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Abstract: Parkinson’s disease (PD) is a neurodegenerative condition generated by the dysfunction
of brain cells and their 60–80% inability to produce dopamine, an organic chemical responsible
for controlling a person’s movement. This condition causes PD symptoms to appear. Diagnosis
involves many physical and psychological tests and specialist examinations of the patient’s nervous
system, which causes several issues. The methodology method of early diagnosis of PD is based on
analysing voice disorders. This method extracts a set of features from a recording of the person’s
voice. Then machine-learning (ML) methods are used to analyse and diagnose the recorded voice to
distinguish Parkinson’s cases from healthy ones. This paper proposes novel techniques to optimize
the techniques for early diagnosis of PD by evaluating selected features and hyperparameter tuning
of ML algorithms for diagnosing PD based on voice disorders. The dataset was balanced by the
synthetic minority oversampling technique (SMOTE) and features were arranged according to
their contribution to the target characteristic by the recursive feature elimination (RFE) algorithm.
We applied two algorithms, t-distributed stochastic neighbour embedding (t-SNE) and principal
component analysis (PCA), to reduce the dimensions of the dataset. Both t-SNE and PCA finally fed
the resulting features into the classifiers support-vector machine (SVM), K-nearest neighbours (KNN),
decision tree (DT), random forest (RF), and multilayer perception (MLP). Experimental results proved
that the proposed techniques were superior to existing studies in which RF with the t-SNE algorithm
yielded an accuracy of 97%, precision of 96.50%, recall of 94%, and F1-score of 95%. In addition, MLP
with the PCA algorithm yielded an accuracy of 98%, precision of 97.66%, recall of 96%, and F1-score
of 96.66%.

Keywords: Parkinson’s disease; exploratory data analysis; coefficient of variation; t-SNE; REF;
machine learning

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disease caused by the death of neu-
rons (called substantia nigra) that generate dopamine [1]. Dopamine is an organic chemical
of the catecholamine and phenethylamine families that controls physical movement by
transmitting messages between the brain and the substantia nigra, thereby enabling co-
ordinated movement [2]. When 60–80% of the cells that produce dopamine are lost, the
amount of dopamine is not enough to control a person’s movements and, thus, symptoms
of PD appear [3]. The lack of dopamine neuron production leads to losing control over the
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body’s motor functions [4]. Four symptoms of PD are specific to the motor system, includ-
ing tremors (shaking of jaws, hands, legs, and arms), rigidity (inflexibility of limbs and
trunk), poor balance, and slow movement [5]. Nonmotor features of PD include dementia,
depression, restless legs, temperature sensitivity, and digestion problems [6]. Although PD
is still incurable, some treatment options for patients with motor and nonmotor symptoms
have been developed. These options include noninvasive (drugs) and invasive (surgical)
detection and treatment methods. The medications are used to block nerve impulses to
control the motor system [7]. All drugs and surgical procedures have side effects. Voice
disorder testing is a useful and noninvasive option for the early detection of PD since ap-
proximately 90% of PD patients have dysphonia or vocal impairment, differentiating them
from healthy people [8]. Therefore, diagnosing PD through voice disorders is one of the
promising and effective methods. Affecting approximately 10 million people worldwide,
PD is the second type of neurodegenerative disorder after Alzheimer’s Disease [9] After
age 65, people are more susceptible to the disease, and men are more susceptible than
women. Common symptoms of this disease, such as loss of smell, constipation, and sleep
disturbances, appear years before motor symptoms do. Thereafter, new symptoms such as
tremors, imbalance, and voice impairments also appear. In the early stages, appropriate
treatments that help slow the progression of the disease or stop it from developing are
essential. Nevertheless, diagnosing PD according to clinical symptoms is still difficult and
complex [10]. Since 90% of people with Parkinson’s have a voice disorder, detecting PD
using voice data is one of the most important approaches recently [11]. In this approach,
acoustic signals play an important role in the early diagnosis of PD [12]. In the early
stages of PD, voice abnormalities are indistinguishable for listeners but can be discerned by
analysing voice cues [13]. The PD and movement disorders are divided into two phases:
the preclinical phase, where the patient suffers from neurodegeneration but there are no
clinical indications, and the prodromal phase, where the patient suffers from clinical symp-
toms but there are not enough indications for a diagnosis [14]. Therefore, early diagnosis
in both phases is essential to allow doctors to discover the disease and provide medical
intervention on time. To date, there are no confirmed biomarkers to provide early detection
of PD efficiently. Hence, there is an urgent need to use artificial intelligence (AI) techniques
to help the healthcare sector diagnose PD early and effectively [15]. Thus, developing a
computer-aided diagnostic system is necessary to analyse voice data to distinguish between
PWP and healthy voices. Some researchers have recently proposed noninvasive methods
for diagnosing PD using acoustic-signal analysis [16].

Although there are several efforts from researchers to provide satisfactory results
for diagnosing PD, achieving better accuracy is still yet to be realized. Hence, this paper
proposes novel techniques to optimize the techniques of early diagnosis of PD by differ-
entiating patients through acoustic-data analysis to help neurologists make appropriate
diagnostic decisions.

Parkinson’s disease is a neurodegenerative condition that affects a person’s move-
ment due to a lack of dopamine production in the brain. Early diagnosis of Parkinson’s
disease is crucial for timely treatment and management of the condition. However, the
current diagnostic process involves multiple tests and specialist examinations, which can
be time-consuming and costly. This study proposes a novel approach to early diagnosis by
analyzing voice disorders associated with Parkinson’s disease. The researchers extract a
set of features from recordings of a person’s voice and apply machine-learning methods to
analyze and distinguish between Parkinson’s cases and healthy individuals.

However, it is inferred to determine whether the proposed techniques, which involve
feature selection, hyperparameter tuning, dataset balancing, and dimension reduction,
improve the accuracy of Parkinson’s disease diagnosis based on voice analysis. Addressing
a knowledge gap, the study addresses the need for improved techniques in the early
detection of Parkinson’s disease. By exploring the potential of analyzing voice disorders
and employing machine-learning algorithms, the study offers a novel approach to enhance
diagnostic accuracy. Guiding the methodology, the purpose is to guide the selection of
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appropriate methods and techniques to achieve the study’s objectives. They employ feature
selection, hyperparameter tuning, dataset balancing, and dimension reduction techniques
to optimize the diagnostic process.

Investigating machine-learning methods that utilize feature selection and reduction
techniques is of great significance in various fields, including healthcare, finance, and image
recognition, among others [17]. Feature selection and reduction methods aim to identify
the most relevant and informative features from a given dataset, which can improve the
performance and interpretability of machine-learning models. These techniques play a
crucial role in the accurate diagnosis of Parkinson’s disease [18]. One major advantage
of feature selection and reduction methods is the ability to handle high-dimensional data.
In many real-world applications, datasets often contain a large number of features, some
of which may be redundant or irrelevant. Analyzing such datasets directly can lead to
computational inefficiency, increased model complexity, and overfitting. Feature selection
methods help identify a subset of features that have the most discriminatory power and
contribute the most to the prediction task [19]. By reducing the dimensionality of the data,
these methods can improve the computational efficiency and generalization capability of
machine-learning models. Furthermore, feature selection and reduction techniques can
enhance model interpretability [20]. In many domains, understanding the factors or features
that contribute to a particular prediction is crucial for gaining insights into the underlying
process or making informed decisions. By selecting a smaller set of relevant features, the
resulting model becomes more transparent, and the relationship between the features
and the target variable becomes easier to comprehend [21]. In conclusion, investigating
machine-learning methods that employ feature selection and reduction techniques has
significant implications across various domains. In the context of the paper on Parkinson’s
disease detection, these methods can help identify the most informative acoustic features
for early diagnosis. However, careful consideration of the challenges and critical issues
associated with feature selection is necessary to ensure reliable and robust results.

The contributions of this paper can be summarized as follows:

• Proposing a new approach for early detection and diagnosis of PD based on acoustic
signals to help doctors with early diagnosis and timely medical interventions;

• Proposing and implementing SMOTE technique for a balanced dataset;
• Apply Pearson’s coefficient to analyze the correlation between all features and remove

attributes with a very high correlation;
• Apply the RFE algorithm to give each feature a percentage of its contribution to

diagnosing PD;
• Apply the t-SNE and PCA algorithms to reduce the number of features in the dataset

and select the features correlated with the target characteristic.

The rest of this paper is organised as follows. Section 2 provides related work. Section 3
describes the process of PD detection by dysphonia. Section 3 analyses the materials and
methods applied in the study, and presents subsections on processing the features, finding
correlations between them and removing the outliers. Section 4 describes the experiment
setup. Section 5 presents the results of the analysis and compares the results with those of
the literature. Section 6 provides the conclusion.

2. Related Work

This paper study is distinguished from current studies by developing diagnostic
systems with various methodologies and tools that can effectively analyze audio data and
distinguish between Parkinson’s and healthy people with high precision.

Hui et al. [22] proposed a CNN for analyzing the EEG recordings of 16 healthy subjects
and 15 Parkinson’s patients. Gabor transform converted the EEG signals into spectral dia-
grams to train a CNN. Majid et al. [23] developed an approach based on spatial patterns of
PD diagnosis for patients taking medication and those not taking medication. The EEG sig-
nals were processed to remove noise by a common spatial pattern. Features were extracted
from the optimized signals and fed into machine-learning classifiers. The classifier achieved
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the best results with features extracted from beta and alpha ranges with an accuracy of 95%.
Luigi et al. [24] The frequency features of the velocity and angle signals were extracted,
the features were selected, and the machine-learning classifiers were optimized for FOG
capture and before. The FOG detection network achieved good results and validated the
patients. The network achieved a sensitivity of 84.1%, a specificity of 85.9%, and an accuracy
of 86.1%. Thus, the network can predict FOG before it happens. Nalini et al. [25] utilized
three deep-learning networks, RNN, LSTM, and MLP, for diagnosing the voice charac-
teristics of PD patients. They provided loss-function curves for PD detection; the LSTM
network achieved better performance than other networks. Arti et al. [26] utilized three ML
and ANN algorithms to diagnose a speech dataset. Data collection and feature selection
have been improved based on the wrapper and filtering method. SVM and KNN achieved
an accuracy of 87.17%, while naïve Bayes had an accuracy of 74.11%. Hajer et al. [27] also
used three ML algorithms for diagnosing a PD dataset to distinguish PD patients from
healthy controls. The data were analyzed by linear discriminant analysis (LDA) and PCA
algorithms. K-means and DBSCAN models are built based on feature-reduction algorithms.
LDA performs better than PCA; thus, its output is fed into clustering algorithms. DB-
SCAN achieved an accuracy of 64%, a sensitivity of 78.13%, and a specificity of 38.89%.
Moumita et al. [28] designed three schemes based on decision-forest and SysFor algorithms
through ForestPA features for PD diagnosis. The approach requires minimal decision trees
to achieve good accuracy. Increasing the density of decision trees for dynamic training and
testing new samples proves to be the best method for PD detection. The decision tree with
ForestPA features reached an accuracy of 94.12%. Sarkar et al. [29] collected and analysed
acoustic data from 40 people: 20 with PD and 20 that were normal. The researchers used
support-vector machines (SVM) and K-nearest-neighbour (KNN) classifiers to analyse and
diagnose samples. To diagnose a speech disorder in PD patients, Little et al. [30] proposed
an algorithm to measure dysphonia and analyse speech methods. The main objective was
to distinguish between PD and normal patients through two features, namely recurrence
and fractal scaling, which distinguish distorted sounds from normal sounds and applied
the pitch period entropy (PPE) method to diagnose a dataset consisting of 23 patients
with PD and 8 healthy subjects through the extraction of dysphonia features. The method
achieved an accuracy of 91.4%. Canturk et al. [31] presented four methods for selecting
features and classified the selected features into six categories. The system achieved an
accuracy of 57.5% with LOSO CV and an accuracy of 68.94% with fold CV. Li et al. [32]
extracted hybrid features, and then diagnosed these features through SVM; the algorithm
achieved 82.5% accuracy. Benba et al. [33] extracted features by Mel-frequency cepstral
coefficients and rated them by SVM, and the algorithm achieved 82.5% accuracy with LOSO
CV. They also applied human factor cepstral coefficients to extract features from vowels,
achieving an accuracy of 87.5% with LOSO CV. Almeida et al. [34] extracted the features
of phonemic pronunciation using several methods, and PD was detected on the basis of
several classifiers. Das et al. [35] applied partial least squares to reduce dimensions and
applied a self-organising map (SOM) for clustering. Finally, PD was detected by the unified
PD rating scale. Yuvaraj et al. [36] studied emotional information such as happiness, anger,
fear, sadness, and disgust to diagnose PD and distinguish it from normal states through
the use of EEG signals. Spectral decomposition was also applied with KNN and SVM
classifiers, and the researchers observed that emotions were reduced in PD patients [37,38].
Yuvaraj et al. [39] applied higher-order spectra to extract features from electroencephalog-
raphy signals to diagnose PD from normal cases. All classifiers achieved promising results.
Sivaranjini et al. [40] used the AlexNet model to diagnose MR images to distinguish PD
from normal cases; the model reached an accuracy of 88.9%. Ali et al. [41] extracted features
and selected the most important ones, ranking them by the chi-square statistical method for
PD diagnosis. Senturk et al. [42] applied methods to choose features and remove unessen-
tial ones, and the selected features were diagnosed through ML methods for early detection
of PD. Gupta et al. [43] employed an optimised version of the crow search algorithm for
early detection of PD, in which the system achieved superior accuracy.
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Through previous studies, it is noted that there are limitations in the techniques used
and the failure to achieve satisfactory results for the automated and early diagnosis of PD.

3. Proposed Approach for PD Detection

This section, as shown in Figure 1, discusses the development of an automated tech-
nique for analyzing acoustic signals of a PD dataset for early diagnosis of PD. To improve
the dataset by processing outliers and replacing missing values, a coefficient of variation
was applied to measure the relative dispersion of the data points and to balance the dataset
by the SMOTE method. The association of all features with the target feature was evaluated
through the correlation coefficient. The relationship between features and the proportion
of positive and negative correlation for each feature was measured by the RFE algorithm.
To select the most critical features, t-SNE and PCA algorithms were applied. Finally, the
selected features were classified by five classifiers.
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Figure 1. Proposed approach for early diagnosis of PD dataset.

3.1. Description of Dataset

The PD dataset used in this paper for the early detection of PD is based on voice signals,
which was created and donated by Max Little of Oxford University to the UCI Machine
Learning Repository [44]. The dataset is considered one of the most efficient datasets
collected, prepared, and evaluated by many physicians. Many researchers have developed
automated techniques and evaluated them on this dataset. It is still the destination of many
researchers and those interested in the early detection of PD. The dataset of voice signals
contains 195 biomedical voices which are divided into 147 phonetics for PD patients and 48
for healthy people [45]. Table 1 shows 23 features extracted from voice signals that describe
the voice measure and interpretation of each feature.
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Table 1. PD Dataset with interpretation of voice measures.

No Voice Measure Description Dtype

1 MDVP: Fo (Hz) Average_vocal_fundamental_frequency float64
2 MDVP: Fhi (Hz) Maximum_vocal_fundamental_frequency float64
3 MDVP: Flo (Hz) Minimum_vocal_fundamental_frequency float64
4 MDVP: Jitter (%) Several_measures_of_variation-in float64
5 MDVP: Jitter (Abs) Fundamental_frequency float64
6 MDVP: RAP float64
7 MDVP: PPQ float64
8 Jitter: DDP float64
9 MDVP: Shimmer Several_measures_of_variation_in_amplitude float64
10 MDVP: Shimmer (dB) float64
11 Shimmer: APQ3 float64
12 Shimmer: APQ5 float64
13 MDVP: APQ float64
14 Shimmer: DDA float64
15 NHR Two measures_of_ratio_of_noise_to_tonal float64
16 HNR Components_in_the_voice float64

17 Status Health_status_of-the_subject:1
Parkinson’s,0-healthy object

18 RPDE Two_nonlinear_dynamical_complexity float64
19 DFA Signal_fractal_scaling_exponent float64
20 Spread1 Three_nonlinear_measures_of_fundamental float64
21 Spread2 Frequency_variation float64
22 D2 Measures float64
23 PPE float64

3.2. Data Processing

Data processing is the process of converting raw data into a useful and understandable
form. Data analytics is one of the most significant steps to ensure the success of subsequent
measures. Data processing consists of two steps: (1) the imputation of data, which involves
replacing missing values, removing outliers, and deleting duplicated values, and (2) the
validation of data to ensure completeness and consistency [46]. In this paper, we noticed
that the dataset does not contain duplicate values as the number of rows is similar to
the number of unique column values. We also note that all the features are continuous
“numerical variables” types except for the “status” feature, which is of a binary categorical
type. Thus, the data of the feature must be converted to an object data type, as shown
in Table 1. If discrepancies are discovered during the data-processing steps, appropriate
actions are taken based on the specific nature and extent of the discrepancies. This may
involve imputing missing values, handling outliers, removing duplicates, or investigating
and resolving data-validation issues. The goal is to ensure the integrity and quality of the
data for accurate and reliable analysis.

3.3. Exploratory Data Analysis (EDA)
3.3.1. Detecting Outliers

The PD dataset contains 23 features of voice samples. The skewness method of
statistical analysis was applied to measure the symmetry of distribution in the dataset.
When feature values are on the left or right side of a median, the feature values are described
as skewed. The data are symmetric when the mean, median, and mode are at the same
point. The data show positive skewness when the distribution of the tail to the right side is
longer or fatter, which means that the mean and median are greater than the mode [47].

The data show negative skewness when the tail distribution to the left side is longer
or fatter than the right side, which means that the mean and median are less than the mode.
In this paper, we divided the dataset into seven groups, where the features of group 1,
namely, MDVP: Fo (Hz), MDVP: Fhi (Hz) and MDVP: Flo (Hz), have a right skewness,
which means that the mean value is greater than the median value. Furthermore, the
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features of group 2, namely, MDVP: Jitter (%), MDVP: Jitter (Abs), MDVP: RAP, MDVP:
PPQ and Jitter: DDP, have a right skewness, which means that the mean value is greater
than the median value. Similarly, the features of group 3, namely, MDVP: Shimmer, MDVP:
Shimmer (dB), Shimmer: APQ3, Shimmer: APQ5, MDVP: APQ and Shimmer: DDA, have
a right skewness, which means that the mean value is greater than the median value. For
group 4 features, namely, NHR and HNR, the NHR features have a right skewness, which
means that the mean value is greater than the median value, whereas the HNR features
have a left skewness, which means that the mean value is less than the median value. For
group 5 features, namely, RPDE and D2, the median and mean are close, indicating minimal
skewness. For the feature of group 6, DFA, the median and mean are close to each other,
indicating negligible skewness. For the Group 7 features, namely, spread1, spread2, and
PPE, the mean appears to be slightly greater than the median, and, therefore, the traits have
positive skewness. Table 2 describes the skewness value for each feature.

Table 2. Value of skewness for the dataset.

Feature No. Voice Measure Skewness Value

1 MDVP: Fo (Hz) 0.5872
2 MDVP: Fhi (Hz) 2.5225
3 MDVP: Flo (Hz) 1.208
4 MDVP: Jitter (%) 3.0612
5 MDVP: Jitter (Abs) 2.6287
6 MDVP: RAP 3.3348
7 MDVP: PPQ 3.0502
8 Jitter: DDP 3.3361
9 MDVP: Shimmer 1.6536
10 MDVP: Shimmer (dB) 1.984
11 Shimmer: APQ3 1.5684
12 Shimmer: APQ5 1.7848
13 MDVP: APQ 2.5979
14 Shimmer: DDA 1.5684
15 NHR 4.1882
16 HNR 0.5104
17 RPDE −0.1423
18 DFA −0.033
19 spread1 0.4288
20 spread2 0.1433
21 D2 0.4271
22 PPE 0.7913

3.3.2. Coefficient of Variation

The coefficient of variation (CV) is a statistical measurement of the relative dispersion
of data points in a dataset about the mean, where the variability increases as the number
increases. This measure also shows the variability of the dataset with respect to the mean.
The purpose of applying CV to the features of a dataset is to assess the accuracy of the
technique [48]. CV is also applied when the standard deviation is proportional to the mean,
which is a measure of variability. CV is more accurate than the standard deviation. When a
CV is less than 1, it has a low variance, and when a CV is higher than 1, its variance is high.
Equation (1) shows the mathematical formula for CV. Table 3 describes the CV values for
each feature in the dataset for healthy subjects and patients with PD.

CV =
Std Dev

Mean
(1)
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Table 3. Value of CV for the dataset.

Feature No. Voice Measure
Coefficient of Variation

Healthy PD Patients

1 MDVP: Fo (Hz) 28.98302 22.2812234
2 MDVP: Fhi (Hz) 43.25187 46.87884421
3 MDVP: Flo (Hz) 40.46427 30.19298691
4 MDVP: Jitter (%) 53.14539 74.96921231
5 MDVP: Jitter (Abs) 64.02608 72.61445527
6 MDVP: RAP 55.38599 86.25906336
7 MDVP: PPQ 45.87769 76.8525638
8 Jitter: DDP 55.39028 86.25436548
9 MDVP: Shimmer 31.47526 59.33205227
10 MDVP: Shimmer (dB) 35.48279 64.69356531
11 Shimmer: APQ3 36.36572 61.08510866
12 Shimmer: APQ5 30.74724 63.33464804
13 MDVP: APQ 28.74997 65.44260656
14 Shimmer: DDA 36.366 61.08457075
15 NHR 166.2361 152.1592919
16 HNR 13.91699 20.68815053
17 RPDE 20.8335 19.59196532
18 DFA 7.380315 7.552488454
19 spread1 −9.50964 −18.2020606
20 spread2 39.29221 31.35796616
21 D2 14.40103 15.298566
22 PPE 36.43383 36.03981785

3.3.3. Balance of Dataset

The PD dataset consists of 195 records divided into two unbalanced classes, which
are healthy (Class 0 with a percentage of 24.62%) and Parkinson (Class 1 with a rate of
75.38%). Therefore, the dataset is unbalanced. Thus, the diagnostic process will tend to the
majority class and ignore the minority class. Therefore, balancing the dataset is necessary. If
upsampling techniques are applied, the majority of classes in the dataset will lose important
information. Thus, the oversampling method overcomes this challenge. Thus, samples for
the minority classes are increased.

To overcome this problem, SMOTE was proposed and implemented [49]. It works
by adding new samples to minority classes during the training phase only. This method
searches for samples of minority classes and discovers the nearest neighbor to each point
to generate new samples [50]. The method continues until the dataset is balanced and the
minority classes become equal to the majority classes. Table 4 shows the dataset before and
after the use of SMOTE. It is noted that the classes of the minority classes (healthy) became
almost equal to the classes of the majority (Parkinson).

Table 4. SMOTE method for balancing the dataset.

Phase Training 69.75% Testing 30.25%

Classes Healthy Parkinson Healthy Parkinson

Before OverSampling 34 103 14 44
After OverSampling 103 103 14 44

3.3.4. Correlation Features

Statistical methods are used for the processing and interpretation of raw data. The
correlation coefficient is a statistical indicator of relationships between features or between
expected and actual values, where the correlation coefficient shows the correlation of each
feature with the other. The value of the correlation coefficient varies from −1 to +1, where
the relationship between two features is positive when the value of one feature increases
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or decreases, and the value of other features increases or decreases with it. A negative
relationship occurs when the value of the feature increases, and then it decreases the other
or vice versa. Zero correlation is observed when one feature does not affect the other [51].
The analysis of the correlation between all the features by tuning the Pearson’s coefficient
is in Equation (2), which describes the coefficient for tuning all the features.

ρ (X, Y) =
covariance (X, Y)
Std (X).Std (Y)

(2)

The correlation coefficient is set between 0.80 and −0.80 for positive and negative
correlations, respectively. Good correlations between features are beneficial. The dataset
contains highly correlated features, which must be removed before the dataset can be
classified. The imbalance of the dataset is the reason for the high correlation. Thus, the
oversampling process was used to balance the dataset. Then, we found the correlation
coefficient again between the dataset’s features. After outliers were detected, the z-score
method was applied to remove outliers by normalising the dataset. After applying the
z-score method, 14 rows were removed from the dataset, which ultimately consisted of
181 rows and 23 features. Equation (3) describes the z-score method.

z− score =
x−Mean
Std Dev

(3)

After the outliers were removed, a few highly correlated features were obtained,
thereby proving that the correlation coefficients were significantly affected by the outliers.
Figure 2 describes a correlation between the dataset’s features after the outliers were
removed. The features were reduced to 13, which then became the dataset consisting of
181 rows.
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3.3.5. Standardisation of Continuous Variables

Finally, the dataset obtained from the previous steps contains continuous variables;
thus, the standardisation method was applied to ensure that all data had a standardised
format [52]. Table 5 shows the dataset after applying the standardising method where we
notice the data were formatted in the same format to give the dataset a deeper and effective
meaning. The dataset was standardised by Equation (4) where each feature gets the mean
subtracted from its value and divided by the standard deviation of the dataset.

stand =
x−mean
Std Dev

(4)

Table 5. Standardizing Continuous Values for a PD Dataset.

No MDVP: Fo
(Hz)

MDVP: Fhi
(Hz)

MDVP: Flo
(Hz)

MDVP:
Jitter Spread1 Spread2 D2

0 −0.8285 −0.4355 −0.9404 0.8076 0.9733 0.5550 −0.1360
1 −0.7709 −0.5781 −0.0551 1.4311 1.7109 1.4101 0.3872
2 −0.9075 −0.8670 −0.1067 1.7090 1.3430 1.1080 −0.0208
3 −0.9077 −0.7557 −0.1110 1.5294 1.6686 1.3923 0.1578
4 −0.9235 −0.6912 −0.1273 2.5019 2.0382 0.1594 −0.0493

The table provided represents a dataset related to Parkinson’s disease (PD). It appears
to contain standardized continuous values for various features or variables associated with
PD. Here is a breakdown of the interpretation:

• The specific values in the table represent the standardized values for each variable
and observation. For example, in the first row (row 0), the standardized values for
“MDVP: Fo (Hz)”, “MDVP: Fhi (Hz)”, “MDVP: Flo (Hz)”, and “MDVP: Jitter (%)” are
−0.8285, −0.4355, −0.9404, and 0.8076, respectively.

The first column in the table shows the number of the data point. The next four
columns show the values of four different measures of voice quality:

• MDVP: Fo (Hz) is the fundamental frequency of the voice, measured in Hertz;
• MDVP: Fhi (Hz) is the highest fundamental frequency of the voice, measured in Hertz;
• MDVP: Flo (Hz) is the lowest fundamental frequency of the voice, measured in Hertz;
• MDVP: Jitter (%) is a measure of the variability of the fundamental frequency of the

voice;
• The rows are numbered from zero to four, indicating different instances or observations

within the dataset;
• Each cell in the table represents a value corresponding to a specific variable and

observation. The values are standardized, which means they have undergone a
process of normalization or scaling to a common scale, often with a mean of zero and
a standard deviation of one. Standardization is performed to facilitate comparisons
and analysis of variables with different scales or units.

Without further context or information about the dataset, providing a more detailed
interpretation or analysis is challenging. However, based on the given information, it can
be inferred that this dataset contains standardized continuous values related to PD and its
associated variables, potentially for further analysis, modelling, or statistical calculations.

The table shows that the values of all eight measures of voice quality are different for
each data point. This suggests that there is a wide range of voice quality in the PD dataset.
The standardization process has helped to make the values in the table more comparable,
which will make it easier to analyze the data.
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3.3.6. Recursive-Feature Elimination Algorithm

After the preprocessing, it is necessary to identify the correlation between the features
and the percentage of positive and negative correlation of all features. Therefore, finding
the correlation of all features with the target feature (status) is necessary to specify the
contribution of each feature in diagnosing the condition of Parkinson’s. In this paper, we
applied the RFE algorithm, which works to find the correlation of all features with the
target feature. The RFE algorithm is easy to use, effective, and efficient to select the most
important features correlated to the effective prediction of the target feature and eliminate
the features that have a weak correlation with the status feature [53]. Table 6 shows the
correlation of all dataset features with the target feature. It is noticed that there is a positive
and negative correlation between the features and the status feature; it is worth noting that
the best positive features correlated to status are spread1, MDVP: Fo(Hz), MDVP: Flo(Hz),
etc. It is worth noting that we applied this algorithm to the dataset after removing the
features that contain many outliers.

Table 6. Contribution of each feature to the diagnosis of Parkinson’s.

Features Priority%

MDVP: Fo (Hz) 23
MDVP: Fhi (Hz) 11
MDVP: Flo (Hz) 14.5
MDVP: Jitter (%) 4.1
MDVP: Shimmer 6.1

NHR 6.4
HNR 1.3
RPDE 0.2
DFA 0.4

spread1 27.6
spread2 4.9

D2 0.5

3.4. Dimensionality Reduction
3.4.1. t-SNE Algorithm

Dimensional reduction algorithms select the most important features strongly asso-
ciated with the target characteristic. Thus, important and highly representative features
are obtained to obtain high accuracy. Dimensional reduction is referred to as reducing the
number of variables in a dataset. The dataset after dimension reduction can have better
predictive performance than the original dataset [54].

In this paper, the t-SNE algorithm was proposed and applied to reduce the dimensions
of nonlinear data and drops the data from a high-dimensional space P to a low-dimensional
data space Q to visualize the data. Through the name of the algorithm, which means
that the probability is random and not confirmed, and is concerned with the variance of
neighbourhood points and the inclusion of data in a low space. In addition, t-SNE generates
different data each time for the same dataset but it is focused on keeping adjacent data
points. The algorithm distributes the Xi and Xj pairs, assigning the similar features in a
higher probability and the dissimilar features in a lower probability. Equation (5) describes
the pairwise similarity in the high-dimensional data space, and X’s conditional probability
has many neighbors. Equation (6) also illustrates the representation of data points in a
low-dimensional space by t-SNE. Then, t-SNE iteratively operates the same probability
distribution over a smaller data space to reduce the Kulback–Leibler (KL) variance, as
shown in Equation (7). The algorithm reduced the features of the new dataset from 12 to
10 features.

P
(
xi /xj

)
=

S
(

xi , xj
)

∑N
m 6=i S( xi , xm)

(5)
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Q
(

yi /yj

)
=

S
(

yi , yj

)
∑N

m 6=i S( yi , ym)
(6)

KL = ∑
i
∑

j
P
(

xi , xj
)

log
P
(
xi /xj

)
Q
(

yi , yj

) (7)

where P
(
xi /xj

)
is the high-dimensional data space and xi /xj are pairs in the P space;

Q
(

yi /yj

)
is the low-dimensional data space and yi /yj are pairs in the Q space.

3.4.2. PCA Algorithm

One of the popular dimensionality reduction algorithms, PCA, is an unsupervised
statistically working algorithm that converts the values of correlated features into linearly
uncorrelated features called principal components. The algorithm depends on the mathe-
matical concepts of variance, covariance, eigenvalues, and eigenvectors. The dimensions
refer to the number of features in the dataset. The correlation refers to the correlation
between two features; when components are orthogonal, the relationship between the two
features is zero [55]. The algorithm standardizes the dataset so that the features are of
high variance. However, if the variance is independent of the significance of the features,
then the algorithm will divide each distinct value by the standard deviation of all the
features. The Z covariance matrix contains the variance between two pairs of features [56].
Eigenvectors represent axes of information with a high variance that have eigenvalues. The
algorithm arranges the eigenvalues in descending order and the eigenvectors in descending
order in the P matrix. After that, the Z covariance matrix is multiplied by the P matrix
to get new features. Finally, essential and relevant features are preserved and less critical
features are removed to produce a new dataset. In this paper, the features were reduced
from 12 to 9 while retaining the most vital information.

3.5. Classification Algorithms

The aim of classification is to find a model that describes and, at the same time,
distinguishes classes of data, and then uses it to predict the class to which an unclassified
object will belong. Classification is a process that allows data to be divided into given
classes based on their properties [57]. The classification process takes place in the following
steps:

• Training based on the analysis of the so-called classification model created in the
training set;

• Testing, that is, evaluation of the quality of the created model using test data.

In this paper, five types of classification algorithms that are most widely used in the
literature were applied for the early diagnosis of PD.

3.5.1. Support-Vector Machines

The SVM has a straight line in the middle called a hyperplane that separates two classes
so that the margin minimum is maximised. These classes are normal and stroke. This
hyperplane is a decision boundary found by the SVM algorithm. The decision boundary
divides the data space into two halves called normal and infected cases. The geometric
mean edge is the distance from the decision boundary to the nearest data point. When the
resolution limits are separated (hyperplane) and the training data are linearly separable,
the geometric edge is positive. The goal is to find a hyperplane that maximises the margin.
When the training data are linearly separable, a single linear decision limit exists, which
separates the normal data above the hyperplane and the data of stroke patients under the
hyperplane [58].
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3.5.2. K-Nearest Neighbour

The KNN algorithm used a supervised ML method to solve regression and classi-
fication problems. KNN does not include any knowledge stage. This algorithm detects
similarities between the new data point and the stored data points [59]. The similarities
indicate how close or far the new point (test data) is from the stored data (training data)
based on Euclidean distance. In other words, the closer the new data point is to any training
point, the more closely it belongs to this class.

The KNN algorithm is applied through the following steps:

• The value of the variable K is set;
• The Euclidean distance from the new data point to the training data points is calcu-

lated;
• The sorted group is organised in ascending order based on the calculated Euclidean

distance;
• The K-value labels are added;
• According to the value of K, the new data point is classified into its nearest neighbours

according to the Euclidean distance.

3.5.3. Decision Tree

DT is a diagram with a tree structure, where the uppermost node represents the root.
Internal nodes represent feature testing, edges represent test results, and leaf nodes indicate
the class into which it was classified. The key point in creating the DT is selecting the
“highest decision” feature, which initially forms the root node of the tree. If we can find
such a feature, then the process of determining the correct class for a given classification
object becomes highly accurate and computationally less demanding [60]. The process
moves from the root node according to certain rules to the leaf node where the decision is
made.

3.5.4. Random Forest

RF is a generalisation of the bagging methodology, which generates many trees based
on the CART algorithm and then collects predictions or ratings from each tree. The
intention is to reduce the high variance generated from each individual tree, and thus
improve diagnostic performance. Forests are random, similar to bootstrap as a clustering
method, which is attractive mainly because they are able to strengthen weak methods,
thereby resulting in accurate diagnostic predictions [61] Finally, the RF takes the vote from
each tree and the diagnosis is made according to the highest vote output from all the trees
in the RF.

3.5.5. Multilayer Perceptron

The MLP is a generalisation of the perceptron for solving nonlinear separable problems.
The perceptron contains an input layer to receive the input data, hidden layers to address
the problem, and an output layer to show the results.

The MLP architecture consists of the following parts:

• An input layer, which is only responsible for receiving input signals, whether images
or text, and passing them to the next layer;

• An output layer that provides the network response and shows the required diagnostic
results;

• Hidden layers, which works on processing the entered data to find solutions to the
given problem;

• Feedforward networks, which enable communication where the data move only in
the forward direction; and

Neurons that are connected to all the other neurons in the next layer.
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4. Experimental Results

The results of the system development are presented in this section.

4.1. Experiment Settings

The experiment was conducted on a computer running the Windows operating system
with the hardware equipment that can be seen in Table 7. The experiments were coded
using Python.

Table 7. System implementation environment.

Resource Details

CPU Core i5 Gen6
RAM 8 GB 12 GB

GPU 4 GB
Software Python

4.2. Splitting Dataset

The dataset generated by analyzing audio signals consisted of 195 records divided into
two unbalanced categories, healthy and Parkinson’s. This dataset was divided into 69.75%
for training and 30.25% for testing. Before balancing, the dataset contains 147 (75.38%)
PD records and 48 healthy records (24.62%). While after balancing the dataset, the dataset
contains equal records during the training phase, with 103 records for both classes. Table 4
describes the distribution of dataset samples during the training and testing phases.

4.3. Evaluation Metrics

The performance of the classification algorithms on the PD dataset was evaluated by
using four statistical measures: accuracy, precision, recall, and F1 score. These evaluation
metrics are the most effective measure to test the effectiveness of classification models.
Equations (8)–(11) describe the process of calculating the statistical metrics, where TP (true
positive) and TN (true negative) represent correctly classified instances, whereas FP (false
positive) and FN (false positive) represent incorrectly classified instances [62].

Accuracy =
TN + TP

TN + TP + FN + FP
× 100% (8)

Precision =
TP

TP + FP
× 100% (9)

Recall =
TP

TP + FN
× 100% (10)

F1 score = 2× Precision × Recall
Precision + Recall

× 100 (11)

where TP refers to Parkinson’s instances that are correctly classified, TN indicates normal
instances that are correctly classified, FN represents PD instances that are classified as
normal, and FP indicates normal instances that are classified as PD.

4.4. Leave-One-Subject-Out Cross-Validation

The leave-one-subject-out cross-validation (LOSO CV) method is a type of cross-
validation that is commonly used to evaluate the performance of machine-learning models
on the acoustic signals dataset for Parkinson’s disease. In LOSO CV, the model is trained
on all but one subject’s data; then, the model’s performance is evaluated on the held-out
subject’s data. This process is repeated for each subject in the dataset. The final accuracy of
the model is calculated as the average accuracy across all subjects. The LOSO CV method
is a more robust evaluation method than other cross-validation methods, such as k-fold
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cross-validation, because it accounts for the variability between subjects. This is important
because the acoustic signals dataset contains a wide range of subjects with different vocal
characteristics. The LOSO CV method can help to ensure that the model is not overfitting
to the training data and that it is able to generalize to new subjects.

Here is a step-by-step description of the LOSO CV method on the acoustic signals
dataset for Parkinson’s disease:

1. Dataset preparation: the acoustic signals dataset contains recordings of acoustic
features extracted from the speech signals of individuals with and without Parkinson’s
disease. Each subject in the dataset contributes multiple recordings;

2. Subject split: the dataset is divided into subjects, where each subject corresponds to
an individual participant. In LOSO CV, one subject is selected as the test subject, and
the remaining subjects are used as the training set. This process is repeated for each
subject in the dataset, ensuring that each subject serves as the test subject once;

3. Training phase: for each iteration of LOSO CV, the machine-learning model is trained
on the training set, which consists of all subjects except the test subject. The model
learns the patterns and relationships between the acoustic features and the presence
of Parkinson’s disease;

4. Testing phase: after training the model, the test subject is used to evaluate the model’s
performance. The model takes the acoustic features from the test subject’s recordings
as input and predicts whether or not the subject has Parkinson’s disease;

5. Performance evaluation: the predictions made by the model are compared to the
true labels (i.e., the presence or absence of Parkinson’s disease) for the test subject.
Common evaluation metrics such as accuracy, precision, recall, and F1 score can be
calculated to assess the model’s performance on the test subject;

Iteration: steps 2–5 are repeated for each subject in the dataset, with each subject
serving as the test subject exactly once. The performance metrics obtained for each iter-
ation can be aggregated to get an overall assessment of the model’s performance on the
acoustic signals dataset. Overall, the LOSO CV method is a valuable tool for evaluating the
performance of machine-learning models on the acoustic signals dataset for Parkinson’s
disease. It is a more robust evaluation method than other cross-validation methods, and
it can help to ensure that the model is not overfitting to the training data and that it can
generalize to new subjects.

4.5. Results
4.5.1. Results of Classifiers with the t-SNE Method

The dataset was divided into 69.75% for training and 30.25% for testing and the
SMOTE technique was applied to balance the dataset during the training phase. Each
feature was arranged and given a percentage according to its relation to the target feature
using the RFE algorithm. The t-SNE algorithm also reduced the dataset dimensions and the
features to ten important features. The SVM, KNN, DT, RF, and MLP classifiers were fed
with 10 features. The loss function was also reduced by adjusting the hyperparameter of
the classifiers during the training phase. Table 8 describes the results achieved by the five
mentioned classification algorithms. The RF algorithm achieved the best results during the
training and testing phases than the rest. During the training phase, RF achieved accuracy,
precision, recall, and F1-score of 98%, 97.50%, 99%, and 98.50%, respectively, while during
the testing phase, it reached of 97%, 96.50%, 94%, and 95%. During the training phase,
DT achieved accuracy, precision, recall, and F1-score of 97%, 96.33%, 94.33%, and 95.33%,
respectively, while during the testing phase, it reached 96%, 93.33%, 93.66%, and 93.33%.
During the training phase, MLP achieved accuracy, precision, recall, and F1-score of 97%,
95.82%, 94.22%, and 95.00%, respectively, while during the testing phase, it reached 96%,
93%, 94%, and 93.49%. During the training phase, SVM achieved accuracy, precision, recall,
and F1-score of 95.72%, 92.80%, 92.66%, and 93.57%, respectively, while during the testing
phase, it reached 96%, 95%, 92%, and 93.33%. Finally, KNN obtained accuracy, precision,
recall, and F1-score during the training phase of 96%, 94.66%, 91.66%, and 93%, respectively,
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while during the testing phase, it reached 93%, 90.66%, 88.66%, and 89.33%. Figure 3
shows that all the classifiers were accurate and effective in categorising PD cases and they
achieved more accurate diagnostic results than the classification of normal patients.

Table 8. Results of Parkinson’s diagnosis using classifiers with the t-SNE method.

Classifiers SVM KNN Decision Tree Random Forest MLP

Criteria Training
69.75%

Testing
30.25%

Training
69.75%

Testing
30.25%

Training
69.75%

Testing
30.25%

Training
69.75%

Testing
30.25%

Training
69.75%

Testing
30.25%

Accuracy% 95.72 96.00 96.00 93.00 97.00 96.00 98.00 97.00 97.00 96.00
Precision% 92.80 95.00 94.66 90.66 96.33 93.33 97.50 96.50 95.82 93.00

Recall% 92.66 92.00 91.66 88.66 94.33 93.66 99.00 94.00 94.22 94.00
F1 score 93.57 93.33 93.00 89.33 95.33 93.33 98.50 95.00 95.01 93.49Diagnostics 2023, 13, x FOR PEER REVIEW  17  of  25 
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Figure 3. Displaying the performance of the classification algorithms on the dataset using classifiers
with t-SNE.

4.5.2. Results of Classifiers with the PCA Method

In this experiment, the processing stages of the dataset passed through the same
stages, except for the dimensionality-reduction process, where the high-dimensional data
space was represented in the low-dimensional data space by the PCA algorithm. The PCA
algorithm reduced the dataset’s features to nine important features for diagnosing PD. The
loss function in classification algorithms was also reduced by adjusting the hyperparameter
of the classifiers during the training phase. Table 9 describes the results achieved by the
five algorithms. The RF algorithm achieved the best results during the training and testing
phases than the rest. The RF and MLP algorithms achieved the best results during the
training and testing phases than the rest. During the training phase, RF achieved accuracy,
precision, recall, and F1-score of 99%, 95.52%, 99.10%, and 97.28%, respectively, while
during the testing phase, it reached 99%, 95%, 98%, and 96%. During the training phase,
MLP achieved accuracy, precision, recall, and F1-score of 98.43%, 98%, 97.66%, and 98%,
respectively, while during the testing phase, it reached 98%, 97.66%, 96%, and 96.66%.
During the training phase, DT achieved accuracy, precision, recall, and F1-score of 96%,
91.33%, 93.66%, and 92.66%, respectively, while during the testing phase, it reached 95%,
94%, 90.33%, and 92%. During the training phase, SVM achieved accuracy, precision, recall,
and F1-score of 94%, 90%, 91.66%, and 90.66%, respectively, while during the testing phase,
it reached 93%, 84.70%, 91.20%, and 87.70%. Finally, KNN obtained accuracy, precision,
recall, and F1-score during the training phase of 94%, 89.30%, 89%, and 89.03%, respectively,
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while during the testing phase, it reached 93%, 91%, 84%, and 87%. Figure 4 shows that all
classifiers achieved accurate and effective diagnostic results for diagnosing PD.

Table 9. Results of Parkinson’s diagnosis using classifiers with the PCA method.

Classifiers SVM KNN Decision Tree Random Forest MLP

Criteria Training
69.75%

Testing
30.25%

Training
69.75%

Testing
30.25%

Training
69.75%

Testing
30.25%

Training
69.75%

Testing
30.25%

Training
69.75%

Testing
30.25%

Accuracy% 94.00 93.00 94.00 93.00 96.00 95.00 99.00 99.00 98.43 98.00
Precision% 90.00 84.70 89.30 91.00 91.33 94.00 95.52 95.00 98.00 97.66

Recall% 91.66 91.20 89.00 84.00 93.66 90.33 99.10 98.00 97.66 96.00
F1 score 90.66 87.70 89.03 87.00 92.66 92.00 97.28 96.00 98.00 96.66Diagnostics 2023, 13, x FOR PEER REVIEW  18  of  25 
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Figure 4. Displaying the performance of the classification algorithms on the dataset using classifiers
with PCA.

5. Discussion

PD is a health problem that threatens the elderly and is caused by neurodegeneration
due to the death of neurons that secrete dopamine. The manual diagnosis of PD is still
lacking, doctors’ opinions differ, and the number of doctors in developing countries is
small. Thus, automated diagnosis by artificial intelligence solves these challenges. In
this study, many systems have been developed that go through many stages of image
processing. The PD dataset went through data optimization and feature correlation rents.
The RFE algorithm was applied to give the percentage contribution of each feature to the
target feature. The features of the dataset were subjected to the t-SNE and PCA algorithms
to select the most important features and fed to five classifiers for classification. When
analyzing acoustic signals for the diagnosis of Parkinson’s disease, t-SNE and PCA are both
dimensionality reduction techniques that can be employed. However, they serve different
purposes and have distinct advantages and limitations. Complementary information: t-SNE
and PCA capture different aspects of the data. While t-SNE is effective at visualizing clusters
and preserving the local structure, it may not capture the overall variance or global patterns
in the data. PCA, on the other hand, focuses on explaining the maximum variance in the
data, which can provide valuable insights into the most significant features. By combining
both techniques, you can benefit from their complementary information. Interpretability:
PCA produces orthogonal components that are interpretable as linear combinations of
the original features. These components represent the directions of maximum variance in
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the data. In contrast, t-SNE does not provide straightforward interpretations or explicit
relationships with the original features. Therefore, PCA can help in understanding the
underlying factors contributing to the acoustic signals related to Parkinson’s disease. This
section discusses the evaluation of algorithms developed on the PD dataset for early
diagnosis of PD at each category level. The systems achieved better results after applying
the t-SNE and PCA algorithms. This means that the existence of some features is negatively
associated with the target feature and affects the efficiency of the system.

First, when the classifiers are fed the dataset produced by the t-SNE algorithm, Table 10
and Figure 5 describe the results of diagnosing the classes of the dataset, which are healthy
(class 0) and PD (class 1). In the healthy class, it is noted that SVM, KNN, DT, RF, and MLP
achieved the following results: for precision by 96%, 96%, 97%, 97%, and 98%, respectively;
also for recall by 99%, 96%, 99%, 99%, and 97%, respectively; while the for F1-score 98%,
96%, 98%, 98%, and 97%, respectively. For the PD class, it is noted that SVM, KNN, DT, RF,
and MLP achieved the following results: for precision 94%, 88%, 96%, 96%, and 90.50%,
respectively; and for recall at 88.50%, 85%, 92%, 89%, and 92.50%, respectively; while the
F1-score by 91%, 86%, 91%, 93%, and 91.50%, respectively.

Table 10. Results of each class Parkinson’s diagnosis with the t-SNE method.

Classifiers SVM KNN Decision Tree Random Forest MLP

Phase Testing (30.25%) Testing (30.25%) Testing (30.25%) Testing (30.25%) Testing (30.25%)

Class Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

Precision% 96.00 94.50 96.00 88.00 97.00 96.00 97.00 96.00 98.00 90.50
Recall% 99.00 88.50 96.00 85.00 99.00 92.00 99.00 89.00 97.00 92.50

F1 score% 98.00 91.00 96.00 86.00 98.00 91.00 98.00 93.00 97.00 91.50
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Figure 5. Display the performance of the classifiers for each class with t-SEN.

Our findings suggest that acoustic signals can be used to detect Parkinson’s disease
automatically and early. This could lead to earlier diagnosis and treatment, which could
improve the quality of life for people with Parkinson’s disease.

The systems optimize the early diagnosis of PD by evaluating selected features and
hyperparameter tuning of ML algorithms for diagnosing PD based on voice disorders. The
study found that the proposed techniques were superior to existing studies, indicating the
superiority of the proposed techniques. This contributes to the evaluation and advancement
of existing knowledge in the field of Parkinson’s disease diagnosis.
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Second, when the classifiers are fed the dataset after dimensionality reduction by the
PCA algorithm, Table 11 and Figure 6 describe the diagnostic results for each class. In the
healthy class, it is noted that SVM, KNN, DT, RF, and MLP achieved the following results:
for precision by 80%, 88.50%, 94%, 100%, and 98%, respectively; also for recall by 97%,
84%, 96%, 99%, and 100%, respectively; while the for F1-score 88%, 85.50%, 95%, 99%, and
99%, respectively. For the PD class, it is noted that SVM, KNN, DT, RF, and MLP achieved
the following results: for precision 87%, 90%, 94%, 90%, and 97.50%, respectively; and for
recall at 88%, 84%, 87.50%, 97%, and 95%, respectively; while the F1-score by 87.50%, 90%,
90.50%, 93%, and 95.50%, respectively.

Table 11. Results of each class Parkinson’s diagnosis with the PCA method.

Classifiers SVM KNN Decision Tree Random Forest MLP

Phase Testing (30.25%) Testing (30.25%) Testing (30.25%) Testing (30.25%) Testing (30.25%)

Class Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

Precision% 80.00 87.00 88.50 90.00 94.00 94.00 100.00 90.00 98.00 97.50
Recall% 97.00 88.00 84.00 84.00 96.00 87.50 99.00 97.00 100.00 95.00

F1-score% 88.00 87.50 85.50 90.00 95.00 90.50 99.00 93.00 99.00 95.50
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Figure 6. Display the performance of the classifiers for each class with PCA.

Table 12 and Figure 7 present a comparison of the results of the proposed classification
models with existing models discussed in the literature. Our proposed model provides
better results over existing studies, whereas the previous studies achieved an accuracy score
between 95.43% and 78.23%, while the proposed systems reached an accuracy of 98%, 96%,
and 98% for the RF, DT, and MLP classifiers, respectively. The measure of recall (sensitivity)
in the previous systems was between 95.4% and 71%, while those of the proposed systems
were 98%, 93.66%, and 96% for RF, DT, and MLP classifiers, respectively.
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Table 12. Comparison of performance of the proposed system with previous studies.

Previous Studies Accuracy% Recall% Precision% F1-Score

Khan et al. [63] 90 93 - -
Benba et al. [64] 82.5 80 - -

Behroozi et al. [65] 87.5 90 - -
Li et al. [66] 82.5 85 - -

Parisi et al. [67] 78.23 72.22 - -
Cantürk and Karabiber [68] 68.94 74.03 - -

Mostafa et al. [69] 95.43 95.4 - -
Wroge et al. [70] 85 71

Proposed model using RF 99 98 95 96
Proposed model using DT 95 90.33 94 92

Proposed model using MLP 98 96 97.66 96.66Diagnostics 2023, 13, x FOR PEER REVIEW  21  of  25 
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Figure 7. Display of a comparison of the performance of some of our classifiers with some previous
studies [31,32,63–65,67,69,70].

Reliability refers to the consistency and stability of measurements or techniques, while
validity refers to the accuracy and appropriateness of the measurements or techniques in
assessing the intended construct or phenomenon. Fortunately, the information provided
does explicitly mention the reliability and validity of the measures used in the study. The
study reported the accuracy of the proposed techniques through the accuracy of the results
assessed thanks to the reliability and validity of the measures used. The study stated that
the proposed techniques were able to identify PD with an accuracy of up to 98%. Overall,
the study provides some promising evidence that acoustic signals can be used to detect PD
automatically and early.

The implications of the findings are significant for the field of Parkinson’s disease di-
agnosis and treatment. By leveraging machine-learning algorithms and analyzing acoustic
signals, they have demonstrated the potential for automated and early detection of PD.
This approach offers several advantages over traditional diagnosis methods, which often
involve time-consuming physical and psychological tests and specialist examinations of the
patient’s nervous system. By extracting a set of features from recordings of a person’s voice,
we were able to train machine-learning models to distinguish between Parkinson’s cases
and healthy individuals. This noninvasive approach has the potential to revolutionize the
early detection of PD, enabling timely interventions and improved patient outcomes. The
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study also introduces two techniques, t-SNE and PCA, for the dimensionality reduction
of the dataset. By reducing the number of features while retaining the most informative
ones, these techniques help improve the efficiency and performance of the classification
algorithms. The experimental results presented in the paper demonstrate the effectiveness
of the proposed techniques. These findings have practical implications for healthcare
professionals involved in PD diagnosis. The proposed techniques can be applied to de-
velop automated systems that assist in the early screening and diagnosis of PD based on
voice analysis. Such systems could potentially be integrated into routine clinical practice,
enabling cost-effective and widespread screening for PD, particularly in populations where
access to specialized neurological examinations may be limited. Furthermore, the study
contributes to the existing knowledge by demonstrating the efficacy of specific machine-
learning algorithms (RF and MLP) and dimensionality reduction techniques (t-SNE and
PCA) in the context of PD diagnosis. This knowledge can inform future studies and inspire
further study into the development of advanced diagnostic tools and methodologies for
Parkinson’s disease.

Here are some potential limitations and biases to consider: the study’s methodology
relies on analyzing voice recordings to diagnose Parkinson’s disease. It is essential to
discuss the specifics of the data-collection process, including the recording equipment used,
the recording environment, and any potential limitations or sources of error introduced
during data acquisition. The RFE algorithm selected relevant features from the voice
recordings. The criteria used for feature selection and the potential impact of excluding
certain features. Biases may arise if certain features are overrepresented or if crucial features
are unintentionally omitted.

6. Conclusions

PD is a disease caused by a lack of dopamine, which affects the elderly and disrupts
their lives. This disease is difficult to diagnose because its symptoms are unclear and asso-
ciated with other diseases. Extensive medical and scientific research has been conducted
to diagnose PD early. ML techniques have contributed to early diagnosis by analysing a
person’s voice disorders. The present study contributes knowledge useful for the early
diagnosis of PD by providing a voice dataset comprising 22 features. These features ap-
peared highly correlated, thereby making them unsuitable for high-level diagnosis. The
features that contained outliers were removed. The RFE algorithm was applied to rank
the features according to their importance; then, the dimensions were reduced by using
two algorithms, t-SNE and PCA, to represent the data in a low-dimensional space. The
SVM, KNN, DT, RF, and MLP classifiers were fed the resulting features by both t-SNE and
PCA algorithms. All classifiers achieved superior results for diagnosing PD and normal
cases. During the testing phase, RF with the t-SNE algorithm achieved an accuracy of 97%,
precision of 96.50%, recall of 94%, and F1-score of 95%. While MLP with the PCA algorithm
achieved an accuracy of 98%, precision of 97.66%, recall of 96%, and F1-score of 96.66%. We
have shown that acoustic signals can be used to detect Parkinson’s disease automatically
and early. This is a significant finding, as it could lead to earlier diagnosis and treatment,
which could improve the quality of life for people with Parkinson’s disease. Our findings
contribute to existing knowledge by providing a new method for detecting Parkinson’s
disease.
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