10) 26.7 4.7 4 GB
GDAS [261] (search on C10) 27.5 4.4 0.17 GB
EffPNet [262] (search on C10) 27.1 − 3 EA
NASP [242] (search on C10) 26.3 9.5 0.2 proximal

RS 27.75 2.5 — —
MANAS (search on C10) 26.47 2.6 2.8 MA
MANAS (search on IN) 26.15 2.6 110 MA

MANAS (search on C10) + AA 26.81 2.6 — MA
MANAS (search on IN) + AA 25.26 2.6 — MA

To evaluateMANAS on a larger data set, experiments on ImageNet were also conducted.
For these, the generated architectures were trained for 250 epochs. As search and aug-
mentation are very expensive we use only MANAS and not MANAS-LS, as the former is
computationally cheaper and performs slightly better on average. In Table 6.2, results for
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networks searched both on CIFAR-10 and directly on ImageNet, which is made possible
by the computational efficiency ofMANAS, are shown. When compared to SNAS, DARTS,
GDAS and other methods, using the same search space, MANAS achieves state-of-the-art
results both with architectures searched directly on ImageNet and also with architectures
transferred from CIFAR-10. More, when training the best MANAS architecture searched
directly on ImageNet with an extended training protocol (AutoAugment + 600 Epochs +
60 Channels, in addition to the DARTS protocol), the obtained performance improves by
0.89%, resulting in a final test error of 25.26%. The obtained results show that MANAS
is an efficient approach, both when transferring architectures from smaller data sets, but
also when directly searching on ImageNet, which other methods usually cannot.

From the results in both CIFAR-10 and ImageNet, it is clear that in specific settings,
sampling architectures randomly performs very competitively. Since the search space is
very large (between 8112 and 8280 architectures exist in the DARTS experiments), find-
ing the global optimum (randomly) is practically impossible. Previous studies [170, 1]
together with the results obtained here seem to indicate that the available operations and
meta-structure have been carefully chosen and, as a consequence, most architectures in
DARTS search space generate good results. This suggests that human effort has simply
transitioned from finding a good architecture to finding a good search space—a problem
that needs careful consideration. RS with weight-sharing [1], has also shown to perform
competitively but it falls short when compared to the proposed MA framework (including
in the ablation studies shown in the next section).

It is worth noting that all comparisons were performed using the same final training
protocol. This is relevant as studies have shown that the final training protocols can in-
fluence the final performance of an architecture more than the search strategy itself [40].
As such, any improvement in the final accuracy obtained by the generated architectures
is indicative of MANAS improvements and not the final training of the architectures.
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Figure 6.2: Comparing MANAS, RS, RS with weight-sharing [1] and DARTS [2] on 8 and 14 cells. Average
results of 8 runs. Note that DARTS was only optimized for 8 cells due to memory constraints.

6.3.4 Ablation Studies

The idea behind NAS is to find the optimal (or close) architecture for a given problem.
Limiting the evaluation of current methods to CIFAR-10 and ImageNet could potentially
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lead to algorithmic overfitting. Recent studies suggest that the search space was engin-
eered in a way that makes it very hard to find a bad architecture [1, 170, 40, 45]. To mit-
igate this, we tested different NAS methods on 3 data sets, which are composed of images
larger than those of CIFAR-10 and were not used before in this setting, but have been
used in the CV field: Sport-8, Caltech-101 and MIT-67. For this set of experiments, each
algorithm was run 8 times, and mean accuracy and standard deviation is reported. This
evaluation is performed for both 8 and 14 cells. As for the evaluation of DARTS in these
data sets, due tomemory constraints, it can only search for 8 cells. RSwithweight-sharing
andRSwere used to serve as baselines. For the latter 8 architectures from the search space
were uniformly sampled. To efficiently implement RS with weight-sharing, we follow [1].
Each proposed architecture is trained from scratch for 600 epochs as in the previous sec-
tion. Results are depicted in Figure 6.2. From these, it is clear that MANAS manages to
outperform the random baselines and significantly outperform DARTS, especially on 14

cells, clearly showing that the optimal cell architecture for 8 cells is not the optimal one
for 14 cells. More, the obtained results further promote the generability of MANAS across
different problems.

Table 6.3: Results of MANAS with complexity constraints using different penalty (ρ) values on CIFAR-10.

ρ
Test Error

(%) ↓
Inference Time

(ms) ↓

0 2.91 1.255 ± 0.012

0.1 3.12 1.196 ± 0.009

0.25 2.94 1.190 ± 0.008

0.5 3.04 1.183 ± 0.006

0.75 2.54 1.179 ± 0.005

1 2.69 1.164 ± 0.006

The last experiment conducted to evaluateMANAS is in a complexity constraint setting.
For this, the inference time of the generated architectures was added as a complexity con-
straint to the training. To accommodate the added constrain, the training loss was up-
dated to take into consideration the inference time that the generated architecture takes
to classify an image: L(train)t (at) = L(train)t (Zt,wt) + ρLt(Zt,wt), where Lt is the inference
time to classify one image, and ρ defines the importance given to Lt. Here, the ρ serves
to vary the importance given to the inference time while searching. By increasing ρ, the
inference time constraint has a higher importance in the loss calculation. This experi-
ment allows evaluating MANAS in a simple multi-objective setting while ensuring that
MANAS can perform in different settings. Table 6.3 shows the results of runningMANAS
with different ρ values using a single GPU. The depicted results show that by increasing
the importance of the inference component, MANAS consistently generates architectures
with a lower inference timewith similar accuracies. These show thatMANAS can be exten-
ded to a multi-objective search by modifying the training loss to accommodate different
components.
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6.4 Conclusions

In this chapter, we framed NAS as a MA problem and presented MANAS, a theoretic-
ally grounded multi-agent online learning framework for NAS. Then, the proposed two
extremely lightweight implementations were described. The proposed implementations
differ regarding the sampling and credit assignment during training. Based on this, exper-
iments using the DARTS search space in both CIFAR-10 and ImageNet were conducted,
showing that MANAS outperforms state-of-the-art while reducing memory consumption
by an order of magnitude.

Furthermore, in this chapter, we propose the use of 3 data sets that have been exhaust-
ively used in CV but not within NAS: Sport-8, Caltech-101, and MIT-67. In those, we
empirically show the effectiveness of MANAS and evaluate how baselines (RS-based) per-
form. Finally, we confirm concerns raised in recent works [170, 1, 40] claiming that NAS
algorithms often achieveminor gains over randomarchitectures. We further demonstrate
that MANAS produces competitive results with limited computational budgets, even in
complexity-constrained scenarios.

Even though this chapter improves upon current NAS state-of-the-art, we still relied on
a cell-based search in a human-defined search space. In the next chapter, we extend NAS
for a macro-search and propose a set of methods to heavily reduce human involvement.
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Chapter 7

Towards Less Constrained Macro Neural
Architecture Search

7.1 Introduction

Even though NAS methods perform well on designing CNNs, they still encounter sev-
eral drawbacks: i) search spaces are heavily dependent on human definitions, and are
usually small with forced operations; ii) the search is mostly cell-based, where NASmeth-
ods search for small cells that are later replicated in a human-defined outer-skeleton; and
iii) architecture’s parameters, such as the number of layers, inner-layer parameters (e.g.,
the kernel size, output channels), the final architecture skeleton, fixed operations, and
head and tail of the final architectures are usually defined by the authors; and iv) the
time required to perform macro-search (search entire networks) is still considerable. By
forcing rules and carefully designing search spaces, there are undoubtedly human biases
introduced in the loop, as shown in the previous chapter. This often impacts more the
final result of the architectures than the search strategy itself, as it pushes NAS to con-
strained search spaces with very narrow accuracy ranges [40, 45], thus jeopardizing the
generalization of the NAS methods, even to simpler settings [42, 1]. Moreover, the idea
of heading to NAS to avoid needing deep knowledge regarding architecture design ends
up being frustrated since human involvement is required to design the search space, the
outer-skeleton scheme, the pool of operations, and all the fixed hyper-parameters to en-
sure that a cell-based space allows designing efficient CNNs.

In this chapter, we propose Towards Less Constrained Macro-Neural Architecture
Search (LCMNAS), a NAS method that is capable of: i) autonomously generating com-
plex search spaces by creating Weighted Directed Graphs (WDGs) with hidden proper-
ties from existing architectures to leverage information that is the result of years of ex-
pertise, practice, and trial-and-error; ii) performs macro-architecture search without ex-
plicitly defined architecture’s outer-skeletons, restrictions or heuristics; and iii) uses a
mixed-performance strategy for estimating the efficiency of the generated architectures,
that combines information about the architectures at initialization stage with informa-
tion about their validation accuracy after a partial train on a partial data set. To validate
the proposed method, we conduct extensive experiments in both macro and micro-based
search settings to allow comparison with existing NAS methods. Extensive ablation stud-
ies show the importance of different NAS components in both micro and macro-search
settings and discuss their usability and importance.

The main contributions of LCMNAS are summarized as follows:
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Figure 7.1: An illustration of one iteration of LCMNAS, showing the process of sequentially designing and
evaluating architectures. It begins by sampling one layer and associated parameters for an architecture. The
sampling is repeated several times until an architecture is fully designed. Then, the architecture is evaluated
using a mixed-performance strategy and added to the population. The process of designing and evaluating

architectures is repeated multiple times in a generation, and the search continues until the evolution
reaches a final generation.

• A novel search space designmethod that leverages information about existing CNNs
to autonomously design complex search spaces.

• An evolutionary search strategy that goes beyond micro-search to macro-search.
where entire architectures are designed, without forced architecture shape or struc-
ture, or well-engineered protocols. More, the proposed search strategy goes beyond
solely designing architectures to also determining the hyper-parameters associated
with each layer.

• Amixed-performance estimationmechanism that correlates untrained architecture
scores with their final performance, and combines it with partial training to infer the
architecture’s trainability withminimal training. This allows for remarkable compu-
tation efficiency improvements.

• Experiments demonstrate that the architectures found with LCMNAS achieve state-
of-the-art results in both micro and macro-search settings, spanning across 14 dif-
ferent data sets.

• Extensive ablation studies show the importance of different NAS components, e.g.,
zero-cost proxy estimation in bothmicro andmacro-search settings, and evaluation
of standard practices, such as transferring searched architectures to new data sets,
and architecture diversity via ensembling.

• Finally, we extract insights about architecture design based on the decisions made
by LCMNAS that might inspire future research.

The remainder of this chapter is organized as follows. Section 7.2 describes the pro-
posed NAS method. Section 4.3, presents the experiments performed in a macro-search
setting, the results, and a discussion, while section 7.4 presents the experiments per-
formed in a cell-based search and discusses the obtained results. Finally, a conclusion
is drawn in Section 7.5.
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7.2 Proposed Method

7.2.1 Search Space

As seen in chapters 5 and 6, search spaces are commonly defined as DAGs, where edges
represent operations and nodes are tensors. The goal in those is usually to design cells that
are repeated to form entire architectures, where the operations pool and the architectures’
outer-skeletons are pre-defined by the users. However, this has been shown to force the
search to very narrow accuracy ranges and to compromise the generalization beyond the
evaluated data sets [40, 1, 45], and at the same time, requires deep expertise to apply to
new problems.

Instead of explicitly defining a search space, we propose a method to automatically
design search spaces without requiring human-specified settings by leveraging inform-
ation about existing CNNs, which are the result of years of expertise, practice, and many
trial-and-error experiments. For this, we extend the use of DAGs, and represent existing
CNNs as WDGs with hidden properties: G(Q,E,H), where Q is the set of nodes, E is
the set of edges and associated weights as layer-transition probabilities andH is the set
of inner states of the nodes and associated probabilities.

To generate a WDG,G(Q,E,H)i, one can perform a feed-forward on an architecture
with an input x, allowing an analysis of the architecture’s layers, including those that are
not defined on the architecture design but on the forward loop. With this, a summary of
ni can be generated and used to produce the setsQ andE. To obtain the layer-transition
probability between two layers, P (li|lj), we divide the frequency of the layer-transition
C(li, lj) by the sum of frequencies of layer-transitions from li to any other possible layer:
C(li, lk), k = 1, ...,K, whereK is the number of layers that appear after the layer li in the
summary. Thus, the weight of an edge e(li, lj) ∈ E is defined as:

e(li, lj) = P (li|lj) =
C(li, lj)∑K
k=1C(li, lk)

(7.1)

The inner-states hi ∈ H of a layer li represent all possible parameters and associated
values that appear in the CNN, e.g., for a convolutional layer, possible inner-states will be
the output channels and kernel sizes and their associated probabilities. The inner-states
of a layer h ∈ H are calculated similarly to the edges between nodes. For each possible
component (e.g., kernel size), the probability associated with the value (e.g., kernel size
3× 3) is calculated based on the frequency of that value divided by all possible values for
that specific parameter. Note that a start and end node are added to all WDG to allow the
search strategy to begin and stop the search.

At the end, the search space,A, is composed by all CNNs in the form of theirWDGs and
associated fitness (see section 7.2.3) for the given problem: (G(Q,E,H), f), such that

111



Improving Neural Architecture Search

A = {(G(Q1,E1,H1), f1), ..., (G(QN ,EN ,HN), fN )}, whereN is the number of CNNs
used to create the initial search space.

By using WDGs to represent CNNs, the proposed method extracts information about
the combination of layers and their associated parameters. This allows NAS methods to
extract past information and move beyond from solely designing layers and using heur-
istics to select their parameters, to a broader search, where the focus is on designing en-
tire architectures by finding both the layers and associated parameters. The method is,
thus, inferring human expertise directly from the search space without requiring human
intervention in the form of defined settings or parameters. Moreover, by combining the
evaluation of CNNs for a specific problem in the form of the fitness f , into the WDGs,
G(Q,E,H), the search strategy is capable of guiding the search more efficiently.

In Figure 7.2, theWDG of DenseNet121 is depicted, where layers are the nodes and con-
necting edges represent layer-transition probabilities. The generated WDGs differ from
the usual definition of DAGs, as here, the nodes represent layers instead of tensors, and
edges represent layer-transition probabilities instead of layers. The proposed definition
ofWDG further differs fromDAGs by introducing inner-states that allow the definition of
parameters associated with the layers (nodes).

Figure 7.2: WDG representation of DenseNet121. Nodes represent layers and edges represent
layer-transition probabilities between two nodes.
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7.2.2 Search Strategy

We propose an evolutionary strategy that leverages the information in the WDGs to
generate architectures from scratch, without requiring heuristics or pre-defined schemes
for the layer’s hyper-parameter and architecture structures. Architectures are generated
by sequentially sampling layers and associated hyper-parameters from the individuals
present in A. To generate a layer, li, a pool of parents, D ⊆ A, is sampled based on
the presence of the last sampled layer li−1 on all individuals from A (l1 is the start node).
An individual j ∈ D, is selected to be the parent of the layer li by performing a ranked
roulette wheel selection using the fitness of the individuals in D. This ensures that indi-
viduals in D that have high fitness scores do not dominate the selection, thus promoting
exploration of the search space. After an individual j ∈ D is selected as parent, a layer li
is sampled using fitness proportionate selection by having as weights the layer-transition
probabilities inG(Qj,Ej,Hj), denoted as P (lt|li−1), t = 1, ..., T , where T is the number
of the nodes that have an input layer-transition from li−1. Finally, the components of the
sampled layer, e.g., output channels, are also sampled using fitness proportionate selec-
tion from the inner-state of the sampled layer li from the sampled parent j ∈ D. The iterat-
ive process of sampling layers from different parents promotes diversity in the generated
architecture. Furthermore, following the insights obtained by evolutionary NAS meth-
ods like large-scale evolution [72] regarding the benefits of applying mutations, LCMNAS
also employs a mutation process: when a convolutional layer is sampled, it has a fixed
50% probability of being mutated to a skip-connection.

The evolutionary strategy is performed for g generations, where at each generation, p
individuals are generated, and the top 15% architectures from the parents population are
passed to the next generation through elitism. Figure 7.1 illustrates the evolutionary pro-
cess, where architectures are represented with varying widths and bar lengths to illustrate
their diversity in terms of operations and architecture’s scheme.

7.2.3 Performance Estimation Mechanism

The greatest NAS bottleneck is the evaluation of the generated architectures, as train-
ing each one until convergence is extremely expensive, requiring thousands of GPU days
of computation [15, 38]. Accordingly, we propose a mixed-performance estimation ap-
proach that combines low-fidelity estimates with zero-cost proxies to speed up the evalu-
ation, while at the same time ensuring that the resulting score is a reliable approximation
of the fully trained architecture ranking.

First, the proposed method evaluates the trainability of a generated architecture in a
partial data set for a small number of epochs, e. Let the objective function that calcu-
lates the accuracy of the architecture ni on a small validation set, dvalid be denoted by
O(ni, d

valid). The validation accuracy is used as an indication if the architecture can learn
from the small number of examples shown, which ultimately can be used to distinguish
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between architectures that can be trained efficiently from those that cannot. The proposed
method then looks at the capability of the untrained architecture at initialization stage to
model complex functions through Jacobian analysis [153, 48]. For this, we use the Jac-
obian J previously defined in Section 4.2.1. Equation 4.2 is then used to evaluate how an
architecture behaves for different images.

Then, the correlationmatrix,ΣJ , allows the analysis of how the architecturemodels the
target function at different data points, where ideally, for different images, the architec-
ture would have different J values, thus resulting in low correlated mappings. Then, we
can use KL divergence to score an architecture based on the eigenvalues of its correlation
matrix. Let σJ,1 ≤ · · · ≤ σJ,V be the V eigenvalues ofΣJ . The untrained architecture can
be scored as:

s = 1× 104/
V∑
i=1

[log(σJ,i + k) + (σJ,i + k)−1], (7.2)

where k = 1 × 10−5. The small constant values provide scaling factors and bound the
logarithmic value, allowing better precision.

The proposedmixed-performance estimation approach calculates the fitness, f , by com-
bining the evaluation of the architecture’s trainability, using O(ni, d

valid), and their cap-
ability of modeling complex functions, using s by:

fni = (1− λ)×O(ni, d
valid) + λ× s (7.3)

where λ serves the purpose of giving different weights to each component. When λ = 0,
the fitness of an architecture is only based on the trainability of the network by looking
at the validation accuracy using a partial train on a partial data set, O(ni, d

valid). When
λ = 1, the architecture’s capability of modeling complex functions at initialization stage is
the only considered factor. We conducted several experiments to validate the importance
of λ (see Sections 7.3 and 7.4).

7.3 Designing Entire Architectures: Experiments and Res-

ults Analysis

7.3.1 Data Sets

We directly search and evaluate the proposed method on three different data sets:
CIFAR-10 [257], CIFAR-100 [257] and a reduced and noisy version from ImageNet:
ImageNet16-120 [42]. CIFAR-10 and CIFAR-100 both contain 60K images, from which
50k are training images and 10k are test images. All images have 32 × 32 pixel sizes, and
the data sets have 10 and 100 classes, respectively. ImageNet16-120 is a down-sampled
variant of ImageNet, where all images have 16× 16 pixels and only considers the first 120
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Table 7.1: Comparison of the proposed method against ResNet, the best architecture in NAS-Bench-201
benchmark, and 3 types of RS. The proposed method is evaluated using different λ values. When applicable,
the comparison is measured by the test error (%), the inference time (ms), the search cost in GPU days, and

the number of parameters of the generated architecture in millions.

Architecture
CIFAR-10 CIFAR-100 ImageNet16-120

Test Error
(%) ↓

Inference
Time (ms) ↓

Search Cost
(GPU days) ↓

Params
(M) ↓

Test Error
(%) ↓

Inference
Time (ms) ↓

Search Cost
(GPU days) ↓

Params
(M) ↓

Test Error
(%) ↓

Inference
Time (ms) ↓

Search Cost
(GPU days) ↓

Params
(M) ↓

ResNet [59] 6.43 0.24±0.19 - 1.7 29.14 0.21±0.13 - 1.7 56.37 0.10±0.19 - 1.7
NAS-Bench-201
Top Architecture [42]

5.63 0.16±0.13 - 1.1 26.49 0.18±0.13 - 1.3 52.69 0.08±0.12 - 0.9

RS-L 10.73 1.06±0.10 0.27 34.4 31.95 0.28±0.09 0.01 0.7 82.08 0.01±0.01 0.26 0.5
RS-M 21.67 0.09±0.01 0.01 0.3 46.82 0.06±0.01 0.01 0.8 60.02 0.03±0.01 0.01 1.3
RS 7.96 0.03±0.01 0.01 0.6 47.33 0.01±0.01 0.01 0.4 64.33 0.02±0.01 0.01 0.7

Ours (λ=0) 6.05 2.08±0.04 1 43.9 29.44 1.67±0.02 0.67 49.5 58.45 0.75±0.01 1.29 224.7
Ours (λ=0.25) 5.49 0.97±0.02 1.23 32.5 28.27 0.92±0.35 1.9 60.4 57.33 3.43±0.04 3 171.1
Ours (λ=0.50) 4.64 0.26±0.04 1.36 13.9 25.45 1.81±0.02 2.7 51.5 49.12 0.19±0.01 5.01 12.8
Ours (λ=0.75) 4.23 0.33±0.01 1.03 6.7 25.99 0.39±0.18 2.8 32.3 45.78 0.90±0.01 4.79 42.7
Ours (λ=1) 4.81 0.15±0.01 0.1 2.5 26.52 0.16±0.01 0.01 2.2 51.17 0.76±0.01 0.12 31.5

Ours (best)+AA† 2.96 0.33±0.01 1.03 6.7 20.94 1.81±0.02 2.7 51.5 43.35 0.90±0.01 4.79 42.7

† Results obtained by training the best model found in each data set: λ = 0.75 for CIFAR-10 and ImageNet16-120 and λ = 0.5 for CIFAR-100 with
AutoAugment for 1500 epochs.

classes of ImageNet, resulting in approximately 158K images. From which, 152k are for
the training set, 3K for the validation and 3K for the test set. For searching purposes,
we generated a partial data set for all the data sets. Here, 8% and 2% of the training set
were randomly sampled to serve as partial training and partial validation sets. When us-
ing larger data sets, smaller subsets of the original data sets can be used to ensure that the
search method remains efficient. The partial training requires only a small set of images
from different classes to assess the trainability of a network. For reference, on CIFAR-100
we used 40 images per class for the training set, which was found sufficient to evaluate if
an architecture canmodel the target function. More, the data set could be further reduced
to an even smaller number of images or trimmed in terms of classes to accommodatemore
images per class. For the final training of the selected architecture, we use the original,
entire splits.

7.3.2 Final Training

To evaluate the final architecture, we follow common training procedures [2, 70, 72].
However, we do not take advantage of drop path and other well-engineered training pro-
tocols that hide the contributions of the search strategy and the search space [40], or that
require forcing architectures to have specific schemes, e.g., auxiliary towers [265], as sug-
gested by NAS best practices in order to showcase the true contributions of the proposed
method [266, 1, 40, 45].

The final architecture is trained for 600 epochs with a batch size of 96. We use SGD
optimization, with an initial learning rate, η = 0.025 annealed down to zero following a
cosine schedule without restart [267], momentum of 0.9 [268], weight decay of 3 × 10−4

and cutout [269]. The use of these settings follows common training settings from previ-
ous NAS methods, allowing a fairer comparison with the results obtained by other NAS
methods [2, 270, 40].
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7.3.3 Search Space

To create the search space, we use all the 34 models present in TorchVision ver-
sion 0.8 [271]: AlexNet [272], DenseNet{121, 161, 169, 201} [60], GoogLeNet [58],
MNASNet{0.5, 0.75, 1, 1.3} [226], MobileNetv2 [273], ResNet{18, 34, 50, 101, 152} [59],
ResNext{50, 101} [203], ShuffleNetv2{0.5, 1.0, 1.5, 2.0} [274], SqueezeNet{1.0, 2.0} [275],
VGG{11, 11BN, 13, 13BN, 16, 16BN, 19, 19BN} [57] and Wide ResNet{50, 101} [204].
For eachmodel, aWDG is automatically generated and the associated fitness is calculated
using the performance estimation method.

The resulting search space is extremely large, composed of 17possible operations: {1×1,
3× 3, 5× 5, 7× 7, 11× 11} convolution; {2× 2, 3× 3} max pooling; 2× 2 average pooling;
{1× 1, 6× 6, 7× 7} adaptive average pooling, {4096, 1024, 1000} linear, {0.2, 0, 5} dropout
and skip-connection. In theWDGs,G(Q,E,H), the inner-state choices for a given node,
e.g., the output channels for a convolutional layer, are also present.

As we do not bound the search by defining the architecture’s outer-skeletons or the
number of layers, the search space is highly complex, meaning that a generated architec-
ture can be of any length and scheme. More, in our experiments, we create a search space
for each evaluated data set, as the CNNs yield different fitnesses for different problems.
Also, by using information about the probabilities of layer-transition and the inner-states,
LCMNAS leverages existing information to efficiently guide the search and design the ar-
chitecture and the layer’s parameters without requiring heuristics. Future works can use
this search space without leveraging such information and solely focus on the possible
operations to design cell-based architectures.

7.3.4 Results and Discussion

To evaluate the proposed method, we conducted extensive experiments using a single
1080Ti GPU. First, following the best practices proposed for NAS [266], we evaluate the
performance of RS to infer the complexity of the search space [1]. For this, we evaluate
RS by randomly sampling architectures from the search space, A, and two RS strategies
based on the proposed evolutionary strategy: RS-L, which randomly samples layer com-
ponents, and RS-M, which randomly samples models to serve as parents. The results for
these three methods are shown in the second block of Table 7.1. As the three RS methods
attain high values for the test error, it shows that the search space is complex, and unlike
other search spaces, RS is not sufficient to design competitive architectures [1, 40]. Then,
we evaluated the proposed method by giving different importance (λ) to the two compon-
ents of the mixed-performance estimation. Results are presented in the third block of
Table 7.1. Following the best practices suggested in [40], we first present the test errors
without any added training protocol. From these, we see that a combination of both evalu-
ating an architecture based on its trainability using low-fidelity estimates and itsmodeling
capabilities at initialization stage, yields the best results. Moreover, higher λ values serve
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Table 7.2: Comparison of different methods on CIFAR-10. The first block presents a state-of-the-art
human-designed CNN. The second block presents the results of proposals that perform macro-search, and
the third block presents the proposed method. For each method, the test error in percentages, the search
cost in terms of GPU days, and the size of the architecture in millions of parameters are shown. The search
cost is the total GPU computation used in days, based on the number of GPUs and the execution time.

Method
Test Error

(%) ↓
GPUs ↓ Time

(Days) ↓
Search Cost
(GPU Days) ↓

Params
(M) ↓

Search
Method

ResNet [59] 6.43 - - - 1.7 manual

Super Nets [276] 9.21 - - - - -
ConvFabrics [277] 7.43 - - - 21.2 -
MetaQNN [68] 6.92 10 10 100 11.2 RL
EAS [166] 5.70 5 2 10 19.7 RL
Large-scale Evolution [84] 5.40 250 11 2750 5.4 EA
EPNAS [278] 5.14 1 1.2 1.2 5.9 SMBO
NAS [15] 4.47 800 28 22400 7.1 RL
ENAS [70] 4.23 1 0.32 0.32 21.3 RL
SMASH [116] 4.03 1 1.5 1.5 16.0 OS
EPNAS + more channels [278] 4.01 1 1.2 1.2 38.8 SMBO
ENAS + more channels [70] 3.87 1 0.32 0.32 38.0 RL
NSGA-NET [110] 3.85 1 8 8 3.3 EA
NAS + more filters [15] 3.65 800 28 22400 37.4 RL
LEMONADE [90] 3.60 16 5 80 8.9 EA
RandGrow [167] 3.38 4 1.5 6 3.1 RS
RandGrow + DropPath [167] 2.93 4 1.5 6 3.1 RS
Petridish [168] 2.83 1 5 5 2.2 GB

Ours (λ = 0.75)+AA 2.96 1 1 1 6.7 EA

as regularization, reducing the number of parameters in the generated architectures. The
search cost is lower when λ = 1, due to the fast evaluation of untrained networks. Dif-
ferences in search cost between data sets are due to the unconstrained properties of the
search. As for noisier data sets, larger models tend to be generated, thus takingmore time
to evaluate. The larger size of ImageNet16-120 also slows the evaluation. For the best ar-
chitecture found in each data set (λ = 0.75 in CIFAR-10 and ImageNet16-120 and λ = 0.5

in CIFAR-100), we also show the test error by training the architecture for 1500 epochs
with AutoAugment [263], attaining 2.96% test error in CIFAR-10, 20.94% in CIFAR-100
and43.35% in ImageNet16-120. By comparing the proposedmethodwithResNet, and the
best possible architecture in the NAS-Bench-201 (first block in Table 7.1), it is possible
to see that the proposed method heavily outperforms existing state-of-the-art manually
designed CNNs and all cell-based CNNs present in NAS-Bench-201. Moreover, compar-
ing with RS indicates the effectiveness of the search, where lower test errors show that
LCMNAS effectively searches through the complex space of architectures.

Table 7.2 compares the proposed method with different NAS methods that perform
macro-search using CIFAR-10. It is important to note that most of these methods heavily
rely on tuned search spaces and constraints, such as architecture skeletons, number of
layers, and forced initial and final operations, which were shown to hide the real contri-
butions of the search strategy [40]. From this table, it is possible to see that LCMNAS
achieves high performances (low test error) while at the same time being orders of mag-
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Table 7.3: Test error (%) obtained by transferring the best architectures found in one data set to other data
sets without any modifications. Architectures were trained on the new data set from scratch.

Searched On
Transferred To

CIFAR-10 CIFAR-100 ImageNet16-120

CIFAR-10 4.23 24.42 53.45

CIFAR-100 5.09 25.45 55.42

ImageNet16-120 8.15 30.39 45.78

nitude faster (search cost) and only using a single 1080Ti GPU (800x lower than NAS
[38]). LCMNAS closely relates with large-scale evolution [84] since both apply evolution-
ary strategies and heavily reduce the amount of human intervention in the decision pro-
cess. By direct comparison, LCMNAS achieved a lower test error by 2.44% while being or-
ders of magnitude faster (2750x faster) and requiring less computation (250x fewer GPU).
By directly comparing with RandGrow and Petridish, the closest in terms of test error, we
see that LCMNAS is 5x faster while achieving similar test errors. However, RandGrow
[167], and Petridish [168] rely on DropPath, which in RandGrow’s case, reduced its’ base
test error from 3.38% to 2.93%. Regarding CIFAR-100, few proposals directly search on
the data set. Instead, they focus on transferring architectures from CIFAR-10. In com-
parison, Large-scale evolution [84] achieved a test error of 23.7%, which is 2.76% higher
than the 20.94% obtained by LCMNAS.

Most NAS methods focus on designing architectures in one data set and transferring it
to larger ones. We also study this using the best-generated architectureswithout AutoAug-
ment. However, contrary to standard practices, we do not change the architecture’s
schemewhen transferring them to emphasize the true contributions of the search strategy.
We found that for similar data sets, i.e., CIFAR-10 and CIFAR-100, the generated architec-
ture in the first and transferred to the second outperforms the architecture found directly
searching in the second. We justify this due to the similar nature of the data sets, whereas
CIFAR-100 is a more demanding data set, meaning that searching on it is harder. How-
ever, the same does not apply when transferring CIFAR-10 or CIFAR-100 to ImageNet16-
120 and the other way around. The result of such transference falls heavily short when
compared to directly searching in the desired data set. These results are shown in Table
7.3. From these, we conclude that directly searching on a data set is better than trans-
ferring the generated architectures if no similar and simpler data sets are available that
might aid in the search process.

Regarding the architecture’s design, a visualization of the best ones can be seen in Fig-
ure 7.3. LCMNAS found that placing batch normalization layers after convolutional layers
was an important building block, usually followed by a Rectified Linear Unit (ReLU) ac-
tivation function, meaning regularization layers are essential after a convolutional layer.
In CIFAR-10, LCMNAS specifically designed a very deep network with a small number of
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(c) ImageNet16-120 (λ = 0.75).

Figure 7.3: Architecture of the best models found in each data set used to perform macro-search.

output channels, thus controlling the number of parameters. In the middle of this archi-
tecture, a dropout layer and a linear layer were added. We hypothesize that this served the
purpose of regularization by dropping connections and creating linear representations of
the featuremaps. Inmany architectures, a pattern of having convolutional layers with lar-
ger kernel sizes (7×7) interspersedwith smaller ones (1×1 and 3×3) is seen. Also common
to all architectures, LCMNAS tends to add dropout layers and reductionmechanisms, e.g.,
adaptive average pooling, at the end of the architecture, especially in ImageNet16-120, the
noisier data set.
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Table 7.4: Test error (%) of the best architectures found on CIFAR-10 using different search epochs e and
fixed λ = 0.75.

Search Epochs
e

CIFAR-10

Test Error (%) ↓ Params (M) ↓

e = 1 6.33 21.4
e = 2 4.92 170.1
e = 3 4.69 44.1
e = 4 4.23 6.7

7.3.5 Ablation Studies

We extend the studies of LCMNAS by evaluating the importance of the epochs used to
partially train a generated architecture, using λ = 0.75 (results shown in Table 7.4). Nat-
urally, reducing e implied an increase in the final test error and the number of parameters
of the final architecture. This increase can be justified by the difficulty in measuring the
trainability of the architectures with a small number of training epochs. Furthermore, in
Table 7.5, we evaluated the impact of the number of generations, g, and population per
generation, p, using λ = 1. The resulting test error shows that g = 50 and p = 100 yield
the best results and that these parameters can influence the final result by a significant
amount. In a perfect scenario, where computational costs are not considered, one could
use a large e and evaluate more architectures by increasing g and p.

Also, we evaluate the diversity of the generated architectures by performing ensembling
[279]. For this, we ensemble the architectures found, using different λ values (Table 7.6)
as an indication of the architectures’ diversity [280]. Ensemble sizes k, go from the top-1
architecture (k = 1) to the top-5 architecture found (k = 5). The resulting test error was
obtained using weighted majority voting, with the accuracies attained while training used
asweights. Results show that incrementally adding lower-performant architectures yields
better results for all data sets evaluated than the top-1 architecture alone. This experiment
validates the premise that less constrained macro-search has benefits due to its’ inherent
architecture generation diversity.

We’ve also studied the behavior of the best-generated architecture by introducing prun-
ing and automatically adding batch normalization layers as post-processing. These exper-
iments allow further evaluation of important components of the generated architectures
and provide insights if the sampled layers and associated parameters were good selections.
For the first experiment, pruning, we added a train restriction in which at the end of one
epoch, all weights, wi, under a threshold: |wi| <= 1e − 2, have their value changed to 0.
The results showed that this experiment did not have an effect on the final performance
of the networks. For the second experiment, we focused on adding a regularization mech-
anism in the form of batch normalization layers. To do this, we manually added the batch
normalization layers in two ways: i) after all layers that are not activation layers (e.g.,
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ReLU); and ii) after all layers. We found that these changes would result in a decrease
in final test accuracy by approximately 5%, meaning that the search strategy was already
giving the proper importance to regularizationmechanisms. More, LCMNAS learned that
batch normalization layers are mostly useful after convolutional layers, not adding those
after other types of layers.

Table 7.5: Test error (%) in CIFAR-10 using λ = 1 for different number of generations, g, and population
sizes, p.

Parameters CIFAR-10

Generations (g) Population (p) Test Error (%) ↓ Params (M) ↓

5 5 16.52 0.3

10 10 5.46 3.9
10 25 5.25 3.6
10 50 6.97 0.9
10 100 6.83 12.7

15 15 6.08 0.4
15 25 5.58 8.7
15 50 6.16 7.6
15 100 5.37 13.9

25 25 5.49 2
25 50 6.52 3.1
25 100 4.97 8.4

50 50 5.24 4.7
50 100 4.81 2.5

100 50 6.69 5.3
100 100 5.94 13.6
100 250 5.54 55.9

150 150 6.19 3.3
150 250 6.46 2.2

250 100 5.27 36.1
250 250 6.14 4.8

Table 7.6: Ensemble test error (%) for CIFAR-10, CIFAR-100 and ImageNet-16-120 with different ensemble
sizes k. Architectures used to perform the ensemble are the final ones found by searching with different

λ ∈ {0, 0.25, 0.5, 0.75, 1}.

Ensemble
Size (k)

Test Error (%) ↓

CIFAR-10 CIFAR-100 ImageNet16-120

k = 1 4.23 25.45 45.78

k = 2 4.23 25.45 45.78

k = 3 3.67 22.64 44.67

k = 4 3.51 22.01 44.85

k = 5 3.59 21.52 44.72
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7.4 Designing Cells: Experiments and Results Analysis

To further allow comparison with the state-of-the-art, we evaluate the effectiveness
of LCMNAS in the problem of cell-based NAS. We utilize three different search spaces:
NAS-Bench-101 [281], NAS-Bench-201 [42] and TransNAS-Bench-101 [87] benchmarks.
These benchmarks were designed to have fixed NAS search spaces with metadata about
the training of thousands of architectures within those search spaces. For a detailed de-
scription of the benchmarks, we reference the reader to chapter 2.3.

Table 7.7: Search Performance on NAS-Bench-101. Test regret is the difference between the optimal
architecture in NAS-Bench-101 and the test accuracy obtained by a NAS method. Table results adapted

from [4].

Method GPU Hours ↓ Test Acc. (%) ↑ Test Regret (%) ↓

LaNAS [282] 107.3 93.90 0.42

BONAS [222] 107.3 94.09 0.23

NASBOWLr [283] 80.5 94.09 0.23

CATE [284] 80.5 94.10 0.22

RS [50] - 90.38± 5.51 3.94

Synflow [285] - 91.31± 0.02 3.01

WeakNAS [223] 80.5 94.10± 0.19 0.22

NASWOT [153] 0.01 91.77± 0.05 2.55

AREA [153] 3.33 93.91± 0.29 0.41

GenNAS-N [155] 5.75 93.92± 0.00 0.40

REA [72] 7.42 93.12± 0.48 1.12

Evolution + TEG [4] 0.78 92.52± 1.30 1.80

REINFORCE [4] 2.77 93.80± 0.12 0.52

REINFORCE + TEG [4] 0.24 94.11± 0.11 0.21

LCMNAS (Ours) 3.21 94.19± 0.08 0.13

Optimal - 94.32 0.00

7.4.1 Results and Discussion

For LCMNAS to perform micro-search in different search spaces, the search method
was slightly modified to accommodate the forced rules that micro-search carries. First,
the initial population is randomly sampled from the search space. Secondly, for NAS-
Bench-101, the search method samples layers until reaching either l = 5 or the layer ”Out-
put”, whereas for NAS-Bench-201 and TransNAS-Bench-201, the search method samples
a specific number of layers l = 6. Finally, the search method focuses solely on sampling
layers (operations) instead of sampling both layers and associated parameters.

First, we evaluate LCMNAS on NAS-Bench-101 using the evolution settings proposed
in [4, 72] to allow a fair comparison with previous evolutionary NAS methods. As shown
in Table 7.7, LCMNAS performs better than previous state-of-the-art NAS methods with
a 94.19% mean test accuracy achieved by the top scoring architecture found in approxim-
ately 3 GPU hours. When compared to REA [72], LCMNAS achieves a 1.07% higher mean
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Table 7.8: Comparison of different methods on the NAS-Bench-201 benchmark. The first block shows
manually design architectures, the second block shows weight-sharing NAS methods and the third block

shows the results for non-weight sharing NAS methods. The results are shown in terms of accuracy (%) with
mean and standard deviation for CIFAR-10, CIFAR-100 and ImageNet-16-120. Search times are the mean
time required to search for cells in CIFAR-10 and include the time required to train architectures where

applicable.

Method
Search
Time (s)↓

CIFAR-10 CIFAR-100 ImageNet-16-120

Val. Acc (%)↑ Test Acc. (%)↑ Val. Acc (%)↑ Test Acc. (%)↑ Val. Acc (%)↑ Test Acc. (%)↑

Manually designed
ResNet [59] - 90.83 93.97 70.42 70.86 44.53 43.63

Weight sharing
RSPS [1] 7587 84.16±1.69 87.66±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88
DARTS-V1 [2] 10890 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-V2 [2] 29902 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS [261] 28926 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90
SETN [221] 31010 82.25±5.17 86.19±4.63 56.86±7.59 56.87±7.77 32.54±3.63 31.90±4.07
ENAS [70] 13315 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

Non-weight sharing
RS [220] 12000 90.93±0.36 93.70±0.36 70.93±1.09 71.04±1.07 44.45±1.10 44.57±1.25
RLNAS [238] - 89.94 93.45 70.98 70.71 43.86 43.70
TE-NAS [156] 1558 - 93.90±0.47 - 71.24±0.56 - 42.38±0.46
REINFORCE [94] 12000 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18
BOHB [137] 12000 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49
REA [72] 12000 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.92 45.54±1.03
LCMNAS (ours)† 11521 91.22±0.17 94.05±0.07 71.96±0.96 72.01±0.82 45.55±0.78 45.61±0.08

† Results shown are of 10 runs using the same settings: p/g = 10/35.

test accuracy with 1/2 the search cost.

To evaluate LCMNAS on NAS-Bench-201, we set P = 10 and G = 35 to share sim-
ilar settings with other evolutionary methods [72] and allow a fair comparison with other
non-weight sharing NAS methods in terms of search time. The results for searching on
all NAS-Bench-201 data sets: CIFAR-10, CIFAR-100, and ImageNet16-120, are presen-
ted in Table 7.8. Notably, LCMAS achieved competitive results, outperforming current
state-of-the-art cell-basedmethods [72, 2], while requiring less computation (search time)
when compared to both non-weight sharing and weight sharingmethods. Compared with
GDAS [261], the current best weight sharing method in NAS-Bench-201 in terms of ac-
curacy, LCMNAS outperforms GDAS by 0.54%, 1.4% and 3.77% in CIFAR-10, CIFAR-100
and ImageNet16-120 respectively. The gains in terms of accuracy are more notable in
noisier data sets, and ImageNet16-120 is the noisiest, where images are small, with a size
of 16 × 16 pixels, and a training set of 140 thousand images spanning across 120 classes.
LCMNAS is also more efficient than GDAS in terms of computation, requiring less than
40% of the computation in terms of search time. When comparing non-weight sharing
methods, LCMNAS outperforms REA [72] in all data sets while requiring less computa-
tion. Moreover, LCMNAS is highly precise in finding good architectures, shown by small
standard deviations in all data sets, especially in ImageNet16-120.

To further assess LCMNAS on a micro-search setting, we also evaluate its performance
onTransNas-Bench-101 in all seven tasks. This evaluation validates LCMNASgenerability
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and transferability across different problems, a problem where NAS methods commonly
fail [40, 42, 45]. For this, we conducted two experiments: i) directly searching on each task
independently, and ii) performing transfer search. For the latter, we followed standard
procedures [87], where first the method searches on jigsaw and uses the final population
as initialization for the evolution when searching on the other tasks. The results for both
experiments are shown in Table 7.9. In the first block of the table, results are shown for
directly searching in each data set independently. In this, RS [220] serves as a baseline
to whether NAS methods generate good architectures and learn anything. The results
obtained by LCMNAS show that it is not only learning but that it is capable of generating
architectures that achieve the overall global best performance in all data sets. The results
are also comparable with existing methods, where LCMNAS outperforms existing state-
of-the-art results in all data sets, where improvements are significant, corresponding to
an improvement of 3.6% in the best cases when compared to Arch-Graph-Single [224].

For the task of transferability between data sets, results are shown in the second block
of Table 7.9. Results show that the cell-based search of LCMNAS is transferable between
different data sets and achieves state-of-the-art results. By searching on Jigsaw and then
transferring to other data sets, LCMNAS was capable of generating cells that achieve the
global best result in TransNas-Bench-101. More, LCMNAS outperforms other NAS meth-
ods in all data sets, where in some cases, the performance gains when compared to the
current state-of-the-art, Arch-Graph [224], are 2.3%. The overall results in TransNas-
Bench-101 support LCMNAS in terms of performance, generalibity, and transferability,
showing that it can efficiently be used to directly search and the created architectures can
be transferred to new and different problems.

The results in all 11 data sets across the three benchmarks used to evaluate LCMNAS
cell-based search show that it is efficient in generating neural networks. In terms of per-
formance, LCMNAS generates state-of-the-art architectures in all data sets while requir-
ing less computation (time and GPUs) to perform the search.

7.4.2 Ablation Studies

Since LCMNAS relies on a hybrid performance estimation approach to decide which ar-
chitectures are worth keeping, we further evaluate its value on cell-based search. For this,
we use the NAS-Bench-201 benchmark to evaluate Kendall’s Tau correlation τ between
the proposedmixed-performance estimation and the final validation accuracy for the first
1000 architectures in each data set using different λ values and partial training epochs e.
The results presented in Table 7.10 show the effectiveness of the performance estimation
strategy. Notably, when λ = 0, the performance estimation strategy relies solely on the
partial training of architectures. In contrast, when λ = 1 it relies only on scoring the ar-
chitectures at initialization stage, which is on par with the τ correlations obtained with
only the partial training (λ = 0) with e = 4 in CIFAR-10 and e = 7 on the other two. On
all data sets, it is clear that combining both components in the performance estimation
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Table 7.9: Comparison of different methods on the TransNAS-Bench-101 benchmark. The first block shows
the results for NAS methods that performed direct search on each task, while the second block shows the
results for NAS methods that searched on jigsaw and transferred the resulting architectures to other tasks.

The final row shows the global best result.

Tasks Cls. Object Cls. Scene Autoencoding Surf. Normal Sem. Segment. Room Layout Jigsaw

Metric Acc. (%) ↑ Acc. (%) ↑ SSIM ↑ SSIM ↑ mIoU ↑ L2 loss ↓ Acc. (%) ↑

RS [220] 45.16±0.4 54.41±0.3 55.94±0.8 56.85±0.6 25.21±0.4 61.48±0.8 94.47±0.3
REA [72] 45.39±0.2 54.62±0.2 56.96±0.1 57.22±0.3 25.52±0.3 61.75±0.8 94.62±0.3

D
ir
ec
tS
ea
rc
h PPO [96] 45.19±0.3 54.37±0.2 55.83±0.7 56.90±0.6 25.24±0.3 61.38±0.7 94.46±0.3

DT 42.03±5.0 49.80±8.6 51.20±3.3 55.03±2.7 22.45±3.2 66.98±2.3 88.95±9.1
BONAS [222]† 45.50 54.56 56.73 57.46 25.32 61.10 94.81
weakNAS [223]† 45.66 54.72 56.77 57.21 25.90 60.31 94.63
Arch-Graph-single [224]† 45.48 54.70 56.52 57.53 25.71 61.05 94.66
LCMNAS (Ours)† 46.32 54.94 57.72 59.62 26.27 59.38 95.37

REA-t [72] 45.51±0.3 54.61±0.2 56.52±0.6 57.20±0.7 25.46±0.4 61.04±1.0 -
PPO-t [96] 44.81±0.6 54.15±0.5 55.70±1.5 56.60±0.7 24.89±0.5 62.01±1.0 -

Tr
an
sf
er
Se
ar
ch CATCH [225] 45.27±0.5 54.38±0.2 56.13±0.7 56.99±0.6 25.38±0.4 60.70±0.7 -

BONAS-t [222]† 45.38 54.57 56.18 57.24 25.24 60.93 -
weakNAS-t [223]† 45.29 54.78 56.90 57.19 25.41 60.70 -
Arch-Graph-zero [224]† 45.64 54.80 56.61 57.90 25.73 60.21 -
Arch-Graph [224]† 45.81 54.90 56.58 58.27 25.69 60.08 -
LCMNAS-t (Ours)† 46.32 54.94 57.72 59.62 26.27 59.38 -

Global Best 46.32 54.94 57.72 59.62 26.27 59.38 95.37

† Results provided for the best run only.

Table 7.10: Kendall’s Tau correlation (τ ) across each of NAS-Bench-201 data sets for different number of
train epochs (e) and Lambda (λ) values. The results show that on all settings, the combination of both
components of the performance estimation strategy leads to a higher correlation with respect to the final

validation accuracy of the generated architectures.

Lambda (λ)
Train epochs (e)

0 1 2 3 4 5 6 7

CIFAR-10

0 - 0.298 0.392 0.458 0.530 0.570 0.599 0.631

0.25 - 0.550 0.535 0.572 0.614 0.639 0.639 0.675

0.5 - 0.581 0.567 0.598 0.629 0.645 0.650 0.674

0.75 - 0.586 0.579 0.599 0.630 0.647 0.653 0.676

1 0.578 - - - - - - -

CIFAR-100

0 - 0.045 0.254 0.326 0.395 0.435 0.497 0.507

0.25 - 0.524 0.547 0.553 0.561 0.572 0.589 0.591

0.5 - 0.544 0.560 0.565 0.571 0.583 0.599 0.602

0.75 - 0.555 0.563 0.567 0.574 0.587 0.599 0.602

1 0.558 - - - - - - -

ImageNet16-120

0 - 0.221 0.286 0.371 0.389 0.425 0.453 0.492

0.25 - 0.526 0.540 0.552 0.559 0.570 0.576 0.589

0.5 - 0.536 0.551 0.558 0.565 0.576 0.579 0.588

0.75 - 0.545 0.555 0.562 0.566 0.578 0.580 0.589

1 0.544 - - - - - - -

strategy yields the best correlation, where λ = 0.75 tends to yield the best τ correlation.
This means that more importance is given to scoring architectures at initialization stage
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than to partial training. Expectedly, increasing the number of epochs e contributes sig-
nificantly to the final τ correlation, as using only one epoch of partial training does not
add valuable information to the scoring. However, going further than e = 4 shows a
small increment in the τ correlations in all settings except when using only the partial
training. The small increments, coupled with the time taken to train the architectures for
more epochs, justify that e = 4 is a good threshold for the proposed mixed performance
estimation mechanism.

The results in Table 7.10 show that the combination of both partial training and scoring
architectures at initialization stage is a good indicator of their final performance, thus
validating the importance of the performance estimation mechanism.

To further evaluate the importance of the different parameters, we performed direct
search on NAS-Bench-201 with different p (population size) and g (number of genera-
tions) and reported the final test accuracy (%) for each experiment. Results depicted in
Figure 7.4 show that when using p/g = 30/100, p/g = 60/80 and p/g = 80/60, LCMNAS
was capable of achieving the best possible result in NAS-Bench-201 - 94.37% test accur-
acy. These results further justify that LCMNAS can generate efficient architectures. More,
higher mean test accuracies than the ones presented in Table 7.2 can be attained by using
higher p and g values with a higher search cost budget. In Figure 7.4, we see that increas-
ing the number of individuals in each generation p, which promotes exploration of the
search space, leads to better results. However, over p = 60, the differences come from
increasing g, which encourages exploitation of known settings. The results of using differ-
ent p and g show that LCMNAS consistently finds excellent architectures with a smaller
compute budget than competing approaches (small p and g values).

7.5 Conclusions

This chapter proposes aNAS approach capable of performing unconstrainedmacro and
cell-based search. For this, we designed three novel components for the NAS method.
For the search space design, we propose a method that autonomously generates complex
search spaces by creating WDGs with hidden properties from existing CNNs. The pro-
posed search strategy can perform both micro and macro-architecture search through
evolution without requiring human-defined restrictions, such as outer-skeleton, initial
architecture schemes, or heuristics. To quickly evaluate generated architectures, we pro-
pose using a mixed-performance strategy that combines information about architectures
at initialization stage with their validation accuracy after partial training on a partial data
set. Our experiments show that LCMNAS generates state-of-the-art architectures in cell-
based search, outperforming current methods in 11 different data sets, and in 3 data sets
on macro-based search, where it can generate architectures from scratch with minimal
GPU computation, achieving test errors of 2.96% in CIFAR-10, 20.94% in CIFAR-100
and 43.35% in ImageNet16-120. Furthermore, we also study the importance of different
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Figure 7.4: Test accuracy (%) obtain in NAS-Bench-201 by LCMNAS with different number of generations,
g, and population sizes p.

NAS components and draw insights from architecture design choices.

The methods proposed in this chapter serve the purpose of pushing NAS boundaries
to less constrained spaces, where human-expertize for the design of inner-architecture
parameters and search spaces is reduced while at the same time generating architectures
in a very efficient way, thus allowing a step towards wide-spread use of NAS for different
problems and data sets.

The next chapter presents the general conclusions of this thesis and discusses possible
future developments.
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Chapter 8

Conclusion

8.1 Conclusion

Throughout this thesis, several contributions were made to improve NAS by improving
the efficiency of evaluating architectures, by designing methods that automate the design
of search spaces, and by improving existing CNNs by designing new components with
novel NAS methods. With the obtained results, we pushed the field of NAS to less con-
strained settings. The following paragraphs present the main conclusions of this work.

The analysis of the NAS state-of-the-art allowed us to identify several problems: i) most
prominent NAS methods require substantial computational power; ii) the required time
to search for an architecture is considerable; iii) designed architectures can have a high
inference latency (time to process an input); iv) search spaces are heavily dependent on
human-definitions, and are usually small with fixed operations; v) the search is primarily
performed in a cell-basedmanner, whereNASmethods search for small cells that are later
replicated in a human-defined outer-skeleton; vi) architecture’s parameters, such as the
number of layers, inner-layer parameters (e.g., the kernel size, output channels), the final
architecture skeleton, fixed operations, and head and tail of the final architectures are
usually defined by the authors; vii) very few methods are capable of performing macro-
search. More, we conducted a comprehensive study of three popular benchmarks and
found that a small subset of the operations were responsible for a generated architecture
achieving optimal performance in those search spaces.

Based on the preliminary analysis, we proposed several contributions to mitigate the
aforementioned problems. First, we studied different neural networks and proposed a
set of methods that augment vanilla neural networks with NAS and AutoML. For this, we
introducednovelmethods that improve upon individual CNNswith searched components:
one by automatically searching for a new classification head and the other by searching
for a fusion model to performmultimodal classification. With this, we showed that CNNs
can be improved by automatically searching for new components with a very tight search
budget.

Then, we focused on improving the search cost of NAS methods by proposing a zero-
cost proxy estimator that evaluates untrained architectures based on their Jacobian. By
extracting statistics of an untrained architecture in a few seconds, the proposed method
can distinguish between good and bad architectures. Based on the excellent results, we
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proposed a novel EA that guides the search by evaluating several architectures at initializ-
ation stage and only keeping for further evaluation the top-scoring one. Results showed
that it is possible to perform an efficient and quick evolutionary search, obtaining very
competitive results in multiple problems.

To further improve upon the problem of evaluating architectures, we presented two
approaches to further improve NAS evaluation and capabilities. The first is a search space
that leverages large vision models as feature extractors. This allows harnessing the power
of pre-trained models and focuses the search on a middleware architecture that learns
how to solve a downstream task. The second is a new zero-cost proxy estimator inspired
by the use of NTK and the alignment between eigenvectors to evaluate architectures at
initialization stage. These contributions show excellent results and depict a new way of
leveraging existing knowledge to further augment NAS.

Aware that most NASmethods only work in restricted cell-based search problems, with
memory requirements that preclude the search on the entire super-network, we framed
NAS as a MA problem and coupled each edge of a DAG with an independent agent. By
doing so, multiple agents collaborate to solve a global optimization problem (generating
efficient architectures). Here, the search space can be efficiently distributed by coupling
each decision with an agent, where each agent is only responsible for sampling one oper-
ation (layer) on a cell-based search problem. This resulted in improvements in memory
and speed, which allows direct search on large data sets, including searching for multiple
cells at once.

Finally, to push NAS to less constrained search spaces (possibly unbounded), we pro-
posed a NAS approach capable of performing unconstrainedmacro and cell-based search.
For this, we designed three novel components. For the search space design, we proposed
a method that autonomously generates complex search spaces by creating WDGs with
hidden properties from existing CNNs. The proposed search strategy can perform both
micro andmacro-architecture search through evolutionwithout requiring human-defined
restrictions, such as outer-skeleton, initial architecture schemes, or heuristics. To quickly
evaluate generated architectures, we propose using a mixed-performance strategy that
combines information about architectures at initialization stage with their validation ac-
curacy after partial training on a partial data set. The results of the extensive experiments
show that it is possible to perform macro-search in useful time and obtain state-of-the-
art results. This work intends to push NAS boundaries to less constrained spaces, where
human-expertize for the design of inner-architecture parameters and search spaces is re-
ducedwhile at the same time generating architectures in a very efficientway, thus allowing
a step towards wide-spread use of NAS for different problems and data sets.

To conclude, we believe that the contributions presented in the thesis contribute to
bridging the gap between NAS and widespread use. By proposing NAS methods that are
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efficient, that can quickly generate architectures for a given problem, and that heavily re-
duce the need for human expertise, we believe that this allows for an easier application
of NAS in problems where ML experts are not available. More, by publicly releasing all
the code with usage instructions and easy-to-adapt performance estimators, this work not
only improved the field of NAS but intended to push it towards less constrained scenarios
and widespread application.

8.2 Future Directions

Building upon the advancements made during this thesis on NAS, there are several ex-
citing avenues for future exploration and innovation. This work has contributed novel
approaches to address key challenges in NAS, including the development of zero-proxy
estimators, exploration of new search spaces, automated search space design methods,
the introduction of a macro-NASmethod for architecture search and design from scratch,
as well as benchmark study and CNN augmentation through searching for new classific-
ation components. Looking ahead, the following directions hold immense potential for
further advancements in NAS:

• Enhancing performance estimators: while this thesis proposes several perform-
ance estimation strategies, there is room for further refinement and improvement.
Investigating alternative formulations and architectures for zero-proxy estimators
could lead to even better performance andmore efficient training dynamics. Explor-
ing the application of zero-proxy estimators in different domains or adapting them
for specific tasks could also be a fruitful avenue for research, as well as designing
NAS-basedmethods to search for those performance estimation strategies automat-
ically.

• Efficiency and scalability: improving the efficiency and scalability ofNASalgorithms
remains a crucial area of research. As ML research delves deeper into large models
that use enormous data sets, developing methods that can effectively search over
larger search spaces, handle diverse architectures, and utilize parallel computing
techniques can further contribute to reducing the computational cost of NAS.

• Expanding search space diversity: although significant advances to automatically
design new search spaces were made during this thesis, there is still a wide range of
possibilities to be explored. Further work on novel architectural components, struc-
tural variations, and alternative connectivity patterns can expand the diversity of
search spaces. Additionally, developing methods to dynamically adapt and evolve
search spaces during the NAS process could lead tomore flexible and adaptive archi-
tectures. Designing NAS methods that could add or create new operations during
the search would be something interesting to pursue, as it would expand even more
the search spaces proposed here.

• Automating search space design: expanding on this work, future research could fo-
cus on developing more sophisticated algorithms and techniques that can automat-
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ically generate diverse and high-quality search spaces. Exploring the integration of
domain-specific knowledge, leveraging meta-learning approaches, or incorporating
multi-objective optimization principles could further enhance the automated search
space design process.

• Joint combination of NAS and hyper-parameter optimization: on chapter 7 we de-
veloped a NAS method capable of designing architectures from scratch, including
the layer’s hyper-parameters. Future work could leverage this and go beyond by
allowing the search to control all parameters, including the training protocols and
data processing.

• Data processing search: design search algorithms that can optimize the data aug-
mentation and processing policies directly within the search step. This approach
would allow data policies to be jointly learned with the model parameters, enabling
end-to-end optimization and avoiding the need for separate search procedures.

• Multi-objective macro-based search: in this work, we explored how macro-based
search can be conducted and proposed an efficient way of doing so. However, we
did not extend this for multi-objective NAS, where NAS methods incorporate mul-
tiple conflicting objectives, such asmodel accuracy, model size, energy efficiency, or
inference latency. Developing optimization algorithms that can handle the trade-off
between these objectives and generate a diverse set of Pareto-optimal architectures
is a very important topic for future work.

• NAS benchmarks: based on the results obtained from studying prominent NAS
benchmarks, there is a panoply of future directions. Benchmarks can be designed
to include progressive search, as well as multi-objective optimization while consid-
ering the addition of new operations and data-aware metrics, where architectures
are trained with different training protocols.

• Continual learning and lifelong NAS: NASmethods typically assume a fixed data set
during the search process. However, for widespread use of NAS, it is important that
NASmethods canquickly adapt to new settings or problems. For this, the scenario of
continual learning or lifelong learning, where themodel needs to adapt to new tasks
or data sets over time, is an interesting direction. Lifelong NAS algorithms could
dynamically update their inner setting to accommodate new tasks while leveraging
knowledge from previous tasks. There are proposals in the NAS literature that try
to solve this with meta-learning.

• Adversarial and interpretable NAS: this topic was out of the scope for this thesis, but
is an interesting and important direction. Researchers could study the robustness
and vulnerability of NAS algorithms to adversarial attacks. Investigate the impact
of adversarial manipulations on the search process and architectural performance.
More, the development ofmechanisms that allow interpretability of NASmethods is
crucial to understand their behavior and learning process. This can lead to finding
patterns in the design of architectures that leads the field of CV to new directions.
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As a concluding remark, we feel that the objectives of this thesis were achieved and that
the contributions of this work allow solving, or at least mitigating, a wide range of NAS
problems. Also, this work has contributed to a deeper understanding of NAS capabilities
and proposed a set of different methods that push the boundaries of NAS to new domains.
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