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 

Abstract— The generalized thin-wire Wait-Hill method of 

moments formulation in free space is extended to model plane 

wave scattering from a lumped element periodically loaded mesh 

screen backed by a multi-layer substrate. It is numerically 

demonstrated that the sawtooth function methodology proposed 

by Hill and Wait for reducing the computation time is applicable. 

Furthermore, for the case of an electrically dense mesh, a simple 

analytical expression for the transmission coefficient is obtained.  

 
Index Terms— Electromagnetic scattering by periodic 

structures, wire grids 

 

I. INTRODUCTION 

AILORED electromagnetic and equivalent circuit 

methods for modeling periodic structures have several 

advantages as discussed in [1]. One such method is the thin-

wire entire-domain basis function method of moments (MoM) 

formulation of D.A. Hill and J.R. Wait for modeling plane 

wave scattering from a perfectly electrically conducting 

unloaded mesh in free space [2]. To significantly reduce the 

computation time of the method, the authors of [2] proposed 

the use of a discontinuous periodic sawtooth function. 

Furthermore, K.F. Casey added loss to the unloaded wire 

mesh and a dielectric substrate layer and based on [2] derived, 

in the limit of an electrically dense mesh, simple analytical 

expressions for the equivalent circuit impedance and 

transmission coefficient of the structure that improve one’s 

insight of the shielding behavior of unloaded wire-mesh 

screens [3][4]. Based on the free space formulation of [5], the 

MoM formulation of [2] was generalized to include periodic 

lumped element loading in the mesh in order to model and 

obtain insight into the behavior of lumped element loaded 

frequency selective surfaces (FSS) in free space [6]. The 

lumped elements may be of surface mount or printed form.  

In this paper, the free-space formulation in [6] is extended to 

include a multi-layer substrate (Fig. 1). By comparison with 

the commercial software CST (which is based on a different 

computational method) it is shown that the sawtooth function 

methodology in [2] for reducing the computation time is still 

applicable. 
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Fig. 1. Geometry of the lumped element periodically loaded mesh with a 

multilayer substrate.  
 

By making use of the equivalent radius narrow strip 

approximation [7] (Fig. 1), a very good agreement between the 

results of the proposed thin-wire Wait-Hill MoM formulation 

and the narrow-strip CST results is demonstrated. In addition, 

for the case of an electrically dense mesh, a novel simple 

analytical expression for the transmission coefficient is 

obtained for the configuration in Fig. 1. Potential applications 

are FSS on building materials [8],[9] and FSS for the 

automotive industry [10] where multi-layer substrates can be 

present. Furthermore, the proposed formulations, due to their 

low computational requirements, can be used in novel fast ray-

tracing software tools for designing frequency selective 

buildings through FSS [11]. Formulations for lumped element 

loaded FSS on multi-layer substrates were also proposed in 

[1], however they were restricted to vertical grids.  

II. THE WAIT-HILL MOM FORMULATION 

The periodically loaded mesh configuration of the thin-wire 

Wait-Hill MoM is defined in Fig. 1. The mesh lies in medium 

0 with constitutive parameters defined in Section II of [1]. The 

axes origin, reference unit cell coordinates and wire labelling 

are shown in Fig. 1 and are also defined in [6]. The electric 

field (E) boundary condition expression looks the same as that 

of (6) of [1], however it is applied here to both reference wires 

and includes the coupling between these wires,  
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bR R

E E E E u Z

(1) 
û = ẑ, Rb = Rb(0,b,z) for wire A and û = x̂, Rb = Rb(x,b,0) for 

wire B.  The per unit length load impedance, ZL(K)(u), of the 
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reference unit cell is defined in terms of the lumped element 

impedance (K) and Fourier series coefficients Zn(K) as shown 

in (5) and (6) of [6] where K=A, u=z for reference wire A and 

K=B, u=x for reference wire B. Multiple lumped elements can 

be included in the formulation by modifying Zn(K), see (1)-(4) 

of [5]. The current IK(u) is related to the unknown Fourier 

series current coefficients ϑAm and ϑBq as shown in (7) and (8) 

of [6]. The integers m and q denote the index of periodicity 

along the z-direction and x-direction respectively. It is 

assumed, for simplicity, that b0 = b. In (1), the incident electric 

field, ϑEinc, is given by (1) of [1] and ϑEref(inc) is its reflection at 

the b0 interface in the absence of the wires. The expression of 

ϑEref(inc) is given by (8) of [1] multiplied by exp(2jkr(0)sy(0)b). 

Esc is the radiated field from the wires and Eref(sc) is its 

reflection from the b0 interface. The expression for Esc is the 

same as that of (4) in [1] but without the Bessel term (as 

narrow strips are used in [1] whereas thin wires are used here), 

and for wire A is [12] 
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Equation (2) is obtained using the thin wire magnetic vector 

potential procedure described in [12]. The Eref(sc) expression is 

the same as that of (9) in [1] (again without the Bessel term), 

(0) (0)

(0) (0)

ˆ
(0)( )

(0)

(0) (0) (0)

2
|| (0) || (0) || (0)

2

ˆ(

ˆ )

r mq

r y

jk
ref sc

m
x mqym q

e
mq mqz mq

jk s be
mq mqz mq

e
A

D r

n

n e

  


 

    


 


 

 



 
r R

E

n

n

 (3) 

For wire B, Esc and Eref(sc) are obtained from (2) and (3), 
respectively, by substituting the subscript x with z (and vice-

versa) and Am with Bq. The effective reflection coefficient 
e
mq 

 )(||,  of the (m,q)th harmonic at the interface between 

media  and +1 is defined in equation D.14 of [12]. The use 
of the effective reflection coefficient allows the multiple 

layers to be taken into account as described in [12].  
Subscripts on the right include the harmonic order, “m and/or 
q”, the Cartesian coordinate “x,y,z” for vector components, 
and the medium index which appears within round brackets. 

Polarization subscripts (,||) appear on the left of a variable. 

The direction vector of the mqth harmonic is defined as 

r̂mq()± = rqx()x̂ ± rmqy()ŷ + rmz()ẑ in medium  and its 
components can be obtained from eqs. (4.24), (5.3)-(5.5) of 

[12]. ||,nmqz() is the z-component of the polarization unit 

vectors ||,n̂mq() of the mqth harmonic in medium  which are 
defined in equations (4.55) and (4.56) of [12]. The subscripts 

 on the right of variables refer to the harmonic direction 

vector above. As was done for the loaded wire grid in free 
space in [6], i.e. starting from (1), following the methodology 
of [2] and [5], and incorporating the discontinuous periodic 
sawtooth function (proposed in [2] to significantly reduce the 
computation time of the method), the following formulae are 

obtained 
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where ij is the Kronecker delta (ij = 1  for i = j and ij = 0 for 

i  j). Equations (4) and (5) are similar to (24) and (25) in [6] 

however the various terms are different, because of the 
presence of the multiple layers, as follows 
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In medium , mq() = jkr()rmqy(). The expression for ϑinc is 

obtained from the expression for ϑinc by replacing in (6) 

ϑn00z(0) with ϑn00x(0). The expression for 
( )

( )
q

m A
C  is obtained from 

that of 
( )
( )
m

q B
C  by replacing in (7) Dz with Dx. It is to be noted 

that the aforementioned coupling terms C are due to the 

coupling between the orthogonal wires and hence do not 

appear in (10) of [1] where only a vertical grid is considered.  

Furthermore, 
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Eq. (8) looks identical to (11) in [1] except that the Bessel 

term is replaced by the exponential because of the use of thin 
wires instead of the narrow strips in [1]. Using Kummer’s 
convergence methodology [2],[5], (8) is re-expressed as 
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Equation (9) looks the same as (21) of [1] except for the 

presence of the exponential term (the W, 
( )iso
m  and 

( )
,|| m


 

expressions are also different as shown below) because of the 

use of thin wires instead of the narrow strips in [1]. A similar 

expression for ( )
ˆ
q BZ  is obtained by replacing in (9) Dx, A, 

(A), m, mz(0), m0z(0), m0(0) with Dz, B, (B), q, qx(0), 0qx(0), 

0q(0), respectively. In (9), 
)(
)0(||,



  is defined in (16)-(17) of 



[1] and ( )iso
m  by (14) of [6]. Furthermore,  
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( )
ˆ
q BZ  is a function of WB, ( )iso

q , ( )
|| q

  which are obtained 

from (10)-(12) by replacing m, q, Dx, mqz(0), mz(0) with q, m, 

Dz, mqx(0), qx(0), respectively. ( )
q


  is given by (14) of [6]. 

The expressions for Um and Vq are given by (26)-(27) of [6]. 
However, the terms in (26) and (27) of [6] are as defined 

above. Unlike in [6], the convergence of the summations in 
(26) of [6] is improved here using the aforementioned 
Kummer’s convergence methodology, 
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(13) 
and by using eq. (3) of section 1.441 of [13], for m ≠ 0, 
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For m = 0, the series of (14) is equal to zero. The 

corresponding expressions for the summations in (27) of [6] 
are obtained from (13) and (14) by replacing the 
indices/subscripts/superscripts q, m, x, z, A, B, 0q, mz(0) with 
m, q, z, x, B, A, m0, qx(0), respectively. 

The unknown coefficients ϑA'm and ϑB'q in (4)-(5) are 

computed by solving, a (2Q+1)  (2Q+1) matrix equation 

obtained from (28) of [6] and (4)-(5), assuming a maximum 

harmonic order Q. From these coefficients, the values of A0 
and B0, required in the numerical example that follows, can be 

obtained from (23) of [6].  

III. NUMERICAL RESULTS 

To numerically test the proposed Wait-Hill MoM 
formulation, an example is considered in which the lumped 
element is a capacitor of value C = 0.5 pF, hence 

v(A) = v(B)= (jC)1, and length l = 0.5 mm. The wire radius 

is b = 0.06 mm. The periods are Dx = Dz = 30 mm. The 
substrate consists of two layers. Medium 1 has relative 

permittivity r(1) = 4, relative permeability r(1) = 4, 

conductivity (1) = 0.05 S/m and thickness b1b0 = 3 mm. For 

medium 2, r(2) = 2, r(2) = 1, (2) = 0.2 S/m and b2b1 = 2 mm. 
Media 0 and 3 are assumed to be free space. The incident 

plane wave amplitude is E0 = 1 V/m. Q = 8, hence the matrix 

size is only 17  17. The series of the coefficients of (4)-(5) 

have limits 5Q. In our i3 PC, the CPU time of our Wait-Hill 

MoM Matlab code is 0.6 s (approximately) per frequency 
point and polarization. For the example considered, the 
transmission coefficient magnitude and phase results are 
shown in Fig. 2. There is a good agreement between our 
results and those of CST for both polarizations. The 
disagreement between the cross-polarized transmission 

coefficient phase results occurs when the magnitude value of 
the Wait-Hill MoM coefficient is very small. The CST logfile 
indicates that our i3 PC takes 279 s / 303 s to compute 
perpendicular / parallel polarization data, such as those of 
Fig. 2, using 28128 / 27129 tetrahedrons. It has to be noted 
that in the CST simulation input and output ports are specified 

at a distance of 20 mm from the mesh and scattering parameter 
results are obtained. Hence, for convenience when comparing 

results, the transmission coefficient, T, of the propagating 
fundamental harmonic is defined here as the ratio of the 
transmitted electric field at Rout = R(x,yobs,z) over the incident 

electric field at Rin = R(x,yobs,z), yobs = 20 mm where T is 

(0) (0)20

0

r y obsj k s y
tot

E F
T t e

E

 
 

 
   (15) 

with F = [A0 n00z(0) / Dx + B0 n00x(0) / Dz] (0) / (2sy(0)) and 

ttot defined in (28) of [1]. The symbols  = ,|| and  = ,|| 

represent the incident and transmitted wave polarization, 

respectively, and  is the Kronecker delta.  
For the case of an electrically dense mesh, one can assume 

that A0, B0 and Δ are the only unknowns, as was suggested in 
[4]. Solving the matrix equation, assuming Dx = Dz = D and 

v(A) = v(B)= v, leads to the following simple analytical 

expression for the transmission coefficient of (15),  
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with  cos)0(ys , 
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)0()0( 1

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Furthermore, for the cross-polarized transmission coefficients, 

T|| = T|| = 0. Expressions (17) and (18) correspond to the 

perpendicular and parallel polarization equivalent circuit 

impedances, respectively. Expression (16), which includes  

(17-18), is novel as it evaluates the transmission coefficient of 

a lumped-element loaded mesh on a stratified substrate 

consisting of uniform isotropic materials with r, r  and . No 

such formula is shown in the related work of [4], [14]. For an 



 

 

 

 
 

Fig. 2. Transmission coefficient versus frequency for Dx = Dz = 30 mm and 

C = 0.5 pF.; (a,c) magnitude and (b,d) phase. Perpendicular polarization (a,b). 

Parallel polarization (c,d).  = 70,  = 22.5. CST: dashed line with symbols; 

co-polarized () and cross-polarized () results. Wait-Hill MoM: solid line. 

Simple analytical expression results: dotted line. In (c), the square symbol () 

results are for Dx = Dz = 10 mm and C = 2 pF. 
 

unloaded lossy mesh with dielectric materials (μr = 1) on 

either side, that may be different, (17-18) reduce to the 

impedances derived in [4], eqs. 5.67a-b in [4], if v is replaced 

with ZwD where Zw is defined by (2) of [5]. If w<<D, (17-18) 

simplify to eqs. (5-6) in [14] for an unloaded and lossless 

mesh, if it is assumed that one of the two regions is free space 

and the other is a dielectric material (μr = 1). 

Results from the simple analytical expression (16) are also 

shown in Fig. 2. The difference between the Wait-Hill MoM 

results and the analytical results of  (16)  can be made smaller 

by reducing the mesh size with respect to the wavelength. As 

an illustration, the example’s period is reduced to 

Dx = Dz = 10 mm (and C is increased to 2 pF to maintain the 

resonance frequency at around 1 GHz). Fig. 2c shows that the 

parallel polarization magnitude results of (16) agree well with 

those of the Wait-Hill MoM (Q = 5) and the CST. A good 

agreement is also observed for the phase and the perpendicular 

polarization results (not shown in Fig. 2 for clarity).  

A Wait-Hill MoM approach can also be used to derive a 

simple, closed-form expression for the admittance of an 

electrically dense, lumped element loaded, orthogonal slot 

array at a general isotropic media interface. Future work will 

focus on obtaining from sub-domain periodic method of 

moments, such as the method in [12] that employs roof-top 

basis functions, the analytical insight presented. Although the 

approximate kernel thin wire formulation [12] can produce 

good results, as shown here, it has its well-described solution 

issues (see references [8] and [9] in [1]) and requires that a 

thin wire (with radius much smaller than the period) is 

employed. Hence, we are currently working on extending the 

VanKoughnett-Buttler approach for the vertical grid of loaded 

narrow strips in [1] to an orthogonal grid of loaded narrow 

strips.  

IV. CONCLUSION 

A novel entire-domain MoM formulation for modeling plane 

wave scattering from a lumped-element periodically loaded 

mesh with a multi-layer substrate was presented. Results, 

obtained using the Wait-Hill sawtooth function to minimize 

the number of unknown current harmonic amplitudes and 

hence computation time, were shown to agree well with those 

of a commercial software. Finally, for an electrically dense 

mesh, a novel simple equivalent circuit expression for the 

transmission coefficient was presented.  
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