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A B S T R A C T   

Due to the implementation of air pollution control measures in China, air quality has significantly improved, 
although there are still additional issues to be addressed. This study used the long-term trends of air pollutants to 
discuss the achievements and challenges in further improving air quality in China. The Kolmogorov-Zurbenko 
(KZ) filter and multiple-linear regression (MLR) were used to quantify the meteorology-related and emission- 
related trends of air pollutants from 2014 to 2022 in China. The KZ filter analysis showed that PM2.5 
decreased by 7.36 ± 2.92% yr− 1, while daily maximum 8-h ozone (MDA8 O3) showed an increasing trend with 
3.71 ± 2.89% yr− 1 in China. The decrease in PM2.5 and increase in MDA8 O3 were primarily attributed to 
changes in emission, with the relative contribution of 85.8% and 86.0%, respectively. Meteorology variations, 
including increased ambient temperature, boundary layer height, and reduced relative humidity, also contrib-
uted to the reduction of PM2.5 and the enhancement of MDA8 O3. The emission-related trends of PM2.5 and 
MDA8 O3 exhibited continuous decrease and increase, respectively, from 2014 to 2022, while the variation rates 
slowed during 2018–2020 compared to that during 2014–2017, highlighting the challenges in further improving 
air quality, particularly in simultaneously reducing PM2.5 and O3. This study recommends reducing NH3 emis-
sions from the agriculture sector in rural areas and transport emissions in urban areas to further decrease PM2.5 
levels. Addressing O3 pollution requires the reduction of O3 precursor gases based on site-specific atmospheric 
chemistry considerations.   

1. Introduction 

Over the past three decades, the rapid and energy-intensive eco-
nomic growth in China has resulted in severe air pollution. Deterioration 
in air quality causes visibility impairment (Ding et al., 2016; Wang et al., 
2018; Ma et al., 2020), adverse human health effects (Kan et al., 2012; 
Shiraiwa et al., 2017; Xiao et al., 2022), and changes in climate forcing 
(Fiore et al., 2012; von Schneidemesser et al., 2015; Gao et al., 2018). In 
early 2013, extensive regions in eastern and central China experienced a 
severe and long-lasting haze event, impacting a population of 800 

million over an area of 1.3 million square kilometers (Huang et al., 
2014). This event prompted an acceleration of China’s air pollution 
control efforts. 

To solve air pollution and protect the public from its potential health 
issues, China initiated the Air Pollution Prevention and Control Action 
(APPCA) in 2013 (Huang et al., 2018; Zheng et al., 2018; Zhang et al., 
2019). As a result of its implementation, anthropogenic emissions of 
carbon monoxide (CO), nitrogen oxides (NOx), inhalable particulate 
matter (PM10), fine particulate matter (PM2.5), and sulfur dioxide (SO2) 
decreased by 23%, 21%, 36%, 33%, and 59%, respectively, in 2017 
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compared to those in 2013 (Zheng et al., 2018). The ambient PM2.5 
concentrations in China decreased (Song et al., 2017; Silver et al., 2018; 
Cheng et al., 2019; Xue et al., 2019), and a 32% decrease in the national 
population-weighted concentrations from 2013 to 2017 was reported 
(Xue et al., 2019). Despite the progress made through the APPCA, air 
quality in most cities (71%) still exceeded Chinese air quality standards 
(annual mean concentrations of 60 µg m− 3 for SO2, 40 µg m− 3 for NO2, 
35 µg m− 3 for PM2.5 and 70 µg m− 3 for PM10, respectively, and daily 
mean value of 4 mg m− 3 for CO and 160 µg m− 3 for daily maximum 8-h 
ozone) in 2017 (https://www.gov.cn/guoqing/2019–04/09/content_53 
80689.htm). Subsequently, the Three-Year Action Plan (TYAP) was 
launched in 2018. The CO, NOx, PM10, PM2.5, and SO2 emissions 
decreased by 11.1 tera grams (Tg), 1.6 Tg, 1.0 Tg, 0.6 Tg, and 1.6 Tg, 
respectively in 2020 compared to those in 2018 (Geng et al., 2023). As a 
result, air quality during 2018–2020 was further improved and the non- 
attainment rate of air quality among 337 cities decreased to 40.1% in 
2020 (https://www.cnemc.cn/jcbg/zghjzkgb/202105/t20210527_835 
035.shtml). The variations of air pollutants, however, are masked by 
meteorological variations. It can be difficult to judge whether a variation 
in air pollutant concentration is dominated by changes in meteorological 
conditions or emission strength (Grange and Carslaw, 2019). Without 
consideration of the effects of meteorology upon air pollutant concen-
trations can lead to erroneous assessments of the effectiveness of air 
pollution control measures in improving air quality (Vu et al., 2019; Shi 
et al., 2021). 

To ensure a precise assessment of air quality improvement, it is 
essential to distinguish the influence of anthropogenic factors from 
meteorological factors on the variations of air pollutants (Seo et al., 
2018; Chen et al., 2019; Zhai et al., 2019; Zhang et al., 2019; Zheng 
et al., 2020a, 2020b; Shi et al., 2021; Dai et al., 2022). Generally, two 
approaches are employed to accomplish it. The first approach involves 
utilizing a chemical transport model (CTM) that incorporates the 
emission inventory of air pollutants, together with atmospheric 
dynamical, physical, and chemical processes. The Weather Research and 
Forecasting Model-Community Multiscale Air Quality Model (WRF- 
CMAQ) (Cheng et al., 2019; Xue et al., 2019; Zhang et al., 2019) and the 
GEOS-Chem (Zhang et al., 2018a; Li et al., 2019a; Sun et al., 2019; Dang 
et al., 2021; Zhai et al., 2021; Qiu et al., 2022) are extensively utilized 
for this purpose. With the WRF-CMAQ modeling, Zhang et al. (2019) 
found that the changes in meteorological conditions only accounted for 
9% of the total PM2.5 reduction in China between 2013 and 2017. Li 
et al., (2019a) found that anthropogenic activities rather than meteo-
rological conditions dominated ozone (O3) increasing during 
2013–2017 with the GEOS-Chem model. The uncertainties of this 
approach are mainly associated with emission biases (Yan et al., 2014, 
2016) and incomplete physical–chemical mechanisms in the simulation 
schemes (Yan et al., 2019). Due to inadequate representation of sec-
ondary aerosol formation processes, chemical transport models face 
challenges in accurately reproducing the mass concentrations of organic 
aerosols and capturing their variability, particularly during haze epi-
sodes in China (Chen et al., 2017; Hallquist et al., 2016). Moreover, the 
time-consuming nature of updating emission inventories required in 
numerical models results in a gap between the study period and the year 
of available emission data, further limiting the applicability of CTM. 

Statistical modeling, such as multiple-linear-regression (Li et al., 
2019b, 2020; Zhai et al., 2019), Kolmogorov-Zurbenko (KZ) filter (Seo 
et al., 2018; Zheng et al., 2020b; Sun et al., 2022), and Random Forest 
models (Grange et al., 2018; Vu et al., 2019; Ji et al., 2023) is an 
alternative approach to study the contributions of emissions and mete-
orology to long-term changes in air pollutants. Unlike the CTM, these 
statistical models do not need an emission inventory as input; instead, 
they rely on a simple time series of air pollutants and meteorological 
parameters. Remarkably, the conclusions obtained from statistical 
models are comparable to those from CTM (Chen et al., 2019; Fang et al., 
2022; Sun et al., 2022). For instance, it was estimated that emission 
reduction accounted for 78.6% of the PM2.5 reduction in 2013–2017 in 

Beijing by the KZ filter. This finding was comparable to the results ob-
tained from WRF-CMAQ modeling, which indicated a contribution of 
80.6% from emission reduction (Chen et al., 2019). Considering the high 
computational costs and aforementioned uncertainties with CTM, sta-
tistical modeling can serve as an alternative and effective method to 
study the influence of meteorological conditions and anthropogenic 
emissions on the long-term variations of air pollutants, particularly in 
regions lacking reliable emission inventory. 

Using the CTM and statistical methods, previous studies concerning 
the long-term trends of air pollutants and their drivers mainly focused on 
a certain period of clean air action, e.g., APPCA (Geng et al., 2019; Li 
et al., 2019b; Ma et al., 2019a; Vu et al., 2019; Zhang et al., 2019; Maji 
et al., 2020; Zhao et al., 2021) or TYAP (Dai et al., 2022; Du et al., 2022; 
Liu et al., 2023a) in China. The policy-driven changes in air pollutant 
emission varied between APPCA and TYAP (Geng et al., 2023), which 
has impacts on air pollutant long-term trends. The comprehensive study 
concerning the drivers of air pollutant variations in different phases of 
clean air actions and their comparison was less reported (Liu et al., 
2023a). Additionally, the inter-annual changes in meteorology also 
contribute to the variations in air pollutants (Mao et al., 2016; Lin et al., 
2022; Shen et al., 2023). Previous studies mainly focused on the overall 
impacts of meteorological conditions on air pollutant variations (Vu 
et al., 2019; Zhai et al., 2019; Zhang et al., 2019; Mousavinezhad et al., 
2021), while the impacts of different meteorological factors were less 
investigated (Chen et al., 2020a, 2020b). 

Therefore, this study aimed to (1) calculate the emission-related and 
meteorology-related long-term trends of PM2.5 and O3 from 2014 to 
2022 using the KZ filter and multiple-linear regression, (2) compare the 
emission-related trends of PM2.5 and O3 during APPCA (2014–2017) and 
TYAP (2018–2020), (3) identify the dominant meteorological factor to 
the variations of PM2.5 and O3, and (4) discuss the achievements of 
present air pollution control measures and explore the possible coun-
termeasures for further reducing PM2.5 levels and alleviating O3 pollu-
tion in China. This work can serve as a valuable reference to understand 
the relationship between air pollutant emissions and atmospheric con-
centrations on a global scale within the context of a changing climate. 

2. Methodology 

2.1. Data sources and preprocessing 

Hourly concentrations of air pollutants, including CO, NO2, O3, 
PM10, PM2.5, and SO2, were obtained from a widely used public database 
(https://beijingair.sinaapp.com/) (Silver et al., 2018; Fan et al., 2020; 
Zheng et al., 2023) for the period between 2014-05-13 and 2022-12-31. 
For the pre-2014-5-13 period, hourly observations of air pollutants were 
downloaded from https://data.epmap.org/page/index. It should be 
noted that the data reported by the two different platforms were from 
the national air quality monitoring network established and operated by 
the China National Environmental Monitoring Center. The overall data 
quality of this dataset has been considered reliable since 2013 (Liang 
et al., 2016). However, some data quality issues were identified, such as 
instances where PM2.5 levels were higher than PM10 during certain pe-
riods, as well as the presence of outliers in time series. Furthermore, the 
conditions to calculate the air pollutant concentrations were revised 
from the standard condition (273 K and 101.325 kPa) to the reference 
condition (298 K and 101.325 kPa) since 2018-09-01. To address these 
concerns, data quality control and quality assurance procedures were 
performed. To remove the outliers, the hourly concentrations in each 
site were scaled into the dataset with mean value and standard deviation 
of 0 and 1 respectively. In line with previous studies (Song et al., 2017; 
Silver et al., 2018), the following rules were used to judge the outliers: 
(1) have an absolute z score of larger than 4 (|zt| > 4); (2) have an 
increment from the previous value as larger than 9 (zt − zt− 1 > 9); (3) 
have a ratio of the value to its centered rolling mean of order 3 (RM3) 
larger than 2 (zt/RM3 (zt) > 2). After conducting data quality control 
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and assurance, the changes in mean hourly air pollutant concentrations 
were determined. The adjustments in mean (± standard deviation and 
hereafter) hourly concentrations, before and after data quality control, 
were found to be 0.15 ± 1.22, 0.01 ± 0.05, 0.02 ± 0.13, 0.12 ± 0.23, 
0.05 ± 0.12, and 0.002 ± 0.07 µg m− 3 for CO, NO2, O3, PM10, PM2.5, and 
SO2, respectively (site-specific changes are provided in Table S1). To 
guarantee an adequate number of observations to calculate annual mean 
value, a threshold of 75% for each year’s data availability was applied, 
resulting in a selection of 624, 615, 625, 496, 621, and 627 stations for 
CO, NO2, O3, PM10, PM2.5, and SO2, respectively (see Table S2 in the 
supplementary materials for details). Finally, daily concentrations of 
CO, NO2, PM10, PM2.5, and SO2 were calculated based on sufficient 
hourly observations (> 18 h). Additionally, the daily maximum 8-h 
ozone (MDA8 O3) was calculated as the maximum of 8-hour rolling 
average from 08:00 to 24:00 within a day. 

Hourly values of surface meteorological parameters including tem-
perature at 2 m (T2M, K), dewpoint at 2 m (D2M, K), mean sea level 
pressure (MSP, Pa), the eastward and northward component of wind at 
10 m (U10, V10, m s− 1), total precipitation (TP, mm), boundary layer 
height (BLH, m), downward UV radiation at the surface (SSR, J m− 1), 
and total cloud cover (TCC, unitless) were derived from the ERA5 
reanalysis (Hersbach et al., 2023). The U10 and V10 components of 
wind were used in this study for that they not only contained wind speed 
information but also had direction information to better understand the 
regional transport of air pollutants. The relative humidity (RH) was 
calculated using T2M and D2M (Dutton, 1976). Site-specific meteoro-
logical conditions were extracted using bi-linear interpolation. Anthro-
pogenic air pollutant emissions from 2014 to 2020 were from the Multi- 
resolution Emission Inventory Model for China (MEIC) version 1.4 
(https://meicmodel.org/cn/#firstPage) and more details about the lat-
est version of MEIC can be found elsewhere (Geng et al., 2023). 

2.2. Separating the emission-related and meteorology-related trends 

The day-to-day time series of daily air pollutant concentration can be 
mainly divided into long-term, seasonal, and short-term components 
(Rao and Zurbenko, 1994). Each component is related to variations in 
emissions and meteorology. For instance, the long-term component is 
associated with the long-term changes in regional and local emissions 
resulting from socioeconomic policies and the long-term variations in 
meteorological conditions (Seo et al., 2018). To separate the three 
different components from the day-to-day variation of air pollutants, the 
KZ filter was used in this study. The KZ filter, here denoted as KZ(m,p) 
calculates the moving average of time with m (days) for p times iteration 
to remove the high-frequency components of a time series that are 
smaller than the effective filter width N (≥ m × p1/2) (Rao and Zur-
benko, 1994; Rao et al., 1995, 1997). The moving average is defined as 
(Rao and Zurbenko, 1994): 

Yi =
1
m

∑k

j=− k
Xi+j (1)  

where i = 0, ± 1, ± 2, …, be a real-valued time series; m = 2 k + 1 and k 
is the half-length of the simple moving average. The Yi becomes the 
input for the second pass and so on. The KZ filter result is not sensitive to 
missing values and outliers due to the iterative moving average pro-
cesses (Eskridge et al., 1997). In this study, KZ(15, 5) and KZ(365, 3) filters 
were used to filter out the short-term component (with a variability less 
than 33 days) and to leave the long-term component (with a variability 
longer than 1.7 years), respectively (Seo et al., 2018). 

The original concentrations of air pollutants (χ(t)) are usually log- 
normally distributed. It is necessary to transform the original concen-
trations into the log-transformed time series (X(t) = lnχ(t)) before the KZ 
filter analysis (Seo et al., 2018). The temporal signals of air pollutants (X 
(t)) at a given station can be separated into short-term (XST(t)), seasonal 
(XSN(t)), and long-term (XLT(t)) components (Seo et al., 2018): 

X(t) = XST(t)+XSN(t)+XLT(t) = XST(t)+XBL(t) (2) 

The sum of seasonal and long-term components is the baseline 
component (XBL(t) = XSN(t) + XLT(t)), and it can be easily decomposed 
by applying the KZ(15, 5) filter to X(t), which filters out the white-noise- 
like XST(t) as follow (Seo et al., 2018): 

XBL(t) = KZ(15, 5)[X(t) ] = X(t) − XST(t) (3) 

The XBL(t) is assumed to be the sum of its repeated climatological 
seasonal cycle (Xclm

BL ) and residuals (ε) (Seo et al., 2018): 

XBL(t) = Xclm
BL (t)+ ε(t) (4)  

where Xclm
BL (t) is the climatological seasonal cycle of the baseline and it is 

calculated as a composite mean of the baseline on each date repeating 
every year. Although Xclm

BL (t) accounts for most of the seasonality in XBL 
(t), ε (t) still occupies small fractions of seasonal variability unconsid-
ered in Xclm

BL (t) and the XLT(t). Applying the KZ(365, 3) filter to the re-
siduals (ε), the long-term component (XLT) and seasonal component 
(XSN) can be obtained (Seo et al., 2018): 

XLT(t) = KZ(365, 3)[ε(t) ] = XBL(t) − XSN(t) (5) 

The long-term variability in air pollutants can be affected by both the 
changes in emissions and meteorological conditions. Therefore, XLT(t) is 
assumed to be the sum of the emission-related long-term component 
(XEMI

LT (t)) and meteorology-related long-term component (XMET
LT (t)), and 

the XBL(t) can be expressed as follows (Seo et al., 2018): 

XBL(t) = XSN(t)+XMET
LT (t)+XEMI

LT (t) (6) 

The XLT(t) can be decomposed into the XEMI
LT (t) and XMET

LT (t) by the 
multiple-linear regression model (KZ-MLR) (Seo et al., 2018). In this 
study, the baseline components of meteorological variables (METBL) 
including T2M, MSL, U10, V10, RH, TP, BLH, SSR, and TCC were used. 
The multiple-linear-regression model between the baseline components 
of air pollutants (XBL(t)) and meteorological parameters (METBL(t)) is 
expressed as (Seo et al., 2018): 

XBL(t) = a0 +
∑

i
aiMETBLi (t)+ ε ′

(t) (7)  

where ε’ is the sum of the non-meteorological long-term variability 
(XEMI

LT (t)) and the minor seasonal variability unexplained by the 
multiple-linear-regression model (ε’(t) – XEMI

LT (t)). By removing the 
minor seasonality from ε’(t) using the KZ(365, 3) filter, XEMI

LT (t) can be 
isolated as follows (Seo et al., 2018): 

XEMI
LT (t) = KZ(365,3)[ε′(t) ] = XLT(t) − XMET

LT (t) (8) 

Then XMET
LT (t) can be simply obtained by subtracting XEMI

LT (t) from 
XLT(t). The detailed decomposition procedure is described and sche-
matically summarized with the PM2.5 time series as an example 
(Fig. S1). The linear trends of the total, meteorology-related, and 
emission-related long-term components were calculated as the slope of 
the linear regression between time (year) and each component (i.e., 
XLT(t)). The long-term linear trend of XLT(t) represents a fraction change 
rate (% yr− 1) of the baseline concentrations (XBL(t)). The fraction change 
rate can be converted into an equivalent concentration change rate (μg 
m− 3 yr− 1) by multiplying it with the temporal mean of the baseline 
component of the original time series (χBL) for the analysis period (Seo 
et al., 2018). 

Site-specific and air pollutant-specific variance analysis of different 
components (Table S3) suggested that the meteorological influences on 
air pollutants were substantially explained and effectively removed by 
the KZ filter (see Text S1 for details). Similarly, the statistical metrics 
(Text S2) for different pollutants in each site (Table S4) suggested the 
high performance of KZ-MLR to decompose the long-term trends of air 
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pollutants into meteorology-related and emission-related trends (see 
Text S1 for details). 

2.3. Identification of the dominant meteorological factor 

To determine the primary meteorological factor influencing the long- 
term variations of air pollutants, an interpretable machine learning 
method was employed in this study. The Shapley Additive ExPlanation 
(SHAP) approach was utilized to quantify the contribution of each 
meteorological factor to the dependent observation. This method, based 
on game theory, calculates the importance of a predictor by measuring 
the difference in outputs when the predictor is included or excluded 
from the model. To establish the relationship between the meteorology- 
related long-term concentration of air pollutants (XMET

LT ) and the long- 
term components of meteorological variables (METLT), a linear regres-
sion model was constructed. The SHAP value, representing the local 
explanation, was computed for each meteorological factor for each 
observation. The aggregation of individual results provides an under-
standing of the overall impact of each meteorological variable on XMET

LT , 
reported as a global explanation. The aggregated result for each mete-
orological factor was obtained by averaging the absolute values of the 
SHAP values (mean |SHAP|). By analyzing the aggregated SHAP values, 
the dominant meteorological factor affecting the long-term trend of air 
pollutants was identified as the variable with the highest value. Further 
information regarding the SHAP approach can be found in Text S3 and 
previous studies (Lundberg and Lee, 2017; Stirnberg et al., 2021; Zheng 
et al., 2023). 

2.4. Regions of interest, data analysis, and visualization 

In addition to the Beijing-Tianjin-Hebei (BTH: 37–41◦N, 
114–118◦E), Yangtze River Delta (YRD: 30–33◦N, 118–122◦E), and 
Pearl River Delta (PRD: 21.5–24◦N, 112–115.5◦E), we also focused on 
the concentrations and trends of air pollutants in the other three key 
regions including Fenwei Plain (FWP: 33–35◦N, 106.25–111.25◦E, 
35–37◦N, 108.75–113.75◦E.), Sichuan Basin (SCB: 28.5–31.5◦N, 103.5– 
107◦E), and Twain-Hu Basin (THB: 28.5–31.5◦N, 110.75–114.75◦E). 
The number of stations for PM2.5 (MDA8 O3) analysis was 48 (45), 41 
(41), 54 (54), 39 (38), 21 (21), and 62 (62) in BTH, FWP, PRD, SCB, 
THB, and YRD, respectively. 

Data analysis was conducted using R (R Core Team, 2023). The “kza” 
package (Close et al., 2018) was used for the KZ filter analysis. The 
model performance statistics were calculated using “openair” (Carslaw 
and Ropkins, 2012). The “fastshap” (Brandon, 2023) was used to 
calculate the SHAP value. All the figures in this study were generated by 
“ggplot2” (Hadley, 2016) and its extensions. Other packages (i.e., 
“reshape2”, “lubridate”, and “plyr”) used in this study were available at 
the Comprehensive R Archive Network (CRAN, https://cran.r-project.or 
g). All scripts to process and visualize data can be found at https://gith 
ub.com/zh-cug/KZ-AP. 

3. Results 

3.1. Improved air quality during 2014–2022 in China 

The annual mean values of air pollutants from 2014 to 2022 are 
summarized in Table S5, and the changes in their annual mean con-
centrations between 2014 and 2022 are shown in Fig. 1. A general 

Fig. 1. Changes in annual mean mass concentrations of air pollutants (mg m− 3 for CO and µg m− 3 for other pollutants) between 2014 and 2022 in China (Δ =
concentration in 2022 – concentration in 2014). The colored polygons represent the six key air pollution control regions including Beijing-Tianjin-Hebei (BTH), 
Fenwei Plain (FWP), Pearl River Delta (PRD), Sichuan Basin (SCB), Twain-Hu Basin (THB), and Yangtze River Delta (YRD) as shown in panel a. The detailed number 
of stations for air pollutants is provided in Table S2. 
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decrease in the mass concentrations of air pollutants was observed over 
China during this period. SO2 showed the highest decrease of 63.6 ±
21.8%, followed by PM2.5 (42.3 ± 13.9%), PM10 (40.1 ± 13.5%), CO 
(33.6 ± 19.7%), and NO2 (23.6 ± 23.4%). MDA8 O3 concentrations in 
China, however, increased by 37.3 ± 48.6%, rising from 77.4 ± 17.8 μg 
m− 3 in 2014 to 99.6 ± 11.2 μg m− 3 in 2022. The large standard devia-
tion in national averages of air pollutants suggested the high spatial 
heterogeneity. Among the six key regions studied, the BTH region had 
the highest decreases in CO (51.9 ± 10.3%), NO2 (36.9 ± 12.7%), PM10 
(53.6 ± 6.23%), PM2.5 (54.4 ± 9.01%), and SO2 (82.7 ± 6.42%), while 
the THB region had the highest increase in MDA8 O3 (73.4 ± 71.4%) 
(Table S6). 

According to the new air quality guidelines set by the World Health 
Organization (WHO) in Sep 2021 (World Health Organization, 2021), 
the national annual concentrations of PM2.5 (30.8 μg m− 3), PM10 (57.4 
μg m− 3), and NO2 (25.2 μg m− 3) in 2022 have achieved interim target I 
(< 35 μg m− 3 for PM2.5 and < 70 μg m− 3 for PM10) and interim target II 
(< 30 μg m− 3 for NO2), respectively. The further air quality improve-
ment issue in China is primarily the complex pollution by PM2.5 and O3. 
Therefore, we mainly focused on PM2.5 and O3 in the following sections 
(other air pollutants were also calculated and results are provided in the 
supplementary tables, e.g., Table S7). 

3.2. Long-term trends of PM2.5 and MDA8 O3 from 2014 to 2022 

The time series of long-term trends (XLT), emission-related (XEMI
LT ), 

and meteorology-related (XMET
LT ) trends of PM2.5 and MDA8 O3 are 

shown in Fig. 2. The spatial distribution of long-term, emission-related, 
and meteorology-related trends of PM2.5 and MDA8 O3 are shown in 
Fig. 3 and Fig. 4, respectively. Overall, most monitoring stations showed 
decreasing trends of PMLT

2.5, with a national average of − 7.36 ± 2.92% 
yr− 1. Among the six key regions (Table S8), the BTH region showed the 
highest decreasing rate of PMLT

2.5 (− 10.3 ± 3.44% yr− 1), followed by YRD 
(− 9.28 ± 1.52% yr− 1), THB (− 8.01 ± 2.30% yr− 1), PRD (− 7.36 ±
1.33% yr− 1), SCB (− 6.52 ± 1.73% yr− 1), and FWP (− 5.00 ± 1.91% 
yr− 1). Among the long-term trends of PMLT

2.5, the emission-related trends 

dominated with a national mean value of − 6.09 ± 2.60% yr− 1. In line 
with the spatial distributions of PMLT

2.5, the highest variation rate of 
PMEMI

2.5 was found in BTH (− 8.88 ± 3.14% yr− 1), while the lowest rate 
was observed in FWP (− 3.86 ± 1.67% yr− 1) (Fig. 3e). The variations in 
meteorological conditions were also contributed to the reduction of 
PM2.5 with a national mean value of − 1.27 ± 0.82% yr− 1 for PMMET

2.5 . 
Contrary to the spatial distributions of PMLT

2.5 and PMEMI
2.5 , the highest 

reduction rate of PMMET
2.5 was found in THB (− 2.45 ± 0.45% yr− 1), fol-

lowed by BTH (− 1.44 ± 0.36% yr− 1), YRD (− 1.44 ± 0.46% yr− 1), FWP 
(− 1.14 ± 0.39% yr− 1), SCB (− 1.07 ± 0.39% yr− 1), and PRD (− 0.12 ±
0.29% yr− 1) (Fig. 3f). 

In contrast, MDA8 OLT
3 showed an increasing trend with an average 

of 3.71 ± 2.89% yr− 1 in China with the highest increasing trend of 
MDA8 OLT

3 in THB (5.29 ± 2.68% yr− 1), followed by FWP (5.13 ±
1.87% yr− 1), SCB (3.98 ± 2.70% yr− 1), PRD (3.74 ± 2.06% yr− 1), BTH 
(3.74 ± 2.36% yr− 1), and YRD (3.37 ± 3.03% yr− 1). The increasing 
trend of MDA8 OLT

3 was dominated by the emission-related trend with a 
national mean value of 3.40 ± 2.59% yr− 1. The variations in emissions 
contributed to the increase of MDA8 OLT

3 in six regions with the highest 
increasing rate in FWP (5.50 ± 1.68% yr− 1), followed by BTH (4.35 ±
2.17% yr− 1), THB (4.21 ± 2.18% yr− 1), SCB (3.87 ± 2.24% yr− 1), YRD 
(2.69 ± 2.58% yr− 1) and PRD (2.47 ± 1.77% yr− 1) (Fig. 4e). For the 
meteorology-related trend of MDA8 O3, it was estimated to be 0.32 ±
0.83% yr− 1, suggesting that meteorological variations from 2014 to 
2022 contributed to the enhancement of O3 in China. On the regional 
scale, the meteorological conditions contributed to the increase of O3 in 
most regions in China, except for BTH and FWP, where the meteorology- 
related trends were estimated as − 0.61 ± 0.41% yr− 1 and − 0.36 ±
0.47% yr− 1, respectively (Fig. 4f). The regional differences in 
meteorology-related trends were detailly discussed in section 4.2. 

Using the linear regressions between emission-related, meteorology- 
related trends, and long-term trends of air pollutants, the relative con-
tributions of emissions and meteorology to air pollutant changes were 
quantified (Fig. S2). On a national scale, emission variations accounted 
for 85.8% of the reduction in PM2.5. Similarly, the enhancement of 

Fig. 2. Time series of scaled concentrations (unitless) of long-term (LT), emission-related (EMI), and meteorology-related (MET) for PM2.5 (a–c) and MDA8 O3 (d–f) 
from 2014 to 2022 in different regions. The concentrations of air pollutants during the study period were log-transformed in each station before KZ filter analysis. The 
regional mean values (solid lines) and their 95% confidence interval values (filled ribbons) were then calculated. 
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MDA8 O3 from 2014 to 2022 was primarily attributed to emissions, 
contributing to 86.0% of the increase. Regionally, emission variations 
also dominated the reduction of PM2.5, with the highest contribution 
found in YRD (97%). Unlike the positive impact of emission variations 
on PM2.5 reduction, they had a dominant effect on the increase in MDA8 
O3 concentrations in China, with the highest contribution in BTH (91%) 
and the lowest contribution in SCB (81%). The results here suggested the 
efforts in emission reduction were the primary driving force behind 
variations of PM2.5 and O3 in China, which was in line with the previous 
studies (Wang et al., 2019; Liu et al., 2023a; Zheng et al., 2023). 

3.3. Comparison with previous studies 

The decreasing trend in PM2.5 and the increasing trend in O3 have 
been widely reported since the application of APPCA in China 
(Table S9). For instance, Zhai et al. (2019) estimated a reduction rate of 
− 5.2 µg m− 3 yr− 1 for PM2.5 over the 2013–2018 period with the highest 
reduction rate in BTH (− 9.3 µg m− 3 yr− 1). Similarly, 97% of Chinese 
urban areas showed a decrease of PM2.5 with an average of − 3.5% yr− 1 

between 2010 and 2019 (Sicard et al., 2023a). On the contrary, the 
summer MDA8 O3 showed an increasing trend of 1.9 ppb yr− 1 (Li et al., 
2020) or 5% yr− 1(Yin et al., 2021) in China from 2013 to 2019. Simi-
larly, Mousavinezhad et al. (2021) reported an increasing trend of 3.3 
µg m− 3 yr− 1 for MDA8 O3 across China from 2015 to 2019 by KZ filter. 
To facilitate a more meaningful comparison with previous studies using 
the KZ-MLR method, we constrained our study’s period to align with the 
durations reported in previous research. As shown in Fig. 5a, the long- 
term PM2.5 trends from previous studies were generally lower than 
those in this study. For instance, Gao et al. (2022) estimated a regional 
average of − 6.23 ± 2.47 µg m− 3 yr− 1 for PM2.5 in 13 cities within BTH 
during 2018–2020 using the KZ filter coupled with stepwise MLR. This 
regional average was smaller than that in this study (− 4.72 ± 2.04 µg 

m− 3 yr− 1). Comparable results for PMLT
2.5 during 2015–2021 were found 

in Wuxi, Hefei, and Jinhua between the research of Zhu et al. (2023) and 
this study. Similarly, this study and previous studies found increasing 
trends in MDA8 O3 for various regions. For instance, MDA8 OLT

3 showed 
increasing trends of 4.2 µg m− 3 yr− 1 during 2014–2018 (Chen et al., 
2020b) and 3.36 µg m− 3 yr− 1 during 2015–2019 (Mousavinezhad et al., 
2021) in BTH. An exception to this was MDA8 OLT

3 in SCB, which showed 
a slight decrease during 2015–2019 (Mousavinezhad et al., 2021) while 
it showed an increasing trend in this study (Fig. 5b). These differences 
may arise from input variables for the model building, the methodology 
employed (e.g., stepwise MLR vs MLR), and the number of stations, etc. 
Despite the differences in rates of increase/decrease and the contribu-
tions of emission/meteorology between this study and previous studies, 
it is undeniable that emission variations dominate the reduction of PM2.5 
and the increase in O3 in China (Fig. 5). 

4. Discussion 

4.1. Slowed variation rates of PM2.5 and MDA8 O3 from APPCA to TYAP 

Due to the different measures between APPCA and TYAP (see Text S4 
for details), the change rates of air pollutants varied between the two 
periods. As shown in Fig. S3, it was evident that the increase in O3 during 
TYAP was lower than that during APPCA in all six regions. For instance, 
in BTH, MDA8 O3 increased by 17.9% from 2014 to 2017, while it only 
increased by 1.1% from 2018 to 2020. On the contrary, the decrease in 
PM2.5 during TYAP was lower than that during 2014–2017 in the BTH, 
SCB, THB, and YRD. To better understand the impact of emission vari-
ation on the slowed changes of O3 and PM2.5, the KZ-MLR was used to 
calculate the emission-related trends of air pollutants during APPCA and 
TYAP. It should be noted that the KZ filter can filter out trends longer 

Fig. 3. Spatial distributions (a–c) and boxplots (d–f) of long-term (PMLT
2.5, a, d), emission-related (PMEMI

2.5 , b, e) and meteorology-related (PMMET
2.5 , c, f) trends (% yr− 1) 

of PM2.5 in China from 2014 to 2022. 
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than 1.7 years. Therefore, 4-year and 3-year observations for APPCA and 
TYAP were sufficient to get the long-term trends in this study. It also 
should be noted that our study period covered the year 2020, the 
emission of which was impacted by COVID-19. The emission reductions 
due to COVID-19 lockdowns were estimated as 1.84 Tg, 0.11 Tg, 0.09 
Tg, and 0.31 Tg for CO, primary PM2.5, SO2, and VOC, respectively 
(Zheng et al., 2021). These reductions due to COVID-19 contributed 
16.7%, 16.7%, 5.69%, and 14.5%, respectively to the total reductions of 
CO, primary PM2.5, SO2, and VOC between 2020 and 2018, suggesting 
the dominant role of clean air actions in emission reduction during 
TYAP. Although air pollutant concentrations showed significant re-
ductions during COVID-19 (Sokhi et al., 2021), emissions of these pol-
lutants rebounded in April as the spread of COVID-19 controlled, 
ultimately returning to levels comparable to those in 2019 (Zheng et al., 
2021). Consequently, air pollutant concentrations also rebounded to 
levels similar to those observed in 2019 by the end of 2020 (Dai et al., 
2022). Therefore, COVID-19 had limited impacts on the variation rates 
of air pollutants during TYAP (Dai et al., 2022). 

As shown in Fig. 6a, the lower reduction rates for SO2 during TYAP 
were found in six regions. On the contrary, NOEMI

2 showed a higher 
reduction during TYAP compared to that during APPCA (Fig. 6b), which 
was in line with a previous study (Geng et al., 2023). For PMEMI

2.5 and 
PMEMI

10 , the lower reduction rates of PM2.5 and PM10 were found in BTH, 
SCB, THB, and YRD during TYAP. For instance, in BTH, the reduction 
rate for PMEMI

2.5 was − 2.78 ± 1.82 µg m− 3 yr− 1 during 2018–2020, which 
was lower than that during 2014–2017 (− 5.40 ± 3.26 µg m− 3 yr− 1). 
Contrary to these four regions, FWP and PRD had higher reduction rates 
of PMEMI

2.5 and PMEMI
10 during TYAP compared to those during APPCA 

(Fig. 6d, e), which can be attributed to the rebound in PM concentrations 
in these two regions during APPCA. Specifically, the PM2.5 

concentrations in 2016 and 2017 were higher than those in 2015 during 
APPCA, while it continuously declined from 2018 to 2020 in FWP and 
PRD (Fig. S3). 

As shown in Fig. S4, the majority of air pollutants showed higher 
emission reductions during APPCA compared to those during TYAP. This 
was due to the implementation of extensive end-of-pipe measures (e.g., 
the majority of ultra-low emission technologies were implemented 
before 2017) during APPCA, while the efficacy of these measures 
noticeably declined after 2017, leading to a deceleration in emission 
reductions during TYAP (Geng et al., 2023). An exception to this was 
VOC emissions. Due to the overlook of VOC emissions, the VOC emis-
sions increased by 1.2 Tg during APPCA, while it reduced by 2.2 Tg 
during TYAP due to the targeted measures such as the shutdown of small 
factories, the implementation of highly efficient collection facilities, and 
the promotion of water-based paints (Geng et al., 2023). As a result of 
both reductions from NOx and VOC during TYAP, the increasing rates of 
MDA8 OEMI

3 during TYAP were lower than those during APPCA in six key 
regions (Fig. 6c). These results suggested that emission reduction mea-
sures targeting O3 precursors may have a positive effect on mitigating O3 
levels between 2018 and 2020 (Liu et al., 2023a). 

4.2. Dominant meteorological factor to variations of PM2.5 and MDA8 O3 

The correlations between air pollutants and meteorological condi-
tions have been widely used to understand the role of meteorological 
factors on air pollutant variations (Chen et al., 2020c). It should be noted 
that the correlation does not imply causation and the meteorological 
factors are not independent of each other. Therefore, the SHAP analysis 
coupled with the correlations between air pollutants and meteorological 
conditions (Fig. S5 and Fig. S6), and long-term trends of meteorological 

Fig. 4. Spatial distributions (a–c) and boxplots (d–f) of long-term (MDA8 OLT
3 , a, d), emission-related (MDA8 OEMI

3 , b, e) and meteorology-related (MDA8 OMET
3 , c, f) 

trends (% yr− 1) of MDA8 O3 in China from 2014 to 2020. 
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parameters (Fig. S7) were used to determine the dominant meteoro-
logical factor contributing to the decrease in PM2.5 and increase in 
MDA8 O3 (see Text S5 for details). 

As shown in Fig. 7, the dominant meteorological condition associ-
ated with the reductions of PM2.5 in FWP, THB, and YRD was the in-
crease in temperature. The high temperature promotes stronger thermal 
activities and turbulence, resulting in better dispersion conditions for air 
pollutants (Chen et al., 2020c). Additionally, high temperature con-
tributes to the loss of some PM2.5 components such as ammonium ni-
trate, semi-volatile, and volatile components (Chen et al., 2020c). 
Therefore, the increased temperature contributed to the reduction of 
PM2.5. The dominant factor in the reductions of PM2.5 in PRD and SCB 
was the increased boundary layer height. A higher boundary layer 
height facilitates the vertical dispersion of air pollutants, leading to 
reduced surface PM2.5 levels (Chen et al., 2020c). In the case of PMMET

2.5 
reduction in BTH, it was primarily influenced by a decrease in the 
northward wind component (Fig. 7a). Previous studies have indicated 
the haze in BTH is typically associated with the low speeds of southern 
wind, which brought pollutants from the south to BTH (An et al., 2019; 
Huang et al., 2020). As shown in Fig. S7, V10 showed a decreasing trend 
in BTH, suggesting less air pollutant transport from south to north. 

Regarding MDA8 O3, the increased temperature was the dominant 
meteorological factor contributing to the increase of MDA8 O3 in BTH 

and FWP (Fig. 7a, b). The relationship between temperature and O3 
levels can be explained by the temperature-dependent mechanisms 
involving O3 precursor emissions, lifetimes, and reaction rates (Lu et al., 
2019; Porter and Heald, 2019). For instance, biogenic VOC and soil NOx 
emissions increase with rising temperature, which further contributes to 
local O3 formation (Roelle and Aneja, 2002; Ma et al., 2019b; Porter and 
Heald, 2019). As shown in Fig. S7, T2M in BTH and FWP showed 
increasing trends from 2014 to 2022, suggesting T2M contributed to O3 
increases in these two regions. It should be noted that the overall im-
pacts of meteorological variations contributed to the decreases in O3 in 
BTH and FWP, which was contrary to other regions (Section 3.2). The 
differences can be explained by the regional differences in trends of 
meteorological conditions. For instance, the negative correlation be-
tween O3 and RH was found in six regions (Fig. S6). Therefore, the in-
creases in RH (Fig. S7) contributed to the reductions of meteorology- 
related trends of MDA8 O3 in BTH and FWP, while RH showed 
decreasing trends and contributed to increases in O3 in the other four 
regions. 

In THB and YRD, the reduction in relative humidity played a key role 
in the increased MDA8 O3 levels (Fig. 7e, f). The mechanisms explaining 
the effects of RH on O3 have been well summarized in the research of Li 
et al., (2021a). Briefly, the presence of moisture in the atmosphere 
hinders the formation of O3 by reducing air temperature, shortening the 
chain length of peroxy radical chemical amplifiers, and decreasing the 
chain length of NO2 through increased particle water. Additionally, 
water vapor catalytically destroys existing O3 photochemically through 
the O3 destruction cycle (Yu, 2019). Therefore, the reduction of relative 
humidity contributes to the enhancement of O3. In PRD, the dominant 
factor for increased O3 was the decreased total cloud cover (Fig. 7c), 
while in SCB, the increased boundary layer height played a major role 
(Fig. 7d). The higher boundary layer height contributes to the increased 
surface O3 can be explained as the vertical injection of O3 from the re-
sidual layer and downdrafts in convective storms (Caputi et al., 2019; 
Zhu et al., 2020; Meng et al., 2022). This phenomenon suggests that the 
surface O3 variations are not only impacted by local chemical formation 
but also influenced by upper air concentration, which is typically linked 
to regional ozone background. 

4.3. Achievements and challenges of air quality control in China 

To protect human health from air pollution, the Chinese government 
launches a series of air pollution control measures since 2013 (see Text 
S4 for details), and air quality in China has indeed improved. In 2022, 
the annual mean PM2.5 concentration in 339 cities was 29 µg m− 3 and 
the non-attainment rate of air quality among these cities decreased to 
37.2% (https://www.gov.cn/lianbo/bumen/202305/content_6883708. 
htm) according to Chinese ambient air quality standards (GB 3095- 
2012). As a result, health benefits are gained from the reduction of air 
pollutants (Zhang et al., 2019; Yang et al., 2022a; Xiao et al., 2022; Xue 
et al., 2023). The reduced PM2.5-attributable excess deaths were esti-
mated to be 0.37 million since the implementation of APPCA (Zhang 
et al., 2019). After the implementation of TYAP, premature deaths due 
to long-term PM2.5 exposure decreased by 0.13 million from 1.52 million 
in 2018 to 1.39 million in 2020 (Xiao et al., 2022). The reduction of NO2 
concentrations also reduced premature deaths by 66 thousand from 
2013 (316 thousand) to 2022 (250 thousand) (Xue et al., 2023). Despite 
the health benefits gained from the reduction of PM2.5 and NO2, the 
enhanced O3 concentration offset the benefits. Premature deaths due to 
long-term O3 exposure in China increased by 32.4 thousand from 98.9 
thousand in 2013 to 131.3 thousand in 2017 and continuously increased 
by 13% from 2017 to 147.7 thousand in 2020 (Xiao et al., 2022). 
Therefore, stronger policies are required to substantially reduce deaths 
from air pollution in China. 

Further air quality improvement in China faces three key challenges. 
Firstly, as air pollutant levels continue to decrease, achieving additional 
emission reductions becomes more difficult, particularly considering the 

Fig. 5. Comparison of long-term, emission-related (EMI), and meteorology- 
related (MET) trends of PM2.5 (a) and MDA8 O3 (b) in this study and previ-
ous studies (a: Gao et al. (2022); b: Zhu et al. (2023); c: Chen et al., (2020b); d: 
Mousavinezhad et al. (2021)). The filled gray rects represent different 
study periods. 
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Fig. 6. Emission-related long-term trends of CO (a), NO2 (b), MDA8 O3 (c), PM10 (d), PM2.5 (e), and SO2 (f) during 2014–2017 (APPCA) and 2018–2020 (TYAP) in 
different regions. 

Fig. 7. The dominant meteorological factor (bar marked with black outline) contributing to the increasing trends in meteorology-related trends of MDA8 O3 (top of 
each panel) and decreasing trends of PM2.5 (bottom of each panel) in different regions including BTH (a), FWP (b), PRD (c), SCB (d), THB (e), and YRD (f). The color 
of the bars is mapped to the Pearson correlation coefficients(r > 0: red; r < 0: blue) between air pollutants and meteorological conditions (site-specific correlations 
are provided in Fig. S5 and Fig. S6). The red and blue arrows represent the increasing and decreasing trends of meteorological conditions respectively (see Fig. S7 for 
site-specific trends). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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relatively low ambient levels of air pollutants. For instance, the BTH 
region had the highest average PM2.5 level (55.4 ± 14.1 μg m− 3) and 
showed the highest decreasing trend of PM2.5 (− 5.90 μg m− 3 yr− 1) 
during 2014–2022 among the six regions. Conversely, the PRD region, 
with the lowest average PM2.5 level (27.2 ± 4.04 μg m− 3), demonstrated 
the lowest long-term variation rate of PM2.5 (− 2.02 μg m− 3 yr− 1) among 
the six regions. Cheng et al. (2021) indicated that the benefits from end- 
of-pipe pollution control measures will mostly be exhausted by 2030 
without ambitious climate goals. Furthermore, without significant ac-
tion, the PM2.5 levels may not meet the WHO air quality guidelines, and 
premature deaths resulting from PM2.5 exposure may not consistently 
decrease by 2050 in China, as highlighted by Liu et al. (2022). There-
fore, further drivers from systemic social-economy changes are needed. 
For instance, Cheng et al. (2021) suggested that China’s commitment to 
carbon neutrality, coupled with a decrease in fossil fuel fraction to 28% 
(while the current fraction was 85%) in the energy structure, could 
result in an annual PM2.5 level of 7.9 μg m− 3. 

Secondly, the increasing marginal cost associated with further 
reducing air pollutant emissions necessitates the consideration of more 
targeted reduction measures for specific pollutants. Abating NH3 emis-
sion has been proposed as a more cost-effective way to mitigate PM2.5 air 
pollution in China (Bai et al., 2019; Liu et al., 2019; Gu et al., 2021; Zhai 
et al., 2021). As the largest NH3 emission contributor, agricultural ac-
tivities accounted for more than 80% of its emissions in China (Zhang 
et al., 2018b). Within the agriculture sector, NH3 emissions from live-
stock predominated with a contribution of about 60% (Kang et al., 2016; 
Liao et al., 2022). Recent studies reveal that NH3 emissions in Chinese 
cities are mainly from vehicle exhausts (Pan et al., 2016; Zhang et al., 
2020; Gu et al., 2022; Wang et al., 2023). The difference in the dominant 
sector for NH3 emission between rural and urban areas makes the alle-
viation of PM2.5 pollution through controlling NH3 even more compli-
cated in China. It was estimated that the removal of NH3 emissions from 
the agriculture sector could reduce the percentage of PM2.5 mass burden 
by 24% to 42% in most parts of eastern China (Han et al., 2020). The 
initial cost to control PM2.5 mass through NH3 emission reduction was 
$140− $320 million (Zheng et al., 2019), and the total cost to reduce 
NH3 emission by 50% across China was estimated as $6.6 billion (Liu 
et al., 2019). It should also be noted that higher NH3 emission reduction 
(e.g., > 50%) would result in side effects such as aggravated precipita-
tion acidification (Liu et al., 2019). The most cost-effective ratio for NH3 
emissions was estimated to be 20%–30% in Northern China, while the 
same reduction ratio would result in fewer net benefits in Southern 
China and SCB (Liu et al., 2019). Therefore, it is crucial to implement the 
most cost-effective strategy for NH3 emission control while considering 
region-specific abatement strategies for NH3 emissions. 

Thirdly, coordinated control of PM2.5 and O3 is needed to further 
improve air quality in China. It was reported that a specific PM2.5 con-
centration threshold existed, at which point the correlation between 
PM2.5 and O3 transitioned from negative to positive (Chu et al., 2020; 
Wang et al., 2023). Under the high PM2.5 level (e.g., > 50 µg m− 3), the 
interaction between PM2.5 and O3 levels can be described as a “seesaw” 
effect, wherein decreasing PM2.5 levels can increase O3 concentrations 
(Chu et al., 2020). This phenomenon arises from the role of PM2.5 as a 
sink for hydroperoxy and NOx radicals, which would otherwise 
contribute to ozone production (Li et al., 2019a). Additionally, an in-
crease in PM2.5 can suppress O3 through the weakened photochemical 
reactions resulting from less solar radiation, i.e., lower temperature, and 
reduced photolysis rates (Li et al., 2017; Li et al., 2019a; Sicard et al., 
2023b). Aerosol chemistry is also influenced by the removal of reactive 
species, such as HOx, which occur on the particle surfaces (Lou et al., 
2014; Li et al., 2022). For instance, O3 during dust events (PM2.5 > 50 µg 
m− 3) decreased by 30% compared to the non-dusty clear-sky days over 
Tehran city (Sicard et al., 2023b). Under the low PM2.5 level, there is a 
tendency for PM2.5 and O3 to be positively correlated due to their 
common precursors, such as VOCs and NOx, as well as their simulta-
neous production in photochemical reactions. Therefore, controlling the 

common precursors of PM2.5 and O3 is needed to simultaneously solve 
the complex pollution of PM2.5 and O3 (Li et al., 2019b). Reduction of 
VOC and NOx emissions to alleviate O3 pollution, however, is highly 
dependent on the chemical formation regime of O3. Reduction of VOC in 
a VOC-limited or reduction of NOx in a NOx-limited regime would 
reduce O3 level, while NOx reduction in a VOC-limited regime would 
increase O3 due to less NO titration (Li et al., 2013; Jin and Holloway, 
2015). Due to the non-linear response between O3-VOC-NOx, O3 
enhancement in the VOC-limited regime was related to NOx emission 
reduction in China (Wang et al., 2019; Ren et al., 2022; Wei et al., 2022). 
Recently, the reduction of NOx during COVID-19 also showed a ten-
dency to increase O3 at urban stations, where the O3 formation was 
mostly in the VOC-limited regime, while observations at rural back-
ground stations showed the reduction of O3 (Cristofanelli et al., 2021; 
Matthias et al., 2021; Steinbrecht et al., 2021). Our results showed a 
similar phenomenon that the station (N = 473) with the increasing trend 
of MDA8 O3 also had a decreasing trend of NO2 (Fig. 8a, b), which 
implied that O3 formation in these stations was in the VOC-limited 
regime. Some stations (N = 26), however, showed both decreasing 
trends of NO2 and MDA8 O3, suggesting that O3 formation was in the 
NOx-limited regime. Interestingly, all of the stations with co-decreasing 
trends of NOx and MDA8 O3 showed reductions of PM2.5 (Fig. 8c), 
suggesting that PM2.5 and O3 can be simultaneously controlled. Since the 
O3 formation regime within a city shows spatial heterogeneity, which 
means O3 formation in some regions is in a VOC-limited regime while 
the other regions are in the transition or NOx-limited regimes (Li et al., 
2021b; Yang et al., 2022b). Therefore, site-specific knowledge about 
atmospheric chemistry is needed to reduce the O3 level. For instance, the 
ratio of 3:2, 2:3, and 3:1 co-reduction of VOC to NOx was recommended 
to reduce O3 at the NOx-limited, VOC-limited, and transition regime 
sites, respectively, in Zibo city (Li et al., 2021b). To identify the O3 
chemical formation regimes at site-specific or city-scale, the ground 
observation-based method with model simulation (Li et al., 2021b; Yang 
et al., 2022b) and photochemical indicator (e.g., the ratio of formalde-
hyde to NO2) based on satellite observations (Jin et al., 2020; Li et al., 
2021c) are usually applied. These methods, however, have some limi-
tations (Souri et al., 2020; Liu and Shi, 2021). A method with simple 
input (e.g., only observations of O3 and NOx) and robust results is 
required to evaluate the response of O3 to reductions of VOC and NOx, in 
particular, for sites and regions where local atmospheric chemistry in-
formation is unavailable. Recently, a method using the ratio of daytime- 
produced O3 (DPO3) to an 8 h-NO2 concentration ([DPO3]/[8 h-NO2]) to 
identify the O3 formation regime was developed, and the VOC-limited 
regime was identified as the [DPO3]/[8 h-NO2] ratio less than 8.3 
(Guo et al., 2023). This method has the potential application to identify 
the O3 formation regime in each air quality monitoring station and 
contributes to solving O3 pollution at a station or a city scale. 

5. Conclusions 

This study used the Kolmogorov-Zurbenko filter coupled with 
multiple-linear regression to investigate the drivers of PM2.5 and MDA8 
O3 variations in China from 2014 to 2022. The analysis revealed a 
reduction of 7.36 ± 2.92% yr− 1 for PM2.5 in China with the dominant 
contribution from emission reduction (85.8%). On the contrary, the 
MDA8 O3 increased by 3.71 ± 2.89% yr− 1 with less contribution from 
variations in meteorological conditions (14.0%). The dominant meteo-
rological factors to the reduction of PM2.5 and increase of MDA8 O3 were 
identified as the increases in temperature, boundary layer height, and 
decrease in relative humidity. A comparison in emission-related trends 
of PM2.5 and MDA8 O3 between 2014–2017 and 2018–2020 showed a 
slower increase in MDA8 O3 and a slower decrease in PM2.5 during 
2018–2020, suggesting that further air pollutant emission reductions 
would be more challenging. To further reduce the PM2.5 levels, more 
targeted emission reduction measures (e.g., NH3 emission reductions 
from the agriculture sector in rural areas and the transport sector in 
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urban areas) are needed. To alleviate the O3 pollution, site-specific 
chemical formation regimes based on local atmospheric chemistry are 
needed before determining the delicate emission reduction ratios for 
VOC and NOx. 
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Yang, X.Q., Wang, M.H., Chi, X.G., Wang, J.P., Virkkula, A., Guo, W.D., Yuan, J., 
Wang, S.Y., Zhang, R.J., Wu, Y.F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., 
Fu, C.B., 2016. Enhanced haze pollution by black carbon in megacities in China. 
Geophys. Res. Lett. 43, 2873–2879. https://doi.org/10.1002/2016GL067745. 

Du, H., Li, J., Wang, Z., Chen, X., Yang, W., Sun, Y., Xin, J., Pan, X., Wang, W., Ye, Q., 
Dao, X., 2022. Assessment of the effect of meteorological and emission variations on 
winter PM2.5 over the North China Plain in the three-year action plan against air 
pollution in 2018–2020. Atmos. Res. 280, 106395 https://doi.org/10.1016/j. 
atmosres.2022.106395. 

Dutton, J.A., 1976. The ceaseless wind: an introduction to the theory of atmospheric 
motion. McGraw-Hill, New York.  

Eskridge, R.E., Ku, J.Y., Rao, S.T., Porter, P.S., Zurbenko, I.G., 1997. Separating different 
scales of motion in time series of meteorological variables. Bull. Amer. Meteor. Soc. 
78 (7), 1473–1483. 

Fan, H., Zhao, C., Yang, Y., 2020. A comprehensive analysis of the spatio-temporal 
variation of urban air pollution in China during 2014–2018. Atmos. Environ. 220, 
117066 https://doi.org/10.1016/j.atmosenv.2019.117066. 

Fang, C., Qiu, J., Li, J., Wang, J., 2022. Analysis of the meteorological impact on PM2.5 
pollution in Changchun based on KZ filter and WRF-CMAQ. Atmos. Environ. 271, 
118924 https://doi.org/10.1016/j.atmosenv.2021.118924. 

Fiore, A.M., Naik, V., Spracklen, D.V., Steiner, A., Unger, N., Prather, M., Bergmann, D., 
Cameron-Smith, P.J., Cionni, I., Collins, W.J., Dalsøren, S., Eyring, V., Folberth, G.A., 
Ginoux, P., Horowitz, L.W., Josse, B., Lamarque, J.-F., MacKenzie, I.A., 
Nagashima, T., O’Connor, F.M., Righi, M., Rumbold, S.T., Shindell, D.T., Skeie, R.B., 
Sudo, K., Szopa, S., Takemura, T., Zeng, G., 2012. Global air quality and climate. 
Chem. Soc. Rev. 41, 6663–6683. https://doi.org/10.1039/C2CS35095E. 

Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., Li, J., Kang, J.-E., Huang, K., Dong, X., 
Zhuang, B., Li, S., Ge, B., Wu, Q., Cheng, Y., Wang, Y., Lee, H.J., Kim, C.H., Fu, J.S., 
Wang, T., Chin, M., Woo, J.H., Zhang, Q., Wang, Z., Carmichael, G.R., 2018. Air 
quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia 
Phase III (MICS-Asia III) – Part 1: Overview and model evaluation. Atmos. Chem. 
Phys. 18, 4859–4884. https://doi.org/10.5194/acp-18-4859-2018. 

Gao, S., Yu, J., Yang, W., Qu, F., Chen, L.i., Sun, Y., Zhang, H., Mao, J., Zhao, H., 
Azzi, M., Bai, Z., 2022. Background concentration of atmospheric PM2.5 in the 
Beijing–Tianjin–Hebei urban agglomeration: levels, variation trends, and influences 
of meteorology and emission. Atmos. Pollut. Res. 13 (11), 101583. https://doi.org/ 
10.1016/j.apr.2022.101583. 

Geng, G., Liu, Yang, Cheng, J., Liu, Yan, Liu, Yuxi, Wu, N., Hu, H., Tong, D., Zheng, B., 
He, K., Zhang, Q., 2023. Contrasting emission trends between the two phases of 
China’s clean air actions from 2013–2020. PREPRINT (Version 1) available at 
Research Square [https://doi.org/10.21203/rs.3.rs-2827208/v1]. 

Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, K., Liu, Y., 
2019. Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 
chemical composition over eastern China. Sci. China Earth Sci. 62, 1872–1884. 
https://doi.org/10.1007/s11430-018-9353-x. 

Grange, S.K., Carslaw, D.C., Lewis, A.C., Boleti, E., Hueglin, C., 2018. Random forest 
meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. 
Phys. 18, 6223–6239. https://doi.org/10.5194/acp-18-6223-2018. 

Grange, S.K., Carslaw, D.C., 2019. Using meteorological normalisation to detect 
interventions in air quality time series. Sci. Total Environ. 653, 578–588. https:// 
doi.org/10.1016/j.scitotenv.2018.10.344. 

Gu, M., Pan, Y., Walters, W.W., Sun, Q., Song, L., Wang, Y., Xue, Y., Fang, Y., 2022. 
Vehicular emissions enhanced ammonia concentrations in winter mornings: insights 
from diurnal nitrogen isotopic signatures. Environ. Sci. Technol. 56, 1578–1585. 
https://doi.org/10.1021/acs.est.1c05884. 

Gu, B., Zhang, L., Van Dingenen, R., Vieno, M., Van Grinsven, H.J., Zhang, X., Zhang, S., 
Chen, Y., Wang, S., Ren, C., Rao, S., Holland, M., Winiwarter, W., Chen, D., Xu, J., 
Sutton, M.A., 2021. Abating ammonia is more cost-effective than nitrogen oxides for 
mitigating PM2.5 air pollution. Science 374, 758–762. https://doi.org/10.1126/ 
science.abf8623. 

Guo, J., Zhang, X., Gao, Y., Wang, Z., Zhang, M., Xue, W., Herrmann, H., Brasseur, G.P., 
Wang, T., Wang, Z., 2023. Evolution of ozone pollution in China: what track will It 
follow? Environ. Sci. Technol. 57, 109–117. https://doi.org/10.1021/acs. 
est.2c08205. 

Hadley, W., 2016. Ggplot2. Springer Science+Business Media, LLC, New York, NY.  
Hallquist, M., Munthe, J., Hu, M., Wang, T., Chan, C.K., Gao, J., Boman, J., Guo, S., 

Hallquist, Å.M., Mellqvist, J., Moldanova, J., Pathak, R.K., Pettersson, J.BC., 
Pleijel, H., Simpson, D., Thynell, M., 2016. Photochemical smog in China: scientific 

challenges and implications for air-quality policies. Natl. Sci. Rev. 3 (4), 401–403. 
https://doi.org/10.1093/nsr/nww080. 

Han, X., Zhu, L., Liu, M., Song, Y., Zhang, M., 2020. Numerical analysis of agricultural 
emissions impacts on PM2.5 in China using a high-resolution ammonia emission 
inventory. Atmos. Chem. Phys. 20, 9979–9996. https://doi.org/10.5194/acp-20- 
9979-2020. 

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, Nicolas, J., 
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