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Abstract
The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) 
arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and 
conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the 
multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To 
enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining 
genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-
based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents 
two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity 
of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/
Stroke risk AtheroEdge™ model (AtheroPoint™, CA, USA) that utilizes deep learning (DL) to accurately classify the risk 
of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 
153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL 
models can be integrated into the AtheroEdge™–aiP3 framework to determine the risk of CVD/Stroke in RA patients. The 
findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment 
of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque 
burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict 
CVD/Stroke risk within a RA framework that is preventive, precise, and personalized.
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Introduction

Rheumatoid arthritis (RA) is a persistent autoimmune dis-
order characterized by joint inflammation and structural 
impairment. It affects about one percent of the world's popu-
lation [1]. The key symptoms of RA are associated with joint 
health, and there is accumulating evidence that RA patients 
are more likely to develop cardiovascular disease (CVD)/
stroke, which encompasses illnesses such as atherosclerosis, 
heart attacks, and stroke [2–4]. Obesity, hypertension, meta-
bolic syndrome, smoking, and abnormal lipid are the com-
mon risk factors in patients with RA leading to CVD/Stroke. 
According to numerous studies, there is a clear indication 

that carotid intima-media thickness (cIMT) is positively cor-
related with the duration of rheumatoid arthritis [5–7]. As 
a result, it has emerged as the primary cause of morbidity 
and mortality in RA patients [8, 9]. However, traditional 
CVD/Stroke risk stratifying tools, such as the Framingham 
Risk Score and ACC/AHA risk calculator, may not be as 
sufficient and clear in forecasting CVD/Stroke risk in RA 
patients [1, 10]. This is due to the unique underlying patho-
physiology of RA, which involves chronic inflammation, 
immune system dysregulation, vascular complications, and 
bone erosion [11]. To overcome the limitations of traditional 
risk assessment tools, there is research scope to forecast the 
CVD/Stroke threat in RA patients in a personalized frame-
work using a combination of genomic and radiomics bio-
markers along with traditional biomarkers [12].

Genetic approaches involve studying an individual's 
Deoxyribonucleic Acid (DNAs) and Ribonucleic acid 
(RNAs) to identify genetic-based biomarkers (GBBM) asso-
ciated with CVD/Stroke risk in patients having RA [13]. 
Recent studies [14, 15] have discovered several genetic 
variants associated with both RA and CVD, such as the 
HLA-DRB1 gene, which has been implicated in both dis-
eases [16]. By analyzing the genetic data of RA patients, 
it is precisely identified individuals at an increased risk of 
developing CVD [17–19].

Several CVD/Stroke biomarkers can be analyzed using 
imaging modalities such as magnetic resonance imaging 
(MRI), computed tomography (CT), and ultrasound (US) 
[20], as well as nuclear imaging techniques like positron 
emission tomography (PET). These imaging methods are 
very useful in providing insightful information regarding 
several facets of CVD [21]. For instance, cardiac CT and 
MRI are useful for visualizing coronary calcification and 
susceptible plaque features, which reveal changes in coro-
nary plaque morphology [22]. These imaging techniques are 
extremely useful when paired with CT, fluorodeoxyglucose 
positron emission tomography (FDG-PET), also known as 
FDG-PET, enables improved visualization of target lesions 
using a radioactive substance that accumulates in regions 
of active inflammation [23]. Intravascular optical coherence 
tomography (IVOCT) is a sophisticated imaging modal-
ity that provides accurate visualization of microstructural 
plaque constituents associated with an increased susceptibil-
ity to rupture [24]. The use of carotid ultrasound (CUS) is 
an economically efficient and non-intrusive imaging meth-
odology employed for the assessment of asymptomatic ath-
erosclerotic carotid plaque and the quantification of carotid 
intima-media thickness (cIMT) [25, 26]. CVD and stroke 
risk assessment in patients with RA can be significantly 
enhanced through the utilization of carotid ultrasound (CUS) 
as a diagnostic tool [7, 27].

Artificial intelligence (AI) methods utilize machine 
learning (ML) algorithms to analyze complex datasets of 
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radiological, genetics, and laboratory parameters, and gen-
erate predictions [2, 28–32]. Figure 1 illustrates a model 
that utilizes AI to stratify the risk of CVD and stroke in 
patients having RA. Numerous studies have underscored 
the potential of AI techniques in enhancing the forecasting 
of CVD and stroke risk for patients having RA [1, 2, 10]. 
These algorithms continuously learn from data, refining 
their predictive capabilities over time [33].

Integrating office-based biomarkers (OBBM), lab-
based biomarkers (LBBM), radiomics-based biomark-
ers (RBBM), and genomics-based biomarkers (GBBM) 
using AI techniques can further enhance CVD/Stroke risk 
assessment in RA patients [34, 35]. This can lead to more 
accurate risk prediction models that incorporate genetic 
and clinical data. By accurately identifying high-risk RA 
patients, healthcare providers can implement more effi-
cient CVD/Stroke prevention strategies tailored to the 
individual’s genetic profile.

In this study, we explore combining genetic and AI 
platforms for the severity detection of CVD/Stroke in 
RA patients. Presented study reviews the current state of 
knowledge regarding the genetic basis of RA and CVD/
Stroke and discusses the potential of AI approaches for 
improving CVD/Stroke risk severity in patients having 
RA. This study also highlights recent studies that have 
combined genetics in the AI paradigm for CVD/Stroke risk 
forecasting in RA patients and discuss the implications 
of these findings for clinical practice. Ultimately, such 
as integration of genetic in AI framework can potentially 
improve CVD/Stroke risk prognosis and management in 
RA patients, reducing the burden of CVD/Stroke in this 
vulnerable population.

Search strategy and statistical distribution

The search strategy for identifying relevant studies for the 
severity forecasting of CVD/Stroke in RA patients using 
combined genetic and AI platforms involves a compre-
hensive and systematic approach [4]. First, we identified 
relevant databases, including PubMed, Embase, Web of 
Science, and Scopus. We constructed our search query by 
using appropriate Medical Subject Headings (MeSH) and 
keywords related to RA, CVD/Stroke, genetics, and AI. 
The search query was tailored to the specific requirements 
of each database and included Boolean operators, such as 
“AND,” “OR,” and “NOT,” to ensure comprehensive cov-
erage of the relevant literature. Next, we screened the titles 
and abstracts of the retrieved studies to identify relevant 
studies that meet our inclusion criteria. Our inclusion cri-
teria included studies that use combined genetic and AI 
approaches for the severity detection of CVD/Stroke in 
RA patients. We excluded studies that do not meet our 
inclusion criteria, such as studies that are not published in 
English or not peer-reviewed. After screening the titles and 
abstracts, we reviewed the potentially relevant studies' full 
texts to determine their inclusion eligibility. To ensure the 
selection of high-quality studies for our review, we applied 
specific inclusion and exclusion criteria. Additionally, we 
conducted a thorough manual search of the reference lists 
in the included studies to identify any additional relevant 
research (Fig. 2).

Finally, we extracted relevant data from the included 
studies, including study design, sample size, popula-
tion characteristics, genetic markers studied, ML/DL 

Fig. 1   The aiP3 model offers an integrated approach to manage and 
treat both RA and CVD. OBBM office-based biomarker, LBBM lab-
oratory-based biomarker, RBBM radiomics-based biomarker, GBBM 
genomics-based biomarker, PBBM proteomics-based biomarker, PRS 

polygenic risk score, aiP3 AI for preventive, precision, and person-
alized system (Original image, Courtesy AtheroPoint™ LLC, Rose-
ville, CA, USA)
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algorithms used, and outcomes. We then performed a 
meta-analysis or a narrative synthesis of the data, depend-
ing on the nature and quality of the included studies.

Statistical distribution

Figure 3 in the presented article illustrates the distribution 
of studies conducted in RA, genomics, CVD, Stroke, and 
AI domains. Figure 3A shows that studies, 29 focus on inte-
grating RA, genomics, and CVD, aiming to understand the 
genetic factors associated with both conditions. Additionally, 
18 studies explore the intersection of RA, CVD, Stroke, and 
AI, investigating the application of AI methodologies, par-
ticularly ML algorithms, to analyze data and detect patterns 
related to RA and CVD/Stroke. Another set of 16 studies 
examines the integration of RA, genomics, and AI, aiming 
to gain a deeper understanding of the genetic basis of RA 
through AI techniques applied to genomic information. Fur-
thermore, three studies explore the cumulative influence of 
RA, genomics, CVD, Stroke, and AI.

Figure 3B indicates several studies utilizing RA, CVD, 
Stroke, AI, and genomics as variables from 2019 to 2023. 
The number of studies has increased, indicating a prom-
ising interest in RA research. Figure 3C reveals different 
AI techniques in RA studies, with ML used in 21 studies, 

DL in 12 studies, and HDL in 4 studies. ML appears to be 
the most commonly employed technique in RA research. 
Figure 3D showcases the performance metrics used in the 
studies, including ACC, SEN, SPE, AUC, MCC, NPV, and 
F1. ACC is the most frequently reported metric (16 studies), 
while F1 is the least commonly reported (2 studies).

Our search strategy for detecting CVD/Stroke severity 
in RA patients using combined genetic and AI platforms 
will be comprehensive, systematic, and based on predefined 
inclusion and exclusion criteria. The study aims to ensure 
the validity and reliability of the presented findings.

Biological link

Growing evidence suggests that various pathophysiological 
factors may contribute to the link between RA and athero-
sclerosis. Also, several genes have been identified that are 
involved in both diseases, suggesting a shared genetic basis. 
Subsection “Rheumatoid Arthritis induced Atherosclerosis” 
below addresses RA-induced atherosclerosis, and subsec-
tion “Shared genes for Rheumatoid Arthritis and Atheroscle-
rosis” discusses the shared genes responsible for developing 
RA and CVD diseases.

Fig. 2   PRISMA model for study selection. I included, E excluded
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Rheumatoid arthritis‑induced atherosclerosis

The connection between atherosclerosis and RA is closely 
associated with inflammation [36]. According to a study by 
Skeoch et al. [37], RA patients tend to experience a faster 
accumulation of plaque in their blood vessel walls. Inflam-
matory cytokines, primarily found in the synovial mem-
brane, have widespread effects throughout the body, leading 
to blood vessel inflammation and damage to endothelial cells 
[38]. It is important to note that tumor necrosis factor-alpha 
(TNF-α) and Interleukin-6 (IL-6) exhibit impact, as they 
impede endothelial function by inhibiting the formation 
of nitric oxide and cyclooxygenase-1. These two enzymes 
are essential for keeping a healthy endothelial layer [39]. 
The shared genetic and environmental factors in RA and 
atherosclerosis environment are responsible for endothelial 
dysfunction [40].

The expansion of endothelial cells facilitates the pen-
etration of low-density lipoprotein cholesterol (LDL-C) 
across the lumen-intima boundary and into the suben-
dothelial layer, where they go through oxidation [41]. 
This phenomenon enhances the permeability of endothe-
lial cells, thereby facilitating the infiltration of immune 
cells such as T lymphocytes and monocytes into the inti-
mal layer. Monocytes transform into macrophages within 
the intimal layer and engulf oxidized LDL-C, form-
ing foam cells [42]. Subsequently, macrophages secrete 

pro-inflammatory cytokines, such as IL-6 and TNF-α, 
which serve to recruit additional monocytes to the intimal 
layer [43].

However, macrophages undergo a crucial role in pro-
moting the migration and proliferation of smooth mus-
cle cells (SMCs) within the intima, forming a protective 
fibrous barrier to prevent plaque infiltration into the lumen 
[44]. T helper cells and macrophages produce pro-inflam-
matory cytokines, free radicals, and enzymes, causing ero-
sion of the fibrous cap [45] and increasing the vulnerabil-
ity of atherosclerotic plaque, as documented in previous 
studies [46, 47]. TNF-α, in particular, has been shown to 
worsen LDL-C oxidation, with higher levels observed in 
individuals with RA compared to those without the condi-
tion [48, 49]. Furthermore, the pro-inflammatory cytokine 
TNF-α induces an increase in the expression of adhesion 
molecules on the surface of endothelial cells, thereby aug-
menting the process of monocyte and macrophage recruit-
ment [50]. This inflammatory cascade ultimately leads to 
plaque development, rupture, and thrombotic events in 
atherosclerosis. Figure 4 illustrates the biochemical rela-
tionship between RA and CVD.

Amyloidosis is a serious complication linked to RA, 
where amyloid fibrils are deposited on various organ tis-
sues. This condition increases the likelihood of developing 
atherosclerosis and CVD [51, 52]

Fig. 3   Statistical analysis of various studies involved in RA and 
CVD/Stroke. ML machine learning, DL deep learning, HDL hybrid 
deep learning, ACC​ accuracy, SEN sensitivity, SPE specificity, AUC​ 

area under the curve, MCC Mathew coefficient, NPV negative posi-
tive value, F1 F1-score, AI artificial intelligence, and RA rheumatoid 
arthritis, and CVD cardiovascular disease
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Shared genes for rheumatoid arthritis 
and atherosclerosis

The genetic basis for the link between RA and atheroscle-
rosis is complex and involves multiple genes [53]. Here, we 
discuss the prominent combined genes responsible for both 
diseases, and several genes have been identified as being 
involved in both RA and atherosclerosis.

•	 TNF-α: TNF-α is a cytokine that plays a central role in 
RA's inflammation development [54]. Elevated levels of 
TNF-α have also been associated with the development 
of atherosclerosis [55]. Genetic variations in the TNF-α 
gene have been linked with an elevated risk of both dis-
eases [56].

•	 HLA-DRB1: The human leukocyte antigen (HLA) com-
plex is a group of genes that help regulate the immune 
system [57]. HLA-DRB1 has been strongly linked with 

the progression of RA. Studies have also suggested that 
genetic variations in HLA-DRB1 have contributed to the 
progression of atherosclerosis [7, 58].

•	 APOE: Apolipoprotein E (APOE) is a protein involved 
in transporting cholesterol and other lipids in the blood 
[59, 60]. Genetic variations in the APOE gene have been 
associated with an increased risk of atherosclerosis [59]. 
Studies have also suggested that genetic variations in 
APOE may contribute to the development of RA [61].

•	 MMP-3: Matrix metalloproteinase-3 (MMP-3) is an 
enzyme in tissue remodeling and repair [62]. Elevated 
levels of MMP-3 have been linked to the development of 
both RA and atherosclerosis [63]. Genetic variations in 
the MMP-3 gene have been associated with an increased 
risk of both diseases.

•	 PADI4: Peptidylarginine deiminase 4 (PADI4) is an 
enzyme involved in the citrullination of proteins, a pro-
cess that is thought to contribute to the development of 

Fig. 4   The biological link 
between RA and CVD. TNF-α 
tumor necrosis factor-alpha, 
IL-6 interleukin-6, LDL-C low-
density lipoprotein cholesterol, 
HDL high-density lipoprotein, 
SMCs smooth muscle cells, 
MCP-1 monocyte chemoat-
tractant protein-1, PON-1 
paraoxonase 1, VCAM vascular 
cell adhesion molecule, ICAM 
intercellular adhesion molecule, 
VLDL very low-density lipopro-
tein, apB apolipoprotein B, TG 
triglycerides, CRP C-reactive 
protein, Heart image: courtesy 
of AtheroPoint™, Roseville, 
CA, USA
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RA [64]. Genetic variations in the PADI4 gene have been 
strongly associated with the development of RA [65]. 
Studies have also suggested that genetic variations in 
PADI4 are involved in the progression of atherosclerosis 
[66, 67].

It is important to note that the genetic basis for both RA 
and atherosclerosis is complex and involves many differ-
ent genes and pathways [37]. The genes listed above are 
just a few examples of the genetic factors that have been 
implicated in both diseases. In summary, IL-6, TNF- α, 
LDL-C, erythrocyte sedimentation rate (ESR), fibrinogen, 
serum amyloid A, and secondary phospholipase, are linked 
to atherosclerosis and RA [68]. However, the link between 
RA and atherosclerosis in genomics pathways involves 
shared genetic factors in inflammation, lipid metabolism, 
and endothelial function [69]. Epigenetic modifications may 
also contribute to the shared genetic basis of these diseases 
[61]. A better understanding of these genetic and epigenetic 
mechanisms could lead to new therapies for both RA and 
atherosclerosis.

Artificial intelligence‑based CVD/stroke risk 
stratification

Machine learning (ML) algorithms have been developed to 
enhance segmentation and classification [30, 70–73]. How-
ever, these methods lack automated feature extraction. In 
contrast, ML combined with deep learning (DL) provides 
a powerful framework capable of automatically generating 
features by leveraging underlying knowledge of radiologi-
cal features and genetic features. It also offers an advanced 
training paradigm, enabling dynamic adjustment of the non-
linear relationship between risk factors and the desired out-
come, making ML/DL a potent approach [30, 70–73]. Our 
team has conducted an extensive examination of different 
applications of DL and has taken measures to appropriately 
prepare and balance the data sets used for training and test-
ing purposes [74–76]. The process involves four steps: data 
preparation (or preprocessing, also referred to as quality 
control), data partitioning, offline training using the train-
ing data, and estimation (or prediction) of CVD risk on the 
test data. Data preparation includes data normalization and 
augmentation using a SMOTE or ADASYN model (shown 
in Fig. 5). To aid in the process, we utilize PCA-based pool-
ing, a statistical attribute selection technique [10, 77].

The K10 cross-validation methodology is employed for 
data partitioning, which creates separate training and test-
ing sets. The model generator utilizes DL classifiers such 
as recurrent neural networks (RNNs) and long short-term 
memory (LSTM). These classifiers take risk factors (or 
variables) and CVD/Stroke risk as inputs to generate offline 

coefficients [78, 79]. The prediction paradigm utilizes the 
model to predict CVD/Stroke risk on the test data sets [70, 
80, 81]. The process is performed in a cyclic sequence to 
ensure no overlap between combinations and no inclusion 
of test data in the training set [70, 82]. Embedded feature 
optimization is essential for the learning algorithm [78, 79, 
83]. The online system incorporates an effective element that 
utilizes known reference values to calculate accuracy. The 
performance evaluation process involves the assessment of 
multiple measures, such as reliability, specificity, sensitiv-
ity, recall, precision, and p-value, using a cross-validation 
protocol. The study utilizes a methodology that combines 
ML and DL techniques, along with meticulous data pre-
processing, appropriate data segmentation, and thorough 
performance evaluation. This approach aims to accurately 
predict the risk of CVD and stroke in individuals diagnosed 
with RA. Figure 5 depicts a representative ML/DL system. 
The process of acquiring input data involves the inclusion 
of diverse biomarkers, which encompasses OBBM, LBBM, 
carotid image-based phenotypes (CUSIP) that are classified 
as RBBM, medication information (MedUSE), and GBBM 
(Original image, Courtesy AtheroPoint™ LLC, Roseville, 
CA, USA).

CVD/stroke risk stratification in RA using machine 
learning‑based classifiers

The primary goal of an ML-based classifier is to categorize 
received data into predetermined labels or categories [84]. In 
the case of predicting CVD/Stroke events, for example, the 
classifier utilizes input features to predict whether an event 
will occur or not. In this particular study, the ML-based clas-
sifier assigned patients to the low-risk or high-risk category 
based on their specific risk profiles. Several studies have 
demonstrated the successful use of ML-based plaque risk 
stratification, particularly utilizing the RF classifier. Jamith-
kar et al. [85] proposed an RF-based ML algorithm, shown 
in Fig. 6, which has exhibited superior predictive capacity to 
other ML algorithms [86, 87]. Hence, the researchers chose 
this study's RF classifier for risk stratification [88].

CVD/stroke risk stratification using deep learning 
classifiers

Recurrent Neural Networks (RNNs) are a type of neural net-
work that was first discussed by Rumelhart et al. [89]. RNNs 
are powerful at getting close to unknown, non-linear dynam-
ical systems [90, 91]. But training an RNN can encounter 
challenges such as disappearing gradient issues, which can 
make the model less stable, and thus need to be optimized 
[92]. To get around these challenges, a hybrid design, shown 
in Fig. 7, is suggested. The design is made up of one RNN 
unit activated by a Rectified Linear Unit (ReLU) and four 
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thick layers stacked on top. The thick layers in the middle 
possess 64, 32, and 8 nodes, respectively. The SoftMax func-
tion turns on four nodes in the output layer. The Adaptive 
Moment Estimation (ADAM) method is used to train the 
model. The categorical cross-entropy loss (CEL) is used as 
the loss function. The end goal is to train a complete model 
that can predict a patient's atherosclerosis risk based on their 
test features. Figure 8 shows an outline of how the RNN 
model is put together.

LSTM classifier

Long-Short-Term Memory (LSTM) is a specific type of DL 
algorithm that holds the potential for forecasting the risk of 
CVD or stroke [77]. LSTM is particularly advantageous in 

dealing with the challenge of long-term dependency, which 
is crucial for capturing temporal patterns and relationships 
in sequential data. Figure 8 illustrates the LSTM architecture 
and its ability to handle long-term dependencies effectively. 
Unlike other models, LSTM naturally tends to remember 
information for extended periods without much effort. The 
structure of an LSTM consists of a series of repeating mod-
ules in an RNN fashion. In basic RNNs, these modules often 
yield similar results to a single Tanh layer. However, the 
LSTM algorithm exhibits a distinctive capability to analyse 
a wide range of data points, encompassing individual obser-
vations. The cell serves as the principal unit accountable for 
conserving values at irregular intervals, and the transfer of 
data within and outside of the cell is regulated by three gates 
[94–96]. The LSTM architecture consists of four completely 

Fig. 5   A typical ML/DL system for RA patients' CVD/Stroke risk 
stratification. OBBM office-based biomarker, LBBM laboratory-based 
biomarker, RBBM radiomics-based biomarker, GBBM genomics-
based biomarker, PBBM proteomics-based biomarker, MedUse medi-

cation, RA rheumatoid arthritis, RF random forest, SVM support vec-
tor machine, RNN recurrent neural networks, LSTM long-short-term 
memory, CVD cardiovascular disease (Original image, Courtesy 
AtheroPoint™ LLC, Roseville, CA, USA)
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Fig. 6   CVD risk stratification relies on the utilization of an automatic AtheroRisk-ML Integrated system. Row 1, consisting of elements A and 
B, is characterized by a low level of risk, while Row 2, comprising elements C and D, is associated with a high level of risk [88]

Fig. 7   The overall architecture 
for RNN [93]

Fig. 8   The basic model of 
LSTM architecture [93]
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interconnected layers that are stacked sequentially. The use 
of a stacked design allows for the efficient capture and uti-
lization of long-term associations present within the data, 
thereby catching the potential of alternative methods [97]. 
One frequently encountered obstacle in LSTM models is the 
issue of overfitting, which poses a significant challenge in 
terms of effectively addressing it through the conventional 
dropout strategy. The regularisation technique known as a 
dropout is implemented by eliminating data and recurrent 
connections to the LSTM units throughout stimulation and 
weight updating in the training process. The implementation 
of dropouts in LSTM models may pose certain challenges. 
To address this issue, the researchers in the present study 
chose to employ weight initialization using a small value 
[77].

Critical discussion

The DL system needs to overcome key concerns like bias, 
explainability, ergonomic design, and affordability to ensure 
the safety and effectiveness of the medical product, such as 
CVD/Stroke risk stratification in RA.

Principal findings

Best to our knowledge, this is the first study of its kind 
(a) that combines radiomics and genomic biomarkers to 
detect the risk of CVD/stroke precisely in RA and (b) that 

introduces a proposed aiP3 risk model based on a preven-
tive, predictive, and personalized approach that uses DL to 
classify CVD and stroke risk more accurately in RA. Using 
these two hypotheses, we demonstrated that CVD and stroke 
risk severity in RA could be determined using RBBM and 
GBBM biomarkers in the DL framework. Such models can 
be considered “personalized medicine frameworks”. One of 
the major innovations is to ensure that cBUS imaging, RA, 
and CVD genomic biomarkers are jointly used in the DL 
framework for CVD risk stratification in RA patients. A set 
of six recommendations were provided for accurate, robust, 
real-time CVD risk stratification using combined RBBM and 
GBBM in RA patients.

Benchmarking

The benchmarking studies mentioned in Table 1 consist of 
17 attributes that are identified by the letter 'B' followed by 
a number. The first attribute, B0, refers to the serial number 
assigned to each study. The second attribute, B1, represents 
the name of the studies, while B2 represents the year of pub-
lication. The third attribute, B3, indicates the references used 
in the studies. The remaining 14 attributes, B4 through B17, 
are related to using different types of AI studies in CVD 
risk prediction in RA patients. B4 through B9 represent six 
different types of AI-based biomarkers for CVD, including 
OBBM, LBBM, RBBM, GBBM, and environmental-based 
biomarkers (EBBM).

Table 1   Benchmarking table for CVD risk using multivariate biomarkers

B0 serial Number, B1 studies, B2 year, B3 references, B4 OBBM, B5 LBBM, B6 RBBM, B7 GBBM, B8 PBBM, B9 EBBM, B10 preventive, 
B11 prediction, B12 personalized, B13 AI type, B14 FDA discussion, B15 clinical setting, B16 risk of bias, B17 AI explainability, CVD cardio-
vascular disease, DL deep learning, ML machine learning, HDL hybrid deep learning, NR not reported

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17

1 Kataria et al. [98] 2017 24 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✘ ML ✘ ✘ ✘ ✘
2 Jamthikar et al. [99] 2019 54 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✘ ML ✘ ✘ ✓ ✘
3 Kim et al. [117] 2019 99 ✓ ✓ ✘ ✓ ✘ ✘ ✓ ✘ ✓ ML ✘ ✘ ✘ ✘
4 Khanna et al. [2] 2019 150 ✓ ✓ ✘ ✓ ✘ ✘ ✓ ✘ ✓ DL ✘ ✘ ✘ ✘
5 Stoel et al. [118] 2020 50 ✓ ✓ ✘ ✓ ✘ ✘ ✓ ✘ ✓ NR ✘ ✘ ✘ ✘
6 Jamthikar et al. [71] 2020 120 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✘ HDL ✘ ✘ ✘ ✘
7 Manrique et al. [101] 2020 31 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✘ ML ✘ ✘ ✘ ✘
8 Jamshidi et al. [102] 2020 85 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✘ ML ✘ ✘ ✓ ✘
9 Song et al. [103] 2021 42 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✘ DL ✘ ✘ ✘ ✘
10 Soloman et al. [104] 2021 92 ✓ ✓ ✘ ✓ ✘ ✘ ✓ ✘ ✓ DL ✘ ✘ ✘ ✘
11 Konstantonis et al. [10] 2021 29 ✓ ✓ ✘ ✓ ✓ ✘ ✓ ✘ ✓ ML ✘ ✘ ✘ ✘
12 McMaster et al. [106] 2022 95 ✓ ✓ ✘ ✓ ✘ ✘ ✓ ✘ ✓ DL ✘ ✘ ✘ ✘
13 Navarini et al. [105] 2022 39 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✘ ML ✘ ✘ ✓ ✘
14 Hugle et al. [119] 2022 55 ✓ ✓ ✘ ✓ ✓ ✘ ✓ ✓ ✓ NR ✘ ✘ ✘ ✘
15 Madrid-García et al. [120] 2023 168 ✓ ✓ ✘ ✓ ✓ ✘ ✓ ✘ ✓ HDL ✘ ✘ ✘ ✘
16 Al-Maini et al. (Proposed) 2023 152 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ DL ✘ ✘ ✓ ✓
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The study by Kataria et al. [98] explains the adoption of 
digital technology in healthcare has been rapidly increas-
ing, and it is believed to have the potential to bring about 
significant changes, improve the quality of care, and make 
healthcare accessible to people worldwide. However, to fully 
establish the role of digital health in patient care, there is a 
need for more data, efficacy studies, and objective results. 
Similarly, Jamthikar et al. [99] conducted another study uti-
lizing ML techniques for CVD risk stratification in patients 
having RA. The presented study highlights two of the three 
pathways directly affect atherosclerosis, which damages the 
heart. Carotid ultrasound image-based calculators outper-
form standard calculators.

AI-based CVD risk stratification in RA patients is also 
becoming more common. In contrast, Khanna et al. [2] 
employed a concise overview of the development of RA 
and its connection to carotid atherosclerosis, as observed 
through B-mode ultrasound imaging. It highlights the limita-
tions of conventional risk scores and explores the potential 
of ML-based tissue analysis in addressing these gaps. Stoel 
et al. [97] summarizes rheumatology imaging has made use 
of AI for a long time. Although several of these techniques 
have been developed, only a fraction of them have been put 
into actual clinical use. Recent advances in DL, however, are 
anticipated to effect a revolutionary change in this regard. 
When combined with human picture interpretation and clini-
cal reasoning, AI-powered by DL will improve patient care. 
In 2020, Jamthikar et al. [71] conducted another study with 
120 participants, focusing on HDL techniques for CVD risk 
stratification in patients having RA suggesting that there is 
a notable correlation between carotid atherosclerotic image-
based biomarkers, such as carotid intima-media thickness 
(cIMT) and plaque, and specific inflammatory markers spe-
cific to RA. Conventional image processing solutions such 
as fast marching methods using level sets for segmentation 
of the vascular plaque can be incorporated for speed and 
robustness [100]. Manrique et al. [101] comment on the inte-
gration of digital technologies into rheumatology healthcare 
is poised to become a growing trend in the future. There is 
a wide range of devices available that can be seamlessly 
incorporated into everyday products, providing a personal-
ized and continuous approach to patient care. Jamshidi et al. 
[102] employed ML techniques for CVD risk stratification 
in RA patients, emphasizing the applicability for preventive 
purposes.

However, none of the authors mentioned the applicabil-
ity of their approach for preventive and predictive purposes. 
Unfortunately, the study did not provide information on the 
FDA discussion, clinical setting, risk of bias, or AI explain-
ability. [103–106]. Our proposed study utilizes 152 refer-
ences and uses DL techniques for CVD risk stratification in 
RA patients. The authors reported using DL for preventive, 
predictive, and personalized purposes. Additionally, they 

mentioned the FDA discussion and reported that AI explain-
ability was discussed. However, the clinical setting and risk 
of bias were not mentioned.

A short note on platelet function, complete blood 
count, and diagnostic methods

Several parameters, including platelet count, can evaluate 
platelet function and activity, mean platelet volume (MPV), 
platelet RNA, and protein [107, 108]. As an important compo-
nent of hemostasis and thrombosis, platelets play a critical role 
in various CVDs [109]. Abnormalities in their function have 
been responsible for an increased risk of CVD and adverse 
cardiovascular events [110, 111]. Elevated levels of platelet 
count, MPV, platelet RNA, and protein have been associated 
with an increased risk of CVD [112, 113].

Furthermore, hematological parameters, including hemo-
globin (Hb) concentration, red blood cell (RBC) count, mean 
corpuscular volume (MCV), and hematocrit (Hct), are com-
monly assessed through complete blood count (CBC) analy-
ses [114], and mean corpuscular hemoglobin concentration 
(MCHC), are routinely used to assess blood cell counts and 
morphology [115, 116].

Abnormalities in these indices have been associated with 
various CVDs, such as anemia, ischemic heart disease, and 
stroke [121, 122]. The neutrophil to lymphocyte (N/L) ratio, 
which measures the balance between innate and adaptive 
immunity, has been proposed as a biomarker of inflamma-
tion and oxidative stress [112, 123]. Elevated N/L ratios have 
been associated with an increased risk of CVD and adverse 
cardiovascular events, reflecting chronic low-grade inflam-
mation and impaired immune function [121, 124]. Therefore, 
platelet count, MPV, platelet RNA, protein, CBC blood indi-
ces, and N/L ratios are essential parameters for evaluating 
various aspects of cardiovascular health and disease [125, 
126]. Abnormalities in these parameters should be closely 
monitored, as they may indicate an increased risk of CVD 
and adverse cardiovascular events [127, 128].

A short note on artificial intelligence bias

Evaluating bias in AI models has gained much greater signifi-
cance in recent years [129, 130]. Earlier computer-aided diag-
nosis techniques showed a lack of bias in evaluations [131]. To 
reduce AI bias, a large sample size, appropriate clinical testing, 
incorporating co-morbidities, using big data configurations, 
using unseen data analysis, and the scientific validation of 
training model design are all strategies that can be utilized [28, 
132]. Critical stages in patient risk classification encompass 
the assessment of the AI risk of bias (RoB) [28, 133, 134] and 
appropriately adapting diagnostic procedures and therapeutic 
interventions.
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A short note on synovial fluid and cardiovascular 
disease

The synovial fluid does not directly contribute to CVD/
Stroke [135]. However, conditions affecting the joints, 
which can be evaluated through synovial fluid analysis, can 
indirectly affect CVD/Stroke and related parameters such 
as platelet function, complete blood count (CBC), and diag-
nostic methods [136]. Inflammatory conditions in RA can 
induce systemic inflammation, which can influence plate-
let function [137]. Joint inflammation releases pro-inflam-
matory mediators and cytokines, activating platelets and 
potentially promoting platelet aggregation and thrombosis. 
Consequently, individuals with joint-related inflammatory 
diseases may exhibit abnormalities in platelet function [138]. 
Additionally, inflammatory joint diseases can impact CBC 
parameters [139].

Chronic inflammation associated with certain joint condi-
tions can result in anemia, and elevated levels of inflamma-
tory markers like C-reactive protein (CRP) can affect CBC 
results [140]. Synovial fluid analysis, primarily performed 
for diagnosing joint-related conditions, can indirectly pro-
vide insights into potential associations with CVD/Stroke 
[140]. The analysis may reveal increased levels of inflamma-
tory markers, such as cytokines, indicating systemic inflam-
mation linked to the development and progression of CVD/
Stroke in RA [141]. Moreover, imaging techniques like mag-
netic resonance imaging (MRI), and low-cost ultrasound can 
assess joint damage and inflammation, providing informa-
tion on the extent of joint involvement [142]. Left untreated, 
joint inflammation can contribute to systemic inflammation, 
potentially increasing the risk of CVD/Stroke.

The role of pruning‑based DL systems

The growing importance of edge devices is attributed to the 
continuous advancements in systems based on the cloud and 
internet connectivity [143]. Edge devices are of significant 
importance, especially in the context of mobile frameworks 
for predicting future outcomes or stratifying disease risks 
[144]. Nevertheless, the implementation of extensive data 
models on edge devices is not feasible, thereby requiring the 
implementation of compressed models [145]. To tackle this 
particular challenge, it is possible to employ image-based 
DL models, including fully convolutional networks (FCN) or 
segmentation networks (SegNet) [146], and optimize them 
through the utilization of evolutionary algorithms, such as 
Particle Swarm Optimization (PSO), Genetic Algorithms 
(GA), Wolf optimization (WO), and Differential Evolution 
(DE)) [147]. The utilization of compression techniques ena-
bles the compression and efficient deployment of RBBM-
based CVD risk stratification models that are integrated with 

GBBM. This deployment is particularly advantageous for 
rural areas and third-world nations [148].

The role of artificial intelligence explainability

Understanding the inner workings of AI's “black box” is a 
pivotal aspect of AI. Healthcare providers are more inclined 
to comprehend the concept of the “black box” if they can 
interpret and scrutinize the outcomes [149]. The utiliza-
tion of tools such as Local Interpretable Model-Agnostic 
Explanations (LIME) and Shapley Additive Explanations 
(SHAP) has bolstered the credibility of AI models within the 
medical community. These tools offer valuable insights into 
intricate disorders [150, 151]. Additionally, carotid lesions 
and other abnormalities can be visualized using techniques 
such as GradCAM, GradCAM + , or GradCAM +  + [75]. 
These interpretability tools open doors for broader accept-
ance of AI models in the medical field, ultimately leading 
to improvements and cost-effectiveness [152] stratification.

Recommendations

Following are guidelines for a proposed AI model that can 
be used for CVD/stroke risk identification in RA. The study 
proposes two hypotheses: (a) radiomics and genomic bio-
markers have a strong correlation and can be used to detect 
the severity of CVD and stroke in RA patients precisely, and 
(b) introduces a proposed (aiP3) risk model that uses DL to 
classify CVD and stroke risk in RA patient more accurately. 
The following recommendations are: (i) requires a clinical 
evaluation and scientific validation for reliable detection 
and CVD risk stratification in RA, and (ii) requires hyper-
parameter optimization in CVD/Stroke risk stratification in 
RA. (iii) balancing the risk classes (control, low-risk, and 
high-risk) is the most effective way to minimize DL bias; 
(iv) with proper pruning and compression, DL systems can 
be adapted to edge devices; (v) A DL system that relies on 
surrogate carotid imaging can be cost-effective without com-
promising precision in CVD risk stratification in RA.

Strengths, weakness, and extensions

One of the major strengths of this pilot review was its abil-
ity to risk stratify patients with CVD/Stroke by integrating 
RBBM and GBBM. The biomarkers derived from radiologi-
cal, biochemical, and morphological complexity supported 
the first hypothesis, establishing a clear connection between 
CVD/Stroke and RA.

To evaluate CVD/Stroke in RA, a DL approach was 
proposed and presented, integrating RBBM and GBBM 
biomarkers. While the system is relatively straightforward, 
there is room for optimization to eliminate potential biases 
and improve generalization, particularly when considering 
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co-morbidities. Exploring a more comprehensive feature 
space could be attempted to achieve superior DL-based 
classification. This involves considering a wider range of 
biomarkers and imaging features to enhance the predictive 
accuracy of the DL models [79]. Furthermore, ensemble-
based solutions incorporating principal component analy-
sis (PCA) for optimal feature selection, followed by RNNs, 
could be potential extensions to achieve superior CVD/
stroke risk solutions in RA [78]. Ensemble methods combine 
multiple models to improve performance and can enhance 
the robustness and accuracy of the risk prediction models.

The most informative biomarkers can be identified by 
incorporating PCA for feature selection, reducing redun-
dancy and noise in the data. RNNs, which are well-suited 
for sequential data analysis, could capture temporal depend-
encies and improve the prediction of CVD/stroke assessment 
in the RA environment over time. Stochastic models can be 
incorporated for image-based feature extraction to improve 
the robustness of the system [153]. These proposed exten-
sions and optimizations can potentially enhance the preci-
sion and effectiveness of CVD/stroke risk assessment in RA. 
Refining the DL models and incorporating more compre-
hensive feature spaces can achieve more accurate and reli-
able risk assessment for CVD/Stroke in RA patients. Further 
research and validation are necessary to explore these ave-
nues and assess their impact on improving the classification 
and prediction of CVD and stroke risk assessment in RA.

Conclusion

Diagnosing and treating CVD/Stroke in RA poses challenges 
due to delayed symptom onset and inadequate predictive 
clinical risk scores. To enhance CVD/Stroke risk assess-
ment in RA, a proposed approach combines GBBM derived 
from plasma or serum samples with innovative non-invasive 
RBBM, including synovial fluid, plaque area, and plaque 
burden measurements. These biomarkers consider multiple 
pathways in atherosclerosis development, the primary cause 
of CVD/Stroke in RA.

This review presents two hypotheses: (i) RBBM and 
GBBM biomarkers exhibit a significant correlation and 
can accurately detect CVD/Stroke severity assessment in 
RA patients, and (ii) an AI-based preventive, precision, and 
personalized (aiP3) CVD/Stroke risk model utilizing DL can 
precisely classify CVD/Stroke risk in the RA framework. 
The study demonstrates how DL models can be integrated 
into the aiP3 framework to determine the risk assessment of 
CVD/Stroke in RA patients using RBBM and GBBM bio-
markers. The findings of this review suggest that the combi-
nation of RBBM with GBBM introduces a new dimension 
to the assessment of CVD/Stroke risk in the RA framework. 
Higher levels of synovial fluid are associated with increased 

plaque burden. Furthermore, the review recommends novel, 
unbiased, and pruned DL algorithms that can accurately 
predict CVD/Stroke risk within a preventive, precise, and 
personalized RA framework.

In summary, integrating RBBM and GBBM biomarkers 
and advanced DL algorithms offers promising avenues for 
improving CVD/Stroke risk assessment and management 
in RA patients. Further research and validation of these 
approaches are needed to enhance the precision and effec-
tiveness of preventive strategies in this high-risk population.
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