
����������
�������

Citation: Schaller, D.; Hellmuth, M.;

Stadler, P.F. AsymmeTree: A Flexible

Python Package for the Simulation of

Complex Gene Family Histories.

Software 2022, 1, 276–298. https://

doi.org/10.3390/software1030013

Academic Editor: Tommi Mikkonen

Received: 30 May 2022

Accepted: 4 August 2022

Published: 7 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

AsymmeTree: A Flexible Python Package for the Simulation of
Complex Gene Family Histories

David Schaller 1,* , Marc Hellmuth 2 and Peter F. Stadler 1,3,4,5,6

1 Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics,
Leipzig University, Härtelstraße 16–18, D-04107 Leipzig, Germany

2 Department of Mathematics, Faculty of Science, Stockholm University, Roslagsvägen 101,
SE-10691 Stockholm, Sweden

3 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
4 Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
5 Facultad de Ciencias, Universidad National de Colombia, Bogotá 111321, Colombia
6 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
* Correspondence: sdavid@bioinf.uni-leipzig.de

Abstract: AsymmeTree is a flexible and easy-to-use Python package for the simulation of gene family
histories. It simulates species trees and considers the joint action of gene duplication, loss, conversion,
and horizontal transfer to evolve gene families along the species tree. To generate realistic scenarios,
evolution rate heterogeneity from various sources is modeled. Finally, nucleotide or amino acid
sequences (optionally with indels, among-site rate heterogeneity, and invariant sites) can be simulated
along the gene phylogenies. For all steps, users can choose from a spectrum of alternative methods
and parameters. These choices include most options that are commonly used in comparable tools but
also some that are usually not found, such as the innovation model for species evolution. While output
files for each individual step can be generated, AsymmeTree is primarily intended to be integrated in
complex Python pipelines designed to assess the performance of data analysis methods. It allows the
user to interact with, analyze, and possibly manipulate the simulated scenarios. AsymmeTree is freely
available on GitHub.

Keywords: gene family histories; simulation; species tree; gene tree; sequences; rate heterogeneity;
horizontal gene transfer

1. Introduction

Most proteins are part of larger families that expanded by means of gene duplica-
tions [1]. Since duplicate genes are subject to processes such as subfunctionalization and
neofunctionalization [2–4], they are an important source of functional innovation and thus
a key contribution in evolutionary adaptation. The reconstruction of gene family histories
(GFHs), i.e., the identification of gene duplication, gene loss, and horizontal gene transfer
(HGT) events and their placement in the species tree therefore is a prerequisite for answer-
ing many questions in evolutionary biology. In practice, however, the accurate inference of
GFHs is a difficult problem in bioinformatics that, so far, has been solved partially at best.

The identification of “clusters of orthologous genes” (COGs) [5], hierarchical refine-
ments thereof [6], as well as the pairwise orthology relation [7–9] are important coarse-
grained representations of GFHs with a wide range of applications in evolutionary biology
and phylogenetics [10]. A large portfolio of methods for orthology inference has become
available, see e.g., [11–13] for reviews. The practical difficulties of inferring large, accurate
GFHs are a severe obstacle for benchmarking computational tools and methods due to the
lack of a trustworthy, fully resolved ground truth beyond simple situations and possibly
a very small set of extremely well-studied gene families. Even in cases like the Hox gene
clusters, not all details of the GFH have been resolved unambiguously, see, e.g., [14] for
a summary.
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Simulated data serve as a natural remedy and have the additional advantage that
test sets can be constructed as large and as complex as desired. A second advantage of
simulated data is that they can be focused to evaluate specific components of a pipeline. For
instance, it is possible to separate concerns of data pre-processing, sequence comparison,
or the detection of best matches from issues such as the accuracy of recognizing which
reciprocal best matches do not correspond to ortholog pairs [15,16]. For some applications
such as the latter, only gene tree, species tree, their reconciliation and the event types
are of interest, while the generation and processing of sequence data is only a distracting
overhead. AsymmeTree is therefore designed to separate the generation of the combinatorial
skeleton of the GFH with weight and rate data, which we call evolutionary scenarios, from
the generation of simulated sequence data.

The Python programming language has become one of the most widely used platforms
in bioinformatics and in the sciences in general, and a broad spectrum of packages for
phylogenetic analyses such as Bio.Phylo [17] and the ETE toolkit [18] is being actively
developed. The language allows writing code that is concise, easy to read, easy to maintain,
and that runs on all commonly used operating systems. A drawback of Python is its
relatively low speed of execution compared to compiled languages such as C/C++. For the
release version of a new method, the latter alternatives are often preferred, in particular,
whenever large input data are expected. However, the (re-)implementation in such a
language is usually very time-consuming. Python is therefore an ideal framework for
proof-of-concept implementations that can be extensively benchmarked and validated
beforehand. For these reasons, we chose Python for our library.

In order to facilitate the benchmarking of individual components of new methods and
algorithms, furthermore, AsymmeTree is organized as a Python library that can be interfaced
directly with target algorithms and, to our knowledge, the first tool for simulating complex
GFHs that follows this paradigm instead of producing a fixed collection of output files
that then need to be parsed and processed. Nevertheless, output files for individual
purposes are of course available. AsymmeTree relies on our library tralda [19], which
implements tree data structures and a variety of algorithms for the combinatorics of trees
that frequently appear in phylogenetics, such as the construction of supertrees (e.g., [20,21])
or Bender et al.’s data structure for constant-time query of last common ancestors. The
two libraries offer well-documented functions and classes that serve as the basis for easy
downstream analyses. In summary, therefore, AsymmeTree allows a seamless integration
into benchmarking pipelines of new methods that are implemented in Python themselves.

Our tool simulates species trees, gene trees along the species tree, and finally also
sequences along trees. To that end, it implements many of the standard models used for
this task but also some that are not found in (most) other simulators. For instance, we
implement the innovation model [22] and the episodic birth-death process [23] for species
evolution. We furthermore include the possibility to allow multifurcations in the trees on
the level of both species and gene evolution. Another important novelty of our tool is the
explicit modeling of neofunctionalization and subfunctionalization, i.e., the asymmetric
divergence of paralogs (the name AsymmeTree alludes to this feature) after duplication. To
this end, we use default parameters that we fitted to real-life data from [24]. The paralog-
specific rate heterogeneity is therefore more complex than in comparable tools such as
SimPhy [25] and SaGePhy [26]. Moreover, we account for essential genes by optionally
prohibiting the complete extinction of the gene family within each species lineage. We
account for the occurrence of additive and replacing HGT and model a transfer distance bias
that prefers closer related species or genes to be chosen as recipient in an HGT event. The
generated gene trees store the information about their reconciliation with the species tree.
Regarding the simulation of sequences, AsymmeTree implements a variety of the standard
models for nucleotide and amino acid sequence evolution, indel formation, among-site
rate heterogeneity, and invariant sites. In particular, all ancestral sequences can be accessed
or written to file as well as the true alignment (which is especially relevant when indels
are enabled).
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2. Related Work

Many different computational tools have become available in the past few decades
that focus on different aspects of modeling species and/or gene family evolution and
cover different ranges of tasks. Trees, of course, play a central role in any simulation of
evolutionary processes. Species phylogenies are usually generated using a birth-death
process [27] with constant or changing rates for speciations and extinctions. Tools that allow
sampling trees conditioned on the elapsed time since the first speciation event and/or the
number of extant species include the R packages TreeSim [23], its successor TreeSimGM [28],
TESS [29], and castor [30]. As described in detail in Section 3.2, AsymmeTree also provides
the latter functionality and, similar to castor, allows the creation of multifurcations by
contraction of edges. In addition, we implement the innovation model for generating the
topology of a bifurcating tree [22], a feature that is not found in any other tool.

The standard approach to evolving nucleotide or amino acid sequences along a tree
are time-continuous Markov chains [31,32]. Seq-Gen [33] is a widely used tool for this
task. It is written in C and supports rate heterogeneity among the individual sites of the
sequence under evolution. Moreover, it allows the simulation of recombinant sequences
using different trees. Seq-Gen is not able to generate insertions and deletions (indels). Well-
known tools that do include models for indel formation are, e.g., Dawg [34] (for nucleotide
sequences only) and INDELible [35], both of which are command line tools written in
C++. Recently, the C++ tool AliSim [36] was introduced that allows the fast simulation
of millions of sequences with a substantial reduction in memory usage as compared to
Seq-Gen, Dawg, and INDELible. As motivated in the introduction, we focus on an easy-to-
use workflow from the simulation of gene families to sequences within a single integrated
package rather than optimizing our software for execution speed. Pyvolve [37] is a popular
Python package with a flexible and user-friendly interface and thus, most comparable to
the sequence simulation subpackage in AsymmeTree. It is able to simulate codon sequences
(in addition to nucleotide and amino acid sequences). In contrast to AsymmeTree, Pyvolve
does not support indels. Moreover, we shall see in Section 5 that Pyvolve is outperformed
by our tool in terms of speed.

The evolution of gene families is not only shaped by speciations, but also by other
phenomena such as gene duplications, losses, gene conversion, and horizontal gene transfer.
Modeling these types of events and including them in the simulation is therefore crucial
for a realistic assessment of phylogenetic inference and, in particular, tools that reconstruct
detailed gene family histories (see, e.g., [13,38,39] for reviews). GenPhyloData [40] is written
in Java and was among the first available tools considering the joint action of duplication,
loss, and HGT events. In addition to the evolution of gene trees inside “host” species
phylogenies, the software also generates evolution rate heterogeneity for the branches of
the trees using different uncorrelated and autocorrelated models for a relaxed evolutionary
clock for substitutions, and finally outputs trees with relaxed edge lengths. SaGePhy is
built upon GenPhyloData [26] and implemented in Java and Python. It supports additional
features such as subgene or domain level evolution inside one or multiple gene trees and
the simultaneous simulation of both additive and replacing HGT, which are specified by
a user-defined probability. While GenPhyloData samples species lineage recipients for
HGT events uniformly at random, SaGePhy offers options for distance-biased transfers.
SimPhy [25] is written in C and considers the joint action of incomplete lineage sorting
(ILS), gene conversion, duplications, losses, and HGT. This is achieved by a hierarchical
model that subsequently simulates (1) a species tree, (2) a locus tree (within the species
tree), and (3) a gene tree (within the locus tree). SimPhy also supports a distance bias for
transfer events, but no replacing HGT. Zombi [41] is written in Python and the first tool that
accounts for HGT from extinct lineages of the species tree.
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None of the tools GenPhyloData, SaGePhy, SimPhy, and Zombi natively implements
the evolution of sequences. However, SaGePhy and SimPhy provide scripts for this task that
internally call Seq-Gen and INDELible, respectively, and Zombi resorts to Pyvolve.

ALF [42] is based on the language Darwin [43] and designed for the simulation of
complex genomes starting with the simulation of a species tree up to nucleotide or amino
acid sequences. Features of the tool include indels, GC-content amelioration, gene dupli-
cation/loss/transfer, gene fusion and fission, as well as genome rearrangement. ALF is
available both as an online version and as a stand-alone version for running simulations
on a local machine. simuG [44] is designed to simulate the full suite of genomic variants
from single nucleotide polymorphisms to copy number variants, inversions, and translo-
cations. Like similar tools, its main aim is the simulation of populations, i.e., variants
of a genome that are, e.g., used for benchmarking genome assembly tools, rather than
macro-evolutionary distances [45,46]. Simulations of gene content and order of entire
chromosomes or genomes is described, e.g., in [47].

Although our tool supports the simulation of multiple gene families along the same
species tree and can produce output that collects all sequences for a given species in a
single file, the focus of the tool are individual gene family histories rather than generating
entire “artificial genomes”. At present, we therefore do not consider genome level events
such as inversions, transpositions, tandem duplications, et cetera.

An implementation of AsymmeTree as an R package would have been an alternative to
the python library, while R is the obvious choice for statistical analyses, we believe that
Python is more commonly used for implementing complex methods and algorithms in
bioinformatics. Furthermore, it is fairly straightforward in R to interface to Python modules,
classes, and functions using the reticulate package.

3. Simulation of Species Trees and Gene Trees
3.1. Overview

Like many other tools for phylogenetic simulation [25,26,40,48], AsymmeTree generates
complex gene family histories in a multilevel process that consists of the following five
steps, see Figure 1: (1) A dated species tree S is simulated whose leaves correspond to
extant species (thus having time stamp 0) and possibly (depending on simulation models
and parameters) extinction events. (2) Along this species tree, one or multiple gene trees
T are simulated using a variant of a constant-rate birth-death process [27] that considers
speciations, gene duplications, and (additive) HGTs as “birth events” and gene losses as
“death events”. In addition, replacing HGT and gene conversion lead to a bifurcation in one
gene lineage while, at the same time, another lineage gets lost. (3) In a next step, evolution
rate heterogeneity between the branches is introduced in a manner that accounts for both
species effects as well as asymmetric evolution of paralogs after gene duplication. (4) The
pruned gene tree is then obtained by removing all branches that lead to loss events only
and suppressing all vertices that only have a single child left. The simulated species and
gene trees can be visualized using AsymmeTree. An example simulation and visualization
after each of steps (1)–(4) is shown in Figure 2.

In a final step (5), nucleotide or amino acid sequences can be evolved along the
gene tree using a continuous-time Markov chain, which is the standard model for this
purpose [31,32]. AsymmeTree supports a variety of models for substitution, indels, and
among-site heterogeneity. An overview of the basic steps is given in Figure 1.
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subpackage treeevolve

subpackage seqevolve

species_tree_n()

species_tree_age()

species_tree_n_age()

species tree

sequences

substitution model

specify age of the tree, number of
leaves, or both

tree  serialization
tree visualization
Newick format
true distance matrix
orthology, paralogy,
xenology
...

write sequences to
file (fasta)

write true MSA to
file (e.g. phylip, clustal)

nucleotide models
(JC69, K80, GTR, custom) 

amino acid models
(JC69, Dayhoff, BLOSUM62,
JTT, WAG, LG, custom) 

duplications, losses, HGT, and
gene conversion

gene-family-specific (base rate)

species-specific (lognormal model)

paralog-specific (neo- and sub-
functionalization, conservation)

additive/replacing HGT,
transfer distance bias

essential genes  (prohibit extinction
species- or family-wise)

polytomies

models: Yule, (episodic) birth-death

dated_gene_tree()

gene_trees()

dated gene tree

rate_heterogeneity()

rate heterogeneity

prune_losses()

class Evolver

class SubstModel class IndelModel

indel model

length distributions:
Zipfian, 
negative binomial, ...

class HetModel

heterogeneity model

among-site heterogeneity
(+Γ): k classes or sitewise

invariant sites (+I)

pruning of loss branches

innovation model (for lineage sampl.)

Figure 1. Overview of the main functions and classes in AsymmeTree. The main workflow up to
the simulation of is indicated by the thick arrows. Note that single steps such as introducing rate
heterogeneity can be skipped. The function gene_trees() (blue box) bundles the simulation of gene
trees and rate heterogeneity into one step.

In the following sections, the features implemented for the specific steps are described
in somewhat more detail.
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Figure 2. Example simulation and visualization with AsymmeTree: (1) species tree, (2) dated gene
tree, (3) gene tree after introduction of rate heterogeneity, and (4) pruned gene tree. The horizontal
axis measures the distances of the vertices from the root of the tree. Equal colors of the leaves indicate
belonging to the same species. The transferred descendant of an HGT event is marked by a red line.
Symbols: }—planted root,  —speciation, �—duplication, ⊥—loss, F—gene conversion, 4—HGT,
�—leaf.

3.2. Species Trees

The first step in the simulation of a gene family history or even whole genomes is
usually the generation of a dated rooted species tree. The species trees simulated by
AsymmeTree include a so-called planted edge, i.e., the root of the tree has a single descen-
dant, which corresponds to the first “true” speciation event of the simulated phylogeny.
This accounts for the ancestral lineage in which events such as gene duplications may
already occur. Available models for species evolution are the pure-birth Yule model [49],
the constant-rate birth-death process (BDP) [27], and the episodic birth-death process
(EBDP) [23]. The latter allows specifying “episodes” of the simulation time at the beginning
of which mass extinction events or shifts of the birth and death rate occur. All rates neces-
sary for the specific models as well as the episodes in EBDP are user-defined parameters of
the function.

We provide functions for species tree sampling conditioned on

(a) the number N of (extant) species,
(b) the age t of the tree, i.e., the time span between the root and the (non-loss) leaves, or
(c) both N and t.

We follow the methods used in TreeSim [23] to ensure accurate sampling under the
specified model. In particular, we implement the backward algorithm presented in [23] to
allow conditioning on N, which starts with a user-defined number N of extant species
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and progresses “backward in time” by drawing waiting times for speciations and extinction
reducing and increasing the number of lineages, respectively, from an exponential distribution.

Under the classical birth(-death) models, the lineage for the next speciation is chosen
uniformly at random among the currently extant lineages. As an alternative, we provide
the option to sample the lineages using the innovation model, which captures the properties
of observed phylogenies well [22]. The model associates each species lineage with a set of
“features” and branching events occur as a consequence of gain or loss of a feature.

Not all combinations of options are available because some of them are specific to the
different algorithms. For example, the innovation model cannot be used in combination
with the backward algorithm used for conditioning on N under the (E)BDP model. Similarly,
when conditioning on N and t, the resulting trees do not include the loss branches even if
a death rate > 0 was specified. Table 1 gives an overview of the available combinations
of options.

Table 1. Configuration options for simulating species tree with AsymmeTree. 1,2 Times of the specified
episodes are measured w.r.t. the leaves or root, respectively. 3 This is a consequence of the backward
algorithm applied for (E)BDP. 4 The applied method for conditioning on N and t does not explicitly
simulate the loss events [23].

Condition on Function Available Models Innovation Option Loss Branches

N species_tree_n() Yule, BDP, EBDP 1 only for Yule 3 (E)BDP

t species_tree_age() Yule, BDP, EBDP 2 yes (E)BDP

N and t species_tree_n_age() Yule, BDP yes no 4

It is usually assumed that cladogenesis proceeds by a series of bifurcations and that
polytomies in estimated gene or species trees are “soft”, i.e., an artifact of insufficient
data [50–52]. As a consequence, considerable efforts have been put into resolving persisting
multifurcations in the tree of life, see, e.g., [53,54]. However, there is also evidence of “hard”
polytomies, i.e., the generation of more than two descendant lineages from a parental
species at a time [55–57]. We implement two models for introducing polytomies into
species trees, both of which start from a bifurcating tree that was generated using one of
the methods described above. The first possibility takes a probability p as input. Each
inner edge (thus excluding the edges incident with leaves and the planted root) is then
considered independently and contracted with probability p. The second possibility takes
a fixed proportion p′ of inner edges to be contracted as input, and, additionally, allows for
specifying a bias such that edges whose endpoint have a smaller divergence time t have
a higher chance to be contracted. More precisely, for the available options “inverse” and
“exponential”, resp., the values 1/αt and e−αt are used as weights in the sampling process,
where α is a user-defined intensity.

3.3. Gene Trees

Gene trees are simulated along a species tree using a constant-rate birth-death pro-
cess [27] where rates for the four types of events duplication, loss, HGT, and gene conversion
are user-defined. To this end, the user must specify rates for the four event types which
serve as parameters for exponential distributions from which waiting times until the next
events are drawn. By setting the respective rate to zero, an event type is disabled completely.
The simulation starts with a single gene in the root of the species tree and proceeds stepwise
in time towards the leaves by drawing waiting times until the next event and lineages in
which these events take place. At each point in the simulation, the total rate is given by the
sum of the four event types over the currently existing lineages in the gene tree under con-
struction. Hence, the simulation of all gene lineages progresses synchronously. This avoids
difficulties arising by the fact that some processes, such as replacing HGT as introduced
below, introduce dependencies between the gene lineages. In particular, with this method,
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it is not necessary that simulated branches have to be invalidated as a consequence of an
event in a lineage that is processed later in the simulation as it, e.g., occurs in [26].

In addition to the randomly-occurring events, speciations and species extinctions
(which are determined by the species tree and therefore fixed) are included as branching
and loss events, respectively, and affect all currently existing lineages in the respective
species lineage. In case of a speciation, each offspring species receives one copy of each
original gene lineage. On the other hand, the extinction of a species leads to loss of all of its
gene lineages. If a waiting time for a duplication, loss, or HGT event is drawn such that the
next event in the species tree occurs earlier, then this waiting time is discarded, the time is
updated to the next species tree event, and the latter is executed.

In the following, we discuss the implementation of gene duplications, losses, HGT, and
gene conversion in some more detail as well as the options for customizing the simulation
that are related to these types of events.

Gene duplications. If a duplication event is drawn for some gene lineage, then the original
lineage is replaced by 2 + k offspring lineages (that are placed in the same species lineage).
Allowing for k > 0 refers to introducing polytomies on the level of gene evolution, that is,
other than the multifurcations that are inherited from a (non-binary) species tree. In [16],
we discussed a delayed escape from an originally concerted evolution of tandemly repeated
genes [58,59] as a possible biological mechanism giving rise to (hard) polytomies at dupli-
cation vertices. Moreover, inference from biological sequences is often not able to resolve
the exact chronological order of events that occurred very shortly after one another (soft
polytomies). To assess a possible sensitivity of new methods to multifurcating duplication
events, we model the latter by a (user-defined) parameter λ of a Poisson distribution from
which the number k of additional copies is drawn. The default setting is λ = 0, in which
case no polytomies are introduced on gene tree level.

Gene losses. A loss event introduces a new leaf vertex into the gene tree which is marked as
a loss event and removes the lineage from the set of currently active lineages (i.e., for which
events are drawn). The final gene tree, therefore, contains as leaves the extant genes (that
reached the extant species of the species tree), as well as loss events that were generated as
a consequence of (a) loss event drawn for specific gene lineages, (b) extinction of species,
and (c) replacing HGT (see below). As for the species tree, the complete extinction of a
gene family through losses will in general not be a desirable outcome of the simulation.
We therefore provide the option to prohibit the complete extinction of all paralogs in each
species or, less restrictively, the extinction of all members of the gene family. We implement
this feature in the simulation by temporarily setting the loss rate in a gene lineage to zero
whenever this gene is currently the only surviving member of the family in its species
lineage or the only overall surviving member, respectively. The former option can in
particular be viewed as a way of modeling essential genes [60,61], whose complete loss is
lethal but paralogs can compensate the loss of single family members in a species.

Horizontal gene transfer. Horizontal gene transfer (HGT) refers to the phenomenon that
genetic material is transferred from one species into another, coexisting species. Depending
on the exact mechanism, a transferred sequence may replace a homologous sequence in
the recipient species (“replacing HGT”) or be integrated into the genome in an additive
way (“additive HGT”) [62]. There is evidence that both modes of transfer indeed occur
commonly [63,64], and first inference methods that can distinguish between them have been
developed [65]. To account for replacing and additive HGT, AsymmeTree allows specifying
the probability that an HGT event is replacing (rather than additive). Whenever this is the
case, a gene lineage is chosen among the contemporary lineages and a simultaneous loss
event is executed for this lineage. In case of an additive HGT, a species lineage (rather than
a gene lineage) is chosen among the lineages that exist at the time of the event (excluding
the species lineage that harbors the original gene).

Similar as SaGePhy [26] and Zombi [41], our software implements three options for a
transfer distance bias, which means that closer related gene lineages (resp. species lineages
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in the case of additive HGT) have a higher probability to be replaced (resp. act as recipient
species). The default option is no such bias, in which case the recipient gene or species
lineage is chosen uniformly at random. The two other available options are “inverse” and
“exponential”, in which case 1/αti and e−αti are used as weights for the sampling where
ti is the elapsed time since the last common ancestor of the transferred and the candidate
replaced gene gi or, in case of an additive HGT, the last common ancestor of the origin
and the candidate recipient species si, and α is a user-defined intensity. We note that, in
empirical studies, a log-linear relationship of HGT frequency and phylogenetic distance
was observed in archaea [66,67], indicating that the “exponential” mode models biological
reality best.

Similar to Zombi [41], AsymmeTree accounts for gene transfer from species that go
extinct later in the evolution since the supplied species tree may contain loss branches
(as e.g., generated by the BDP model) and the genes in these branches take part in the
simulation as all others until their species gets extinct.

Gene conversion refers to the replacement of a gene by a homologous gene in the same
species. Therefore, it is modeled similarly to replacing HGT, except that the gene to be
replaced is sampled from the contemporary homologs in the same species. In particular,
analogous options for preferring closer-related genes are available. Note that a gene
conversion event can only occur if at least one other contemporary homolog exists in the
respective species lineage. Therefore, the effective rate for this type of event will in general
be lower than the one specified by the user.

3.4. Evolution Rate Heterogeneity

Directly after simulating the gene trees, the distances in these trees, i.e., the lengths
of the edges (u, v), are equal to the divergence times between u and v. The trees therefore
follow a strict molecular clock [68]. However, this property is quite restrictive and usually
not satisfied for biological data in general, see e.g., [69]. Different approaches to modeling
rate heterogeneity have been implemented in existing tools. For example, SimPhy [25]
samples different types of rate multipliers from Gamma distributions. Species-specific rate
multipliers account for differences between species that arise, e.g., as a consequence of dif-
ferent body sizes, metabolic rates, and generation times [70,71], whereas gene-family- and
paralog-specific rate multipliers capture for example differences in the selective pressure
acting on individual genes. Changes of the selective pressure occur e.g., as a consequence
of gene duplication. The best-known models for the divergence behavior of paralogs
after duplication are neofunctionalization [1] and subfunctionalization [2], see also [72]
for a review. The neofunctionalization model predicts that, after duplication, one copy
acquires new functions through gain-of-function mutations and thus a higher evolution
rate. Subfunctionalization, on the other hand, predicts that both paralogs evolve faster after
the duplication event. ALF [42] accounts for the two phenomena by temporarily altering
the mutation rate in one or both paralogs by a user-defined amount.

In AsymmeTree, we sample rate multipliers for the three different sources, similar as
SimPhy [25]. In case of the paralog-specific heterogeneity, however, we explicitly account
for neofunctionalization and subfunctionalization (described below). We assign to each
edge (u, v) of the gene tree (a) a gene-family-specific baseline rate, (b) a species-specific rate
depending on the edge of the species tree into which (u, v) is embedded, and (c) a series
of paralog-specific rates and the time periods at which each of these rates is active. In the
end, the final evolutionary distance of v from its ancestor u is obtained as the product of
the divergence time between u and v and the three rate multipliers. If there are multiple
periods in (c), we calculate the sum of the piecewise products according to these periods.
In the following, we describe in more detail how the rate multipliers are obtained.

(a) Gene-family-specific rate heterogeneity. Gene-family-specific effects are modeled
as a baseline rate that is assigned to the gene families and the same for all lineages of
the gene family. The function gene_trees() simulates a user-defined number of gene
trees (including rate heterogeneity) and allows to specify a distribution for the baseline
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rate. Available distributions are, e.g., uniform (over a user-defined interval), Gamma,
and exponential.

(b) Species-specific rate heterogeneity. Deviations from a molecular clock makes estima-
tion of divergence times and the dating of species challenging. Several “relaxed molecular
clock models” to tackle this task have been proposed in the literature and their relative
fitness has been assessed, e.g., in [73]. Therein, the authors come to the conclusion that
autocorrelated models, which capture the idea that closely related evolutionary lineages
evolve at similar rates, should be preferred in the estimation of divergence times. The
lognormal model [74] is one of the most popular models of this type and implemented in
AsymmeTree for the assignment of rate multipliers for the lineages of a species tree.

The lognormal model as presented in [74] assumes that, given an edge (u, v) in the
species tree (where u is closer to the root) and the logarithm of the rate at u, the logarithm
of the rate at v has a normal distribution with variance βt, where β is a parameter and t is
the divergence time between u and v. We therefore assign rate multipliers to the nodes of
the species tree S as follows: The root is assigned the rate 1. Then, we process the edges
(u, v) of S in a top-down order and sample the logarithm of the rate rv at v from a normal
distribution with variance βt and a mean normalized in such a way that the expected value
of rv is equal to the (already assigned) rate ru at u. The latter avoids a bias towards higher
or lower rates. For simplicity, the rate for edge (u, v) is then calculated as (ru + rv)/2. The
user can specify the parameter β, where setting β = 0 disables the species-specific rate
heterogeneity. Higher values of β result in smaller autocorrelation, i.e., the similarity of the
rates in closely related species lineages decreases.

(c) Paralog-specific rate heterogeneity. We consider the modes neofunctionalization, sub-
functionalization, and additionally conservation for the behavior of evolution rates of
paralogs after a duplication event. There are not many studies that attempt to determine
the extent of asymmetric evolution rates. Byrne and Wolfe [24] examined pairs of paralogs
in two yeast species that arose as a consequence of whole-genome duplication (WGD).
The authors introduced the parameter R′ = max(Ka, Kb)/ min(Ka, Kb) as measure of asym-
metry, where Ka and Kb are the distances of paralogs a and b from the WGD event. The
placement of the WGD event is determined using a homologous gene in an outgroup
species that diverged before the WGD event as indicated in Figure 3. By definition, the
R′-value always satisfies R′ = 1 + X ≥ 1. Fitting a Gamma distribution to the values of
X observed for paralog pairs in yeast yields k = 0.5 and θ = 2.2 for the shape and scale
parameters, respectively, see Figure 7 below.
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outgroup paralog a 

WGD

paralog b

Ka
Kb

Figure 3. Definition of the branch lengths Ka = (dab + da,out − db,out)/2 and Kb = (dab + db,out −
da,out)/2 of a pair of paralogs used in the definition of the asymmetry parameter R′ [24]. The ancestor,
in this case the yeast WGD event, is indicated by the the square symbol.

The procedure implemented in AsymmeTree aims at modeling R′-values. It is already
described in a rather technical fashion in [15]. In brief, we traverse the gene tree forward
in time and randomly assign to each encountered duplication vertex one of the three
modes (with user-defined sampling weights). In case of neofunctionalization, exactly
one descendant paralog is marked with the status conserved and the others are marked
with the status divergent, whereas in case of subfunctionalization and conservation, all
descendant paralogs are marked with divergent and conserved, respectively. To the
divergent lineages, a rate multiplier 1 + x is assigned where x is drawn from a user-
defined distribution. As default, we use the Gamma distribution fitted to the yeast data
set. In case of a speciation event, the descendant lineages inherit the status and rate from
their parent. Moreover, if a divergent lineage becomes the only surviving lineage in its
species (because of loss of another lineage), its status is changed back to conserved and
the rate multiplier is reset to 1. Note that, therefore, a single edge in the gene tree may be
associated with multiple time periods with different rates.

3.5. Pruning of Loss Branches

The gene tree as simulated at this point may still contain branches that only lead to loss
events. For downstream analyses and the simulation of sequences, however, these branches
may not be of interest. AsymmeTree therefore implements the function prune_losses()
which removes all of these loss branches (as well as the planted root), and suppresses all
vertices that become superfluous by this procedure, i.e., vertices with a single child.

4. Simulation of Sequences
4.1. Overview

AsymmeTree supports the simulation of nucleotide and amino acid sequences using
time-continuous Markov models, as usually applied for this purpose, see, e.g., [31,32,75] for
textbooks. In the previous sections, we have described the simulation of (pruned) gene trees
whose edges are endowed with a phylogenetic distance. Starting from the root, sequences
are evolved towards the leaves of the tree where the branches are processed independently.
The distance attribute of an edge always marks the expected number of substitutions per
site that occur along this edge. We remark that PAM distances as, e.g., used optionally in
ALF [42] are not supported in AsymmeTree. In addition, the distance of an edge (rather than
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the divergence time) is also used as the duration of the Markov process in which insertions
and deletions are drawn.

The simulation of sequences (managed by the class Evolver in the subpackage
seqevolve) takes as input a simulated gene tree, a substitution model, and optionally
models for indel formation and among-site substitution rate heterogeneity. We will discuss
the three types of models in the following sections. Moreover, it is possible to either specify
a start sequence that is assigned to the root of the tree or alternatively the length of the
sequence of the root. In the latter case, a start sequence of the specified length is generated at
random based on the equilibrium frequencies of the substitution model. Note that, if indels
are enabled, the lengths of the sequences will in general change during the simulation and
vary between the branches of the tree.

4.2. Substitution Model

A substitution model usually comprises an exchangeability matrix S and a vector π
containing the equilibrium frequencies of the alphabet of nucleobases or amino acids. From
this, the rate matrix Q can be computed as SΠ where Π = diag{π1, . . . , π|A|} [32]. The
substitution probability matrix, in turn, is given by P = eQt where t is the distance associ-
ated with an edge, possibly multiplied with a rate multiplier accounting for among-site
rate heterogeneity (see Section 4.4). In the simulation, therefore, P has to be computed for
each combination of distances (and thus edges) and rate multipliers. A single substitution
probability matrix is computed efficiently by AsymmeTree using matrix diagonalization
based on SciPy [76]. However, if there is a large number of classes of sites such that each
class has a different rate multiplier or if the option for sitewise heterogeneity is enabled, the
number of matrices that have to be computed can become very large, thus slowing down
the simulation.

For this case, we evolve sequences using the Gillespie algorithm [77], which does not
proceed edge-wise from one vertex to one of its children, but instead proceeds in a more
fine-grained fashion. More precisely, it processes each site of the sequence individually and
mutates it in a Markov process whose duration is the length of the edge. We remark that,
e.g., INDELible [35] also offers both variants.

The following models for nucleotide substitution are currently available: Jukes &
Cantor [78], Kimura [79], and the general time-reversible model (GTR) [80]. For the
evolution of amino acid sequences, AsymmeTree includes options for the following models:
Jukes & Cantor [78], Dayhoff [81], BLOSUM62 [82], JTT [83], WAG [84], and LG [85]. In [86],
advances in the field of substitution models are surveyed and more sophisticated, data-
specific models are advocated, see also [87]. Asymmetree is already able to utilize such
recent developments since it allows the specification of custom substitution models for
both nucleotide and amino acids in PAML [88] format.

4.3. Indel Model

Similar as substitutions, the formation of insertions and deletions is modeled as a
time-continuous Markov process. For each edge of the gene tree, the duration of this
process is given by the phylogenetic distance associated with the edge. In addition, the user
specifies the per-site rates for the occurrence of insertions and deletions. The length of an
indel is drawn from a user-defined distribution. Zipfian or negative binomial distributions
are typically used for this purpose [34,42]. However, we also allow for the specification
of, e.g., a constant value or a uniform distribution over an interval and provide the option
to determine a minimal and maximal length at which the distributions are truncated. As
default, we follow [42] and use a Zipfian distribution with 1.821 as value of its single
parameter, which was fitted to gaps in MSAs of real-life sequence in [89].

In case of an insertion, the new sites are drawn randomly from the alphabet of the
specified substitution model weighted by the equilibrium frequencies. Given the current
length l of the sequence, the starting position of an insertion can be drawn uniformly from
the interval [1, l + 1]. In contrast, Cartwright [34] pointed out that placing a deletion is more
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complicated since placing it entirely within the sequence results in a higher deletion rate in
the middle of the sequence than at the ends. We therefore follow the approach implemented
in Dawg [34], which assumes that the sequence is embedded into a larger sequence. This
ensures that deletions occur uniformly along the sequence. We note, however, that this
introduces a bias towards shorter deletions and thus a lower expected value than that of
the specified length distribution.

4.4. Heterogeneity Model

Selective pressure usually varies among the sites of a sequence under evolution. To
model this, rate factors r for single sites or groups of sites are commonly drawn from a
Gamma distribution (+Γ-model) with mean 1 and parameter α [34,35,42,90] (where smaller
values for α correspond to higher heterogeneity). The rate matrix rQ is then used instead
of Q.

AsymmeTree supports two modes of the +Γ-model. The user can specify a number of
classes to which the sites are assigned uniformly at random such that sites of the same class
share a common factor r. Alternatively, sitewise heterogeneity can be enabled, i.e., every
site obtains an individual rate multiplier. In both cases, the rate or class membership is
inherited from the parent sites (i.e., the corresponding site in the parental lineage) during the
evolution along a tree. Note that, by default, the Gillespie algorithm is used if among-site
rate heterogeneity is enabled.

Another aspect of among-site heterogeneity is modeling invariant sites (+I-model),
i.e., sites that never mutate at all as a result of very strong selective pressure [91]. To this
end, the (expected) proportion p of invariant sites can be specified by the user, and each
site obtains the status invariant with probability p. Note that p > 0 affects the overall
substitution rate. In particular, the rates of the non-invariant sites are not adjusted to
compensate the decreased number of expected substitution over all sites.

4.5. True Alignment

Once the sequences have been simulated along the tree, they can be written without
gaps to a file in the fasta format. In addition, AsymmeTree can construct the “true” multiple
sequence alignment, i.e., introduce gaps such that the sites in one column are descendants
of one another or a common site in an ancestral sequence. Constructing the true alignment
is a trivial task if indels were not enabled. In the general case, AsymmeTree achieves this by
assigning unique identifiers to new sites, which are then inherited by descendant sequences.
The function true_alignment() of an Evolver instance can be used to construct the true
MSA and optionally write it into a file. Supported formats for the MSA are, e.g., phylip
and clustal.

5. Benchmarking and Validation

A series of simulation experiments was conducted to validate that AsymmeTree indeed
generates evolutionary scenarios in accordance with theoretical predictions. To validate
the implementation of species tree simulation conditioned on the number N of extant
species, we simulated trees with AsymmeTree and TreeSim using the same combination
of parameters, and compared the distributions of the tree age. There are no significant
difference between the two tools (Figure 4).
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Figure 4. Simulations of species trees conditioned on the number N of extant species. The his-
togram compares the distribution of the tree age with the age of trees that were simulated with
TreeSim [23] with the same parameters. The speciation rate was fixed to 1 and for each extinction
rate r ∈ {0, 0.2, 0.5, 0.8} (columns), 10,000 trees with 20 extant species were generated with each of
the two tools. The distributions were compared using the standard non-parametric Mann–Whitney
U test. The resulting p-values are indicated.

Different options for a distance bias for selecting the replaced gene or the recipient
species in HGT events affect the elapsed time between an HGT event and the last common
ancestor of the two involved gene or species lineages, respectively. Scenarios simulated
with the “inverse” and the “exponential” bias, as expected, result in a much lower average
elapsed time compared to scenarios without distance biases. The effect is stronger in case
of the “inverse” bias (Figure 5).
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Figure 5. Validation of the transfer distance bias. In total, 800 gene family histories were simulated
each consisting of a dated species tree (no. of leaves drawn randomly from the interval [10, 100])
and a dated gene tree (different combinations of duplication, loss, and HGT rates were used). The
probability that an HGT event is replacing was set to 0.5. For replacing and additive HGT, the
box plots represent the divergence times of the transferred and the replaced gene lineages and the
divergence time of the origin and recipient species, resp., at the time of the respective HGT event.

We validated the implementation of the lognormal model for (species-specific) evolu-
tion rate heterogeneity. To this end, we simulated 10,000 species trees and assigned rates
to the lineages in these tree using different values for the variance multiplier β. Figure 6
shows that the assignment process along the tree is not biased towards increasing or de-
creasing rates and that the logarithm of the rates assigned to the leaves is indeed normally
distributed. The effect of paralog-specific rate heterogeneity was investigated by measuring
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the R′-values of paralog pairs in the same species. The other two sources of rate hetero-
geneity were disabled for this purpose. Figure 7 (right panel) shows the distribution of the
R′-values obtained from 5000 simulated scenarios. The Gamma distribution re-fitted to
these values is very similar to the distribution used for sampling the paralog-specific rate
factors, i.e., the distribution fitted to the yeast data from [24] (left panel).
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Figure 6. Validation of the lognormal model for introducing species specific evolution rate hetero-
geneity. For each of the considered values of β, 10,000 species trees were generated using the Yule
model (duration 1.0, birth rate 3.0). The plots show (normalized) histograms of the absolute values
(blue) and the logarithm (orange) of the rate multipliers that were assigned to the leaves of the trees.
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Figure 7. Left: Histogram of R′-values measured for paralog pairs in yeast taken from [24]. In addi-
tion, the probability density function of the fitted Gamma distribution is shown. Right: Histogram
of R′-values that were extracted from 5000 simulated scenarios where all paralog pairs in the same
species were taken into account. The following parameters were used for all scenarios (default if not
specified): species tree: 30 leaves, time span of 1, innovation model; gene tree: duplication and loss
rate 0.5; rate heterogeneity: Gamma distribution k = 0.5 and θ = 2.2, only neofunctionalization. The
Gamma distribution that was re-fitted to the extracted R′-values is shown in blue.
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Finally, we validated the simulation of sequence evolution represented by two mod-
els of nucleotide substitution (JC69 and K80) and two empirical model for amino acid
substitution (WAG and JTT). To this end, we first simulated 100 gene trees, each having
50 leaves and covering a time span of one unit. After introducing rate heterogeneity which
sets the length of the tree edges and thus the expected number of substitutions per site,
we simulated sequences of length 500 nucleotides or amino acids (without indels) along
these trees. For the two nucleotide models, we used the well-known formulas to calculate
the pairwise maximum-likelihood distances of the sequences (see, e.g., [32]). In case of
the amino acid sequences, we used TREE-PUZZLE [92] to re-estimate the distances under
the same model that was used for their simulation. In Figure 8, the re-estimated pairwise
distances are plotted against the true distances, i.e., the sum of the edge lengths on the
path between the two respective genes. In addition, we simulated sequences along trees
consisting of a single edge and assessed the effect of the length of this edge and the length
of the sequence on the distance re-estimation. Figures 9 and 10 show the results of this
analysis for the two alternative algorithms for sequence evolution, that is, computation
of the substitution probability matrix and the Gillespie algorithm, respectively. The two
figures show no qualitative difference, however, we note that the Gillespie version was
slightly slower on our machine. The formulas for computing the distance is not applicable
if too many nucleotide substitutions occurred. Such instances are not included in the
box plots, which explains the bias of the nucleotide models towards smaller estimated
distances. The proportion of instances that had to be excluded as a consequence of this
issue is also indicated in the plots. In contrast, the re-estimation of distances of the amino
acid sequences does not yet show such a saturation effect even for the highest considered
value of 5 expected substitution per site. As expected, the variance of the re-estimated
distances decreases when the sequences become longer.

Figure 8. Re-estimation of phylogenetic distances from simulated sequences. We generated
100 species trees each containing 50 leaves and covering a time span of one unit with the inno-
vation model, and generated one gene tree along each of them (without duplications, losses, and
HGT). After introducing species-specific rate heterogeneity with a variance parameter β = 0.2, we
simulated sequences of length 500 along these trees for the two nucleotide substitution models
JC69 and K80 and the two amino acid substitution models WAG and JTT. The distances were then
re-estimated using a closed formula (JC69 and K80) [32] or, in case of the empirical models WAG and
JTT, using TREE-PUZZLE [92].
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Figure 9. Re-estimation of phylogenetic distances from sequences that were simulated using the
substitution probability matrix. For each combination of a substitution model (subpanels), distance d
(x-axis), and sequence length (colors), we randomly generated 100 sequences based on th equilibrium
frequencies and evolve them along a tree consisting of a single edge of length d. The distances were
then re-estimated using a closed formula (JC69 and K80) [32] or, in case of the empirical models WAG
and JTT, using TREE-PUZZLE [92]. In the former case, the distances may be undefined (“NaN”). The
red lines and the bars in faded colors indicate the true distance and the proportion of instances for
which this is the case, respectively.
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Figure 10. Re-estimation of phylogenetic distances from sequences that were simulated using the
Gillespie algorithm. See caption of Figure 9 for details.

AsymmeTree simulates species trees with 10,000 extant species and a gene family along
this tree (with moderate duplication and HGT rates) typically in a few seconds. As a
potential time-critical step, we benchmarked the simulation of sequences in some more
detail and compared AsymmeTree to other tools for this task. Not surprisingly, Figure 11
shows that our Python package cannot compete in terms of running times with software
that is written in C or C++ such as Seq-Gen [33] or INDELible [35]. However, it clearly
outperforms the Python package Pyvolve [37].



Software 2022, 1 294

10 2

10 1

100

101

tim
e 

[s
]

no. of leaves: 20 no. of leaves: 50 no. of leaves: 100

100 500 2000
seq. length

10 2

10 1

100

101

tim
e 

[s
]

100 500 2000
seq. length

100 500 2000
seq. length

seqgen
indelible
alf
pyvolve
asymmetree

Figure 11. Running time comparison of various tools for sequence evolution. For each combination
of number of leaves N ∈ {20, 50, 100} (columns) and sequence length l ∈ {100, 500, 2000} (x-axis),
100 (species) trees were simulated that cover a time span of 1 and amino acid sequences were
evolved along these trees using the substitution model WAG [84] and each of the tools Seq-Gen [33],
INDELible [35], ALF [42], Pyvolve [37], and AsymmeTree. In the top row, rate heterogeneity was
disabled. In the bottom row, the +Γ model was used with α = 1 and five classes. In the latter case,
the Gillespie algorithm was used if available (i.e., in INDELible and AsymmeTree). The measures
running time includes reading the tree from file (and reading a configuration file for some tools),
simulation of the sequences, and writing them into a file in fasta format. All benchmarks were run on
an off-the-shelf laptop (Intel® Core™ i7-4702MQ processor, 16 GB RAM, Ubuntu 20.04).

6. Availability

AsymmeTree is entirely written in Python. It requires Python version 3.7 or higher and
relies on the packages NumPy, SciPy, NetworkX, Matplotlib, and tralda. It is hosted on
GitHub (https://github.com/david-schaller/AsymmeTree (accessed on 6 April 2022)) and
distributed under the license GNU GPL v3. The GitHub repository also provides a detailed
manual and a documentation generated from the source code. For an easy installation, it is
also available on PyPI (https://pypi.org/project/asymmetree/ (accessed on 6 April 2022)).

7. Concluding Remarks

AsymmeTree is a (pure-)Python package for generating complex gene family histories,
including species and gene tree, as well as, sequence evolution. The simulated data are
primarily intended to be used as “ground truth” in the assessment of new tools developed
by the phylogenetics research community. To our knowledge, it is the first package of its
kind that is implemented as a library rather than a stand-alone tool. It is therefore ideally
suited for large-scale benchmarking of new algorithms and workflows, where performance
assessment over a broad spectrum of parameter combinations is required. Earlier versions

https://github.com/david-schaller/AsymmeTree
https://pypi.org/project/asymmetree/
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of AsymmeTree have been employed in a series of studies to evaluate the potential of best
match graphs for the reconstruction of orthology [15,16] and to explore the information
contained later-divergence-time graphs—a formal model for indirect methods of HGT
inference [93]. The experiences with these applications have helped shape the current
version of AsymmeTree and demonstrated the advantage of the organization as a library for
automatized benchmarking purposes.

AsymmeTree focuses on gene family histories and is not intended for applications that
require the detailed simulation of complete genomes. It appears possible, however, to
extend AsymmeTree both towards smaller and larger scales: Local genomic organization
could be introduced by adding a data layer that keeps track of local gene clusters and
their internal order. Such an extension could be useful, e.g., to assess the added value of
synteny data in orthology detection [94,95]. Using the fact that the gene trees simulated by
AsymmeTree are dated, it would be possible to simulate a “domain tree” within the gene
trees in much the same way as gene trees are constructed along a species tree. Such an
extension could be used, e.g., to assess tools that evaluate (protein) domain evolution [96].
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