
Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Dissertation

Reconfigurable Computing Systems
for Robotics using a
Component-Oriented Approach
Ariel Podlubne
Born on: 29th May 1987 in Salta, ArgentinaMatriculation year: 2017

to achieve the academic degree
Doktor-Ingenieur (Dr.-Ing.)

Supervisor and examiner
Prof. Dr.-Ing. Diana Göhringer
Co-examiner
Prof. Dr. Pedro Diniz

Submitted on: 4th May 2023Defended on: 28th June 2023

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Statement of authorship
I hereby certify that I have authored this document entitled Reconfigurable Computing Sys-
tems for Robotics using a Component-Oriented Approach independently and without undueassistance from third parties. No other than the resources and references indicated in thisdocument have been used. I have marked both literal and accordingly adopted quotationsas such. During the preparation of this document I was only supported by the followingpersons:

Diana Göhringer
Additional persons were not involved in the intellectual preparation of the present document.I am aware that violations of this declaration may lead to subsequent withdrawal of theacademic degree.
Dresden, 4th May 2023

Ariel Podlubne

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Abstract

Robotic platforms are becoming more complex due to the wide range of modern applications,including multiple heterogeneous sensors and actuators. In order to comply with real-timeand power-consumption constraints, these systems need to process a large amount ofheterogeneous data from multiple sensors and take action (via actuators), which representsa problem as the resources of these systems have limitations in memory storage, bandwidth,and computational power.
Field Programmable Gate Arrays (FPGAs) are programmable logic devices that offer high-speed parallel processing. FPGAs are particularly well-suited for applications that requirereal-time processing, high bandwidth, and low latency. One of the fundamental advantagesof FPGAs is their flexibility in designing hardware tailored to specific needs, making themadaptable to a wide range of applications. They can be programmed to pre-process dataclose to sensors, which reduces the amount of data that needs to be transferred to othercomputing resources, improving overall system efficiency. Additionally, the reprogrammabilityof FPGAs enables them to be repurposed for different applications, providing a cost-effectivesolution that needs to adapt quickly to changing demands. FPGAs’ performance per watt isclose to that of Application-Specific Integrated Circuits (ASICs), with the added advantage ofbeing reprogrammable.
Despite all the advantages of FPGAs (e.g., energy efficiency, computing capabilities), therobotics community has not fully included them so far as part of their systems for severalreasons. First, designing FPGA-based solutions requires hardware knowledge and longerdevelopment times as their programmability is more challenging than Central ProcessingUnits (CPUs) or Graphics Processing Units (GPUs). Second, porting a robotics application (orparts of it) from software to an accelerator requires adequate interfaces between softwareand FPGAs. Third, the robotics workflow is already complex on its own, combining severalfields such as mechanics, electronics, and software.
There have been partial contributions in the state-of-the-art for FPGAs as part of roboticssystems. However, a study of FPGAs as a whole for robotics systems is missing in the literature,which is the primary goal of this dissertation. Three main objectives have been established toaccomplish this. (1) Define all components required for an FPGAs-based system for roboticsapplications as a whole. (2) Establish how all the defined components are related. (3) Withthe help of Model-Driven Engineering (MDE) techniques, generate these components, deploythem, and integrate them into existing solutions.
The component-oriented approach proposed in this dissertation provides a proper solutionfor designing and implementing FPGA-based designs for robotics applications. The modulararchitecture, the tool “FPGA Interfaces for Robotics Middlewares” (FIRM), and the toolchain“FPGA Architectures for Robotics” (FAR) provide a set of tools and a comprehensive designprocess that enables the development of complex FPGA-based designs more straightfor-wardly and efficiently. The component-oriented approach contributed to the state-of-the-artin FPGA-based designs significantly for robotics applications and helps to promote their wideradoption and use by specialists with little FPGA knowledge.

Abstract

Acknowledgment

I would like to express my sincere gratitude to Prof. Diana Göhringer for providing me withthe opportunity to join the Chair of Adaptive Dynamic Systems. I am thankful for the opendoor that was meant for “five minutes” but often extended into hour-long discussions, evenwhen they took unexpected turns and led us into discussions completely unrelated to theoriginal topic. Your guidance over the years, with precise redirections and the freedom toexplore different ideas, has been invaluable.
My deepest appreciation goes to Johannes Mey, marking the longest collaboration of myPh.D. journey1. Thank you for the countless discussions, collaborative problem-solving, andthe dedicated hours that shaped this research. I extend my gratitude to Sergio Pertuz forjoining Johannes and me towards the end of our work. I look forward to seeing the positiveimpact of our collaborative work in many years to come.
Special thanks to René Schöne for his critical perspectives, which have significantly enhancedthe rigor of this research, and to my office mate, Ahmed Kamaledin, for the endless conver-sations and the shared time.
Lastly, I am profoundly grateful for my family, who consistently supports me in both goodtimes and, especially, when things do not go as expected.

1Work funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part ofGermany’s Excellence Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of Excellence “Centre for TactileInternet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

G

Contents

List of Figures V

List of Tables VII

List of Listings IX

Acronyms XI

1 Introduction 11.1 Motivation . 11.2 Objectives . 41.3 Contributions . 51.4 Thesis Structure . 7
2 Background and State-of-the-Art 92.1 Zynq and UltraScale FPGA Families . 112.2 AXI Stream Protocol . 132.3 Model-Driven Engineering . 132.4 The Building Blocks of Languages in Computer Science 152.5 JastAdd: The Meta-Compilation System . 192.6 Template Engines . 232.7 Robotic Applications in Adaptive Computing . 262.7.1 FPGA Applications . 262.7.2 GPU Applications . 292.8 Robotics Middlewares . 322.8.1 The Robot Operating System Enhanced with Field Programmable GateArrays . 332.8.2 Operating Systems Support for Reconfigurable Computing 372.8.3 Roboticists Interests . 382.9 Model-Driven Engineering . 382.9.1 Control and Handling of Events . 412.9.2 Architecture Structures and Viewpoints 422.9.3 Combined Control and Handling of Events with Architecture Structuresand Viewpoints . 43
3 Modular Hardware Architecture 473.1 Challenges and Goals . 483.2 Accelerator-Related Components . 49

I

Contents

3.3 Messages-Dependent Components . 503.4 Components of the Modular Architecture . 523.4.1 Accelerators as Publishers and Subscribers 523.4.2 Middleware-Based Hardware Interfaces 523.4.3 Manager . 523.4.4 Communication Interface . 543.5 Evaluation . 563.6 Summary . 58
4 Hybrid Hardware/Software Schedulers 594.1 Challenges and Goals . 594.2 Scheduling Algorithms . 614.2.1 Least Recently Utilized (LRU) . 614.2.2 Fixed Priority (FP) . 614.2.3 Earliest Deadline First (EDF) . 624.2.4 Least Slack Time (LST) . 624.3 Evaluation . 634.3.1 Scalability . 644.3.2 Schedulability . 644.3.3 Performance . 684.3.4 Corner Cases . 724.3.5 Combined Schedulers . 744.4 Schedulers Comparison . 784.5 Summary . 79
5 Generation of Hardware Interfaces Compatible with Robotics based on Specifi-

cations 815.1 Challenges and Goals . 815.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool 825.2.1 A Model-Driven Toolchain . 835.2.2 Characteristics of the Model-Driven Toolchain 865.2.3 The Models . 875.2.4 Attributes . 895.2.5 Attribute-Controlled Model Transformation 895.2.6 Template-Based Code Generation . 905.3 Evaluation . 925.3.1 Complexity of Specifications . 925.3.2 Full ROS Support . 945.3.3 Use Cases . 985.4 Summary . 103
6 Model-based Generation of Hardware/Software Architectures for Robotics Systems1056.1 Challenges and Goals . 1056.2 Code Generation Workflow . 1066.2.1 Model Analysis . 1086.2.2 Template Engine . 1096.2.3 Artifacts Generators . 1106.3 Code Generation Challenges for HW/SW Architectures 1116.3.1 Concise Holistic Model . 111

II

Contents

6.3.2 Dynamic Frame Length . 1126.3.3 Scheduling Transactions between Hardware and Software 1146.4 FPGA Architectures for Robotics (FAR) Tool . 1156.4.1 Tailored Information using Intermediate Representations 1166.4.2 Simplifying Runtime Computation . 1166.4.3 Benefits of Model Analysis in the Development Lifecycle 1166.4.4 Details of the Model Analysis . 1176.5 Evaluation . 1206.5.1 Quaternion to Euler . 1206.5.2 Image Processing . 1216.5.3 Multi-type Messages . 1216.5.4 Robotic Arm Position Estimation . 1226.5.5 Manual Vs. Generated Deployment . 1226.6 Wizard . 1236.7 Adaptability and Extendability . 1246.8 Summary . 126
7 Conclusion 129

Bibliography 135

III

List of Figures

1.1 Total ROS packages downloaded (data based on ROS community metrics) . . 31.2 Objectives and contributions . 51.3 Component-oriented workflow for the generation of FPGA-based robotic ap-plications . 7
2.1 Related FPGA and GPU publications for robotic applications. 102.2 Reconfigurable computing system’s diagram. 112.3 Zynq®-7000 SoC architectural overview . 122.4 AXI Stream protocol example . 142.5 Example of how a lexer and a parser generate an AST 162.6 Synthesized vs. inherited attributes . 182.7 Generated syntax tree for BNF grammar example for input string 3 ∗ (4 + 2) + 8 182.8 Custom DSL and graphical representation of a desired state machine 202.9 Populated AST for the example state machine 232.10 Code generation process used in this dissertation 232.11 Basic ROS architecture . 342.12 Complexity of ROS messages . 342.13 Aspects of architectures & programming of robotics in the state-of-the-art . . 40
3.1 Generic base architecture . 483.2 TCP/IP five-layer network model . 493.3 Hardware port for image msg . 513.4 Manager . 523.5 AXIS ID extraction signals . 543.6 SPI master architecture with AXIS interfaces. 563.7 Resource utilization in common IPs inside the manager 573.8 Multiplexer and demultiplexer . 58
4.1 Adaptable statechart, generic for all scheduling algorithms 604.2 Fixed priority scheduling with and without preemption 614.3 Earliest deadline first scheduling . 624.4 Least slack time scheduling . 634.5 Schedulers’ resource utilization . 654.6 Accelerators that finished or got the grant . 664.7 Preemptions per accelerator (per completed transaction) 674.8 LRU example with four accelerators . 674.9 Response time and lateness metrics . 68

V

List of Figures

4.10 Schedulers’ average response time . 694.11 Schedulers’ average lateness . 714.12 Schedulers’ maximum lateness . 714.13 Communication channel utilization . 724.14 Schedulers’ corner cases: Average preemption per algorithm 734.15 Schedulers’ corner cases: Response time . 754.16 Schedulers’ corner cases: Lateness . 764.17 Schedulers’ corner cases: Channel utilization . 774.18 Combined schedulers . 78
5.1 ROS message and hardware equivalence . 835.2 Workflow to generate hardware architectures 845.3 Meta-models in the FIRM tool. 865.4 ROS message model for sensor_msgs/Image 875.5 Intermediate message model for sensor_msgs/Image 885.6 Model transformation and code generation attributes 915.7 Complexity of ROS messages . 945.8 Histograms of contained fields in ROS Noetic and ROS2 Humble messages . 955.9 Histograms of distinct data types in ROS Noetic and ROS2 Humble messages 965.10 Histograms of nesting depth in ROS Noetic and ROS2 Humble messages . . . 965.11 Amount of ROS and ROS2 messages with and without nested message 975.12 Image processing use case sequence . 100
6.1 Quaternion to Euler converter with ROS interfaces 1076.2 Extended toolchain workflow for the generation of HW/SW architectures . . . 1096.3 Payload of an image publisher dynamically computed 1136.4 ROS scheduling schemes . 1146.5 UML representations of the system specification ASTs 1186.6 Quaternion to Euler’s AST. 1186.7 Workflow of interactive tool to create a system specification interactively. . . 1246.8 Adapted grammar including a Network-on-Chip. 125
7.1 Dissertation overview . 133

VI

List of Tables

2.1 AST specification syntax used in JastAdd . 212.2 FPGA applications in robotics . 282.3 GPU applications in robotics . 312.4 Integration of FPGAs and ROS. 382.5 MDE approaches for FPGAs . 46
3.1 Decoder with two input’s truth table . 543.2 Decoder with four input’s truth table . 543.3 Resource utilization in common IPs inside the manager 57
4.1 Schedulers’ resource utilization . 644.2 Resource-optimized vs. latency-optimized EDF tradeoff 664.3 Schedulers’ response time . 704.4 Schedulers’ lateness . 704.5 Combined schedulers’ resource utilization . 784.6 Schedulers comparison . 79
5.1 Supported datatypes and potentially addable features 935.2 Lines of Code of ROS1 and ROS2 HDT. 995.3 Execution time with and without generated components. 1015.4 Resource utilization for both use cases . 1025.5 Lines of code written once for all use cases, and additional written/generatedcode for each individual use case . 102
6.1 Execution time of hardware accelerated functions. 1216.2 Lines of code of input vs. generated artifacts 123

VII

List of Listings

2.1 Example of a BNF grammar . 162.2 JastAdd grammar for state machines . 212.3 Manually coded state machines in VHDL . 222.4 Template configuration for state machines . 242.5 Mustache template for state machines . 25
3.1 ROS sensor_msgs/Image specification . 51
5.1 Configuration file for an image processing use case 855.2 Declaration and equations for the synthesized attribute bitwidth for the non-terminal Field . 895.3 Declaration and definition of the inherited attribute startIndex 905.4 Template configuration file . 915.5 Snippet of a HDT for ROS1 . 985.6 Snippet of a HDT for ROS2 . 99
6.1 System specification for a Quaternion to Euler system 1086.2 Mustache template to generate script that uses FIRM to generate all message-dependend components . 1106.3 Resulting shell script to generate IP blocks for message-dependend components1116.4 Snippet of the connections between accelerator and publisher converter . . 1126.5 Computation of message length . 1146.6 System specification’s grammar . 1186.7 Derived configuration file (converters part) . 1196.8 Attribute to obtain output interfaces for specified accelerators 1196.9 Input configuration file (connections part) . 120

IX

Acronyms

API Application Programming Interface.
ASIC Application-Specific Integrated Circuit.
AST Abstract Syntax Tree.
AXIS AXI Stream.
BNF Backus-Naur Form.
CAD Computed Aided Design.
CFG Context-Free Grammar.
CLB Configurable Logic Block.
CPU Central Processing Unit.
DDS Data Distribution Service.
DMA Direct Memory Access.
DNN Deep Neural Network.
DoF Degrees of Freedom.
DPR Dynamic Partial Reconfiguration.
DSE Design Space Exploration.
DSL Domain Specific Language.
DSP Digital Signal Processor.
DUT Device Under Test.
EDF Earliest Deadline Frist.
FAR FPGA Architectures for Robotics.
FF Flip-Flop.
FIFO First In First Out.
FIRM FPGA Interfaces for Robotics Middlewares.
FP Fixed Priority.
FPGA Field Programmable Gate Array.

XI

Acronyms

FPS Frames per Second.
FSM Finite State Machine.
GPU Graphics Processing Unit.
GUI Graphical User Interface.
HDL Hardware Description Language.
HDT Hardware Description Template.
HLS High-Level Synthesis.
IDL Interface Definition Languages.
IoT Internet of Things.
IP Intellectual Property.
LHS Left-Hand-Side.
LoC Lines of Code.
LOEDF Latency-Optimized Earliest Deadline First.
LRU Least Recently Used.
LST Least Slack Time.
LUT Lookup Table.
MARTE Modeling and Analysis of Real-Time and Embedded Systems.
MDA Model-Driven Architecture.
MDE Model-Driven Engineering.
NoC Network-on-Chip.
NPFP Non-Preemptive Fixed Priority.
NTA Non-Terminal Attribute.
OS Operating System.
PE Processing Element.
PFP Preemptive Fixed Priority.
PIM Platform Independent Model.
PL Programmable Logic.
PS Processing System.
PSM Platform Specific Model.
RAG Reference Attribute Grammar.
RCS Reconfigurable Computing System.
RHS Right-Hand-Side.
ROEDF Resource-Optimized Earliest Deadline First.

XII

Acronyms

ROS Robot Operating System.
RPC Remote Procedure Call.
RTL Register Transfer Level.
SIMD Single Instruction Multiple Data.
SLAM Simultaneous Localization and Mapping.
SoC System-on-Chip.
SPI Serial Peripheral Interface.
UML Unified Modeling Language.
VHDL Very High Speed Hardware Description Language.
WCET Worst Case Execution Time.
YAML Yet Another Markup Language.

XIII

1 Introduction

1.1 Motivation

Robotics has become an important field over the last decades in the research communityas well as in industry, but there are still open challenges to solve, such as new fabricationschemes, new power sources, battery technology, and energy-harvesting schemes, navigationin extreme environments or artificial intelligence for robotics [1]. The application fields rangefrom manufacturing [2], collaborative robots (cobots) interacting directly with humans [3],biomedicine [4], drones for different application [5] as well as mobile robots [6], to name afew. Due to the wide range of applications, robotic platforms are becoming more complex,including heterogeneous sensors and actuators. Complexity increases even more, whenmultiple robots are part of the same system, such as an automated warehouse [7]. Allthese systems need to process a large amount of heterogeneous raw data from multiplesensors and take action (via actuators), complying with real-time and power-consumptionconstraints. However, these systems usually have limited resources in terms of memorystorage, bandwidth, and computational capabilities.
On the one hand, Central Processing Units (CPUs) have been traditionally the defacto Pro-cessing Element (PE) as they can handle a wide range of tasks quickly, and there is muchsupport concerning their programmability. However, even though they include multiple cores,they are limited in terms of running many tasks in parallel. On the other hand, heterogeneouscomputing has grown over the last years, improving the innovations on accelerating compute-intensive workloads such as artificial intelligence [8]. The field of computer architecture hasbecome quite diverse with the emergence and constant improvements of CPUs, Digital SignalProcessors (DSPs), Graphics Processing Units (GPUs), and Field Programmable Gate Arrays(FPGAs). Lately, these last two have been explored as PEs for robotics.
GPUs include a large number of processing cores designed to run simultaneously, enablinga vast level of parallelism. In terms of their programmability, different frameworks havebeen used by developers. The parallel programming paradigm Compute Unified DeviceArchitecture (CUDA®) was released by NVIDIA® in 2007. It is very similar to the C language,oriented to GPUs. It combines serial and parallel executions and contains a particular Cfunction (kernel) executed concurrently on a fixed number of threads. The Open ComputingLanguage (OpenCL™) was launched to provide benchmarks for heterogeneous computing.It offers a portable language for GPUs and is used to design applications that are generalenough to run on different architectures.

1

1 Introduction

FPGAs are ideal candidates to process a large amount of heterogeneous data due to theirintrinsic parallel architecture [9]. They provide versatility to design hardware according tothe needs precisely, can pre-process data very close to sensors [10], and can be, from theperformance per watt, close to Application-Specific Integrated Circuits (ASICs) [11, 12], butthey are more flexible as they are reprogrammable. However, their programmability is not aseasy as CPUs or GPUs. A similar approach to CUDA® and OpenCL™ is High-Level Synthesis(HLS), which is also a C-like design process in which a high-level functional description ofa design can be compiled into Register Transfer Level (RTL). It allows designers with basichardware knowledge to re-use software applications with minimal changes to comply withsome hardware constraints, such as data movement between different components (callingfunctions in terms of software). Therefore, FPGAs are not limited anymore to experiencedhardware developers with knowledge in Hardware Description Languages (HDLs). Never-theless, designers still need some basic hardware knowledge to consider when “coding”new accelerators (also called Intellectual Property (IP) cores, hardware IPs, or just IPs). Theflexibility of FPGAs is due to the programmability of their Configurable Logic Blocks (CLBs)and the interconnection among them. Besides, FPGAs’s programmable connections to ex-ternal components make them very versatile for systems with many sensors and actuators,whether existing or new ones that may be required. These last two points are the mainreasons why FPGAs are becoming an ideal candidate to be used as a computational elementin robotic applications. The challenge with FPGAs, as with GPUs, is how to integrate theminto a given system or architecture, which is the main motivation of this dissertation. It isimportant to note that the embedded systems community has also focused its attentiontowards FPGAs [13], bringing new tools and programming paradigms, primarily based onHLS. Different commercial (e.g., Xilinx® OpenCV, Matlab® HDL Coder), as well as academicframeworks [14, 15] are available, providing multiple functions as individual elements (e.g.,filters) to be integrated into a given architecture. Lastly, they are a good fit to self-adaptive
systems, as some blocks can be modified dynamically at runtime.
Robotic platforms are a combination of software and hardware, requiring specific knowledgeof multiple fields (i.e., hardware, software, control). Extending their capabilities with differentcomputing systems increases their complexity even further. Ideally, experts in each fieldfocus on a specific system part according to their expertise in developing robots. Theyshould complement each other, and designers should be provided with simple tools to focusmainly on their expertise. However, there are challenges in coping with these sophisticatedheterogeneous systems and how to integrate them.
Regarding software, the robotics community adopted the Robot Operating System (ROS) [16]as the mainstream middleware over the last years. Figure 1.1 shows the total number ofpackages downloaded over the last decade, which include standard algorithms for basictasks such as localization, control, or mapping, to name a few, freely available in ROS due toits large community behind it. Lately, efforts have been put into ROS2 to improve its real-timefeatures and safety-critical related systems and ROS-industrial to extend the capabilities ofROS software to industrial relevant hardware and applications. All of these lead to moredesigners working on complex robotic systems, demanding more computational power andoften needing to process a large amount of data in parallel.
One aspect to remember in software development is that CPUs have been normally designedto fulfill generic operations such as addition or subtraction. Therefore, in order to obtainany given result, multiple operations have to be performed. A second aspect is that complex

1http://wiki.ros.org/Metrics

2

http://wiki.ros.org/Metrics

1.1 Motivation

2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

0

10

20

30

40

50
Do

wn
lo

ad
s [

M
illi

on
s]

Figure 1.1: Total ROS packages downloaded (data based on ROS Community Metrics1)
operations can be achieved by designing specific hardware. For example, multiple functionsfor image processing can be implemented in an FPGAs, combined and produce powerfulalgorithms [17]. A third aspect concerns that these complex robots have to perform manycomputations. Reaching the desired performance represents a challenge, especially in thecase when they are equipped with embedded computers consuming a lot of energy, whichis limited in a mobile system that is usually battery operated. Therefore, other computationalresources, such as FPGAs or GPUs, which are more power efficient, should be considered forrobotics. The first one is advantageous due to their versatility in obtaining custom designscapable of performing heavy computations with reduced power consumption. Moreover,they have been proven to be more efficient in terms of energy compared to general purposeprocessors [18]. Besides, FPGAs handle parallel and logic operations better than CPUs.
Despite all these and the advantages of FPGAs mentioned before, the robotics communityhas not fully included them so far as part of their systems for several reasons. First, designingFPGA-based solutions requires hardware knowledge and longer development times thansoftware solutions. Second, porting a robotics application (or parts of it) from softwareto an accelerator requires adequate interfaces between software and FPGAs. Third, therobotics workflow is already complex on its own, combining several fields such as mechanics,electronics, and software. Hence, increasing the effort to develop these systems is notdesired [19, 20]. Lastly, there is a knowledge gap in system integration besides significantdesign engineering costs, which is detrimental to integrating new Reconfigurable ComputingSystems (RCSs) into robotics.
The main four points to take into account when considering RCSs for robotics are:

1. The hardware platform must be able to comply with the power, computing and energyconsumption requirements needed for robotic applications. They should be flexibleand adaptable for reusability, and provide simple programmability.
2. Traditional robotics systems are software-based, so there has to be an easy integrationof existing architectures to a new platform to enhance their capabilities [21].
3. The usability of such new platforms must be easily adapted by roboticists to attractthem to use such systems.

3

1 Introduction

4. Developing FPGA-based architectures and system integration is a complex and arduousprocess that is usually overlooked, the generation of all components needed and theircomplete deployment should ideally not require much manual intervention.
These points already involve too many aspects to consider, so a simplification is required,at least from a design point of view. A model is an abstraction of a system or the real worldconcentrating on specific structural or behavioral properties and representing them in asyntactically and semantically defined language [22]. Systems and, therefore, robots can bedeveloped and tested based on such models exploiting their ability to abstract. By abstractingsome details of a system in its model, the complexity of the modeled system is hidden, thusenhancing the understanding of the system [23]. In this respect, a suitable level of abstractionand an appropriate system view must be determined. A too detailed model may not only belimited to a single use case but also be hard to construct because of time constraints or highcomplexity [24]. However, a too generic model may not provide the required expressiveness.Thus, the selection of the right level of abstraction is essential.
Figure 1.2 shows an overview of the objectives and contributions of this dissertation. Thefigure depicts the three main aspects to consider and the solutions proposed to achievesaid objectives. Based on the motivation and background in this section, in the following one,existing research challenges are discussed, shaping the objective of this work.

1.2 Objectives

There have been partial contributions in the state-of-the-art for RCSs, particularly FPGAs, aspart of robotics systems [27]. However, a study of FPGAs as a whole for robotics systems ismissing in the literature. This means that defining which are all the components required foran FPGA-based system for robotics applications as a whole, their integration into existingsolutions as well as the generation of said components has not been done, which are themain objectives of this dissertation. In order to achieve this, the following points have beendefined, as they have not been done so far, making them the three main objectives for thisdissertation:
1. Objective 1: Define all components required for an FPGA-based system for roboticsapplications as a whole.
2. Objective 2: Establish how all the defined components are related.
3. Objective 3: The generation of these components, their deployment and integrationinto existing solutions.

All along this work, Xilinx® has been the FPGA reference, particularly the Zynq® model, whichincludes processors, called the Processing System (PS) and the logic part, referred to asProgrammable Logic (PL). Note that the concepts described in this work are not only valid forXilinx® FPGAs as one could also think of soft-core processors such as MicroBlaze™ or RISC-Vcores.
The following section describes the contributions proposed to meet the objectives describedpreviously.

4

1.3 Contributions

FPGA-basedRobotics System

Objective 1

Defin
e Essential Components

O
bjective 2

Relationship among Components
Ob

jec
tiv
e
3

Automatic
Gene

ratio
n an

d D
epl

oym
entFPG
A-R

OS:
Met

hod
olog

y to A
ugmen

t the Robot

Op
era

ting
Syst

em
with

FPGA
Designs

[21]
Generation of Middleware-Compatible

Interfaces and their Validation
[9]

Model
ling F

PGA
-bas

ed
Robotic

s Syst
ems

[25,
19]

Hybrid Hardware/Software Schedulers
for Tailored Architecture [26]

Figure 1.2: Objectives and contributions

1.3 Contributions

The main contributions of this dissertation are presented below:
• FPGA-ROS: Methodology to Augment the Robot Operating System with FPGA De-
signs [21]The first contribution of this dissertation is the foundation of the work. It concerns a
methodology to design custom FPGA-based architectures compatible with the main-stream robotics middleware ROS. The aim is for highly computational algorithms im-plemented as dedicated hardware modules to increase the processing power of anyheterogeneous robotics system, taking advantage of the freedom and versatility thatFPGAs provide. A modular design is foreseen to ease the adaptability to changes in thesystem. The selection of the AXI Stream (AXIS) protocol enables modules to be addedor removed dynamically (“plug & play”). Furthermore, they can be designed in HDL (e.g.,Very High Speed Hardware Description Language (VHDL), Verilog) or HLS. Messagespecifications (either off-the-shelf or custom ones) representing data structures forthe entities of accelerators are used. Converters act as encoders/decoders for theIP cores and the common AXIS interface to communicate with other modules in thearchitecture.

5

1 Introduction

• Hybrid Hardware/Software Schedulers for Tailored Architecture [26]The base architecture is generic so that it can host any number of accelerators, whetherthey exchange data among them, receive data from the PS or send data to the PL.Therefore, how this communication is established has to be addressed. On the softwareside, where the native middleware runs, the goal is to share the most up-to-dateincoming data with accelerators. On the hardware side, the main goal is to serve allaccelerators in the system and avoid them being unable to send or receive data. Sixdifferent schedulers are proposed to cover multiple scenarios for different roboticsapplications. They are scalable and easy to adapt to manage either a small or largenumber of accelerators. Furthermore, the evaluation framework can also be used toselect the most fitted algorithm for each application, depending on the total number ofaccelerators and their characteristics.
• Generation of Middleware-Compatible Interfaces and their Validation [9]The base architecture needs suitable interfaces compatible with robotic applications.They must be compatible with middleware specifications, which describe data typesand structures to transfer information from/to different parts of the architecture. Thesespecifications are what define the converters. Their hardware implementation deals withlow-level details, usually abstracted in the software workflow. Therefore, writing theseconverters manually is a cumbersome and error-prone process. On the one hand,a model-based toolchain that automatically generates these hardware components(VHDL modules) from existing message specifications is proposed. On the other hand,the model-based approach allows for validating their correct logic. Lastly, the approachfacilitated the extension from ROS1 to easily provide support for ROS2, and othermiddlewares can also be incorporated.
• Modelling FPGA-based Robotic Systems [25, 19]The system integration of all generated components to deploy complex systems compli-ant with existing robotics middlewares (e.g., ROS, ROS2) is an arduous and error-proneprocess. Therefore, a modeling approach to solve this is proposed. As the aim is not toincrease the workflow of roboticists, the way the system is specified must be compactyet expressive with just enough information to generate all required components andto integrate existing algorithms. The proposed approach (c.f., Figure 1.3) exploits theadvantages of Model-Driven Engineering (MDE) and model-based code generation toproduce all components. Data type and data flow analysis are performed to derive thenecessary information to generate the components and their connections.

An overview of the process, including all contributions listed above, is presented in Fig-ure 1.3 [19]. It is based on the MDE technique [28], which uses a staged model transfor-mation process in which models are transformed in iterations. To separate the resultinglogical structure of the code from the concrete syntax, a logic-less (i.e., containing no complextemplate expansion logic) template engine is used (Generators in Figure 1.3). Their inputsare specifications of the component they will generate, an intermediate model (templateconfiguration) containing all the information to generate the tailored artifacts (i.e., VHDL, C++files for HLS, TCL or bash scripts) and their corresponding template. The workflow can besplit into three branches. The first refers to the base architecture, which includes two distinct
generators. One for the architecture-dependent components, like a manager (which includesthe scheduler) to handle N accelerators and a communication interface to exchange datawith external non-hardware components. The other one handles the components of the
processor-related (hard or soft processors). The second branch handles the interfaces to robotic

6

1.4 Thesis Structure

Input code /
Specification

Generated code /
Specification

System-provided
code/Specification

Tool /
Component

Model User’s IP

Legend

System’s
Specification

Parser

Base Architecture
Middleware
Specification Accelerator

Basic Blocks
Processor Specs
Template (PST)

Hardware Description
Template (HDT)

Base Architecture
Generator

Processor(s)

Processors
Generator

Application
Hardware Description
Template (HDT)

Accelerator
Generator

Hardware Description
Template (HDT)

Middleware
Interface

Middleware Interfaces
Generator

Accelerators
(VHDL/HLS)

MPSoC Integration
(TCL, Bash)

Middleware-
dependent
IP (VHDL)

Architecture-
dependent
IP (VHDL)

Accelerator
(VHDL/HLS)

System’s Builder
(TCL, Bash) FPGA-Based Robotic Application

entity {{Interface}} is {{!template element}}
Port (
clk, rst: in std logic;
{{Variable}}: {{Direction}} std logic vector({{Bits}} downto 0);

);
end {{Interface}};

Snippet of a HDT

Figure 1.3: Component-oriented workflow for the generation of FPGA-based robotic applica-tions
applications. The last branch generates accelerators based on the expected behavior for agiven application, compatible with middleware specifications (interfaces). The output of all ofthem is a set of artifacts for all components needed to automatically deploy an FPGA-based
robotics application from a simple system’s specification.

1.4 Thesis Structure

This dissertation is structured in six chapters, including this one. An overview of each of themis given below.
Chapter 2 presents the background and state-of-the-art review of the related topics ofthis dissertation. Three main points are discussed, which complement each other, to pavethe way for the contributions presented previously. The first one explores traditional (non-hardware-oriented) methodologies followed in robotics. Then, an overview is given aboutwhich applications in the robotics field use GPUs and FPGAs to understand their complexity,advantages, and challenges they bring. Furthermore, they depict why especially FPGAs area good fit for robotics applications. Lastly, an analysis of different modeling techniques totackle the complexity of these applications and how to circumvent them by code generationis presented.
Chapter 3 introduces the base architecture, discusses why a modular approach is needed,the reason for each component to be part of the system, how they relate to each other,and how each of them interact with one another. Then, it presents the details of all thecomponents that constitute it, analyzing their scalability and generalizability to multiple usecases.
Chapter 4 presents several scheduler algorithms to arbitrate the exchange of data betweensoftware and hardware components. Experimental results are presented, describing all thecharacteristics that can be used to select the most appropriate one for each application.
Chapter 5 addresses the generation of hardware interfaces compatible with standard roboticssystems, based on specifications. The chapter starts with the goals and challenges, followedby a description of the toolchain proposed. The fundaments of the model-based approach

7

1 Introduction

chosen and why a logicless template engine is chosen are described. The underlying reasonfor the need for a toolchain is discussed based on the complexities of message specifications.Furthermore, the full ROS support and the means to extend the toolchain for ROS2 areexplained. An evaluation of the toolchain follows to show the correctness of the logic of thegenerated components and the claimed full ROS support.
Chapter 6 describes the extended toolchain to generate the entire FPGA-based system inaddition to the hardware interfaces. It starts with the requirements on how to describe thesystem in a compact yet power expressive [29] way to obtain the explicit and implicit charac-teristics of the system. Then, a description of the system’s model is illustrated, which is usedto generate all components. Three challenges faced in the generation of such architectureare presented and how they are solved with the proposed approach. Lastly, an evaluationwith several use cases is performed, followed by comparing the effort to write them manuallyversus using the resulting toolchain to highlight its benefits.
Chapter 7 summarizes and concludes this dissertation and presents the future work.

8

2 Background and State-of-the-Art

In recent years, robotics research has witnessed remarkable advancements in various applica-tions, ranging frommanufacturing, healthcare, and logistics, to name a few. These applicationsrequire powerful computational systems that can process large amounts of heterogeneousdata from multiple sensors fast, usually at real-time, to enable quick and precise decisionsthat trigger appropriate actions on different actuators. Despite significant progress in roboticstechnology, the challenge of processing and integrating data from diverse sources in real-timeremains a significant issue that researchers still need to tackle. Furthermore, new PEs havebeen emerging over the last years. However, but their integration into the current roboticsworkflow tends to be an arduous process, leaving them out of consideration by roboticistsdue to their difficulties in regards to usability and programmability. Efficient robotic systemsrequire innovative solutions that can handle large-scale, complex data processing tasks.These solutions should be robust, reliable, and scalable, and easy to integrate into existingsystems.
All these systems need to process a large amount of heterogeneous raw data from multiplesensors and take action (via actuators), complying with real-time and power-consumptionconstraints. However, these systems usually have limited resources in terms of memorystorage, bandwidth, and computational capabilities. Traditionally, CPUs have been the defactoPE as they can handle a wide range of tasks quickly, and there is much support concerningtheir programmability. However, even though they include multiple cores, they are limited interms of running many tasks in parallel. Lately, two other options have been explored as PEs,namely GPUs and FPGAs.
GPUs include a large number of processing cores designed to run simultaneously, enablinga vast level of parallelism. In terms of their programmability, different frameworks have beenused by developers. The parallel computing platform and application programming interfaceCompute Unified Device Architecture (CUDA) was released by NVIDIA in 2007. It is very similarto the C language oriented to GPUs. It combines serial and parallel executions and contains aparticular C function (kernel) executed concurrently on a fixed number of threads. The OpenComputing Language (OpenCL) was launched to provide benchmarks for heterogeneouscomputing. It offers a portable language for GPUs and is used to design applications that aregeneral enough to run on different architectures.
FPGAs are ideal candidates to process a large amount of heterogeneous data due to theirintrinsic parallel architecture [9]. They provide versatility to design hardware according to theneeds precisely and can pre-process data very close to sensors [10]. Moreover, they providebetter performance per Watt than a standard CPU-based architecture [30]. However, theirprogrammability is not as easy as CPUs or GPUs. A similar approach to CUDA and OpenCL is

9

2 Background and State-of-the-Art

HLS, which is also a C-like design process in which a high-level functional description of adesign can be compiled into RTL. Nevertheless, designers still need some basic hardwareknowledge to take into account some details when “coding” new accelerators (also calledhardware IPs). FPGAs offer a better energy efficiency compared to CPUs and GPUs [18],becoming an ideal candidate to be used as a computational element in robotic applications.
Despite the advantages of FPGAs and GPUs, their programmability and integration as individ-ual modules into existing systems are cumbersome. An efficient option to aid the integrationof multiple components aremiddlewares, which provide services beyond those available fromthe Operating System (OS). They make it easier for developers to implement communicationand input/output to focus on the application’s specific purpose. Nevertheless, there areplenty from the software side. However, only a little support from the hardware side focuseson accelerators, so the experience is needed to incorporate them into existing solutions.To simplify the process, a higher level of abstraction helps, which is why model-based ap-proaches have been proposed to integrate, generate and deploy hybrid software/hardwaresystems.
Robotic systems require specific knowledge of multiple fields (i.e., hardware, software, control).Extending their capabilities with different computing systems increases their complexity evenfurther. Figure 2.1 shows data from peer-reviewed articles, depicting how GPUs and FPGAshave been part of robotic-related research, which has not been increasing over the last tenyears. Furthermore, Figure 2.1 also shows in terms of percentage, how many publicationsrelated to robotics (that include the word robot) are concerned with FPGA or GPU. It canbe observed that FPGAs have not been widely adopted as an alternative PEs in roboticssince the early 2010s. In recent years, GPUs have gained popularity, most likely due to theincreasing affordability of embedded GPUs. This represents one of the primary motivationsfor this dissertation, which aims to investigate the underlying reasons for the limited use ofFPGAs in robotics and propose methodologies and tools for enhancing their adoption as aviable PE option in this field.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

0

200

400

600

800

1000

"r
ob

ot
 F

PG
A"

 a
nd

 "r
ob

ot
 G

PU
" s

ea
rc

he
s

robot AND FPGA
robot AND GPU

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pe
rc

en
ta

ge
 o

f "
ro

bo
t F

PG
A"

 a
nd

 "r
ob

ot
 G

PU
" i

n
"r

ob
ot

" s
ea

rc
he

s
((robot AND FPGA)/robot)*100
((robot AND GPU)/robot)*100

Figure 2.1: Related FPGA and GPU publications for robotic applications.

10

2.1 Zynq and UltraScale FPGA Families

Ideally, to develop robots, experts in each field focus on a specific system part accordingto their expertise. However, there are challenges in coping with these sophisticated hetero-geneous systems and how to integrate them. MDE copes with the challenges of buildingcomplex heterogeneous systems [28]. A model can be defined as an abstraction of a systemoften used to replace the system under study [31]. They represent a partial and simplifiedview of a system. So, modeling all parts of the system separately is usually necessary to betterrepresent and understand the system under study [31].
It is important to define some concepts that will be used for the remaining of this manuscript,before exploring the state-of-the-art. These are introduced in Sections 2.1 and 2.3 to 2.6.

2.1 Zynq and UltraScale FPGA Families

This section introduces themain concepts about FPGAs followed in this dissertation. Figure 2.2show a generic representation of FPGAs which helps to understand why they are consideredan ideal candidate for robotics systems in this work. First of all, they include CLBs, which are theessential resources FPGAs include. They usually include Flip-Flops (FFs), Lookup Tables (LUTs)and multiplexer, enabling the programmability mentioned before. They also include DSPs andmemory blocks, even though these last ones are limited in size and special care needs to betaken at design time. The interconnection among these blocks is also programmable, whichis the main reason for the flexibility of FPGAs mentioned before. Lastly, their programmableconnections to external components make them very versatile for systems with many sensorsand actuators, whether existing or new ones that may be required.
As mentioned in Section 1.2, the Zynq® model from Xilinx® is used in this dissertation,particularly the Zynq®-7000 and Zynq® UltraScale+™ families. They include dual-core orsingle-core ARM® Cortex™-A9, and 64-bit quad-core or dual-core ARM® Cortex®-A53 anddual-core ARM Cortex-R5F based PS, respectively. Both families include in the single deviceXilinx® ’s PL. The PL allows users to design their own digital circuits using an HDL and thenprogram them onto the FPGA. This allows the creation of customized hardware solutionsfor a wide range of applications, from signal processing to data center acceleration. As a

Figure 2.2: Reconfigurable computing system’s diagram.

11

2 Background and State-of-the-Art

reference, the architectural overview of the Zynq®-7000 System-on-Chip (SoC) is shownin Figure 2.3.
Zynq® devices provide a good balance between performance and power consumption, mak-ing them suitable for a wide range of applications, including embedded vision, industrialcontrol, and Internet of Things (IoT). On the other hand, UltraScale+™ is a family of FPGA de-vices that offers high performance and scalability for applications that require high-bandwidthdata processing. These devices have a more advanced architecture than Zynq® devices, withfeatures like high-speed serial transceivers, 28Gbps transceivers, and advanced memoryinterfaces. UltraScale+™ devices are typically used in high-performance computing, wiredand wireless communications, and video processing applications.
For both families, the PS has a wide range of peripheral interfaces such as USB, Ethernet,UART, SPI, and I2C. These interfaces can be used to connect to various devices, such asstorage devices, network devices, and sensors. Furthermore, a boot loader can be loadedon the device to initialize the hardware as well as load a Linux kernel into memory. Havinga Linux kernel loaded into memory allows the OS to take control of the device and run anative Linux distribution as in a regular desktop PC with the advantages of this particularembedded system (e.g., high-performance, low-power processing).

Figure 2.3: Zynq®-7000 SoC architectural overview1

12

2.2 AXI Stream Protocol

2.2 AXI Stream Protocol

The AXIS Protocol is a widely-used interface protocol for efficient and reliable communicationbetween digital circuits. The protocol is designed to provide a high-speed, point-to-pointcommunication link between system components, such as between the CPU and peripheraldevices like accelerators. AXIS is a packet-based protocol that operates over a single, unidirec-tional data channel, unlike the AXI4 protocol that supports bidirectional communication.
The protocol works in a master-slave configuration. The first one is the one that producesthe data, and the second one consumes it. Four signals must always be part of the interface,namely:

• TDATA is the primary payload used to provide the data. The width of the data is aninteger number of bits, typically 8, 16, 32, or 64.
• TVALID indicates that the master has data available to be transferred.
• TREADY indicates that the slave can consume the data produced by the master.
• TLAST indicates the last element to transfer (packet boundary).

For a master, TDATA , TVALID , and TLAST are output signals, and TREADY is input. For a slave,
TDATA , TVALID , and TLAST are input signals, and TREADY is output.
A frame consists of a group of packets (bytes that are transported together across an AXISinterface), and there is a handshake process for the transmission to begin. For a transfer tooccur, both TVALID and TREADY signals must be asserted irrespectively of their order (orat the same clock cycle). However, there are some restrictions. A master cannot wait until
TREADY is asserted. It must always assert TVALID when new data is available, independentlyof TREADY . Once TVALID has been asserted, it must remain asserted until the handshakeoccurs. Similarly, a slave cannot wait until TVALID is asserted. It must always assert TREADYwhenever it can consume data from the master. The slave must keep TREADY asserted untilthe handshake occurs. Figure 2.4 shows an example of a proper transmission that only startsonce TVALID and TREADY have been both asserted, where the payload is the sequence ofbytes on TDATA .

2.3 Model-Driven Engineering

MDE is a software engineering approach that focuses on creating models that capture asystem’s structure, behavior, and functionality and using those models to generate codeand other artifacts. The goal of MDE is to improve the efficiency and quality of softwaredevelopment by emphasizing using models as a primary artifact throughout the developmentprocess. MDE is often used in complex systems, where the use of models can help managethe system’s complexity and improve the development team’s productivity. It can also behelpful in domains with strict requirements, as using models can help ensure that the systemmeets those requirements.

1Image taken from https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview

13

https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview

2 Background and State-of-the-Art

0

1
clk

0

1
tdata

0

1
tvalid

0

1
tlast

0

1
tready

Figure 2.4: AXI Stream protocol example
MDE is designed to improve software development productivity by boosting compatibilitybetween systems, simplifying the design process, and easing communication among indi-viduals and teams working on the system. One key advantage of MDE is that it facilitatesthe reuse of standardized models, which can help simplify the development process andpromote compatibility between different systems. In addition, MDE promotes the use ofmodels to capture recurring design patterns in the application domain, which can simplifythe design process and reduce the likelihood of errors.
Another important benefit ofMDE, vital for this dissertation, is that it promotes communicationbetween individuals and teams working on the different parts of a system, where expertsin different domains work. By standardizing the terminology and best practices used in theapplication domain, MDE can help ensure that everyone involved refers to the same concepts(from their expert knowledge), which can reduce misunderstandings and improve the overallquality of the system.
One common technique used in MDE is model-driven development, in which technicalartifacts such as source code, documentation, and tests are generated algorithmically from adomain model [32]. This approach can help reduce the amount of manual effort requiredduring the development process and can also improve the accuracy and consistency of theresulting artifacts.
The key MDE aspects used along this dissertation are:

• Modeling: creating models representing the system being developed or generated.These models may include high-level models of the system’s architecture, as well asmore detailed models of individual components and their interactions.
• Transformation: using automated tools to transform the models into other artifacts,such as source code, test cases, and potential documentation.

14

2.4 The Building Blocks of Languages in Computer Science

• Validation: verifying that the models and their transformations are correct and consis-tent with the system’s requirements.
• Simulation: using the models to simulate the system’s behavior under different condi-tions, such as different inputs or system configurations.

2.4 The Building Blocks of Languages in Computer Science

In order to understand the main concepts exploited in Chapters 5 and 6, some language-related definitions used in computer science are required, which are explained below:
Grammar: are a set of rules that define the structure and syntax of a language, including therelationships between its elements.
Context-Free Grammar (CFG): is a formal grammar whose production rules can be applied tonon-terminal symbols regardless of its context, that can generate a language. It is a formalismused to specify the syntax of a language in a way that is independent of any particularimplementation. In particular, in a CFG, each production rule is of the form A→ α, with A asingle non-terminal symbol, and α a string of terminals and/or non-terminals.
Backus-Naur Form (BNF): is a type of meta-language used to formally describe the syntax ofprogramming languages and other computer languages. It is a notation of CFG that it is usedto define the set of valid strings in the language. Variables (non-terminals) are enclosed viaspecial brackets "<var>" to distinguish them from terminal symbols. The symbol "::=" is usedto indicate an equivalence similar to the derivation function in CFGs (→). The symbol "|" isused to separate alternatives. Listing 2.1 shows the grammar that can be used to processexpressions like 3 ∗ (4 + 2) + 8. This is also used to show further definitions.
Semantics: refers to the meaning of language and symbols in a particular context. For aprogramming language, semantics describe what a programdoes andwhat values it producesrather than how it does it. They can specify the rules for evaluating expressions, definingvariables, and executing statements or how a program should behave in different situations.
Abstract Syntax Tree (AST): is a data structure used in compilers and interpreters to representthe structure of a program. It is a tree-like representation of the source code or a model,where each node in the tree represents a construct in the element (i.e., language, specification)being parsed.
Constructs: can be anything from a simple variable declaration to a complex function defi-nition. The construct is an abstraction of the source code that captures the meaning of aparticular code structure. For example, a function definition is a construct in many program-ming languages. The construct represents the entire function, including its name, arguments,and body. The construct provides a high-level view of the function, allowing the parser tounderstand the relationship between the different elements in the source code.
Token: is a sequence of characters in the source code that represents a single unit of meaning.The lexer or lexical analyzer generates tokens by breaking down the source code. Tokenscan be keywords, identifiers, operators, and literals. Usually, the lexer reads the source codecharacter by character and groups them into token based on predefined rules. The tokens arepassed on to the parser, which processes them and generates a parse tree, which represents

15

2 Background and State-of-the-Art

1 <expr> : : = <term> "+ " <term> / /Non− termina l
2 <term> : : = < fac tor > "* " < fac tor > | <number> / /Non− termina l
3 < fac tor > : : = " (" <expr> ") " | <number> / /Non− termina l
4 <number> : : = "0 " | "1 " | "2 " | "3 " | "4 " | "5 " | "6 " | "7 " | "8 " | "9 " / / Terminal

Listing 2.1: Example of a BNF grammar

the structure of the code based on the grammar rules. Tokens can be either terminals ornon-terminals. An example is shown in Figure 2.5.
Terminal: also known as a leaf node, is a basic symbol in a grammar that represents thesmallest possible unit of the language being parsed. Terminals are usually represented askeywords, identifiers, operators, or other literal values in the source code (c.f.,Lines 1 to 3in Listing 2.1).
Non-Terminal is a symbol in a grammar that represents a higher-level structure in thelanguage being parsed. Non-terminals are usually represented as variables or expressionsthat are composed of other symbols, including terminals and other non-terminals (c.f.,Line 4in Listing 2.1).
Production rules: are a fundamental concept in formal language theory and are used todefine the syntax of a language. They specify how the components of a language, such asterminals and non-terminals, can be combined to form valid sentences or expressions in thelanguage. In the context of parsing and compiler construction, production rules are used todefine the grammar of a language, which is then used by a parser to recognize and analyzethe syntax of a program written in that language. Production rules consist of two parts: aLeft-Hand-Side (LHS), which specifies a non-terminal symbol, and a Right-Hand-Side (RHS),which specifies a sequence of terminals and/or non-terminals that can replace the non-terminal symbol on the LHS. The LHS and RHS of a production rule together define a singletransformation of a language, where the non-terminal symbol on the LHS is transformedinto the sequence of symbols on the RHS. A language’s set of all production rules definesits syntax, and a parser uses these rules to analyze and interpret programs written in thelanguage. An example is shown in Listing 2.1. The characters ::= divide the LHS and RHS ofthe production rules.
Attributes: are values that describe properties of elements in a grammar (i.e., types, values).An attribute can be a reference to an AST node. Therefore, attributes can connect differentAST nodes to each other (forming a graph). They can be synthesized or inherited:

• Synthesized Attributes: All the information is available on the values of other attributesin the same node or its children (subtree) (Figure 2.6a).

32 + 74 32 + 74Lexer
NUMNUM PLUS

Tokens

Abstract Syntax Tree

Input String
Expression

Sum

32 + 74

Parser

Figure 2.5: Example of how a lexer and a parser generate an AST

16

2.4 The Building Blocks of Languages in Computer Science

• Inherited Attributes: All the information is available outside the subtree (parent) (Fig-ure 2.6b).
Attribute Grammars: used to specify the syntax and the semantics of programming languagesor a Domain Specific Language (DSL). They are an extension of traditional grammars byassociating additional information (attributes) with elements of the grammar, making itpossible to generate code automatically.
Reference Attribute Grammar (RAG): is an attribute in an abstract syntax tree that holds areference to another node in the tree. The value of a reference attribute is determined bythe node it references. Reference attributes help create relationships between nodes in thetree, such as parent-child relationships or relationships between siblings. There is no need inRAGs to replicate the information available in the syntax tree into attributes as the AST canbe used as the information source by using RAGs [33].
A lexical analyzer, also known as a lexer, transforms an input stream of characters into astream of tokens, which are the smallest units that a parser can handle. A syntactic analyzer,also known as a parser, converts the input stream of tokens into an attributed syntax tree [34].Thereby, the AST is generated by the parser, which processes the tokens generated by thelexer and uses the grammar rules to construct a tree-like structure that represents theprogram’s structure (Figure 2.5). The AST captures the program’s logical structure, includingits syntax, control flow, and relationships between different elements in the source code. Inthis context, each node in the tree represents a single construct in the language being parsed.The nodes are connected to form a tree-like structure, where the parent node representsa higher-level construct, and the child nodes represent lower-level constructs. This tree-like structure provides a hierarchical representation of the source code that captures therelationships between different elements in the program.
Once the AST is generated, it can be used for various purposes, such as code optimization,code analysis, code generation, and others. Compilers and interpreters also use the AST togenerate machine code or execute the program. In summary, the AST is a crucial componentof the language processing pipeline, providing a structured representation of the programthat can be used for various purposes.
Considering the BNF grammar example from Listing 2.1 that takes the mentioned input3 ∗ (4 + 2) + 8, the lexer will generate the following list of tokens: <number:3>, <symbol:*>,
<symbol:(>, <number:4>, <symbol:+>, <number:2>, <symbol:)>, <symbol:+>, <number:8>. Thesewill be taken by the parser to construct the syntax tree shown in Figure 2.7.
The following section describes the compiler framework used in this dissertation.

17

2 Background and State-of-the-Art

Synthesized

(a) Synthesized Attribute

Inherited

(b) Inherited Attribute
Figure 2.6: Synthesized vs. inherited attributes

expr

term

factor

number:3

symbol:∗ term

factor

symbol:(expr

term

factor

number:4

symbol:+ factor

number:2

symbol:)

number:8

Terminal Non- Terminal

Legend

Figure 2.7: Generated syntax tree for BNF grammar example for input string 3 ∗ (4 + 2) + 8

18

2.5 JastAdd: The Meta-Compilation System

2.5 JastAdd: The Meta-Compilation System

JastAdd [35, 36] is a flexible system that allows compiler behavior to be implemented con-veniently based on an object-oriented AST [35]. The "meta" in "meta-compilation" refers tothe fact that JastAdd can be used to generate compilers for other programming languagesinstead of being a compiler on its own. Then, being a "meta-compiler" makes it possible touse JastAdd to develop custom compilers that can parse, analyze, and generate code for aspecific programming language or DSL. The compilers built with JastAdd are tailored to theneeds of the particular language or domain, making it possible to add new features andfunctionality in a flexible and modular manner.
JastAdd is a compiler framework that facilitates the creation of compilers, parsers, and inter-preters for programming languages [37]. The name JastAdd implies the ease of extensibility:just add to the AST. These are the three main ideas contribute to the modularity and extensi-bility of JastAdd:
1. Attribute Grammars are a type of grammar that describe a tree-based data structure,where each node in the tree has a set of attributes. These grammars can be used todefine the semantics of a programming language, and JastAdd provides support forwriting attribute grammar specifications.
2. JastAdd is also object-oriented, as it is implemented in Java and provides a set ofclasses and methods for building compilers and extensions. This object-oriented designmakes it easy to add new functionality to the framework and reuse existing codewhen building new compilers. The object-oriented architecture also allows for theintegration of JastAdd-based compilers with other tools and libraries, such as debuggersand performance profiling tools.
3. JastAdd supports declarative thinking through the use of attribute grammars. Attributegrammars allow specifying the properties and relationships in a declarativemanner. Thismeans it is possible to describe what the language should do rather than how it shouldbe done, making implementing compilers and extensions much simpler. By specifyingthe language in a declarative way, JastAdd provides a higher level of abstraction forwriting compilers, making it easier to understand and maintain the code. This approachcan also make it easier to reason about the behavior of the language, as the focus ison the desired properties and relationships rather than the implementation details.Additionally, the declarative specification can be more concise and easier to readthan imperative code, making it easier to collaborate and share knowledge about thelanguage.

These three modularity and extensibility points make JastAdd the proper framework to fulfillthe aims of this dissertation.
It is built with a Java-based architecture that offers flexibility and modularity for designing andimplementing language extensions and compilers. Attributes can be seen as methods of ASTnodes. They are similar to abstract methods2, and equations are similar to method implemen-tations. The framework enables the development of custom programming languages, thecreation of DSLs, or the augmentation of existing programming languages. The key feature of
JastAdd is that it allows properties (attributes) of AST nodes to be programmed declaratively.

2Template for methods in related subclasses providing a common interface among them.

19

2 Background and State-of-the-Art

The attributes can be simple values like integers, sets, or reference values pointing to othernodes in the AST [37]. This is a crucial aspect, as it enables the explicit definition of the graphproperties of a program. Therefore, as nodes in the AST are objects with including attributes,the resulting data structure is an object-oriented graph model rather than a simple AST.
JastAdd’s ability to declaratively program the attributes of abstract syntax tree nodes is acrucial feature. This results in an object-oriented graph model, implemented using Javaclasses, with the attributes forming a method Application Programming Interface (API) forthose classes. Attributes may have parameters, making it possible to transfer or assigncomplex computations from one node to another by accessing a parameterized attributethrough a reference attribute.
The parser builds the abstract syntax tree and calculates the values of attributes usingattribute grammars, which are defined using equations. The method API can then be used toaccess these values. There are two noteworthy points to consider. First, it does not matterthe order in which the attributes are evaluated. Second, it is possible to add new attributes,equations, and syntax rules, which facilitates the extensibility of the language or DSL.
Table 2.1 showcases the syntax specification for the AST used in JastAdd. An example ofthe grammar for a language that generates state machines can be seen in Listing 2.2. Theroot of the AST is StateMachine with a list of Declaration components. The purpose of theabstract declaration is to provide a common base type for all specific declarations. This allowsthem to be processed in a generic manner. In this grammar, a State and a Transition areboth considered to be Declaration. However, they have different properties. The specificproperties of State and Transition can be captured by making it abstract. At the same time,they can still be processed in a commonway. This makes writing code that can handle all typesof declarations easier without repeating the same logic for each specific type of declaration.
State contains only the Name component denoting the name of the state. Transition hasthree components, namely Source, Target, and Condition. These components expressfrom which state to which state the transition should happen and the condition to trigger it.Figure 2.8a shows a custom DSL that describes the state machine depicted in Figure 2.8b.The VHDL code, written manually for it, is shown in Listing 2.3.
The goal is to have a generic approach, to automatically generate VHDL code for any statemachine specified via the custom DSL. For this, the defined grammar in Listing 2.2 is used toobtain an AST representing the desired state machine. The DSL is parsed, and the resultingpopulated AST for the example shown in Figure 2.8 is displayed in Figure 2.9. In the nextsection, the function of template engines is discussed, outlining the process of how thispopulated AST is utilized to obtain the VHDL code shown in Listing 2.3, as well as any

1 s ta te S1 ;
2 s ta te S2 ;
3 s ta te S3 ;
4 t rans S1−>S2 : input =1;
5 t rans S2−>S1 : input =0;
6 t rans S2−>S3 : input =1;
7 t rans S3−>S2 : input =1;

(a) Example of a DSL for state machines

S1start S2 S3

1 1

0

1

(b) Diagram of the expected state machine
Figure 2.8: Custom DSL and graphical representation of a desired state machine

20

2.5 JastAdd: The Meta-Compilation System

Table 2.1: AST specification syntax used in JastAdd
Syntax Meaning

A; AST class
B:S; AST class, abstract
B::=Y; Child component Y
B::=MyY:Y; Child component MyY of type Y
X::=C*; List component C, containing C nodes
X::=MyC:C*; List component MyC, containing C nodes
Y::=[D]; Optional component D
Y::=[MyD:D]; Optional component MyD of type D
Z::=<E>; Token component E of type String
Z::=<F:Integer>; Token component F of type Integer
U::=/V/; NTA component V
U::=/G:V/; NTA component G of type V

1 StateMachine : : = Dec lara t ion * ;2 abs t rac t Dec larat ion ;
3 State : Dec larat ion : : = <Name: S t r ing > ;
4 T rans i t i on : Dec larat ion : : = <Source : S t r ing > <Target : S t r ing > <Condit ion : S t r ing > ;

Listing 2.2: JastAdd grammar for state machines

other state machine specified with the custom DSL. The complete process is depictedin Figure 2.10.

21

2 Background and State-of-the-Art

1 l i b r a r y IEEE ;
2 use IEEE . STD_LOGIC_1164 . ALL ;
3
4 en t i t y state_machine i s
5 Port (c l k : in STD_LOGIC ;
6 input : in STD_LOGIC ;
7 cur ren t _s ta te : out STD_LOGIC_VECTOR (1 downto 0)) ;
8 end state_machine ;
9
10 arch i t ec tu re Behav iora l of state_machine i s
11 type s ta te_ t ype i s (S1 , S2 , S3) ;
12 s i gna l present_state , nex t _s ta te : s ta te_ t ype ;
13 begin
14 process (c l k)
15 begin
16 i f (c l k ’ event and c l k = ’ 1 ’) then
17 present_s ta te <= next _s ta te ;
18 end i f ;
19 end process ;
20
21 next_s tate_process : process (present_state , input)
22 begin
23 case present_s ta te i s
24 when S1 =>
25 i f (input = ’ 1 ’) then
26 next _s ta te <= S2 ;
27 end i f ;
28 when S2 =>
29 i f (input = ’ 1 ’) then
30 next _s ta te <= S3 ;
31 end i f ;
32 i f (input = ’ 0 ’) then
33 next _s ta te <= S1 ;
34 end i f ;
35 when S3 =>
36 i f (input = ’ 1 ’) then
37 next _s ta te <= S2 ;
38 end i f ;
39 i f (input = ’ 0 ’) then
40 next _s ta te <= S3 ;
41 end i f ;
42 end case ;
43 end process ;
44
45 cur ren t _s ta te <=
46 " 00 " when present_s ta te = S1 e lse
47 " 01 " when present_s ta te = S2 e lse
48 " 10 " when present_s ta te = S3 ;
49 end Behav iora l ;

Listing 2.3: Manually coded state machines in VHDL

22

2.6 Template Engines

StateMachine

State

Name = S1

State

Name = S2

State

Name = S2

Transition

Target = S2
Source = S1
Condition = input=1

Transition

Target = S1
Source = S2
Condition = input=0

Transition

Target = S3
Source = S2
Condition = input=1

Transition

Target = S2
Source = S3
Condition = input=1

Declaration

[0] [1] [2] [3] [4] [5] [6]

Figure 2.9: Populated AST for the example state machine

Specification
(DSL)

Parser +
Attributes

(JastAdd)

Template
Configuration

Templates

Template
Engine

(Mustache)

VHDL
Model

Figure 2.10: Code generation process used in this dissertation

2.6 Template Engines

A template engine is a software component that is used to generate source code from aset of templates and data sources (i.e., template configuration). The templates consist ofplaceholders and control structures, such as conditional statements and loops, that definethe structure and content of the output. The data sources provide the values that are usedto populate the placeholders in the templates. The advantage of using a template engine isthat it separates the presentation of the data from its underlying logic and data storage.
Templates provide a way to separate the presentation of information from the underlying dataand logic. In this way, templates allow the implementation of a clean separation of concerns,where the data and logic are managed in one part of the code, and the presentation of thatdata is handled in another part. This makes it easier to maintain and update the code, aschanges to the outcome (generated code) can be made independently of changes to the dataand logic. Additionally, templates can also help to encapsulate the implementation detailsand hide them from the generated code, promoting modularity and encapsulation.
Mustache 3 is the logic-less template engine used in this dissertation. The templates them-selves only specify what should be displayed and not how it should be displayed (hencelogic-less). This separation of concerns allows developers to work on the logic of the applica-tion and the presentation of the data independently, making it easier to maintain and updatethe code. Mustache templates are written in a simple syntax, using placeholders to denotethe insertion of data. This data can be passed to the template engine as a context, containingthe actual values inserted into the template. With the use of attributes, the populated AST

3Mustache—Logic-Less Templates, https://mustache.github.io

23

https://mustache.github.io

2 Background and State-of-the-Art

can be traversed to derive the necessary information and obtain the template configurationshown in Listing 2.4. The combination of said template configuration with a template shownin Listing 2.5 allows the template engine to produce the expected code, also known as anartifact.
The mustache syntax works as follows. Everything that is between {{}} is a place holder, suchas Line 5 in Listing 2.5 where the content of entity_name from the template configuration(Line 1) will be replaced in the artifact. {{#NAME}} acts as a conditional True statementwhereas {{^NAME}} is its False counterpart, such as Line 38 or Line 41 in Listing 2.5. Bothstatements are closed with {{/NAME}}, as shown in Line 40 or Line 43. Everything that islocated in a conditional statement will be part of the artifact, depending on whether thecondition is met. One last thing that is part of the mustache syntax are partials templates,which are not shown in this example but are later used in the following chapters. They arereusable templates that can be included in a main template, which contain a specific portionof the overall template that is used multiple times throughout the main template. They canbe considered as recursive templates, helpful in expanding lists of lists, for example.
From the next section onwards, the state-of-the-art in acceleration focused on robotics ispresented, software aspects related to middlewares, and MDE works to generate roboticssystems easily.

1 entity_name : state_machine
2 s ta te_ t ype : (S1 , S2 , S3)
3 s ta tes :
4 − state_name : S1
5 t r an s i t i o n s :
6 − input : 1
7 t a r ge t _ s t a t e : S2
8 − state_name : S2
9 t r an s i t i o n s :
10 − input : 1
11 t a r ge t _ s t a t e : S3
12 − input : 0
13 t a r ge t _ s t a t e : S1
14 − state_name : S3
15 t r an s i t i o n s :
16 − input : 1
17 t a r ge t _ s t a t e : S2
18 − input : 0
19 t a r ge t _ s t a t e : S3
20 output :
21 − value : " 00 "
22 present_s ta te : S1
23 − value : " 01 "
24 present_s ta te : S2
25 − value : " 10 "
26 present_s ta te : S3
27 l a s t : True

Listing 2.4: Template configuration for state machines

24

2.6 Template Engines

1 { {# s ta te_ t ype } }
2 l i b r a r y IEEE ;
3 use IEEE . STD_LOGIC_1164 . ALL ;
4
5 en t i t y { { entity_name } } i s
6 Port (c l k : in STD_LOGIC ;
7 input : in STD_LOGIC ;
8 cur ren t _s ta te : out STD_LOGIC_VECTOR (1 downto 0)) ;
9 end { { entity_name } } ;
10
11 arch i t ec tu re Behav iora l of { { entity_name } } i s
12 type s ta te_ t ype i s { { s ta te_ t ype } } ;
13 s i gna l present_state , nex t _s ta te : s ta te_ t ype ;
14 begin
15 process (c l k)
16 begin
17 i f (c l k ’ event and c l k = ’ 1 ’) then
18 present_s ta te <= next _s ta te ;
19 end i f ;
20 end process ;
21
22 next_s tate_process : process (present_state , input)
23 begin
24 case present_s ta te i s
25 { {# s ta tes } }
26 when { { state_name } } =>
27 { {# t r an s i t i o n s } }
28 i f (input = ’ { { input } } ’) then
29 next _s ta te <= { { t a r ge t _ s t a t e } } ;
30 end i f ;
31 { { / t r a n s i t i o n s } }
32 { { / s ta tes } }
33 end case ;
34 end process ;
35
36 cur ren t _s ta te <=
37 { {# output } }
38 { {# l a s t } }
39 " { { va lue } } " when present_s ta te = { { present_s ta te } } ;
40 { { / l a s t } }
41 { {^ l a s t } }
42 " { { va lue } } " when present_s ta te = { { present_s ta te } } e l se
43 { { / l a s t } }
44 { { / output } }
45 end Behav iora l ;
46 { { / s ta te_ t ype } }

Listing 2.5: Mustache template for state machines

25

2 Background and State-of-the-Art

2.7 Robotic Applications in Adaptive Computing

Even though the main focus of this work is adaptive computing (i.e., FPGAs), GPUs cannot beleft out for a comprehensive literature review. This is due two two reasons. The first one isthe competitiveness in terms of programmability and the second one is availability, speciallyin the last years. They both have different advantages and disadvantages, depending on theapplications, which are shown below. Different robotic applications have been proposed,targeting FPGAs and GPUs as their main PE. It is important to start this study with the differentapplications in robotics, which are increasing their complexities due to a large amount ofdata that needs to be processed from several sensors and how accelerators (i.e., FPGAsand GPUs) are needed to ease this. This section explores them to understand which type ofapplications benefit of these alternative to accelerate compute-intensive tasks.

2.7.1 FPGA Applications

Robotic systems are generally complex ones as they integrate different technologies andmultiple heterogeneous sensors and actuators. This means that many algorithms are neededto obtain meaningful information from raw sensor data to perform specific actions viaactuators, imposing several challenges for designers. On the one hand, there is a limitationconcerning the amount of onboard resources, such as memory storage and computationalpower, making it hard to meet real-time constraints. On the other hand, most state-of-the-artrobotic systems will have power constraints, so efficient designs are needed to cope withthis.
FPGAs have been attracting attention in the research community as an energy-efficient PE.Their specialized design hardware logic allows FPGA-based accelerators to surpass CPUsand GPUs in terms of performance and energy efficiency [38]. Their main advantage isthe possibility to achieve high energy efficiency via custom hardware designs compared toCPUs or GPUs. However, it is pretty challenging due to the more significant design effortrequired. The span of robotic applications proposed in FPGAs ranges from sensing (extractingmeaningful information from raw sensors data), perception (building a representation of therobot’s environment), and decision (control of actuators). Here some of them are explored,understanding which are the goals of the research community to solve the challengesmentioned before, in this case via hardware acceleration.
Much effort has focused on perception (e.g., stereo vision, object detection, semantic, classi-fication). Navigation and obstacle avoidance are two popular applications that have beenincreasing in popularity lately, relying on real-time and stereo vision systems. This consistsof capturing images with two cameras from different points of view of the same scene. Thedisparities between the corresponding pixels in both images are searched with matchingalgorithms, and the depth information can be computed from the inverse of the disparity [38].Stereo matching algorithms can be divided into local (compute disparity by processing andmatching the pixels around the point of interest) and global (compute disparity by matchingall pixels and minimizing a global cost function) algorithms. The first ones are faster and highparallelizable, but their accuracy is lower. The latter ones require more resources to achievehigher accuracy.

26

2.7 Robotic Applications in Adaptive Computing

Perception

Jin and Maruyama [39] presented a stereo matching local algorithm using Cost Aggregation(CA) and Fast Locally Consistent (FLC) to achieve a low error rate while maintaining a highprocessing speed. The focus was on the RTL, and they achieved 507fps for 640x480 pixelimages. The evaluation was done on a Xilinx Virtex-6 and compared with two GPUs (GTX480and 7900GTX). Results show a lower FPGA power consumption by one order of magnitudeand one order of magnitude higher for the processing speed. The authors concluded thatthe resource utilization of their proposed algorithm is well suited for modest-size FPGAs.
Wang et al. [40] focused on Semi-Global Matching (SGM), which computes disparity bycomparing local pixels, and then approximates an image-wide smoothness constraint withglobal optimization. Despite more robust disparity maps, the challenge for this approach isthe need for more storage resources. The implementation also focused on the RTL designand was evaluated on an Altera Stratix-IV. They achieved 67fps and 42fps for 1024x768 and1600x1200 pixel-images respectively.
While both previous works implemented at RTL, Rahnama et al. [41] used HLS for theirSGM variation. Their evaluation was a Xilinx ZC706 FPGA, achieving similar levels of accuracycompared to related work while reducing the power consumption by two orders of magnitude.In their case, 72fps were achieved for 1242x375 pixel-images. Overall, for image processingand stereo vision applications, these publications [39, 40, 41] and others alike showedthat FPGA-based designs obtained higher energy efficiency compared to GPUs and CPUs.However, higher effort in terms of design and fine-tuning was required.
As far as space applications, Malin et al. [42] reports on the new Rover that was sent toMars. It heavily relies on FPGAs for scientific instrument control, image processing, andcommunications. Specifically for image processing, it consists of a Xilinx Virtex-II with aMicroblaze soft-core processor. All core functionalities (timing, interface, and compression)are implemented as RTL which are peripherals for the Microblaze.

Navigation and Obstacle Avoidance

Another highly parallelizable application is Simultaneous Localization and Mapping (SLAM),used for path planning, which has had much attention as well. Gautier et al. [43] presentedthe implementation of two low-power 3D reconstruction algorithms, namely “Iterative ClosestPoint” and “Volumetric Integration”. The work was based on an Altera Stratix V FPGA usingOpenCL by porting the original CUDA implementation of each algorithm. This allowed themto do some optimizations for memory access and synchronization between computing units.Moreover, they improved the original code manually using a double nested loop with oneindex being a function of the other, resulting in a poor optimization for the compiler. Thesolution was to remove the index dependencies and unroll the loops manually.
Abouzahir et al. [44] evaluated the processing time of different SLAM algorithms in severalembedded systems. They concluded that Fast-SLAM2.0 is the ideal compromise betweenaccuracy and computational time. Then, the algorithm was optimized to implement it onGPU with combining OpenCL and OpenGL and on FPGA with HLS. The FPGA implementationobtain a 7.5x acceleration with respect to the GPU one.

27

2 Background and State-of-the-Art

Boikos and Bouganis [45] focused on the acceleration of Large-Scale Direct Monocular (LSD)SLAM in a SoC Zynq-7020. In their case, the intermediate data produced is too large, so it isshared between accelerators via DDRmemory. They highlighted the importance of optimizingmemory architectures (e.g., data movement, caching) in an application like this to ensure thescalability and compatibility of the design.
Murray et al. [46] presented an FPGA-based architecture for motion planning, focusing oncollision detection. In this case, compared to previous work [45], they avoid storing andaccessing pre-computed data in memory. Instead, data is encoded as a binary represen-tation and create logical circuits to represent collision data, hence the reason to call theapproach “microarchitecture”. They achieved sub-millisecond speed for motion planning andan improvement for power consumption of one order of magnitude with respect to a GPUimplementation.
Bondhugula et al. [47] proposed a parallel FPGA-based implementation for graph search,which is the next thing to compute after collision detection. This algorithm tries to find theshortest and safe path to the targeted position. In this case, the authors achieve a 15xspeedup compared to an optimized CPU-based implementation.
A first conclusion to draw from the summary shown here is that FPGA-based designs haveshown a higher energy efficiency compared to GPUs and CPUs for most image processingapplications [38] and other parallelizable applications. It can be depicted from Table 2.2 thatthe more complex the application is, the higher the abstraction of the design (HLS rather thanHDL). This is usually because most modern tools take care of the data movement, leavingthe designer to focus only on the targeted problem’s acceleration (e.g., stereo-matching,SLAM). However, incorporating the resulting accelerators contributes to the integrationproblem mentioned earlier in general for robotic systems. Most of the works presented hereadopt a similar FPGA-SoC architecture, accelerating the most compute-intensive parts ofthe algorithms. However, integrating these applications into existing robotic environments isusually unattended.
Note that Table 2.2 summarizes the different applications that have been proposed on FPGAs.It does not cover by all means each of the applications or fields mentioned there. The readeris encouraged to follow up on [38] for a more fine-grained literature review on each topic.
A vast range of applications in robotics can be parallelized and thus accelerated on FPGAs.However, there are two main challenges to face. On the one hand, extra effort is needed tointegrate them into already running systems. On the other hand, the complexity of achievingenergy-efficient implementations is high, despite newer techniques such as HLS.

Table 2.2: FPGA applications in robotics
Reference Platform Application Focus Abstraction Level Metric Result

Jin and Maruyama (2014) [39] Xilinx Virtex-6 Stereo vision Accelerator RTL FPS 507 (640x480), 199 (1024x768)76 (1920x1080 -full HD-)Power 10.6WWang et al. (2015) [40] Altera Stratix IV & V Stereo vision Accelerator RTL FPS 68 (1024x768), 43 (1600x1200)
Rahnama et al. (2018) [41] Xilinx ZC706 Stereo vision Accelerator HLS FPS 301 (38x4288), 198 (450x375)109 (640x480), 72 (1242x375)Power 3WGautier et al. (2014) [43] Altera Stratix V SLAM CPU-FPGA Architecture OpenCL FPS 28Abouzahir et al. (2018) [44] Altera Arria 10 SLAM Accelerator HLS, OpenCL & OpenGL FPS 102

Boikos and Bouganis (2016) [45] Xilinx Zynq-7020 SLAM HW/SW Co-Design C & HLS FPS 4.55 (320x240)Power 2.25WMurray et al. (2016) [46] Intel Xeon Motion planning HW/SW Co-Design C & RTL - -Bondhugula et al. (2006) [47] Intel Xeon Graph search HW/SW Co-Design C & RTL Speedup 15x (average)Malin et al. (2017) [42] Xilinx Virtex-II Space HW/SW Co-Design C & RTL FPS 6 (1280x720)

28

2.7 Robotic Applications in Adaptive Computing

2.7.2 GPU Applications

GPUs are specialized circuits designed to rapidly manipulate and vary memory to acceleratethe creation of images in frame buffers, most commonly used in embedded systems, mobilephones, personal computers, workstations, and gaming consoles. They achieve higher effi-ciency than general-purpose CPUs due to their highly parallel structure [48]. Even thoughmultiple works have compared GPUs and FPGAs [49, 50, 18], they mainly based the compari-son on workstations or personal computers.
Themain interest here is robotic applications, so theworks presented in this section aremainlyrelated to that field. This mainly refers to embedded systems, targeting a balance betweenaccuracy, throughput, and power budget. These objectives are crucial for applications inseveral domains such as robotics, autonomous driving, and drones [51]. Therefore, the focusis on embedded GPUs, mainly NVIDIA’s Jetson, being one of the most widely used ones as itprovides high performance per watt due to its performance-efficient and low-power GPUcores. It is essential to highlight that most works over this platform focus on deep learningmodels. They can be split into those that have a pure GPU implementation and those thatcombine GPUs with CPU.

Computation on GPU

Most of these works rely mostly on the GPUs to do the computation and use the CPUs mainlyas data movers. As far as targeting embedded systems, Hegde and Kapre [52] present aCaffe4-compatible tool for generating and optimizing code, targeting devices with a powerbudget of up to 20W. The evaluation is based on a comparison among a GPU (Jetson TX1), DSP(TI Keystone II), RISC+Network-on-Chip (NoC)-based multicore (Parallella’s Epiphany-V), and anFPGA (Xilinx ZC706). One main difference is that the DSP and FPGA perform pixel operationin 16 bits fixed-point format, whereas GPU and Epiphany-V support single-precision floating-point format. As far as performance and energy efficiency, the Jetson outperformed all otherembedded platforms. In terms of programmability, GPUs also showed easier ways, followedby DSPs. However, to further improve the performance by optimizing the designs, Epiphany-Vand especially FPGAs provide better outcomes at the expenses that they require more effortto ensure a correct operation and better results in terms of performance improvements.
Pierre [53] focused on perception and visuomotor control to allow a robot to follow anotherone. This work presented a technique that uses a spatio-temporal Deep Neural Network(DNN) with only RGB images from a camera as an input. It perceives the robot’s motion bystudying its environment and relative velocities to other objects. Interestingly, due to thememory capacity of DNNs, this technique allows the leader robot to be out of sight for shortperiods.
Wang et al. [54] proposed a lane detection algorithm for autonomous driving. Their algorithmis split into two steps. The first one classifies each pixel, whether it belongs to a lane, toestimate a lane edge. The second step localizes the lanes based on the estimations. Theyachieved remarkable Frames per Second (FPS), being 330 and 1300 respectively for the twosteps involved in the algorithm on a Titan XP GPU. The overall performance reaches 250 FPS.26 FPS are achieved on a Jetson TX1.

4Deep learning framework (https://caffe.berkeleyvision.org/)

29

https://caffe.berkeleyvision.org/

2 Background and State-of-the-Art

Regarding drone navigation, Sanket et al. [55] presented an approach for a quadcopter to flythrough a gap by only using a monocular camera and onboard sensors. The technique isbased on finding the contour of an opening as the position where the discrepancy in spatialdepth is maximum. The work is based on FlowNet5 and a PID controller for the altitude andposition of the drone. In this case, the chosen platform is a Jetson TX2 running both the visionand control algorithms. Another drone application is presented by Madaan et al. [56] todetect wires by only using a monocular camera for perception. Their work is based on a JetsonTX2, achieving up to 4.4. FPS with higher precision and speed than previous techniques.
Attaran et al. [57] presented a personal monitoring system based on two machine learningclassifiers, including Support Vector Machine (SVM and k-nearest neighbors (KNN)). They usedfour different physiological sensors, requiring multiple sampling and processing capabilitieswith low-power consumption requirements. Hence, they proposed a reconfigurable processorfor SVM and KNN for personalized stress detection. In their case, a comparison among anembedded CPU (ARM A53) (used as a baseline), GPU (Jetson TX1 and TX2), and FPGA showedan improvement in the energy efficiency of the latter one by two orders of magnitudecompared to the GPUs. An evaluation with (post-layout) ASIC was performed, showing thebest results. However, this option has the drawback of high costs and a longer time tomarket. The authors concluded that even though GPUs still offer better energy efficiencythan the baseline, FPGAs would be the best solution considering the high energy efficiencyand accuracy besides being reprogrammable. Several other works [58, 59] followed a similarapproach targeting different applications, and combine GPUs and CPUs. They all reachedsimilar conclusions as [57], meaning that there is an active part of the research communityfocusing on low-power embedded systems that could be used for different applications.
A field that is increasingly showing interest in robotics is heterogeneous platforms, whereseveral works have been proposed, relying on DNNs on GPUs and are described below.

GPU combined with CPU

Most of these works distribute the computation between CPUs and GPUs. Rallapalli et al. [60]investigated the feasibility of running DNNs on embedded devices. As these devices havelimited memory capacity and mainly do not include memory management schemes, theyconcluded that large algorithms like the famous YOLO are not fitted for such devices. Theyevaluated several techniques for efficient memory usage, such as targeting only inferenceand not allocating memory for variables that are not required during this stage. They obtaineda reduction from 4.4GB to 2.8GB. Besides, they split the algorithm into GPUs and CPUs ina pipelined architecture manner by offloading some operations to the CPU which includesmemory management.
Otterness et al. [61] evaluated the consequences of different memory management tech-niques. There are three schemes in the Jetson, namely “conventional”, “zero-copy” and “unifiedmemory”. The first one refers to explicitly copying data from CPU to GPU, bringing large datatransfer overheads. The second one allows the CPU and GPU to access the same memoryregion, without the need to allocate GPU memory, but without caching. The last one is similarto “zero-copy” by sharing memory points, and the benefit is that caching is allowed. One ofthe main conclusions that they drew was the importance of the proper choice of CUDA toobtain the best performances for each scheme.

5Evolution of Optical Flow Estimation with Deep Networks

30

2.7 Robotic Applications in Adaptive Computing

Manderson et al. [62] presented controller for the swimming robot "AQUA". The main focus isa control algorithm to guide the robot underwater to navigate close to coral reefs with obstacleavoidance. They also present a heterogeneous design by having the control algorithms on aCPU and the neural network on a Jetson. They achieved a 10 FPS with an accuracy of 41%.A similar approach was shown by Gu et al.[63], using YOLO to detect tennis balls and thenperform path planning to collect them.
Table 2.3 summarizes what has been presented previously. It can be inferred that embeddedGPUs devices are valuable resources when power-budget requirements are in place. GPUsdevices are usually easier to program compared to FPGAs, but there would be cases wherestill some partition of applications or algorithms is needed. This will usually increase thecomplexity of the design, moreover when considering optimizations that can be done. Astheir programmability is closer to CPUs, there have not been many efforts from the modelingside. However, due to current trends and possibilities, robotic systems can be composed ofmultiple PE and similarly to FPGAs, middlewares are helpful for system integration.
Middlewares help designers to combine multiple components, which can help to addressthe challenge of integration. However, most research focuses on the integration of softwarecomponents. Lately, efforts on integrating FPGAs with robotics middlewares have emerged,which are discussed in Section 2.8.1.

Table 2.3: GPU applications in robotics
Reference Platform Application or Field GPU + CPU Metric Result

Hegde and Kapre (2017) [52] Jetson TK1, TI Keystone II, Handwriting recognition (MNIST)
✗ Throughput 35 Gops/sXilinx ZC706 and Epiphany-V and object detection (CIFAR-10)Pierre (2018) [53] Jetson TK1 Perception and visuomotor control - Qualitative -

Wang et al. (2018) [54] Titan XP GPU Lane detection ✗ FPS 250Jetson TK1 26Sanket et al. (2018) [55] Jetson TX2 Drone navigation ✗ Success rate 85%Madaan et al. (2017) [56] Jetson TX2 Drone wire detection ✗ FPS 4.4

Attaran et al. (2018) [57] Personal monitoringsystem ✗

Power (W)(KNN/SVM) Classifier
1.48/1.532.12/2.092.43/2.610.728/0.7020.076/0.039ARM A53 (baseline)

Throughput (dec/sec)(KNN/SVM) Classifier
2/5.29TK1 130/212TK2 225/357Xilinx Artix-7 195/121/1250000ASIC 243902/29411761x/1xEnergy efficiency 46x/29ximprovement 69x/39xover baseline 200044x/514903x(KNN/SVM) Classifier 2373712x/21586294x

Abtahi et al. (2018) [58] Jetson TK1, ARM A53Xilinx Zynq 7020 Signal processing (FFT)(Direct-Conv/FFT-Conv/FFT-OVA-Conv) ✓

Execution time (ms) 36/21/12Energy (mJ) 119/103/57Throughput (MB/s) 10/30/1960
Jafari et al. (2018) [59] Jetson TK2, Xilinx Artix-7, ASIC Multimodal data classification ✓

Latency (ms) 0.9/2/14.8Throughput (labels(sec)) 1185/491/67Power (mW) 1763/175/18.5Energy (mJ) 1.5/0.35/0.27Rallapalli et al. (2016) [60] Jetson TK1 Object detection with YOLO ✓ Memory usage reduction 63.63%Otterness et al. (2017) [61] Jetson TK1 Traffic sign recognition ✓ - -
Manderson et al. (2018) [62] Jetson TK2 Perception and visuomotor control ✓

FPS 10Accuracy 41%Gu et al. (2018) [63] Jetson TK1 Object detection and path planning ✓ - -

31

2 Background and State-of-the-Art

2.8 Robotics Middlewares

A middleware is a computer software that provides services to software applications (e.g.,communication). It could be envisaged as an abstraction layer between the OS and theapplication running on it. Generally speaking, middlewares are the mediator between theapplication front-end (i.e., client) and back-end resources (e.g., hardware device) for whichthe client might request data. A middleware should be customizable to different scenariosand applications. Older generations of robots were designed with one task in mind and builtonly for that purpose. Modern ones usually follow a modular design and implementations.They can be considered complex distributed systems with many heterogeneous hardwarecomponents (e.g., sensors, actuators) and software modules. These are jointly needed toachieve a given task, but their integration is not usually trivial. Even though modularitybrings benefits from the engineering perspective, it raises some integration issues suchas communication, interoperability, and configuration. Relying on a middleware helps toglue all components together, supporting concurrency-intensive operations, robustness,and modularity [64]. However, they should not increment the already challenging task ofdeveloping robotic systems. On the contrary, middlewares should simplify the developmentprocess by providing an abstraction layer with simplified interfaces. They should also provideefficient communication and simple interoperability mechanism modules. These becomeessential characteristics of the abstraction for the heterogeneity of hardware componentsto share data among them and their software counterparts. Ideally, middlewares shouldprovide real-time interaction services with other systems considering ubiquitous roboticsystems’ interaction.
Multiple works and research projects have focused on the issues mentioned before, primarilyfrom the software perspective. An early survey [64] identified the following objectives andgrouped several approaches accordingly:

• Enhancing the development process by providing some form of modular design mech-anism, high level of abstraction, and component-based development.
• Reusability of existing components.
• Better utilization of resources and real-time support.
• Integration with external components.

This work covers mainly the integration of robotic systems but from a hardware perspective.Therefore, only a brief overview of the most relevant existing middlewares is discussed next,as a motivation for this dissertation.
The Orcos Project developed a general-purpose modular framework for robot and machinecontrol [65]. The Real-Time Toolkit (RTT) and Orcos Component Library (OCL) established acomponent-based infrastructure and a library of ready-to-use components, providing thehigh-level management of interactions within an application.
Yet Another Robot Platform (YARP) [66] aims to minimize the effort devoted to infrastructure-level software development by facilitating code reuse, modularity and so maximize research-level development and collaboration. It supports building a robot control system as a collec-tion of programs communicating in a peer-to-peer way, with an extensible family of connectiontypes (e.g., TCP, UDP, multicast, local, MPI) that can be swapped depending on the needs ofthe developer.

32

2.8 Robotics Middlewares

The open-source middleware ROS [16] is a software solution that eases the building process ofrobotic applications. It runs on top of Linux and has been gaining popularity in the roboticscommunity over the last years. Different aspects of the ROS community are measured andreported yearly6. Among these, the total ROS packages downloaded are individually takenfor each year and shown in Figure 1.1. Besides, not only the research community has shownits interest but also the industry. A consortium integrated by worldwide companies frommultiple sectors, such as automotive or aerospace, has been growing over the years toextend the advanced capabilities of ROS software to manufacturing. Currently, there is mucheffort focused on a new version of the middleware as ROS2 since the first version does notsatisfy real-time requirements. Therefore, ROS2 is based on Data Distribution Service (DDS),which is a standard protocol used in industry that meets real-time constraints due to itsvarious transport configurations (e.g., deadlines and fault-tolerance). The decrease of ROSpackage downloads in 2021 may be due to more developers are slowly migrating to ROS2.As ROS became the mainstream option for roboticists and there are already several workson integrating FPGAs with it, more details are given in Section 2.8.1. It not only answers whatare the trends in robotics, from a software perspective but extends it, exploring the methodproposed in the state-of-the-art to enhance ROS with FPGAs.

2.8.1 The Robot Operating System Enhanced with Field Programmable Gate
Arrays

As discussed previously, ROS became the most popular middleware as it provides many opensource packages supporting all kinds of robots, data processing, and planning algorithms.Some concepts are explained to understand better the contributions shown in this section,focusing on integrating FPGAs into ROS.
ROS defines nodes where computations are performed. They communicate among eachother via topics, characterized by the type of message (as different data structures) theytransport. Nodes can be publishers (produce and broadcast data) or subscribers (consumedata to process), and a combination of both. ROS provides all the communicationmechanismsand protocols for all nodes in a system to communicate. The flexibility of nodes andmessagesallows for the reusability of ROS components to deploy algorithms in a distributed softwaresystem quickly. They can be programmed in various languages, for which client librariesexist.
The traditional communication scheme in ROS is shown in Figure 2.11. Every time a new noderegisters in the system, it does it with the master node via XML-RPC7. During the registration’shandshake, meta-data information to send/receive data over topics to/from other topicsis also shared. When a node wants to send or receive information to/from another node,a direct connection is established but over TCPROS8, which is a transport layer for ROSmessages and services. It uses standard TCP/IP sockets for transporting message data.
Message types are defined by an Interface Definition Languages (IDL). Therefore, specific code
generators for each programming language can take advantage of this to generate language-specific bindings for each message type. Figure 2.12 shows an example of ROS messageand depicts the complexity of the data structure that can be achieved as multi-level nesting

6http://wiki.ros.org/Metrics7Remote Procedure Protocol (RPC) which uses XML to encode its calls and HTTP as a transport mechanism8http://wiki.ros.org/ROS/TCPROS

33

http://wiki.ros.org/Metrics
http://wiki.ros.org/ROS/TCPROS

2 Background and State-of-the-Art

ROS
Master

SubscriberSubscriberPublisher

Registration Registration

Topic

XML-RPC

TCPROS

Figure 2.11: Basic ROS architecture
(message within a message) is possible. More details about the complexity of messages andhow that is addressed in terms of hardware components is detailed in Chapter 5.
The industry has been paying attention to it with the arrival of ROS2, improving the quality ofROS1 by relying on industry standards, thus enabling more commercial use cases [67]. Eachfield will impose specific requirements for the robotic systems, such as performance, energyconsumption, or real-time guarantees.
There have been different approaches to combine FPGAs with ROS. They can be grouped intothree categories. The first one consists of focusing on a specific application. The second triesto generalize the concepts by proposing several frameworks, tools, and methodologies. Thelast one is based on the OS with support for reconfigurable systems, and ROS is integratedinto it.

Application Specific

Some related works mainly focus on specific applications, accelerating some parts of a ROS-based software implementation. ROS is classically designed to run on a CPU which can alsobe combined with GPUs by enabling efficient management of data flow and shared memory.Lately, several works proposed to combine FPGAs with it [68, 69]. They mainly rely on Xilinx’s

Figure 2.12: Complexity of ROS messages

34

2.8 Robotics Middlewares

SoCs FPGAs, which are capable of running Linux on their PS. Therefore, these designs cannotbe realized in the absence of a PS capable of running an operating system as Linux. Queraltaet al. [70] proposed a low cost 3D Lidar-based design. They rely on low-cost sensors to obtain3D point clouds for localization and mapping algorithms. All the processing is implementedin VHDL. However, the communication with ROS, running on a PC, is done via the UARTinterface. Besides, they focus on a specialized design.

Frameworks, tools and methodologies

Some more generic approaches have been proposed, aiming to provide solutions for anyROS-based application.
Aldegheri et al. [71] presented a framework for the design and simulation of embedded videoapplications that integrate OpenVX standard with ROS. It does not target a single applicationbut the specific field of image processing. It combines OpenVX, CUDA/OpenCL, and OpenMPto increase the embedded applications’ parallelism and portability. Even though its portability,it is restricted to software implementations as it relies on a CPU (to run Linux) and the ROSAPI library to communicate with external systems.
Yamashina et al. [72] focus on component-oriented developments as a well-known method forreduction of costs in the development of software for robotics [73]. Hence, they propose FPGA-components as ROS-compliant ones, setting the following requirements: (A) the functionalityof the ROS-compliant FPGA-component is equivalent to one implemented in software, and(B) the message type and data format used as the input and output of the ROS-compliantFPGA-component is equivalent to software implementations. This means that each ROSmessage type and data format used in ROS-compliant FPGA-component must be the sameas the software ROS component. The authors rely on Xillinux9, taking advantage of Xilinx’sFPGAs-based SoCs (that include ARM processors). It allows effortless communication betweenPS and PL. The system is based on a file descriptor on the software side and a correspondingFIFO on the hardware side. Therefore, ROS is executed on the PS (running Linux), and theinteraction between the hardware in the PL and ROS is straightforward via the file descriptor.The authors recognized the large amount of time and high development costs of theseROS-compliant FPGA-components and hardware IPs (HDLs-based) in general. Hence, theypropose an automated design tool to improve the productivity of ROS-compliant FPGAscomponents [74, 75]. It is a design support tool that converts any targeted circuit (user logicin HDLs) into a component by giving a simple specification definition for data transfer [75].The tool generates the interface circuit (hardware as HDLs files to interface accelerators) andsoftware interface (C++ files). An input configuration file sets parameters such as bit width ofcommunication channels, data ports for user logic, or transfer rates (input and output). Then,they are used to generate the corresponding interface via the artifacts mentioned previously.Like this, the integration of user logic is wrapped to easily integrate it into ROS via Xillinux.However, there is still the need to have Linux running on the PS to support ROS. Regardingthe accelerators, the approach is shown with HLS techniques, but most probably, it wouldsupport HDLs-based accelerators with some changes to the automation tool. As far as theHDLs, they are the interfaces of the FIFO from Xillinux and a state machine to control theHLS accelerator.

9http://xillybus.com/xillinux

35

http://xillybus.com/xillinux

2 Background and State-of-the-Art

Ohkawa et al. [76] discuss a methodology to take advantage of these last two previousworks [74, 75]. First, the Hardware/Software partitioning is done, like any HW/SW Co-Design.However, in this case, the partitioning is at the ROS level. This means that ROS nodes are splitintomultiple ones, all connected via topics. Like that, it is simple enough to identify which nodewill become a hardware accelerator to later on obtain the ROS-compliant FPGA-component.
Every new ROS node registers with the master node via XML-RPC10. During the registration’shandshake, meta-data information is shared to send/receive data over topics to/from othertopics. When a node wants to send or receive information to/from another node, a directconnection is established but over TCPROS11, which is a transport layer for ROS messagesand services. It uses standard TCP/IP sockets for transportingmessage data. Ohkawa et al. [78,77] acknowledged the significant communication latency with the ROS-compliant approachmentioned previously, which also follows this connection scheme. They evaluated the latencyintroduced in the process of sending and receiving data as standard ROS publishers andsubscribers running on an ARM core and from there to the ROS-compliant components. Theyconcluded that for that approach to be functional in applications such as image processing,the way data is shared with the accelerators must have low latency. Therefore, they proposedto have an entire hardware implementation of the ROS Publisher/Subscriber communicationscheme (for the TCPROS part, to exchange data directly between nodes) without the useof a SoC. The registration of nodes remains in software, which is done only once at thebeginning. To achieve this, a TCP/IP stack needs to be available on the PL-side. The efficienthardware implementation SiTCP [79] was chosen. However, its drawback is that it providesthe possibility to establish one connection at a time. Therefore, only the data transmissionpart is implemented into hardware, leaving the registration part on software. Consequently,this approach still relies on the PS, and it requires a technique to exchange data with thePL.
ROS was the leading middleware considered so far, mainly since it became the mainstreamoption for roboticists as shown previously in Figure 1.1. Other approaches have also beenproposed targeting ROS but using other frameworks and tools as the center of their research,focusing on the issue of integrating hardware accelerators into ROS. Leal et al. [80] provide atool that relies on the open-source PYNQ project 12 from Xilinx, which is also Linux-based.They automatize the generation of drivers to exchange data between PS and PL (only thedata to be processed, not the entire ROS message). Therefore, it also generates a new ROSmessage type with only the payload of the ROS message that is transmitted to the hardwareaccelerator. Like this, it eases the integration of hardware accelerators but increases thecomplexity on the software side, as a bridge or interface to other ROS messages present inthe system would still be needed.
Eisoldt et al. [81] focus on the integration of accelerators from the algorithmic point of view.Similar to previous references, there is a dependency on an embedded processor compatiblewith Linux. ROS runs on the PS, and the accelerated algorithmic calculations are on thePL. The authors take advantage of the shared memory between PS and PL and map theregisters of the processing blocks to the node’s virtual memory. This is done for data aswell as controlling the start and stop of the processing blocks. So, they heavily rely on thememory management capabilities of the OS. However, for applications that require a largeamount of data, only algorithmic parameters are mapped to memory, and data is streamed

10Remote Procedure Protocol (RPC) which uses XML to encode its calls and HTTP as a transport mechanism11http://wiki.ros.org/ROS/TCPROS12http://www.pynq.io/

36

http://wiki.ros.org/ROS/TCPROS
http://www.pynq.io/

2.8 Robotics Middlewares

over dedicated memory ports. There are references to specific HLS-related registers (e.g.,AP_DONE, AP_CTRL), but no reference of HDLs accelerators is mentioned.
Ohkawa et al. [82] builds upon [77] to propose an HLS design flow for ROS protocol and com-munication circuit for FPGAs. It takes a definition of a ROS message, ROS related information(e.g., name of node, topic) and an application written in C++ for HLS to autogenerate an IPcore. However, it is based on a hardwired TCP/IP stack that only allows one publisher perFPGAs. Their work can be considered a more general approach as it takes ROS definitions,despite being limited to HLS implementations.
In this dissertation, a generic architecture is proposed [21], to have a full hardware imple-mentation without the need for any CPUs to close the gaps of these previous works. It isgeneric so that it can incorporate hardware accelerators designed in HDLs or HLS. Moreover,it leaves the possibility to replace the communication block if a different device is used orcommunications are handled by a CPUs if available or desired. In this case, FreeRTOS13 wasused to handle the communication between hardware accelerators (hardware nodes) andexternal ROS nodes, with an external Serial Peripheral Interface (SPI) device providing theTCP/IP stack. Similarly to [83, 84] (relying on the open-source lightweight IP (lwIP14) as theTCP/IP stack), an APIs provided functions to register/deregister hardware nodes as well asexchanging information between publishers and subscribers. However, there is no limitationconcerning the size of data to be transferred in this dissertation (c.f., Chapter 3) [21] as in [83,84], which was 512KB of data every 100ms. In case ROS is not the chosen middleware, anda different one is needed, the modular architecture allows replacing the specific-relatedmiddleware IP block thanks to the “plug&play” design. Lastly, it opens the possibility for roboticapplications to use Dynamic Partial Reconfiguration (DPR), which can use the same hardwareresources to implement different steps of a time-multiplexed algorithm. Consequently, theflexibility and power efficiency would be enhanced as well [85]. However, it still has an openpoint to generate the interfaces based on message specifications. This is tackled in Chapter 5,focusing on the generation of ROS and ROS2 components to integrate hardware acceleratorsinto an FPGA-SoC [9]. An MDE approach is followed, with an extensive data-type analysis ofROS messages to generate VHDL components to produce AXIS frames to match the datarepresentation of said messages. These components can be used together with Direct Mem-ory Access (DMA) to exchange data between CPUs and accelerators. Like this, integratingaccelerators into an already existing ROS system is aided with the tool detailed in Chap-ter 5. Lastly, Chapter 6 presents the workflow that generates the entire software/hardwarearchitecture that includes multiple accelerators [25].

2.8.2 Operating Systems Support for Reconfigurable Computing

Lienen et al. [86] highlight the lack of a consistent programming model for implementingsoftware and hardware functions. They close that gap by integrating ROS to ReconOS [87],tailored for multithreaded programming of hardware and software threads for reconfigurablecomputers. Similarly to [81], they also relied on the Linux virtual address space and sharedmemory to exchange data between PS and PL. In the follow-up work [88], they extended thesupport to partially reconfigure pre-allocated slots for either software or hardware executionsbased on callbacks.
13https://www.freertos.org/14https://savannah.nongnu.org/projects/lwip/

37

https://www.freertos.org/
https://savannah.nongnu.org/projects/lwip/

2 Background and State-of-the-Art

2.8.3 Roboticists Interests

This summary shows that there is clearly increasing interest in the research communityto provide tools and methodologies to attract roboticists to adaptive computing systems,particularly FPGAs. Three main characteristics would be considered by them:
• Tools & Methodologies [74, 21, 81, 80]
• Acceleration of internal ROS communication (i.e., interaction between nodes) [78]
• Optimization of ROS computational graph [76, 68, 69, 70]

A pattern is starting to emerge concerning the clear division of expertise as these groupsfocus on a specific topic. However, considering robotic systems as holistic ones, they are alltightly coupled.
Table 2.4 summarizes the main characteristics to consider at the time of integrating FPGA-based robotic systems into ROS. Even though middlewares help with integration aspects,designers still need to have -at least- some understanding of the low-level details concerningaccelerators. That is why MDE can serve as a bridge between them. By using a generalapproach, designers can create simpler models that abstract away low-level details, while stillbeing able to interconnect them and add new characteristics in each iteration. In the MDEline of thought, it is better to have a general approach in order to have simpler models andadd new different characteristics in each iteration.

2.9 Model-Driven Engineering

MDE is described as the technique for using a staged model transformation process inwhich models are transformed in iterations [28]. It raises the level of abstraction, potentiallycircumventing any incompatibilities by abstracting middleware-specific characteristics. Be-sides, it helps non-experts to focus only on their areas of expertise (e.g., HW/SW Co-design,algorithms, control).
MDE focuses on creating and exploring domain models, which are conceptual models of alltopics related to a problem-specific domain [89]. Concretely, a model is an abstraction of asystem that often represents a partial and simplified view of a system (or a specific aspect) [31].These models are usually more understandable and usually Platform Independent Models(PIMs). They can also be Platform Specific Models (PSMs).

Table 2.4: Integration of FPGAs and ROS.
Characteristics [68, 69] [70] [71] [80] [81] [82] [86] This Dissertation
Generalized Approach ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓Vendor Independent ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓CPU Independent ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓Handle Multiple Hardware Accelerators ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓Supports Multiple Middlewares ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓Generates Complete Architecture ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

38

2.9 Model-Driven Engineering

MDE changed the paradigm from code-to-model-based development [90]. Models can becombined with automatic code generation techniques. Each additional information added tothe final model is used to generate the desired code artifacts (e.g., C/C++, TCL scripts, VHDL).This new model-based paradigm allows to describe the application independently from asoftware and hardware platform, thanks to the levels of abstraction due to adding differentaspects iteratively to themodels. Different models can represent system elements in differentdomains and be part of the system’s functionality, structure, or behavior. Additionally, MDEspeeds up the development process and the formalization of such abstractions enabling theuse of automated tools to verify the consistency of the generated artifacts, improving thereliability.
From the software side, MDEmakes programming easier because low-level details are hiddenbehind abstractions that are easier to manage. From the hardware side, there has to be adescription of the system concerning the low-level details that are hidden from the softwareside. Due to this complexity, the support of different languages and tools must be consideredwhen following an MDE approach. For this, it is necessary to build conceptual descriptions ofthe systems to capture all the crucial characteristics for representing a formal model througha concrete syntax [31].
The development of advanced systems is challenging as expertise from multiple domainsneeds to be integrated conceptually and technically. Particularly for robotics, the main focusof the research community for software development based on models has been automaticcode generation. One must consider that robotic systems involve several fields, so specificknowledge is required to combine all its constituting parts. There is a significant challenge fordesign, development, and implementation. MDE provides an efficient and flexible approachfor developing robotics applications that copes with this challenge. By raising the level ofabstraction, models become easier to understand, and it also simplifies the validation of thesystem. Another benefit of MDE is that it increases the level of automation, helping the processof code generation to bridge the gap between modeling and implementation [91]. However,the support for variability with regards to the targeted platform (e.g., embedded computers,FPGAs, middlewares) needs to be accounted for, namely PSM. Flexible model transformationand code generation techniques need to interface generated and non-generated artifacts,and models need to be adaptable to new information required by developers to cover allpotential incompatibilities that could arise.
Generally speaking, from a software perspective, the field of robotics has been of greatinterest over the last few decades. Nordmann et al. [91] showed in a survey focusing on
design-specific modeling languages for robotics how MDE has grown in the field since the 2010s.Even though the focus was on DSL, the preliminary analysis of the 137 publications gives anidea of the most relevant topics in the field. Over 53% of the surveyed literature focuses onthe aspects of Architectures and Programming (c.f., Figure 2.13). The rest is divided into specificfeatures related to robotics, such as kinematics (the motion of bodies in robotic mechanismswithout taking the forces/torques causing the motion into account), sensing, and estimationor motion planning. This is of particular interest to understand which are the main aspectsto be explored in robotic systems when focusing on MDE techniques to obtain artifacts torealize such systems. Understanding the techniques used in software fosters synergy amongsoftware, hardware and roboticists. In more detail, the subdomains from Architectures and

Programming are characterized as follows:
• Control & Handling of Events: Organization of data and control flow as well as handling

39

2 Background and State-of-the-Art

of reactive and temporal events.
• Architectural Structures and Viewpoints: Description of architectural structures and soft-ware designs in general.
• Distribution of Components: Distribution of the software across the hardware, communi-cation of components, and how middleware can be used to deal with heterogeneoussoftware.
• Architectural Styles: Descriptions and guidance for the high-level organization of soft-ware providing a specialization of element and relation types, together with a set ofconstraints on how they can be used.
• Concurrency: Decomposition of software into processes, tasks, and threads, dealingwith related issues of efficiency, atomicity, synchronization, and scheduling.
• Interaction and Presentation: Structuring and organization of interactions with users aswell as the presentation of information.
• Error and Exception Handling and Fault Tolerance: Prevention, toleration, and processingof errors as well as dealing with exceptional conditions.
• Families of Programs and Frameworks: Software product lines or frameworks encapsu-lating commonalities among elements and targeting re-use by designing customizablecomponents that account for variability.
• Security and Safety: Prevention of unauthorized access to and manipulation of informa-tion and other resources. Limiting damage, the continuation of service, speed-up ofrepair, and how to fail and recover securely.
• Design Patterns: Typically employed at a lower abstraction level than architectural styles.

27.2%

18.4%

9.7%

9.7%

8.8%

7.8%

5.1%

3.7%
3.7%

2.3%1.8%1.8%

Control & Handling of Events
Arch. Structures & Viewpoints
Distribution of Components
Arch. Styles
Concurrency
Interaction & Presentation
Error & Exeption Handling
Fam. of Prog. & Frameworks
Security & Safety
Design Patterns
Arch. Design Decisions
Data Persistence

Figure 2.13: Aspects of architectures & programming of robotics in the state-of-the-art (basedon [91])

40

2.9 Model-Driven Engineering

• Architecture Design Decisions: Impact of quality attributes and the trade-offs amongcompeting quality attributes that provide the basis for design decisions.
• Data Persistence: Handling of long-lived data.

The distribution of publications of each subdomain from Architectures and Programming isshown in Figure 2.13. It can be seen how the first 5 ones, namely Control & Handling of

Events, Architectural Structures and Viewpoints, Distribution of Components, Architectural Stylesand Concurrency cover over 74% of the topics. This helps to see their relevance of softwarein robotics. These domains overlap with hardware research, as shown in Section 2.7.
The following sections analyze how robotics benefited from embedded systems, namelyGPUs and FPGAs, and how MDE improved the workflow development of these systems.

2.9.1 Control and Handling of Events

Willenberg et al. [92] proposed a framework to generate VHDL modules from behavioralmodels. They consist of hand-written kernels with aggregated buffered data-flow structures.The main goal is to obtain hybrid C++ and VHDL systems by bridging programming modelsand interfaces with activity diagrams, modeling data, and control flow. They opted to includesynchronous FIFOs to avoid complex flow control in pipelined designs with generic controllogic to protect it from illegal reads and writes.
Trabelsi et al. [93, 94] extended [95] by proposing a control design approach for FPGA-based reconfigurable systems. The approach is based on a semi-distributed control model. Itsplits different control concerns (monitoring, decision-making, and reconfiguration) betweenautonomous modular controllers. The splitting reduces the control design complexity andfacilitates design verification, reuse, and scalability. According to the authors, the distributionof the control problem compared to a centralized one facilitates reuse as the latter is tightlydependent on the implemented design. Transitions in a centralized decision-making systemdepend on a global view of the system. Therefore, the whole decisionmodel must be rewrittento include other reconfigurable regions. A new controller for each new region is only neededwith their semi-distributed decision-making model. Their approach is based on Modeling andAnalysis of Real-Time and Embedded Systems (MARTE), and due to following MDE techniques,it allows them to hide low-level technical details from designers and to automate codegeneration from high-level models.
Wiśniewski et al. [96] proposed a method for prototyping control systems with the possibilityto include DPR. It is based on Unified Modeling Language (UML) state machine diagramswhich are transformed into Finite State Machines (FSMs). There, each state can be eitherstatic (non-reconfigurable) or reconfigurable. A model-to-code process follows to generateVHDL files, which are used for synthesis, implementation, and the generation of bitstreams,including those for DPR.
Estivill-Castro et al. [97] recognized the difficulties in the semantics of UML that preventFPGA implementations of complex real-time systems’ models. This issue arises becauseUML concerns about how to describe a system rather than building it. Logic-labelled FSMs(LLFSMs) provide executable models with precise and defined semantics [98]. Hence, theauthors proposed adapting LLFSMs with time-triggered semantics suitable for FPGAs. Thisapproach enforces determinism for massively parallel, communicating LLFSMs. Models of

41

2 Background and State-of-the-Art

complex real-time behavior with perfect knowledge of timing requirements at design timecan be implemented due to deterministic timing for each state. Furthermore, time-triggereddeterministic behavior allows communication between multiple FSMs without race conditionsor complex synchronization mechanisms.
Riché et al. [99] highlights that most algorithm experts do their design using floating-pointwithout considering the limited resources available in FPGAs. For this, a fixed-point repre-sentation is always advised to deploy such algorithms in FPGAs. The authors presentedan MDE-based tool as part of the LabVIEW NXG FPGA module to aid experts in obtainingfixed-point algorithms. The tool works on executable models built on the graphical dataflowmodel of computation “G”. The novelty in their approach is that rather than analyzing thealgorithm, data from a testbench is used to suggest fixed-point types within constraintsprovided by the user.

2.9.2 Architecture Structures and Viewpoints

Baklouti et al. [100] presented an MDE approach for Single Instruction Multiple Data (SIMD)SoC designs, based on UML and MARTE. The workflow consists of application programming,system modeling, deployment, and implementation generation. Like this, it is possible togenerate a SIMD configuration at RTL from a high-level model. This also facilitates rapidprototyping and generation of different SoC for the exploration of configurations that bestfit the requirements of the targeted applications. The different configurations can also besimulated as the artifacts, in this case, are VHDL files. The communication among all PEs ishandled by a NoC in a 2D mesh topology.
Teodorov et al. [101] focused on the low-level flow of FPGA design. They proposed anMDE approach to model the physical synthesis process, focusing mainly on reconfigurablearchitectures. The authors argue that even though HLS has adopted the MDE methodology,physical synthesis is a complex resource allocation problem, which supposes a more complexmodel transformation. The core of their solution is to create a physical design automationComputed Aided Design (CAD) flow. This allows separating the application and design fromthe software tool for design and implementation. By allowing a precise specification ofconcepts and relations between them, MDE helps to reduce the complexity of developingand maintaining physical design tools. For this, they presented a generic metamodel15 fordescribing hierarchical interconnected systems with arbitrary abstraction levels. As in similarpublications, Design Space Exploration (DSE) is improved, enabling algorithm re-utilization.
Medeiros et al. [102] discuss a PIM to PSM converter. The modeling is based on MARTE, andthe PSM are used to synthesize for FPGA implementations. MARTE is the chosen modelinglanguage because it provides a clear distinction between hardware and software modelscompared to SysML. Moreover, real-time aspects can be modeled, which is important forembedded systems. In this case, DSE is also possible thanks to the proposed converter. Itallows users to generate a set of embedded system configurations with particular needs fordifferent hardware resources.
Leite et al. [103] aims to support the automatic generation of VHDLmodules from a high-levelspecification of embedded systems. They propose a set of mapping rules to convert MARTEmodels into synthesizable VHDL description. The model-to-code transformation allows code

15Ametamodel is a model of a model (i.e., a simplified model of an actual model of a circuit, system or software)

42

2.9 Model-Driven Engineering

optimizations which result in an improvement of FPGA area consumption as well as systemperformance. Note that the proposedwork supports synchronous and asynchronousmethodcalls from sequence diagrams, which was a feature missing in the literature. In this case, thehigh-level model is converted into a PIM as a VHDL module. They extended the approachin [104], focusing on Aspect-Oriented Software Development. Here, a new set of mappingrules has been created for the model-level aspects to match their corresponding VHDLstatements.
Zhang et al. [105] presented a toolkit to facilitate the design of complex asynchronous embed-ded systems with hardware and software components. The graph-based modeling approachallows validation through simulation and a more straightforward system construction. VHDLand C artifacts are generated for hardware and software respectively. The characteristicsof the heterogeneous behavior of hardware and software are in a unified co-design model.The toolkit solves the challenge of extracting them, as the behavior of hardware modulesfor synchronous applications is usually controlled by a hardware clock, and the timing of asoftwaremodule usually depends on the size and complexity of the code. Hence, a schedulingmechanism to keep the timing consistent and in sync among different hardware and softwaremodules is also generated.
Streit et al. [106] proposed an automation flow to explore different hybrid hardware andsoftware FPGA implementation from MATLAB/Simulink models. The novelty in the approachcompared to the related work is the joint modeling of hardware and software within the sameSimulink model for the generation of a holistic design. The difference is that an individualmodel for every component is needed in Simulink. That means two separate models for thehardware and one for the software. The approach would facilitate automatic DSE. They bridgeSimulink with HLS and Vivado tools via CMake16, in order to have PIMs. The code generatedby Simulink has to be customized for hardware implementations due to its specific structure.Hence, code-based optimizations and the MDE-based model transformation are performed.The AXIS protocol achieves high-speed data streaming for inter-block communication.
Enrici et al. [107] proposed an approach to compiling system-level models into standard Ccode to optimize memory footprint. software implementation for a DSP platform as well ashardware accelerators are generated from this optimized C code. The base of this researchfocuses on the fact that multi-processor architectures raise the need to increase the level ofabstraction of software paradigms. Besides, code generation frommodel-based specificationsis considered to be more efficient than traditional paradigms where software is developedfrom code. In this case, the model is based on UML/SysML, and a model-to-code processis involved in obtaining an intermediate representation. The intermediate representationis used to optimize the system’s memory footprint to produce the C code for the memoryallocation and scheduling of signal-processing operations.

2.9.3 Combined Control and Handling of Events with Architecture Structures
and Viewpoints

Vidal et al. [109, 108] proposed a design methodology to model DPR in UML. It targetsmultiprocessor systems. The first goal is to optimize the area through DPR. The secondone is to increase the flexibility of the resulting system. Area optimization is achieved by
16https://cmake.org

43

https://cmake.org

2 Background and State-of-the-Art

reconfiguring co-processors connected to embedded ones. Flexibility is done by dynamicallychanging the behaviors of the co-processors at runtime. The proposed modeling approach,based on MDE techniques, intends to aid non-FPGA experts to include DPR in their designs.In this case, the artifacts are a set of bitstreams, including the one for the base design andthe partial ones.
Ochoa et al. [110] proposes an approach based on MARTE, exploiting the capabilities ofIP-XACT to model and automatically generate DPR SoC designs. IP-XACT is an XML formatthat defines and describes individual, reusable electronic circuits facilitating their use increating integrated circuits. The aim is to obtain HDL code from high-level models of thesystem description. In this case, IP-XACT is used as an intermediate model to configure theaccelerators for DPR and to automate the system integration. This work was extended in [111]to permit the verification of the platform description at different stages in the developmentprocess.
Trabelsi et al. [95] aims to increase the design productivity of FPGA-based reconfigurablesystems. They do so by combining control distribution and high-level modeling to decreasethe complexity and improve reutilization and scalability. Similarly to [93], control aspects suchas monitoring, decision, and reconfiguration are distributed among individual controllers.However, a coordinator is used to keep the global system’s constraints. The high-level mod-eling is based on MARTE. The proposed approach allows modeling adaptation aspects atdifferent design levels (i.e., application, architecture, allocation, and deployment).
Corre et al. [112] focused on the lack of underlying platform architectures for FPGAs andproposed architecture models based on templates (source-code like sources that can beexpanded according to the requirements). They then provide pre-parametrized designsaccording to the target domains (e.g., DSP, video). The approach improves reusability, codegeneration, and performance estimation. This last point is of particular interest to performDSE. Hence, the designer can combine the parameters in the templates with the constraintsfor the expected design. Once a result satisfies the expected tradeoffs between cost and per-formance, the synthesized code for the hardware platform, the adapted software code of theapplication, and the project files corresponding to the FPGA backend tools are generated.
Ecker et al. [113] presents an automated process to generate hardware and software for em-bedded systems following OMG’s Model-Driven Architecture (MDA)17. Their MDA adaptationconsists of splitting the translation process into multiple layers. It starts with a formalizedspecification transformed into code. The code is then compiled (software) or synthesized(hardware) to finally be assembled into an embedded system design. The process is split intothree layers. Model-of-Thing (MoT) represents the formalized specification. Model-of-Design(MoD) contains the implementation architecture (PIM). Model-of-View (MoV) are the PSMimplementations. The process consists of translating MoT into MoD to translate it into MoVfor code generation. The translation between models is done based on templates.
As mentioned previously in Section 2.8, different robotics middlewares have emerged overthe years (e.g., YARP, OROCOS). This could become an issue due to incompatibilities of data-types between different middlewares [114]. Many approaches also developed types-librarieswith common comparable semantics but using different approaches for IDLs, serializationschemes, and APIs. On the one hand, Costa et al. [115] proposed the use of model-drivenengineering concepts to develop specialized middlewares for particular application domains.The approach centers on building blocks, as meta-models, used to create models to specify

17https://www.omg.org/mda/

44

https://www.omg.org/mda/

2.9 Model-Driven Engineering

the configuration of the targeted middleware. The authors showed the feasibility of theirapproach with four domain-specific applications. On the other hand, since multiple roboticsmiddlewares are available, Wienke et al. [114] proposed using model-based techniques forcomponent reusability. They addressed data type compatibility in a structured way by devel-oping a generic meta-model capable of representing data types from different middlewaresand their relations. This is possible because themiddlewares produce and consume serializeddata to be streamed over a network. The meta-model describes data from various roboticsmiddlewares in an abstract and unified way, but including the variables to be serialized. Thatmodel is used to generate serialization code to reuse the existing data-types of differentmiddlewares. Moreover, they evaluated the features commonly found in different IDLs, whichserved as the base for the evaluation presented in Chapter 5 (cf. Table 5.1).
Table 2.5 summarizes these publications about MDE and FPGAs. Note that the two categories“Control & Handling of Events” and “Architecture Structures & Viewpoints” (c.f. Figure 2.13)cover 45% of the literature in the software-related state-of-the-art. It can be deduced fromthe literature shown above that these two categories are also the most relevant topics inadaptive computing systems, particularly FPGAs. It can be inferred that the primary purposeof these works, and in general for MDE, is to aid non-experts in a field (FPGAs in this case) toobtain the desired implementation. This is why either bitstreams or source code (VHDL or C)are generated from a high-level representation of the system, usually in UML (or derivativessuch as MARTE). The main reason, according to the authors [94, 96, 108, 95, 110, 109] is tofacilitate the workflow, which is usually cumbersome, especially for non-FPGA developers.Also, 25% of the publications analyzed in this work already support DPR, which is always atedious process to do manually.
The main takeaway for this section is that MDE is a helpful modeling and design method-ology to circumvent the arduous process of designing FPGA systems, whether they targetorganization of data and control flow as well as designs from an architectural viewpoint(system level). This has been proven to be successful, which is the main reason for this work,to now incorporate such techniques into robotic systems on FPGAs, considering the com-bined complexity of hardware design as well as the ones from the robotics field. IntegratingFPGAs into ROS (Section 2.8.1 and Section 2.8.2) is an active research area as well as MDEtechniques for code generation of FPGA-based systems Section 2.9. However, these two aremostly explored individually, opening possibilities for future research on how to combinetheir proven benefits to aid the workflow of FPGA-based robotic systems.
To conclude, Section 2.7 onwards introduced the state-of-the-art, in which the works pre-sented showed different MDE techniques to facilitate the design process of FPGA-basedsystems. However, most of them focus on particular solutions or accelerators rather thanon integration aspects. The techniques discussed previously are used to generate a systemaccording to specified requirements. However, further specifications analysis is required tounderstand the system and determine its low-level details fully. These techniques are oftenonly partially suitable for this analysis, and a technology that interprets the specified systemis preferred. MARTE, the UML profile for modeling and analyzing real-time and embeddedsystems, is the most popular in the literature. MARTE supports modeling the timing behaviorof FPGA-based systems (clock skew, jitted, and propagation delay). Furthermore, there issupport for code generation and verification of FPGA-based systems. Therefore, it allowsdevelopers to model the behavior of hardware components and generate code for thehardware IPs. However, extra tools are needed before generating all the desired componentsto achieve the three objectives listed in Section 1.2. The ones proposed in this dissertation

45

2 Background and State-of-the-Art

Table 2.5: MDE approaches for FPGAs
Reference Architectures andProgramming Models Artifacts DPR

Control∗ Architecture+ Levels Language Framework
Trabelsi et al. (2014) [94] ✓ ✗ PSM UML,MARTE GASPARD2 VHDL ✓

Riché et al. (2019) [99] ✓ ✗ PSM - LabVIEW NXGFPGA Module VHDL, Verilog ✗

Willenberg et al. (2010) [92] ✓ ✗ PSM UML DMOSES/EclipseVHDL ✗Wiśniewski et al. (2017) [96] ✓ ✗ PSM UML - Bitstreams ✓Estivill-Castro et al. (2018) [97] ✓ ✗ PIM UML - VHDL ✗Vidal et al. (2011) [108] ✓ ✗ PSM UML,MARTE - Bitstream ✓

Trabelsi et al. (2013) [93] ✓ ✗ PSM UML,MARTE GASPARD2 VHDL ✗

Baklouti et al. (2011) [100] ✗ ✓ PIM UML,MARTE SIMD Frame-work VHDL ✗

Streit et al. (2018) [106] ✗ ✓ - Simulink Matlab Bitstream ✗Medeiros et al. (2012) [102] ✗ ✓ PIM,PSM UML,MARTE Papyrus Bitstream ✗

Leite et al. (2014) [103] ✗ ✓ PIM UML,MARTE AmoDE-RT VHDL ✗

Zhang et al. (2016) [105] ✗ ✓ PIM SyncBlock Tsmart-Edola C, VHDL ✗Enrici et al. (2018) [107] ✗ ✓ PIM UML DIPLODOCUS Bitstream ✗Teodorov et al. (2011) [101] - ✓ PIM,PSM Genericmetamodel - Bitstream ✗

Leite and Wehrmeister (2014) [104] ✓ ✓ PIM UML,MARTE AmoDE-RT/GenERTiCA VHDL ✗

Trabelsi et al. (2012) [95] ✓ ✓ PSM UML,MARTE GASPARD2 C, VHDL ✓

Ecker et al. (2019) [113] ✓ ✓ PIM,PSM Custommetamodel Infineon C, VHDL ✗

Ochoa et al. (2011) [110] ✓ ✓ PSM UML,MARTE,IP-XACT
- VHDL, C, Sys-temC ✓

Vidal et al. (2010) [109] ✓ ✓ PIM UML,MARTE - C, VHDL ✓

Ochoa-Ruiz et al. (2015) [111] ✓ ✓ PIM RecoMARTE FAMOUSdesign C, VHDL ✗

Corre et al. (2013) [112] ✓ ✓ PIM KahnProcessNetwork
Custom tem-plate based C, Bitstream ✗

∗Control & Handling of Events — +Architecture Structures & ViewpointsPlatform Independent Model (PIM) — Platform Specific Model (PSM) — Dynamic Partial Reconfiguration (DPR)

are described in Chapters 5 and 6. They are needed to perform data-type and data-flowanalysis (described in Chapter 6), which is why JastAdd is more appropriate than frameworkslike MARTE, as it is used for constructing compilers and tools alike.
Choosing one or the other does not mean they are not complementary. There might be caseswhere both frameworks can be used together. They are two different types of frameworksthat serve different purposes. While MARTE is a UML profile for modeling and analyzingreal-time and embedded systems, JastAdd is a metacompiler framework for implementingcompilers and related tools, which is more fitted for the objectives of this dissertation. It allowsto obtain a model of the system from a specification to be analyzed with MDE techniquesand derive necessary information to further generate the components specified, validatethem, and deploy the entire system automatically. All details to achieve these are explainedin the following chapters.

46

3 Modular Hardware Architecture

Components within a heterogeneous distributed system, such as a robotic platform, usu-ally exchange data. They can either generate or consume it; in this work, they are called
publishers or subscribers respectively. As the goal is to combine FPGAs with robotic systems,hardware accelerators as publishers and subscribers exchange data with external softwarecomponents in a distributed system, as shown in Figure 3.1. The main requirement is thatexternal components do not make any distinctions with hardware accelerators, so they canbe interchangeable if needed.
The aim here is to take advantage of the freedom and versatility that FPGAs provide forpower-demanding applications to be part of any ROS (or any other middleware) architecturein an efficient way so that they can be seen from other ROS nodes as a regular one. Thismeans that they behave like them in the way that they can send data as a publisher orreceive data as a subscriber. This will allow deploying any given application, whether it isa heterogeneous system like a robot with multiple sensors and actuators or a distributedsystem such as a group of robots collaborating together, into any ROS system.
Most elements in the proposed hardware architecture are foreseen to be on the PL sidebut are not limited as some functionalities can reside on the PS side or external peripherals(e.g., communication from/to outside the FPGA [21]). The blocks shown in Figure 3.1 can beclassified as:
1. Accelerator-related components comprising the base architecture needed to han-dle multiple hardware accelerators. Their design is only affected by the number ofaccelerators in the system.
2. Message-dependent components refer to those that follow a specification required foraccelerators to be incorporated into the distributed systems.

47

3 Modular Hardware Architecture

Publisher Standard IPtoAXIS Frame

Publisher Standard IPtoAXIS Frame

PublisherandSubscriber
Standard IPtoAXIS Frame

PublisherandSubscriber
Standard IPtoAXIS Frame

Subscriber Standard IPtoAXIS Frame

Subscriber Standard IPtoAXIS Frame

Manager

S(0)_AXIS
S(1)_AXIS
S(2)_AXIS
M(0)_AXIS
M(1)_AXIS
S(N)_AXIS
M(2)_AXIS
M(N)_AXIS

CommunicationInterface

ExternalComponent

ExternalComponent

M0_AXIS

S0_AXIS

FPGA

PS or PL
Fixed in PL...

...

... ...

...
...

... ...

...
...

... ...

Figure 3.1: Generic base architecture1.

3.1 Challenges and Goals

The main goal of the proposed modular architecture is to integrate hardware acceleratorsinto robotics systems to enhance their efficiency. The first challenge is ensuring that thearchitecture components are extensible and reusable. The architecture must provide modu-larity to accommodate a wide range of hardware accelerators to achieve this. Furthermore,its components should be designed to allow for the easy integration of new acceleratorswithout requiring significant changes to the overall architecture.
The second challenge is ensuring the proposed architecture is application-independent,allowing it to adapt effortlessly to new requirements. This requires the development of astandardized interface between the hardware accelerators and the software applications.This interface should be well-defined and independent of the specific application, enabling thesystem to support a wide range of applications without requiring significant modifications.
This chapter proposes a modular hardware architecture that leverages the principles ofmodularity, reusability, and standardization to address these challenges It is designed toprovide a flexible and extensible architecture that can be easily customized to meet thespecific requirements of different robotics applications. The following sections introduce thedifferent components designed to achieve these goals.

1Accelerators can have intra-FPGA connections (omitted to have a simplified diagram).

48

3.2 Accelerator-Related Components

3.2 Accelerator-Related Components

They are responsible for exchanging data between accelerators in FPGAs and external partsof the distributed system. Considering that most robotics systems follow a data flow graph-based-model design, the AXIS protocol is chosen as the standard interface among all blocksdue to its simplicity and widespread usage. Additionally, if blocks or modules share thesame interface, it can lead to different techniques such as DPR for efficient and low powerdesigns [85]. The main component is the Manager block (Figure 3.4). The entity port (inputand output signals) and the behavior of the accelerator-related components depend onthe number of publishers and subscribers in the design, which is different for each use case.One could easily neglect one parameter by mistake as multiple modules are involved, raisingthe need to automatize their generation.
The accelerator-related components could have been simplified by relying on Xilinx’s
AXI4-Stream Interconnect IP core. However, this would imply becoming vendor-dependent,which reduces the possibility of porting to other vendors or platforms (e.g., Intel, Microsemi).Moreover, Xilinx’s IP Core has amaximum of 16 interfaces per instance. Its resource utilizationfor 1 master and 4 slaves (16 bits for TDATA) is around 150 LUTs and 300 FFs for the simplestconfiguration. A similar solution following the approach presented in this work uses 364 LUTsand 67 FFs but four times the number of slaves, allowing for managing more acceleratorswith roughly a similar resource utilization2.
The block handling the communication (Communication Interface) is inspired by the TCP/IPFive-Layer Network Model (Figure 3.2), where individual layers are adapted according todifferent needs. On the one hand, the Application (protocol), Transport (TCP or UDP), andNetwork layers (IP) will depend on each application. On the other hand, the Data Link (Ethernetor WiFi) and Physical (10 Base T or 802.11 standards) layers will depend on the device usedfor communication (e.g., onboard interface as Ethernet in case of some development boards,external devices such as the ESP32 providing Ethernet or the WIZ820io for WiFi, both withSPI interface).
In this proposed architecture, using the PS is not mandatory but optional. This feasibility isshown in [21] where ROS was not running under Linux. The Communication Interface wasin the PL as a SPI-controlled device handling communications over Ethernet with external

Application

(Protocol)

Transport

(TCP or UDP)

Network

(IP)

Data Link

(Ethernet or WiFi)

Physical

(Standards)

Depend on
application

Depend on
available
device

Figure 3.2: TCP/IP five-layer network model
2This numbers are for the Zynq-7000 SoC-FPGA (xc7z020clg400-1)

49

3 Modular Hardware Architecture

components. The versatility of the architecture is shown further in [9] by having native ROSrunning on the PS, acting as the link (on the software side) between external componentsand accelerators.

3.3 Messages-Dependent Components

They are the interfaces between hardware accelerators and external software components,which depend on message specifications (e.g., ROS msg format). The serial part of their entityis either AXIS master or slave, and the message specification determines the parallel part tointerface. Each publisher or subscriber IP core needs its own block to convert its input andoutput ports (parallel) into an AXIS frame (serial).
A design simplification has been chosen, to use 8 bits for data and only use the minimumsignals of the AXIS protocol (TLAST to denote the last byte in the transmission, TVALID and
TREADY for handshaking). Reducing to byte widths allows to orient these blocks’ design ina generic manner to ease the automatic code generation later on (Chapter 5). By doing so,each variable, regardless of its data type (e.g., int, float), is split into bytes to multiplex themindividually. Variables (arrays or strings) and nested messages are transformed into an AXISif their sizes are not fixed, relying on TLAST to denote their length. Figure 3.3 shows anexample of an accelerator taking the role of a publisher with its interface component for the
sensor_msgs/Imagemessage specification (Listing 3.1). There it is possible to see that thefields header, encoding and data have been converted into AXIS while the rest have a bit-widthaccording to their built-in data type. This message specification is used throughout the workas an example to highlight specific characteristics of the techniques shown, leading to animage processing use case.
Due to the design decision of using 8 bits for TDATA , a stream of bytes (AXIS frame) will beformed with the variables to interface. startIndex in Figure 3.3 depicts the position of the firstbyte of each variable in the resulting AXIS frame.
As it can be seen, message specifications can become complex data structures if they areformed by different data types, arrays with and without specified length, or even nestedmessages. Hence, manually writing their corresponding hardware components becomes aquite tedious and much more likely error-prone process. All their details, design decisions,and code generation is specified in Chapter 5.

50

3.3 Messages-Dependent Components

Publisher
Standard IP

to
AXIS Frame

/32 total length
0

/32 header seq
4

/32 header stamp sec
8

/32 header stamp nsec
12

/32 header frame id length
16

header frame id axis
20

/32 height
21

/32 width
25

/32 encoding length
29

encoding axis
33

/ 8 is bigendian
34

/32 step
35

/32 data length
39

data axis
43

M AXIS

Bitwidths Field’s name startIndex

Legend
/
Bits

Signal with specific bitwidth

AXI Stream interface

Figure 3.3: Hardware port for image msg

1 std_msgs /Header header
2 uint32 seq
3 time stamp
4 s t r i n g frame_id
5 uint32 height
6 uint32 width
7 s t r i n g encoding # unconstrained size
8 uint8 i s _b igend ian
9 uint32 step
10 uint8 [] data

Listing 3.1: ROS sensor_msgs/Image specification

nested message

51

3 Modular Hardware Architecture

3.4 Components of the Modular Architecture

There are four components in the proposed architecture, shown in Figure 3.1, and each ofthem are explained below.

3.4.1 Accelerators as Publishers and Subscribers

The accelerators within the architecture, those that perform the computation, can be of twotypes. Those that consume data to process it and those that produce data to be processedfurther. The former ones are defined as Subscribers and the latter ones Publishers. They canalso be a combination of both, and their interfaces will be defined depending on their type.

3.4.2 Middleware-Based Hardware Interfaces

These are the components that convert from an AXIS frame to a message specification andvice-versa. Depending on the type of accelerator, they will be used by either subscribersor publishers. Subscribers receive data from DMA, so a conversion from AXIS to messageis required. Publishers send data through the DMA, so they need to convert the messagespecification to an AXIS frame. These two types convert from parallel signals to a serial AXISframe and vice-versa. All their details, design decisions, and code generation is specifiedin Chapter 5.

3.4.3 Manager

The Manager handles the proper communication between the two central parts of the system,namely the accelerators (as programmable logic) and the Communication Interface toexternal components. The Manager is composed of multiple blocks shown in Figure 3.4. Mostof them are static, meaning they do not change their behavior. They have different purposes,which are explained below. Multiple options are proposed for the schedulers, which areexplained in Chapter 4.

Arbiter
Decoder

Scheduler Grant

AXIS ID
Extraction

S AXIS

M AXIS

ID

C
o
m
m
u
n
ica

tio
n

In
terfa

ce Com to IPs

Ctrl

S AXIS M0 AXIS

..
.

MN AXIS

IPs to Com

Ctrl

S0 AXIS

..
.

SN AXIS

M AXIS

C
o
m
m
u
n
ic
a
ti
o
n

In
te
rf
a
ce

S
u
b
sc
ri
b
er
s

P
u
b
lish

ers
R
eq

u
ests

Manager

Figure 3.4: Manager

52

3.4 Components of the Modular Architecture

Communication

The Com to IPs and IPs to Com are the ones that route the AXIS frames from/to the
Communication Interface to/from Subscribers and Publishers, respectively. As the AXIS usesone (8 bit) signal for data (TDATA) and three for handshaking (TVALID , TREADY and TLAST), they have to be multiplexed and demultiplexed because the communication is 1-to-N orN-to-1, depending on the direction.
On the one hand, the Com to IPs handles the communication from PS to PL. Hence, datafor all accelerators comes from one DMA and needs to be demultiplexed to each accelerators.Hence, this module is composed by three demultiplexers for TDATA , TVALID and TLAST andone multiplexer for TREADY . On the other hand, the IPs to Com handles the communicationfrom PL to PS. Therefore, data from each accelerator is multiplexed towards the DMA. So,this module is composed by three multiplexers for TDATA , TVALID and TLAST and onedemultiplexer for TREADY .
The bit-width of the multiplexers and demultiplexers is determined by the number of acceler-ators, which will influence the bit-width of their control signal, computed with Equation (3.1).

AXIS ID Extraction

Each AXIS frame must include an ID to route it to/from the corresponding accelerator. The IDis inserted on the software side for the frames coming from the DMA (for subscriber IPs), andhas to be extracted on the PL before it can be demultiplexed. Figure 3.5 shows an exampleof an AXIS frame streamed from the PS to PL that corresponds to a ROS message composedby an 8-bit integer array with two elements. The AXIS frame starts with the ID, "01" in thiscase. It follows the total number of bytes to be transmitted, six in this case. It ends with thearray’s length (two bytes) and the two corresponding integers. Details about the creationof AXIS frames from ROS message specifications are given in Chapter 5. The frames fromthe accelerators to the Communication Interface also include an ID, which is added by theconverters, explained in detail also in Chapter 5.
Figure 3.5 shows a simplified version, omitting the signals for handshaking. Below the clock,the input, TDATA , shows the complete frame. The ID is extracted on the first clock cycle andlatched to the output, which serves as the control signal for the following block (Com to IPs).The ID to be latched is converted from decimal to binary, and its bit-width is determinedby Equation (3.1). Besides optimizing this block’s resources, the bit-width needs to be adjustedto optimize the multiplexers and demultiplexers, where the input and output ports arealso expanded or shrank accordingly to the total number of accelerators in the expectedarchitecture. This is the main reason these components are called accelerator-dependentbecause their entities vary accordingly to the total number of accelerators involved in thearchitecture. The other output of the AXIS ID Extraction is the AXIS frame itself, whichstarts on the next clock cycle. As seen in Figure 3.5, this block does not introduce any delays.

IDbit–width(N) = ceiling

(
log(N)
log(2)

) (3.1)
where N is the number of accelerators.

53

3 Modular Hardware Architecture

0

1
C
lo
ck

0

1

s_
ax

is
_t
d
at
a

0

1

ID

0

1

m
_a
xi
s_
td
at
a

00 01 06 00 02 00 10 11 00

0001

06 00 02 00 10 11 00

00

00

Figure 3.5: AXIS ID extraction signals
Arbiter Decoder

This block takes as input the grants from the scheduler. Therefore, its bit-width will be equalto the number of accelerators. Table 3.1 and Table 3.2 show two minimal examples of thedecoders for inputs of two and four grants for accelerators. Because the control signal of themultiplexers or demultiplexers is in binary, this decoder is needed. Only one accelerator canreceive the grant for a shared resource at any clock cycle, and the communication blockshave to select the corresponding signals accordingly to route the AXIS frame from/to thecorrect accelerator. As the multiplexers or demultiplexers in the Communication to IPsand IPs to Communication need as many bits as Equation (3.1) determines, this decoder isneeded to convert from grants to control signals with the same number of bits.

3.4.4 Communication Interface

The synergy between software architectures and FPGAs is a challenging task. Usually, forrobotic systems, the first one runs on an embedded computer, while the second one is ahardware platform on its own. Hence, one of the challenges is establishing communication

Table 3.1: Decoder with twoinput’s truth table
InputGrant[1:0] Outputsel[0:0]
01 010 1

Table 3.2: Decoder with fourinput’s truth table
InputGrant[3:0] Outputsel[1:0]
0001 000010 010100 101000 11

54

3.4 Components of the Modular Architecture

between both systems to integrate one another. This Communication Interface is then theone that establishes the connection between the components in the FPGA and external ones.The aim is to integrate accelerators as publishers or subscribers into existing robotic systemsas standard components (i.e., ROS nodes), making no distinctions with external components.This means that they behave like them in the way that they can send data as publishers andreceive data as subscribers. The use case in this work is based on the ROS communicationprotocols, but it can be generalized and adapted if needed.
The most basic architecture of a ROS system is composed of three nodes, which is whereprocesses perform computations. ROS Master is aware of all existing nodes in the architectureand coordinates them accordingly. A Publisher can broadcast messages over a topic for othernodes to receive. A Subscriber can receive a message if a compatible topic is available. Allthe communication within ROS is done via TCP Sockets. They allow communication betweenapplications, either on the local system or spread in a distributed TCP/IP-based networkenvironment. There are two different actions involved in the communication between nodes.The first one is the registration or unregistration of a node. This only involves the ROS masterand the node performing the action. The Remote Procedure Call (RPC) protocol XML-RPC,which uses XML to encode its calls and HTTP as a transport mechanism, is used. The secondcommunication protocol is a transport layer based on TCP/IP sockets (TCPROS) to establishdirect communication between nodes and transfer data. Initially, a subscriber requests fromthe master a given topic. If it exists, the master will inform the subscriber about the nodepublishing the requested topic and, subsequently, its IP address and port number. Afterward,the subscriber will contact the publisher directly to request the topic, and the connectionbetween them will be established. Every time the publisher has new data to broadcast, it willsend it directly over the earlier connection to the subscriber. At this point, the ROS masterdoes not take any action as the connection is directly between publisher and subscriber.
As all the communication is based on TCP/IP, a publisher can have multiple subscribers. Thepublisher will communicate with the ROS master over one socket and listen to another onefor any subscribers requesting a topic. When this happens, communication via a new socketis permanently established with each subscriber. Hence, a publisher will have 2 + n sockets,where n is the number of subscribers.
Hence, the Communication Interface has to be able to handle specific communicationprotocols (TCP/IP in this case) to integrate accelerators in an existing software solution. Thereare several ways to achieve this, considering the available resources on current FPGA boardsand depending on the physical layer of the communication (e.g., Ethernet).
External solutions can be used if there is no available ethernet connected to the PL. Asdemonstrated in [21], an external SPI-Ethernet component was used. The design is basedon the WIZ820io, a compact-sized module that includes a W5200 (MAC, Ethernet, and PHYlayers plus a TCP/IP stack) and an RJ45 jack, controlled via SPI. The controller used is shownin Figure 3.6. The AXIS Receiver is the one that will receive the AXIS frame coming from the
Manager containing data to be sent over TCP/IP and metadata needed to establish the TCP/IPcommunication (i. e., IP and port). Therefore, it will push the data into a FIFO and extractthe metadata to send it directly to the WIZ820io Interface block. This one acts as an SPImaster to send and receive proper commands to the W5200, which is the one managing theactual TCP/IP connection. The AXIS Sender block retrieves the incoming data from externalcomponents and sends it over AXIS to the corresponding IP. The FIFOs circumvent anytransfer rate difference between AXIS (100MHz) and SPI Stream (50MHz).

55

3 Modular Hardware Architecture

WIZ820 Controller

AXIS
Receiver

S AXIS

FIFO8 bits

Handshaking

WIZ82 io
Interface

8 bits

Address (16)

Length (12)

Operation (1)

8 bits FIFO 8 bits AXIS
Sender

M AXIS

SS

SCLK

MOSI

MISO

Figure 3.6: SPI master architecture with AXIS interfaces.
This is the first solution to show that the entire architecture depicted in Figure 3.1 can beentirely realized on hardware. However, there also exists the case that the ethernet is present,and in the case of most of Xilinx’s development boards, it is routed directly to the PS. Thisopens up two possibilities. The first one consists of using a standalone application or relyingon a real-time OS, for example, FreeRTOS, which is very well supported by Xilinx’s tools. Thesecond one, followed in [21, 9], consists of relying on the capabilities of the ARM processorsto run an OS. This allows having Ubuntu and native ROS on top. However, there are somechallenges to solve with this approach related to the exchange of data between PL and PSwhich is addressed by the hybrid hardware/software schedulers.

3.5 Evaluation

The evaluation of themodular architecture proposed in this chapter is split into two parts. Thefirst one concerns all the blocks included in the Manager, which are the same for all designsas they only depend on the number of accelerators. The second one is for the proposedschedulers, which are, in fact, part of the Manager, but they not only depend on the totalnumber of accelerators but the different algorithms. These have different consequences, andthere are several metrics proposed to understand the behavior of each of them appropriately.All results shown here are after synthesis for the Xilinx’s Zynq UltraScale+ xczu7ev-ffvc1156-2-e.
Table 3.3 shows the resource utilized by each of the components included in the Manager(Figure 3.4), which are common for all designs. Even though the Manager includes a scheduler,its different options are evaluated separately in Section 4.3. It can be seen that the AXIS ID
Extraction is the onlymodule that utilizes FFs. The reason is that it requires some registers tokeep the ID of the frame for the entire time it is being streamed, so it is latched. The remainingmodules do not require FFs as they are decoders, multiplexers, and demultiplexers whichare purely combinational circuits.
Figure 3.7 shows the overall representation of how each of the components affects theresource utilization for the Manager as a whole. The Arbiter Decoder does not consumemuch LUT for a small number of accelerators, but the logic increases the more acceleratorsare in the system. Having more accelerators in the system means that the output port ofthis decoder and, therefore, its logic will increase. The total number of output signals is givenby Equation (3.2), where the condition given by Equation (3.3) has to be met.

56

3.5 Evaluation

2 4 8 16 32 64 128 256
Accelerators

100

101

102

103

LU
Ts

Arbiter Decoder
AXIS ID Extraction
 Com to IPs
IPs to Com

Figure 3.7: Resource utilization in common IPs inside the manager

Decoder Output = 2N, N ∈ 1, 2, 3, 4, 5, 6, 7, 8 (3.2)
Total Accelerators ≤ 2N (3.3)

The LUTs for AXIS ID extraction are roughly the same for all number of accelerators. How-ever, they influence the total resource consumption more when there are a few acceleratorsbecause the other components do not consume much.
Table 3.3 shows the LUTs and FFs utilized by the AXIS ID Extraction component. The LUTsdo not increase when the accelerators do as the logic is the same. However, the FFs increasebecause the signals to latch increase when more accelerators are included in the design as

Table 3.3: Resource utilization in common IPs inside the manager
Accelerators ArbiterDecoder AXIS IDExtraction Communicationto IPs IPs toCommunication

LUTs FFs LUTs FFs LUTs FFs LUTs FFs
2 1 0 8 12 11 0 6 04 1 0 8 13 22 0 13 08 6 0 9 14 42 0 24 016 16 0 9 15 84 0 48 032 61 0 10 16 329 0 122 064 128 0 10 17 345 0 239 0128 773 0 11 18 1138 0 478 0256 1837 0 11 19 2644 0 946 0

57

3 Modular Hardware Architecture

their binary representation requires more bits the larger the number is (c.f., Equation (3.1)).This is the only component that consumes FFs because it latches the ID, making this asequential circuit compared to the rest which are only combinatorial circuits.
The two blocks concerning communication have a constant resource utilization relative tothe number of accelerators in the design. However, the main reason for the doubling of LUTof the Communication to IPs block with respect to the IPs to Communication lies in thefact that the former one is formed by three demultiplexers and one multiplexer and thelatter one of three multiplexers and one demultiplexer. The LUT will double because, basedon Xilinx’s CLBs which only contains multiplexers, to build a demultiplexer, two multiplexersare needed, as shown in Figure 3.8.

3.6 Summary

This chapter introduced the base architecture that serves as the playground for this entirework. It is a modular architecture to be used as the foundation for integrating FPGAs intoexisting robotics solutions. An explanation and reason for each component included in thearchitecture are detailed, as well as their need and how they interact with each other. Thedesign of each component is generalizable, easing their code generation and automaticdeployment of the entire system. The evaluation focuses on the resource utilization andscalability of the accelerator-related components, which are the ones that are affectedby the total number of accelerators in each design where the modular architecture is used.It is worth mentioning that all results are shown for Xilinx’s Zynq UltraScale+. However,the implementations described in this chapter (and this dissertation) can be ported to anyother target device available from Vivado and other vendors as all components are vendor-independent and based on the VHDL-93 standard.
Details of the modelling, code generation and automatic deployment of the componentsdescribed in this chapter are presented in Chapters 5 and 6.

2 to 1
in[15:8]

in[7:0]

out[7:0]

sel[0:0]

(a) 2 to 1 multiplexer

2 to 1

2 to 1

in[7:0]

in[7:0]

sel[0:0]

out[7:0]

out[15:8]

(b) 1 to 2 demultiplexer
Figure 3.8: Multiplexer and demultiplexer

58

4 Hybrid Hardware/Software
Schedulers

Different scheduling algorithms are proposed to have different options to adapt to the needsof each application. A software implementation is needed to schedule the transactions fromPS to PL, and hardware counterpart for PL to PS ones. The hardware implementation detailsare described below, as one needs to consider the low-level signals that are not needed insoftware. Particularly for this work, tasks represent the time each component can streamits data. In general, a scheduler has multiple inputs for the requests from the accelerators,meaning that they have data available to broadcast and they are ready to be scheduled. Theoutput will be the grant, allowing only one accelerator to perform the transmission at anygiven time. An example is shown in Figure 4.8, and all the details are explained below.

4.1 Challenges and Goals

The schedulers play a critical role in the modular architecture described in 3, and are partof the Manager. As a result, they need to meet specific requirements regarding extensibilityand adaptability to new applications. It is essential to achieve this to have a diverse range ofschedulers available, which can be selected based on the specific needs of each application,including their extensibility (i.e., the number of hardware accelerators required).
The schedulers must be designed to be independent of both the hardware accelerators andthe applications they are scheduling to ensure maximum flexibility. This means schedulersshould be able to accommodate varying numbers of accelerators without requiring significantmodifications. Ultimately, the goal is to provide a wide range of schedulers that can adapt tothe specific needs of each application while remaining extensible and independent of theunderlying hardware architecture.
As the AXIS is the chosen communication protocol, TVALID is used as requests and TREADYis used as grants. Each of the implemented schedulers shown below works as follows. Eachaccelerator that sets TVALID to one will get a grant as long as it is the only one that seta request. Only one accelerator can get the grant on each clock cycle. Therefore, it will becomputed accordingly to each algorithm when multiple accelerators have data to stream(TVALID set to one) at the same time. The end of each task is denoted with TLAST , as dictatedby the AXIS protocol.
There are four characteristics considered for the schedulers:

59

4 Hybrid Hardware/Software Schedulers

• Preemptive: a running task is paused when a higher priority task arrives and gets thegrant. The first one resumes after the latter one completes.
• Non-Preemptive: this algorithm will not interrupt the currently executing task until theexecution is terminated.
• Fixed Priorities: priorities are set at the start of the application and kept fixed for theentire runtime of the process.
• Dynamic Priorities: priorities are updated dynamically during runtime according to thescheduling algorithm.

Considering that the end goal is to generate all these components from an abstract descrip-tion of the system, the core of the implementation of the different schedulers has to begeneralizable. Therefore, the adaptable statechart shown in Figure 4.1 is used as the base forall proposed algorithms. It is composed of two types of states and transitions. Ones are static,common for all schedulers, and others are adapted for the needs of each algorithm, whetherit is a specific computation (e.g., deadline, slack) or conditions for the transitions. Therefore,only certain parts of the statechart differ from one scheduler to the other. A priority table isinitialized at the beginning. The algorithm-dependent conditions are computed to use themfor updating the priority table accordingly, depending on the algorithm. The updated prioritiesare used in the Set Grant superstate to find the maximum value (highest priority) to asseswhich accelerator will get the grant. The transitions within this superstate also depend on thealgorithm, as each of them dictates how to react to new requests or internal conditions.
There is no relation between multiple accelerators and the schedulers, so there is dataindependency for all tasks. As far as deadlines, multiple definitions exist:

• Implicit deadline: when the relative deadline Di is equal to the period Ti , i.e. Di = Ti , forevery task τi.
• Constrained deadline: when the relative deadline Di is not larger than the period Ti , i.e.,
Di ≤ Ti , for every task τi.

• Arbitrary deadline: when the relative deadline Di could be larger than the period Ti forsome task τi.

Legend

Algorithm dependentStatic

Compute Condition
(e.g., deadline, slack)

Update
Priorities

Compute Priorities

Waiting
Requests

requests/=0

Set Grant

Highest
Priority

New requests
or end of frame

Assign
Grant

requests/=0

requests=0

requests/=0

Figure 4.1: Adaptable statechart, generic for all scheduling algorithms

60

4.2 Scheduling Algorithms

4.2 Scheduling Algorithms

Four different algorithms are proposed, two of themwith two variations,making six schedulersin total. They are based on traditional software solutions with the corresponding adaptationsto hardware implementations and the chosen streaming interface. Implicit deadlines arechosen for the Earliest Deadline Frist (EDF) and Least Slack Time (LST) algorithms presentedbelow. Moreover, soft real-time constraints are assumed for the system, meaning that misseddeadlines will not have catastrophic consequences.

4.2.1 Least Recently Utilized (LRU)

The Least Recently Used (LRU) algorithm is mainly used to manage buffer memories andcaches. It dynamically changes the priorities based on the accelerator that got the grant the
latest. This one will be moved to the bottom of the priority list, allowing all accelerators toget the grant. On the positive side, this guarantees that there will be no resource starvation.On the negative side, some accelerators will likely miss their deadlines. This is more evidentthe more accelerators are included because it takes N rounds (in the worst case) for anaccelerator to be on top of the priority list. In order to mitigate this, only the acceleratorswhich set their requests are considered each time the priorities are evaluated.

4.2.2 Fixed Priority (FP)

The Fixed Priority (FP) algorithm is a static priority one, meaning that priorities will remainunchanged during the entire execution time. Figure 4.2 shows a minimal example for thepreemptive and non-preemptive versions. For the non-preemptive, each accelerator willcomplete its task before another receives the grant. For the preemptive, the acceleratorwith the lowest priority (Acc1) is preempted as soon as Acc2 (with the highest priority) setsits request. Priorities are set based on the port defined in the entity of the module. As thegoal is to have a generalizable design to ease the automatic code generation, all input ports(AXIS-related signals) are defined as variable-sized vectors. Hence, the position of each signal(acting as request) in the TVALID [N] array will dictate the priority of each accelerator. Thelower the N, the higher the priority.
Scheduler Clk 1 2 3 4 5 6 7 8 9 10

Non-Preemptive FP Acc1 Acc2
Preemptive FP Acc1 Acc2 Acc1

Figure 4.2: Fixed priority scheduling with and without preemption
This algorithm has two variants, namely, Preemptive Fixed Priority (PFP) and Non-PreemptiveFixed Priority (NPFP). The difference lies in whether the grant changes in every clock cycle.The computation’s logic is only generated if needed to improve resource utilization. As thealgorithm’s name suggests, the priority table is never updated. It is initialized once, based onthe width of the requests port depending on the number of accelerators (N), from 0 to N – 1.Accelerators are assigned indexes, and the one with the lowest index, which sets its request,is assigned the grant.

61

4 Hybrid Hardware/Software Schedulers

4.2.3 Earliest Deadline First (EDF)

EDF is a dynamic priority schedule. This means that priorities will change on each clock cyclefor the entire running time, depending on the state of the requests and how close eachdeadline is with respect to the current time. Deadlines are decremented for each accelerator,with the request set to one on every clock cycle. Newly arrived requests are assigned forpriority based on their implicit deadline. Figure 4.3 shows the behavior of the scheduler withtwo tasks and how Acc1 is preempted when Acc2’s deadline is closer, so according to thealgorithm it must run first in order to avoid missing its deadline. Once this one finishes, Acc1can resume.
Scheduler Clk 1 2 3 4 5 6 7 8 9 10

EDF Acc1 Acc2 Acc1

Figure 4.3: Earliest deadline first scheduling
Theoretically, EDF can achieve a 100% utilization (U) according to Equation (4.1).

UEDF = n∑
i=0

Ci

Ti
(4.1)

where Ci is the Worst Case Execution Time (WCET) of a task with period Ti, and n representsthe total number of tasks in the system.
Particularly for EDF, two main computations are required. The first one is to decrementthe deadlines of every accelerator to increase their priorities. As this is a dynamic priorityscheduler, priorities are updated every time a new request arrives to update the priority
table.
There are two versions proposed. On the one hand, the resources-optimized one (Resource-Optimized Earliest Deadline First (ROEDF)) follows the statechart shown in Figure 4.1. Therewill always be a two-clock difference when grants are assigned. On the other hand, thelatency-optimized version (Latency-Optimized Earliest Deadline First (LOEDF)) is a slightmodification of the generic statechart as some computations are merged into the same state.This will reduce the state transitions (leading to fewer clock cycles) but increases resourceconsumption. Therefore, a tradeoff between resource utilization and latency is detailedin Section 4.3.

4.2.4 Least Slack Time (LST)

LST is also a dynamic priority schedule. Contrary to EDF, this algorithm evaluates the slacktime of the accelerator requesting the grant on every clock cycle following Equation (4.2)
si = di – ai – ci (4.2)

where si is the slack time (priority) of the accelerator I with a deadline of di. The time accisets its request is represented by ai, and ci is the remaining execution time for the task. Theaccelerator that holds the grant will get ai incremented and ci decremented by one on each

62

4.3 Evaluation

clock cycle to keep its slack time until it finishes its transmission or an accelerator with a higherpriority preempts it. For all other accelerators with request set to one, their arrival time willbe incremented by one, resulting in a lower slack time on each clock cycle.
Figure 4.4 shows how LST looks like with two accelerators, considering the changes in their
slack time causing them to preempt each other.

Scheduler Clk 1 2 3 4 5 6 7 8 9 10

LST Acc1 Acc2 Acc1 Acc2

Figure 4.4: Least slack time scheduling
This algorithm is the most complex one as it needs to keep track of the remaining processingtime, deadlines, and arrival time of new requests. All these have their own functions, whichare translated into a higher resource consumption compared to the previous ones shownbefore.

4.3 Evaluation

The proposed schedulers are, in fact, part of the Manager, but they not only depend onthe total number of accelerators but the different algorithms. These have different conse-quences, and there are several metrics proposed to understand the behavior of each ofthem appropriately. All results shown here are after synthesis for the Xilinx’s Zynq UltraScale+xczu7ev-ffvc1156-2-e.
The accelerators competing to get a hold of the DMA have two parameters. One is the
transfer time (T), in this case, representing the length of its payload to be streamed in bytes(one byte per clock cycle is transmitted). The other is the frequency (F), the number of clockcycles after its last transmission, and the availability of new data to be streamed. Thesetwo definitions are adapted from software to hardware implementation with a streaminginterface between accelerators and the schedulers. Each pair is called a set Si = {T , F}, andthe evaluation methodology followed for the schedulers consisted of a normal distribution forthe generation of N sets for M = {2, 4, 8, 16, 128, 256} accelerators. The evaluation was doneuntil 256, but it is not limited as larger values can be used. The N-sets constitute a dataset
DM = {(S1, σ1), . . . , (SN, σN)}, where σ is its standard deviation. Every algorithm is evaluatedwith the same dataset to understand the behavior of each scheduler for the same scenario.There are two types of exploration spaces (composed of the datasets). On the one hand, alarge one with 200 sets, centered around Slarge = ({100, 100}, 50). Therefore, there will beevenly distributed sets between 50 and 150 for transfer time and frequency. This datasetgives a heterogeneous exploration space to have a general evaluation. On the other hand,the so-called corner cases are evaluated with four different datasets of ten sets each. Theyare centered around Scc1 = ({20, 20}, 10), Scc2 = ({20, 180}, 10), Scc3 = ({180, 20}, 10) and
Scc4 = ({180, 180}, 10). These represent short and long transfer times and frequencies inextreme conditions, and as σ is small, these exploration spaces are homogeneous, andfocused on small areas around the centers.
The simulation time for the large dataset is 100us. The sets are heterogeneous enough, soit is a mix of long and short slack, and it is enough simulation time for a proper evaluation.The simulation time for the corner cases is 500us because when either the transfer time of

63

4 Hybrid Hardware/Software Schedulers

frequency is large, there is less slack, so datasets with a large number of accelerators arepreempted more (mainly the dynamic priority ones), so they need more time to completetheir transactions. Hence, to have equal comparisons for all four corner cases, all of themhave the same simulation time. These four ones do not require many datasets as their setsare homogeneous due to the small standard deviation. All simulations were performed at100Mhz.
Three different characteristics are evaluated for the proposed schedulers. Scalability showshow FFs and LUTs scale up to support large number of accelerators. Schedulability exploreshow many requests are actually granted. Performance is measured in multiple metrics, pro-viding each of them with different characteristics of the schedulers.

4.3.1 Scalability

The design of the schedulers is meant to rely only on LUTs and FF. An analysis of how resourceutilization scales up is shown in Table 4.1. Figure 4.5 shows that both LUTs and FFs havelinear behavior, which is desired for larger designs, so the resource consumption does notexplode.
Table 4.2 shows the ratio for resource utilization between the two versions of EDF. It can beseen that there are 5% less FFs for ROEDF but 40% less LUTs in average. Hence, there is atradeoff between resource utilization and latency as ROEDF consumes less, but its responsetime and lateness (c.f., Section 4.3.3) are higher than for LOEDF.

4.3.2 Schedulability

The schedulability is studied to understand the different algorithms’ capabilities to scheduletasks (give accelerators the grant). It has a significant impact on the evaluation of the perfor-mance done below. It is important then to evaluate the different scenarios by scaling up thedesign. In order to do so, the characteristics of each accelerator have to have representativevalues to provide a challenging scenario.
The total number of accelerators that got the grant at least once are shown in Figure 4.6.These numbers can be further analyzed by dividing them by how many of those were able tocomplete at least one transaction (full bars) and how many did not (striped bars). To furtherunderstand the schedulability, Figure 4.7 shows each algorithm’s average preemptions per

Table 4.1: Schedulers’ resource utilization
Accelerators LRU Non-PreemptiveFP PreemptiveFP Resource-OptimizedEDF Latency-OptimizedEDF LST

LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs
2 209 103 16 9 20 11 156 71 180 75 233 2014 570 170 34 14 54 17 304 138 565 145 726 3998 1261 307 94 23 95 27 799 271 1298 285 1593 79916 2494 578 321 40 421 45 1365 536 2697 561 4246 158232 4999 1106 858 76 783 82 3288 1065 6659 1111 8790 316764 9971 2172 2030 146 2715 155 5772 2122 13375 2234 18478 6346128 18826 4312 5931 292 4249 307 16704 4298 25459 4473 40516 12637256 36273 8521 17023 583 17552 601 38224 8460 52009 8745 92123 25136

64

4.3 Evaluation

2 4 8 16 32 64 128 256
Accelerators

102

103

104

105

LU
Ts

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(a) Schedulers’ LUTs

2 4 8 16 32 64 128 256
Accelerators

101

102

103

104

FF
s

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(b) Schedulers’ FFs
Figure 4.5: Schedulers’ resource utilization

65

4 Hybrid Hardware/Software Schedulers

Table 4.2: Resource-optimized vs. latency-optimized EDF tradeoff
Accelerators ROEDF/LOEDF

LUTs FFs
2 0.87 0.954 0.54 0.958 0.62 0.9516 0.51 0.9632 0.49 0.9664 0.43 0.95128 0.66 0.96256 0.73 0.97

accelerator (per completed transactions). There is a clear difference of LST to the otherdynamic priority algorithms, as this one preempts accelerators at least four times more. Thereason is that this algorithm not only considers the time to the deadline but when the requestwas set (unlike EDF), which has a significant influence on the slack, which translates to morepriority updates making it preempt the accelerators more often. These have consequenceswhen many accelerators are in the architecture (128 and 256) that more accelerators getthe grant, and not all of them can complete the transactions in the simulation time set forthe evaluation. However, a longer simulation time allows more accelerators to completetheir transactions. So, it is not a flaw of the scheduler but a restriction on the evaluationmethodology. A simulation time of 100us provides good results to obtain an appropriategeneral understanding of the algorithms, as more accelerators complete their transactions.Extending this time did not modify the results shown here; it only improved the schedulability,as expected.
The FP schedulers stand out in Figure 4.6 as they cannot give the grant to many accelerators,

2 4 8 16 32 64 128 256
Accelerators available

100

101

102

Ac
ce

le
ra

to
rs

 sc
he

du
le

d

2

4

8

16

32

64

128

256LRU NPFP PFP ROEDF LOEDF LST

Striped Bars: Accelerators that got the grant once but have not finished a transaction
Full Bars: Accelerators that finished at least one transaction

Figure 4.6: Accelerators that finished or got the grant

66

4.3 Evaluation

with a small maximum (around eight) compared to the other algorithms, and just one or twocan complete their transactions. This is expected as all accelerators have the same prioritiesduring execution time, and the ones on the top of the priority list will be scheduled regularly.It can be seen in Figure 4.6 the differences between the two non-preemptive algorithms.The counterpart of the limitations of NPFP mentioned before can be seen with the LRU,with completed transactions for almost all accelerators that get the grant. This algorithm

2 4 8 16 32 64 128 256
Accelerators

0

2

4

6

8

10

12

14

Pr
ee

m
pt

io
n

(A
vg

)

Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

Figure 4.7: Preemptions per accelerator (per completed transaction)

Clock
0

1

re
q(

3)

Clock
0

1

re
q(

2)

Clock
0

1

re
q(

1)

Clock
0

1

re
q(

0)

Clock
0

1

tla
st

(3
)

Clock
0

1

tla
st

(2
)

Clock
0

1

tla
st

(1
)

Clock
0

1

tla
st

(0
)

Clock
0

1

gn
t(3

)

Clock
0

1

gn
t(2

)

Clock
0

1

gn
t(1

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Clock

0

1

gn
t(0

)

Figure 4.8: LRU example with four accelerators

67

4 Hybrid Hardware/Software Schedulers

ensures that all accelerators will get a grand at some point, as shown in Figure 4.8 1, withthe compromise of missing some deadlines. The LRU is a dynamic priority scheduler thatensures each accelerator gets the grant. When an accelerator completes its transaction, thescheduler increases the priority of the remaining accelerators by one. This process continuesuntil all the accelerators are eventually placed at the top of the priority list for scheduling.Even though the priority of all accelerators is increased to reach the top of the list, somemay miss their deadlines. However, it is ensured that all accelerators can complete theirtransactions eventually. Nevertheless, as shown below, this has some drawbacks with itsperformance.

4.3.3 Performance

The metrics shown below characterized the performance of the different scheduling algo-rithms.

Average Response Time

The response time (ri) represents how long it takes for an accelerator to get the grant sincethe moment it set the request. This can be expressed as shown in Equation (4.3)
ri = gi – ai (4.3)

where gi is the time at which the grant was set and ai is the arrival time of the request.Figure 4.9 shows what the response time represents in terms of signals.
The average response time (ravg) for n completed transactions is defined by Equation (4.4).

ravg = n∑
i=0

ri

n
(4.4)

Table 4.3 shows the minimum, average and maximum response time measured for allproposed algorithms with the eight different variants of accelerators as inputs. Figure 4.10

0

1

Re
qu

es
t

0 1 2 3 4 5 6 7 8 9 10
Clock

0

1

Gr
an

t

Response Time

Lateness

Figure 4.9: Response time and lateness metrics
1All signals are obtained from a Vivado simulation and re-plottedwith a customPython script for homogeneousformatting with the rest of this dissertation.

68

4.3 Evaluation

shows the average response time. It can be seen that both FP versions are the ones withthe shortest response time, which would lead to thinking this is a good result. However,the schedulability of these two is the worst for all algorithms, as explained before, due tothe small number of accelerators scheduled. As expected, LRU is the one with the worstresults. This is not an issue as performance is not the main characteristic of this algorithmbut ensures accelerator schedulability. LST is the one that shows the best performance withthe drawback that it takes a bit longer for all accelerators to complete their transactions.There is a clear difference between both EDF versions, being LOEDF the one with the shorterresponse time, approaching the same results as LST, but with the tradeoff of more significantresource consumption.

2 4 8 16 32 64 128 256
Accelerators

101

102

103

Re
sp

on
se

 T
im

e

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

Figure 4.10: Schedulers’ average response time

Lateness

Denotes how much later than the deadline the data transmission was completed and iscomputed as Equation (4.5). A negative lateness means the transmission was completed
before its deadline.

Li = fi – di (4.5)
The measured lateness is shown in Table 4.4. Note that positive values (TLAST after implicitdeadline) are due to the restricted simulation times. In a real scenario, accelerators wouldmeet their deadlines or complete their transactions. The only requirement to measure thelateness is that accelerators must complete at least one transmission. Similar to the responsetime, the lateness (Figure 4.11) shows that accelerators with both FP finish the transactionsbefore, but at the expense of not scheduling a large number of them. Also, LRU has thelargest lateness. For this metric, both EDF versions outperform LST since the latter one willpreempt more accelerators leading them to finish their transactions in a longer time. LOEDF

69

4 Hybrid Hardware/Software Schedulers

Table 4.3: Schedulers’ response time
Accelerators LRU Non-PreemtpiveFP PreemtpiveFP Resources-OptimizedEDF Latency-OptimizedEDF LST

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max
2 4.99 45.77 101.78 2.0 40.11 94.98 2.0 19.45 74.5 2.8 16.21 63.68 2.92 7.68 45.7 1.78 6.88 44.374 4.12 219.02 316.92 2.0 99.62 225.12 2.16 54.34 770.14 2.84 201.91 299.82 2.88 65.85 300.87 1.94 60.16 303.828 3.58 607.5 754.82 2.0 98.55 229.9 2.4 82.55 2662.09 2.8 577.5 759.2 2.69 220.9 729.66 1.99 219.52 708.0516 2.82 1362.62 1637.6 2.0 95.46 221.46 2.38 74.06 2656.4 2.68 1299.33 1651.47 2.48 555.13 1582.08 1.99 571.94 1526.032 2.24 2616.18 3336.02 2.0 94.34 227.8 2.3 70.81 2476.12 2.58 2464.68 3331.88 2.48 1354.82 3219.72 1.99 1326.1 3109.5364 1.68 4311.82 6812.48 2.0 95.76 227.36 2.23 74.88 2629.71 2.68 4005.35 6730.58 2.52 3055.05 6557.6 1.99 2598.3 6267.49128 1.5 4795.67 9823.38 2.0 93.57 232.44 2.23 73.2 2643.25 3.08 4320.91 9841.4 2.74 3734.33 9769.36 1.95 3306.09 9606.79256 1.48 4790.68 9820.51 2.0 92.09 223.32 2.24 76.59 2731.9 3.23 3948.11 9791.94 2.83 3845.78 9830.41 1.71 3808.68 9801.34

Values shown in number of clock cycles. 10ns used as clock period for simulation.

shows better performance compared to ROEDF, as intended. The reason for this is a shorterlatency, which also translates to the smallest lateness for LOEDF among all dynamic priorityschedulers.
The maximum lateness (c.f., Figure 4.12) in any given system specification with multipleaccelerators can be used to estimate the length of buffers that might be needed to counteractthis maximum values.

Communication Channel Utilization

This is a measurement of how much time any of the accelerators get a grant and transmits itsdata. To be fair with all schedulers, the time for which there are requests is only considered.It is measured following Equation (4.6).
U = M∑

i=0
acci

tsim
(4.6)

where acci stands for the total time accelerator acci set its request and was given the grant.
tsim stands for the total simulation time in clock cycles.
The communication channel utilization measured is shown in Figure 4.13. Same as the othermetrics, LRU is the one that performs the worst due to its design to avoid resource starvation,leading to long response time and lateness, which translates to less channel utilization. BothFP schedulers show a high communication channel utilization, but one has to keep in mindthe low number of accelerators that are actually able to finish a transaction. However, it isworth mentioning that as there is no time to update the priority table, this algorithm reactsfast to give the grant to accelerators. In terms of EDF, the resource-optimized version (ROEDF)takes longer to give grants and also preempts the current accelerator holding the grant everytime a new request arrives to recalculate the priorities, which translates into lower channelutilization compared to LOEDF. This directly impacts the channel utilization as accelerators

Table 4.4: Schedulers’ lateness
Accelerators LRU Non-PreemtpiveFP PreemtpiveFP Resources-OptimizedEDF Latency-OptimizedEDF LST

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max
2 -129.11 -65.9 -1.81 -132.74 -72.01 -9.41 -116.17 -60.71 200.4 -130.72 -60.01 41.08 -109.27 -71.48 -34.11 -102.85 -59.11 -25.114 -121.05 119.12 253.07 -126.15 1.16 129.63 -109.18 52.86 2548.92 -114.18 111.04 272.58 -83.75 94.79 195.04 -54.54 101.77 295.278 -124.66 521.31 730.28 -135.39 2.36 158.5 -118.66 74.11 3536.53 -110.52 503.08 716.41 -81.3 462.78 646.34 -48.3 467.87 707.3116 -130.75 1260.35 1655.91 -139.96 4.64 152.84 -126.16 70.15 3361.17 -107.31 1211.51 1574.44 -82.71 1131.39 1483.5 -51.07 1150.08 1492.5132 -143.06 2553.77 3537.98 -147.93 4.94 159.66 -131.65 82.14 3974.65 -120.67 2420.03 3315.93 -93.56 2281.35 3202.5 -75.54 2326.48 3176.6964 -145.22 4183.75 6797.08 -151.81 5.56 146.49 -139.95 64.78 3567.84 -115.38 3855.92 6538.14 -93.53 3677.72 6485.42 -89.28 3967.88 6231.99128 -145.06 4596.29 9558.06 -157.15 -7.57 126.57 -142.12 77.27 3934.42 -117.76 4124.37 9564.02 -85.95 3599.57 9401.52 -97.32 4256.53 9423.2256 -152.03 4596.35 9568.82 -162.45 -0.35 146.43 -149.54 72.94 3244.99 -110.16 3847.78 9571.47 -79.53 3717.64 9540.13 -96.74 4078.41 9526.57

Values shown in number of clock cycles. 10ns used as clock period for simulation. Positive values mean tlast was set after the implicit deadlines (period+length).

70

4.3 Evaluation

2 4 8 16 32 64 128 256
Accelerators

0

1000

2000

3000

4000

La
te

ne
ss

 (A
vg

)
LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

Figure 4.11: Schedulers’ average lateness

can stream their data faster (in terms of when each can restart after being preempted). Thelast point is that as more accelerators get the grant with LST (Figure 4.6), the communicationchannel utilization is the largest for this algorithm.

2 4 8 16 32 64 128 256
Accelerators

0

2000

4000

6000

8000

10000

La
te

ne
ss

 (M
ax

)

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

Figure 4.12: Schedulers’ maximum lateness

71

4 Hybrid Hardware/Software Schedulers

2 4 8 16 32 64 128 256
Accelerators

80

85

90

95

100
Co

m
m

un
ica

tio
n

Ch
an

ne
l U

til
iza

tio
n

[%
]

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

Figure 4.13: Communication channel utilization
4.3.4 Corner Cases

As previously mentioned, four cases with different transfer times and frequencies wereevaluated to understand the behavior of the schedulers in these areas of the explorationspace. The metrics used previously are also used here to understand their behavior.

Schedulability

In these four cases, the FP algorithms only schedules a low number of accelerators as before.However, all accelerators for the dynamic priority schedulers finished a transaction at leastonce. The average preemptions per accelerator are impacted by the different transfer timesand frequencies, as shown in Figure 4.14. In all cases, LST continues to be the algorithmthat preempts most of the accelerators, and the preemptions increase significantly withmore significant transfer times, regardless of their frequency. This is clear because eachaccelerator requires to have the grant for more time to finish a transaction which causesmore preemptions. Moreover, these four datasets have a small σ. Therefore, the possibilityfor laxity ties (two or more accelerators with the same priority constantly preempting each) ishigh.

Performance

The transfer time of the accelerators affects the response time, increasing it with highervalues, as shown in Figure 4.15. It is possible to see that the response time increases by oneorder of magnitude in the cases with the largest transfer time. Previously, LOEDF and LST

72

4.3 Evaluation

2 4 8 16 32 64 128 256
Accelerators

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pre
em

ptio
n (

Avg
)

Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(a) Transfer Time=20 - Frequency=20

2 4 8 16 32 64 128 256
Accelerators

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pre
em

ptio
n (

Avg
)

Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(b) Transfer Time=20 - Frequency=170

2 4 8 16 32 64 128 256
Accelerators

0

5

10

15

20

25

30

Pre
em

ptio
n (

Avg
)

Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(c) Transfer Time=170 - Frequency=20

2 4 8 16 32 64 128 256
Accelerators

0

5

10

15

20

25

30

Pre
em

ptio
n (

Avg
)

Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(d) Transfer Time=170 - Frequency=170
Figure 4.14: Schedulers’ corner cases: Average preemption per algorithm

73

4 Hybrid Hardware/Software Schedulers

had similar performance. Here, for short transfer times, it is actually LOEDF with a shorterresponse time (as opposed to LST in Figure 4.10), same as for long transfer times but up to acertain number of accelerators. When more than 64 are present, LST has a lower responsetime, making it a better candidate for this situation. The lateness is affected by the shortestperiod, as it takes longer for the accelerators to complete their transactions, either whentheir frequency is short or long (Figure 4.16a and Figure 4.16b). Figure 4.16c and Figure 4.16ddepict the worst-case scenario when the transfer time is the longest, meaning that it takessignificantly more time (one order of magnitude) to finish. Note how LST diverges from theother accelerators after 128 accelerators due to the significant increase of preemptions atthis point. As for LRU, it is the algorithm with the worst performance for these corner casesbecause its goal is to ensure that all accelerators can finish their transactions at least once.
The longer the transfer time, the higher the channel utilization (Figure 4.17). This is particularlyclear for LRU, with an increase of 20% (Figure 4.17a and Figure 4.17b vs. Figure 4.17cand Figure 4.17). The frequency decreases mainly the channel utilization with high values,and when there are few accelerators because there are extended periods without anyrequests, reducing the channel utilization. However, when many accelerators are involved,there will almost always be at least one requesting the grant, even though the channelutilization never reaches 100%.

4.3.5 Combined Schedulers

The possibility of improving the schedulability can be achieved by smartly combining differentschedulers. For this, a baseline with a dataset of 256 accelerators was used to evaluate howmany get the grant with LOEDF and LST as these two showed to be the most promising ones,and the question is whether the results shown previously can be improved. Two differentcases are studied. The first consists of splitting the accelerators into smaller datasets, in thiscase, dividing one large scheduler with 256 accelerators into two of the same algorithm butwith 128 accelerators each. The second one also splits into a smaller number of acceleratorsper scheduler, but with two different algorithms. All these require a third scheduler also tomanage the new smaller ones. LRU is chosen for this study as it ensures that all requestsget a grant. The results are shown in Figure 4.18. Splitting them does not increase thenumber of accelerators that got the grant for LOEDF but increases 1.16x for LST. Combiningschedulers resulted better for LOEDF (1.29x) as it was done with LST, which showed betterschedulability. However, in the LST case, combining it with LOEDF was, in fact, detrimental.Note that every combination of schedulers is possible. However, it does not guaranteeimproved schedulability as the decision on which schedulers to pick for the best result shouldbe done following a similar design exploration as shown previously for the evaluation of eachalgorithm. The resource consumption of these combinations is shown in Table 4.5.

74

4.3 Evaluation

2 4 8 16 32 64 128 256
Accelerators

101

102

103

Re
spo

nse
 Tim

e

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(a) Transfer Time=20 - Frequency=20

2 4 8 16 32 64 128 256
Accelerators

101

102

103

Re
spo

nse
 Tim

e

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(b) Transfer Time=20 - Frequency=170

2 4 8 16 32 64 128 256
Accelerators

101

102

103

104

Re
spo

nse
 Tim

e

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(c) Transfer Time=170 - Frequency=20

2 4 8 16 32 64 128 256
Accelerators

101

102

103

104

Re
spo

nse
 Tim

e

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(d) Transfer Time=170 - Frequency=170
Figure 4.15: Schedulers’ corner cases: Response time

75

4 Hybrid Hardware/Software Schedulers

2 4 8 16 32 64 128 256
Accelerators

0

1000

2000

3000

4000

5000

6000

Lat
ene

ss
(Av

g)

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(a) Transfer Time=20 - Frequency=20

2 4 8 16 32 64 128 256
Accelerators

0

1000

2000

3000

4000

5000

6000

Lat
ene

ss
(Av

g)

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(b) Transfer Time=20 - Frequency=170

2 4 8 16 32 64 128 256
Accelerators

0

5000

10000

15000

20000

25000

30000

35000

Lat
ene

ss
(Av

g)

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(c) Transfer Time=170 - Frequency=20

2 4 8 16 32 64 128 256
Accelerators

0

5000

10000

15000

20000

25000

30000

35000

Lat
ene

ss
(Av

g)

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(d) Transfer Time=170 - Frequency=170
Figure 4.16: Schedulers’ corner cases: Lateness

76

4.3 Evaluation

2 4 8 16 32 64 128 256
Accelerators

75

80

85

90

95

Com
mu

nic
atio

n C
han

nel
 Ut

iliz
atio

n [%
]

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(a) Transfer Time=20 - Frequency=20

2 4 8 16 32 64 128 256
Accelerators

20

30

40

50

60

70

80

90

Com
mu

nic
atio

n C
han

nel
 Ut

iliz
atio

n [%
]

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(b) Transfer Time=20 - Frequency=170

2 4 8 16 32 64 128 256
Accelerators

96.5

97.0

97.5

98.0

98.5

99.0

Com
mu

nic
atio

n C
han

nel
 Ut

iliz
atio

n [
%]

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(c) Transfer Time=170 - Frequency=20

2 4 8 16 32 64 128 256
Accelerators

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Com
mu

nic
atio

n C
han

nel
 Ut

iliz
atio

n [
%]

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

(d) Transfer Time=170 - Frequency=170
Figure 4.17: Schedulers’ corner cases: Channel utilization

77

4 Hybrid Hardware/Software Schedulers

LOEDF LST
Scheduler

0

25

50

75

100

125

150

175

200

Gr
an

ts

1.29x

1.16x

0.91x

LOEDF256
(LOEDF128+LOEDF128)+LRU2
(LOEDF128+LST128)+LRU2
LST256
(LST128+LST128)+LRU2
(LST128+LOEDF128)+LRU2

Figure 4.18: Combined schedulers

4.4 Schedulers Comparison

An overview of the proposed schedulers described above is shown in Table 4.6. It describesthe features to consider when choosing the best scheduler for a given application, alsoconsidering some requirements.
For example, in a situation with limited resources, one could look at the table to checkwhich scheduler offers the minimum usage of LUTs and FFs. However, the table also showswhich are the algorithms that present a high number of accelerators that completed theirtransactions (which are different from the ones that consume fewer resources). So, in thiscase, NPFP and PFP schedulers are the ones that consume fewer resources, but they do notensure that all accelerators will finish their transactions, which implies a trade-off that willdepend on the application. If there are not many accelerators in the given application, thenthe FP schedulers will meet the requirements.
Another example could be the case where the application presents between 32 and 64accelerators, and they must finish their transactions. Table 4.6 shows that LOEDF and LST

Table 4.5: Combined schedulers’ resource utilization
Schedulers LUTs FFs
LOEDF256 52009 8745(LOEDF128+LOEDF128)+LRU2 64142 17109(LOEDF128+LST128)+LRU2 78175 25277LST256 92123 25136(LST128+LST128)+LRU2 86673 33515(LST128+LOEDF128)+LRU2 75578 25315

78

4.5 Summary

Table 4.6: Schedulers comparison
Accelerators MinimumLUTs MinimumFFs Most Accelerators withcompleted transactions LeastPreemptions MinimumResponse Time MinimumLateness Maximum CommunicationChannel Utilization

2 NPFP NPFP ROEDF PFP LST NPFP LOEDF4 NPFP NPFP LST PFP PFP NPFP LOEDF8 NPFP NPFP LRU, ROEDF, LOEDF, LST PFP PFP NPFP LST16 NPFP NPFP LRU, ROEDF, LOEDF, LST PFP PFP NPFP LST32 PFP NPFP LRU, ROEDF, LOEDF, LST PFP PFP NPFP LST64 NPFP NPFP LOEDF, LST LOEDF PFP NPFP LST128 PFP NPFP LOEDF LOEDF PFP NPFP LST256 NPFP NPFP LOEDF LOEDF PFP NPFP LST

meet this requirement. However, the table also shows that, on the one hand, LOEDF preemptsthe accelerators the least, which could be better for the given application. On the other hand,LST has a higher communication channel utilization, whichmight be a requirement to considerwhen selecting the most suitable scheduler.

4.5 Summary

The base architecture ismeant to deal with software and hardware components, meaning thatdata is exchanged between two different types of systems. Both systems communicate overa shared resource, namely DMA. As multiple components can be on each of them, the accessto the DMA, in both directions, must be arbitrated. Therefore, a hybrid software/hardwarescheduler is needed. This chapter presents six scheduling algorithms to be part of the
Manager to manage the transactions between PS and PL. It is a hybrid scheduler to providefair access to the shared resource from a software component to its hardware counterpartand vice-versa. Several algorithms are proposed in this chapter to be versatile and havemultiple options for different applications. Same as for the other components of the basearchitecture, they are vendor-independent as they are based on the VHDL-93 standard. Theimplementation methodology for all algorithms focuses on scalability and adaptability, easingtheir code generation tailored for different use cases.
The evaluation focuses on the proposed scheduling algorithms, studying their scalability,schedulability, and performance. These metrics help understand the behavior for differentscenarios. A comparison of all schedulers derived from this evaluation helps to decidewhich algorithm will be the most fitted for a given application. The evaluation focuses onthe hardware components as there are more demanding requirements, mainly in terms ofresources (i.e., LUTs, FFs). The scalability and schedulability are mainly independent of whereit is implemented (software or hardware).

79

5 Generation of Hardware Interfaces
Compatible with Robotics based on
Specifications

Increasingly complex robotic platforms incorporate heterogeneous sensors and actuators.They are usually coupledwith embedded computers but rely on software solutions not entirelysuited for processing a large amount of data concurrently and fast enough to keep real-timeconstraints. FPGAs are ideal candidates to enhance those systems’ computing capabilitieswhile still being programmable. They are used in a wide variety of applications due to theirintrinsic parallelism capabilities for algorithms, their flexibility, and energy efficiency. However,they impose some challenges to be combined with software solutions. It is cumbersometo manually incorporate them into new or existing systems because providing acceleratorswith a specific integration capability limits their applicability. The goal is to seamlessly replacesoftware components with FPGA-based ones while retaining the same communication inter-face. Therefore, designing scalable and reusable interfaces between these two is desiredto achieve good synergy between FPGAs and software systems. This chapter presents anapproach to generating hardware interfaces for accelerators compatible with robotics basedon message specifications. A model-based toolchain automatically generates the necessaryhardware components (VHDL modules) from existing message specifications to exchangedata with the accelerators. Instead of writing several hundred lines of VHDL, a dozen inputspecification lines are sufficient with the approach presented in this work. The results arevalidated by evaluating all message specifications included in the latest ROS versions. The3102 messages from ROS1 and 1346 messages from ROS2 evaluated show the robustnessof the approach’s capabilities to support arbitrarily large ROS messages types, multiple datatypes, and nested messages. Moreover, the approach facilitates the extension from ROS1 toprovide support for ROS2 easily. Finally, two use cases are shown to prove the approach’sfeasibility in real applications. The first one incorporates a hardware accelerator for imageprocessing obtained by HLS into an existing software architecture. The second one consistsof a fully FPGA-based mobile platform with ROS features incorporated.

5.1 Challenges and Goals

Despite all the advantages of FPGAs, the robotics community has not fully included them sofar as part of their systems for several reasons. First, designing FPGA-based solutions requireshardware knowledge and longer development times than software solutions. Second, porting

81

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

a robotics application (or parts of it) from software to an accelerator requires adequateinterfaces between software and FPGAs. Consequently, there is a need to investigate newapproaches to take advantage of the concurrent processing capabilities of FPGAs and to easilyincorporate them into heterogeneous distributed systems to enhance their computationalpower. These new approaches would ease their utilization by other fields, such as robotics,and improve their processing capabilities. However, these impose the following challenges:
• Challenge 5.1: Interface Compliance: Hardware accelerators need to comply withavailable interface specifications from middlewares and frameworks such as ROS, sothey can communicate with other components, either in software or other accelerators.
• Challenge 5.2: Adaptivity: Provide flexibility to be extensible for new features, hard-ware components (e.g., sensors and actuators), and middlewares.
• Challenge 5.3: Complex Architectures: Manage multiple accelerators and theircommunication with other components from the distributed system.

A holistic approach requires considering all three of them. Challenge 5.1: Interface Complianceand Challenge 5.1: Adaptivity are the aims of this chapter, and Challenge 5.1: ComplexArchitectures is addressed in Chapter 6.
Needless to say, a workflow to integrate these three challenges must be available to includeFPGAs in robotic applications without increasing the complexity of the traditional roboticsworkflow design. Therefore, the goals shown in this chapter are a flexible model-based work-flow to generate hardware interfaces (message-dependent components) for acceleratorsbased on robotics message specifications with:

• an open-source toolchain providing code and configurations to create hardware com-ponents automatically.
• seamless integration of the autogenerated parts into a hardware architecture capableof handling and interfacing multiple accelerators.

The extension of the toolchain to generate and automatically deploy hardware architecturesis further detailed in Chapter 6, as mentioned before.

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

As illustrated in Chapter 3, the message-dependent hardware components have to be createdsince accelerators have to be aware of the semantics of the data structure they process. ForROS components, this is done using software client libraries, which provide serialization anddeserialization functions to translate the received data into the concepts of the respectiveprogramming language the component is written in. For example, the gencpp tool1 createsthe header files containing the data structures and methods required to process messagesin C++.
In this work, the goal is to construct a similar tool to create the required message-dependentcomponents. These are VHDL files to convert ROS messages from and to an AXIS frame.An example is shown in Figure 5.1. It can be seen the equivalence between the messagespecification (Figure 5.1a) and the resulting hardware entity (Figure 5.1b) in VHDL. The

1http://wiki.ros.org/gencpp

82

http://wiki.ros.org/gencpp

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

resulting AXIS frame is shown in Figure 5.1c, where each of the variables are split in bytes(TDATA) and streamed in the order they are defined in the message specification. However,due to the much lower level of abstraction VHDL provides compared to languages such asC++ and Python, this process is much more complicated, mainly because data type sizes arerelevant, and there are no built-in language mechanisms to support custom or compositedata types. Thus, it is beneficial to describe the properties of both the ROS message formatsand the resulting AXIS explicitly using models rather than encoding them implicitly in simplescripts.
The use of models also allows the use of both an explicit and declarative formulation ofthe required analysis of the ROS message data structures. This, in turn, enables explicitand declarative transformations of the ROS data structures into the desired target format.Additionally, both the message format and the resulting VHDL code are not fixed and canbe adapted to newer requirements. For example, the introduction of ROS2 has alreadyintroduced new features into themessage definition. Additionally, the backendsmight change.Not only does the ROS serialization differ between ROS1 and ROS2 (in which furthermoredifferent middlewares and thus serializations can be used), but also VHDL might requiredifferent revisions when using other synthesizers or hardware from different vendors.
Therefore, a flexible and extensible model-driven toolchain to generate hardware interfacesfor ROS components is proposed. All the details and design decisions are shown below.

5.2.1 A Model-Driven Toolchain

MDE [28] describes the technique to use a staged model transformation process. Eachadditional information added to the final model is used to generate the desired code artifacts,which in this case is a set of VHDL components. The remainder of this section explains theproposed process and highlights the benefits of MDE and model-based code generation.
Figure 5.2 gives an overview of the code generation workflow, centering around the model-driven process implemented in the tool called FPGA Interfaces for Robotics Middlewares(FIRM).

1 geometry_msgs/Quaternion
2 float64 x
3 float64 y
4 float64 z
5 float64 w
(a) Simplified ROS message

1 entity Quaternion is
2 Port (out std_logic_vector (63 downto 0);
3 out std_logic_vector (63 downto 0);
4 out std_logic_vector (63 downto 0);
5 out std_logic_vector (63 downto 0));

:quaternion_x
:quaternion_y
:quaternion_z
:quaternion_w

(b) Equivalent Hardware Entity
TVALID

TLAST

TDATA

quaternion_x quaternion_y quaternion_z quaternion_w

(c) Resulting AXIS Frame
Figure 5.1: ROS message and hardware equivalence

83

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

Using a configuration file and a set of ROS message specifications, a model-driven code

generation tool constructs the VHDL message-dependent components described in theprevious chapter. Within the tool, a parser, a sequence of model transformations, a model-to-text generator, and finally, a template engine are used.
The primary input is a single configuration file. An example of such a file is shown in Listing 5.1.Besides some configuration options for the hardware platform (Lines 1 to 5), this configurationcontains a list of the ROSmessages that are published and subscribed to and the names of allinterfaces for publishers and subscribers (accelerators) (Lines 6 to 12). This configuration isparsed into a configuration model, which is used to generate both the accelerator-related

configuration
(cf. Listing 4.1)

ROS 1
msg

ROS 2
msg

Hardware
Description
Template

(HDT)

template
configuration

template
configuration

message-
dependent
IP (VHDL)

accelerator-
related

IP (VHDL)

accelerator
(VHDL/HLS)

configurable
internal specification

generated code
/ specification

input provided by
middleware / user

tool /
component

model output

configuration parser

ROS 1
msg parser

ROS 2
msg parser

interm.
model

converter

interm.
model

converter

message-dependent
template config

generator

accelerator-related
template config

generator

template enginetemplate engine

message test
generator

template
configuration

template engine

ROS test nodes

validation
architecture

accelerated
application

Test
Template

configuration model

ROS 1
msg model

ROS 2
msg model

intermediate
message model

config model config model config model

model-to-text model-to-text model-to-text

hardware architecture (cf. Fig. 3.1)

FIRM
model-
driven
code
generation
tool

Integration test
extension

Legend

ROS 1
toolchain

ROS 2
toolchain

new
middleware
toolchain

Figure 5.2: Workflow to generate hardware architectures

84

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

and the message-dependent components of the hardware architecture. Besides the actualaccelerator, this is the only artifact that has to be provided for every use case.
While parts of the process depend on whether ROS or ROS2 is used, this is not resembledin the configuration file since it can be deduced from the context in which the tool is run,which adds portability. The generated components require information about the structureof the ROS messages, which serve as interfaces to the accelerator. Therefore, a dedicated
ROS message parser is used to retrieve the message specifications from ROS and obtain ROS
message models (see the meta-model in Figure 5.3a). Note that Figure 5.2 shows the possibilityto extend FIRM with other middlewares besides ROS and ROS2 following the same approachdescribed here.
Analysis has to be performed in preparation for the interface generation (i.e., to computethe relative positions of its elements) required in the message-dependent IP cores, usingthese models as well as the configuration model. Because this analysis does not have tobe aware of all details contained in the ROS message format and should ideally be reusablefor different message specifications, the ROS message model is then transformed into an
intermediate message model, containing all information to generate the message-dependentcomponents (a meta-model is shown in Figure 5.3b). The code for the accelerator-relatedcomponents can be generated using only this intermediate model and the configuration,decoupling the code generation from the message specification.
A logic-less (i.e., containing no complex template expansion logic) template engine is used toseparate the resulting logical structure of the code from the concrete syntax. The templateengine is configured by files produced by generator components and model-to-text trans-formations for the accelerator-related and message-dependent parts. Additionally, thetemplate engines require templates for the desired artifacts (i.e., VHDL files and scripts for theFPGA-related toolchain). Note that while the toolchain generates the template configurations,the templates must be defined manually once. Still, one set of templates can be used togenerate multiple architectures using any kind and combination of messages.
The major conceptual and technical design decisions of the workflow and their relation tothe challenges presented in Section 5.1 are described next.

1 pro jec t :
2 name : Sobel F i l t e r
3 plat form :
4 board : zcu104
5 FPGA : xczu7ev− f fvc1156−2−e
6 messages :
7 − type : ROS # supported middleware
8 name : sensor_msgs / Image # message specification
9 subscr ibers :
10 − AXIS2Image # names for interfaces
11 publ i shers : # to midleware used by
12 − Image2AXIS # accelerators

Listing 5.1: Configuration file for an image processing use case

85

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

Type

*

*

 ROS 1 elements

ROS 2 extension
elements

intermediate
message model

elements

template model
elements

*

*

RosModel

BuiltinType

Size

RosFieldDescription

Name

ConstantDescription

Value

StandardTypeUse FixedLengthArrayUse

Length

VariableLengthArrayUse

FieldDescriptionWithDefault

Default

FieldDescription

TypeUse

DataTypeField

DataTypeStreamField

Message

Field

Name

MessageStreamField

DataType

Name
Size

VhdlModel

ID
Bits

OtherMsg
*

RosMsg

Package

Type

TemplateConfigModel

RosFieldType

Name

BoundedBuiltinType

MaxLength

BoundedLengthArrayUse

MaxLength

(Abstract) Type

Terminal Symbol

*
Composition relation
(contained child)
with multiplicity

reference relation
(non-contained)
intrinsic / computed

subtype relation

(a) ROS message meta-model (b) Intermediate message meta-model

(c) Template configurationmeta-model (excerpt)

Figure 5.3: Meta-models in the FIRM tool.
5.2.2 Characteristics of the Model-Driven Toolchain

The toolchain is modeled using RAGs [33] and implemented using the RAG system JastAdd [36].Grammars specify a language using tokens (also known as terminal symbols) and non-terminaltypes with production rules defining the types and order of their contained elements. Asequence of tokens is an element of the grammar if a derivation tree can be found thatconstructs it using the production rules; this tree is also known as the AST. Attribute grammarsare a suitable modeling approach since they provide integrated declarative static analysis byadding semantic-defining attributes to non-terminal nodes in the AST, which are formallyspecified using equations [116]. In the JastAdd system, these equations are defined in a Java-based DSL and thus offer similar features as Java methods. Furthermore, attribute grammarsand RAGs were developed specifically for the construction of compilers [117, 118, 119], whichthe approach presented here classifies for as well because there is a transformation froma source language (a configuration file and a message specification) into a target language(VHDL). The general idea for using attributes in FIRM is to generate tailored code for specificmessages. In order to do this, supporting attributes are used to compute, among others,names, types, sizes, and positions of data fields in the AXIS frame. This is a non-trivial taskbecause of message nesting, unconstrained array types, and built-in data types that requirefurther conversions. Furthermore, the model transformation and code generation steps arealso performed using higher-order attributes [120], computing entire derived models ratherthan simple properties.
The relational RAG extension [121] is employed to be able to handle (graph-shaped rather thantree-shaped) conceptual models such as the configuration and message models described

86

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

previously more conveniently. Relational RAG adds a secondary graph structure to the AST,thus allowing more concise attribute specifications when dealing with nested message typesand field types.
Using RAGs, this approach addresses Challenge 5.1: Adaptivity and Challenge 5.1: ComplexArchitectures. It follows a well-structured (model-based), formal (grammar- and attribute-based), and concise definition (using attribute equations) of all aspects of the toolchainincluding configuration, message analysis, and code generation. Next, a closer look at theemployed models and attributes to further illustrate the workings and benefits of the chosenapproach is presented.

5.2.3 The Models

Figure 5.3 shows a meta-model representation of the employed models. While a grammar-based technique is used, the models are shown in a graphical UML notation for clarity,where grammar production rules are shown using composition edges. Since the grammarspecification format of JastAdd uses production rule inheritance, this feature is also usedhere and is interpreted as usual, i.e., a subclass inherits the terminal symbols and containedchildren of its supertype. Relations originating from the relational RAG extension are alsoshown.
The structure of the ROS message model shown in Figure 5.3a is obtained from the ROSsystem using the respective version, depending on the context in which the tool is run.The model contains (below a top-level RosModel node) one message (RosMsg), which itselfcontains fields, which might be constants or regular fields and use a type. This TypeUsespecifies whether the field is an array and contains a reference to a type, which itself mightbe a BuiltInType or a RosMsg – the latter describes message nesting. An instance of theROS message model for the sensor_msgs/imagemessage is shown in Figure 5.4.
In fact, there are two meta-models, one for each ROS version (cf. Section 5.3.2) – the ROS2metamodel extends the ROS1 metamodel with additional types. The aspect-oriented specifi-cation of attribute grammars [36] is used to extend the grammar. Additional elements aresimply added using a ROS2 grammar module; additional attributes and attribute equationsare added using a grammar aspect.
While the ROS2 communication system got a complete overhaul (internally, its messages aredefined in the Interface Definition Language [122]), the (concrete) syntax is mostly backwardcompatible so that a common parser can be used. Likewise, the model (or abstract syntax) for

:Root

:Msg
Name = image

Package = sensor_msgs

:FieldDesc
Name = header

:FieldDesc
Name = height

:FieldDesc
Name = width

:FieldDesc
Name = encoding

:FieldDesc
Name = is_bigendian

:FieldDesc
Name = step

:Msg
Name = Header

Package = std_msgs

:FieldDesc
Name = stamp

:FieldDesc
Name = frame_id

:Msg
Name = Time

Package = builtin_interfaces

:FieldDesc
Name = sec

:FieldDesc
Name = nanosec

:BuiltinType
Name = int32

Size = 4

:FieldDesc
Name = data

:BuiltinType
Name = uint32

Size = 4

:BuiltinType
Name = string

Size = 1

:BuiltinType
Name = uint8

Size = 1

Figure 5.4: ROS message model for sensor_msgs/Image

87

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

ROS1 just needsminor extension to also support the features of ROS2 as shown in Figure 5.3a.The three changes (default values, bounded strings, and arrays) are highlighted. The completesupport for both versions of ROS addresses Challenge 5.1: Interface Compliance.
Model-to-model transformations are used to obtain the intermediate message model, a genericrepresentation of the message interface. This model is designed for efficient HDL codegeneration: irrelevant and redundant information contained in the ROS models are removed,and the concepts of this model are aligned with the requirements of VHDL and the AXISformat. Specifically, it contains - below a root element VhdlModel one Message, which itselfcontains a list of fields, which may contain atomic data types or (variable-length) streams ofmessages or data types. All other structural features are mapped to these features; fixed-length arrays, for example, are simply unrolled to a sequence of fields. Thus, this model
does not depend on details of the ROS message format, creating an extension point for othermessage specifications, as proposed in [123]. This contributes to the solution for Challenge5.1: Adaptivity. An instance of this intermediate model for the sensor_msgs/imagemessageis shown in Figure 5.5.
The direct purpose of the intermediate message model is not to directly generate HDL codefrom but rather to provide input to a template engine that performs the generation. Thedecision to rely on a template engine also has several advantages over the direct assemblyof the resulting code. Templates allow a clean separation of syntactic and semantic issues,which is especially true since, as mentioned previously, the employed engine mustache [124]is logic-less (templates do not contain computations). Thus, all computations are done beforeor during the construction of the template configuration files within FIRM, using its declarativestatic analysis capabilities. This results in not only very concise and thus easily maintainabletemplates but also maintainable and reviewable template configurations. Another advantageis that templates can easily be exchanged for different hardware platforms, addressingChallenge 5.1: Adaptivity. Mustache is used as the template engine since it is a mature toolfitting the requirements [125].

:MsgToVhdl
Bits = 8
ID = 0

:VhdlMessage

:DataTypeField
Name = total_length

:DataTypeField
Name = header_stamp_sec

:DataTypeField
Name = header_stamp_nanosec

:DataTypeField
Name = header_frame_id

:DataTypeField
Name = width

:DataTypeField
Name = encoding

:DataTypeField
Name = is_bigendian

:DataTypeField
Name = step

:DataTypeField
Name = data

:DataTypeField
Name = height

:DataType
Name = t_int32

Bytes = 3

:DataType
Name = t_uint32

Bytes = 3

:DataType
Name = t_uint8

Bytes = 0

Figure 5.5: Intermediate message model for sensor_msgs/Image

88

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

So far, the structure of themodels has been presented. Next, it is demonstrated how attributesare used to perform the model transformation and the analysis required for it.

5.2.4 Attributes

The computation of the attributes bitwidth and StartIndex (as shown in Figure 3.3) will serveas examples for the analysis. Listing 5.2 shows the attribute bitwidth, computing the bitwidthof the individual fields in a message, required during code generation. For example, Line 5shows the equation to obtain the number of bits for a built-in data-type. In this case, getSizereturns the number of bytes (i.e., 8, 16, 32, 64) and that is multiplied by eight to obtain the
bitwidth (total number of bits). It is a synthesized attribute [116], using information from thesubtree of the nonterminal it is defined for. Since the nonterminal Field is abstract, there aredefining equations for all three non-abstract subtypes rather than for the abstract supertypeitself.
A more complex attribute mentioned in Chapter 3 is StartIndex shown in Listing 5.3. It specifiesthe position of the first byte of each variable in the AXIS frame. While computing the attributevalue for simple messages can easily be done by summing up the preceding variables’ datatype sizes, it gets more complicated in the presence of streams of sub-messages. For sub-AXIS, the initial field (containing the size) of the stream is copied from the parent stream.Their index starts again at 0 for the following fields in the sub-stream. This is computed by an
inherited attribute obtaining information from its context, i.e., its parents in the abstract syntaxtree [116]. In this case, the required context is the message a field is contained in and itsposition within the message. Thus, the attribute is declared for the nonterminal Field, but is
defined for a Field which is the child of a Message at the position pos. The attribute equationuses other attributes, such as the previously presented bitwidth.

5.2.5 Attribute-Controlled Model Transformation

The attributes shown so far can be used to compute semantic properties of the messagerequired in the generated VHDL code. In addition to this, attributes can also be used toperform the model transformation itself using higher-order attributes [120] that computeentire (sub-)trees. In the JastAdd tool, these attributes are also called Non-Terminal Attributes
(NTAs). Figure 5.6 shows the sequence of two NTAs, computing the intermediate model fromthe initial message model and a template configuration model from the intermediate model.These two attributes constructVhdlModel and constructIpToAxisFrame construct a subtree

1 / / dec la ra t ion of a t t r i bu t e b i tw id th return ing an i n t
2 syn i n t F i e l d . b i tw id th () ;
3
4 / / a t t r i bu t e equations
5 eq DataTypeFie ld . b i tw id th () = getType () . ge tS i ze () * 8 ;
6 eq DataTypeStreamField . b i tw id th () = / / . . .
7 eq MessageStreamField . b i tw id th () = / / . . .

Listing 5.2: Declaration and equations for the synthesized attribute bitwidth forthe nonterminal Field

89

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

1 / / s ta r t Index computes an ’ i n t ’ f o r each ’ F i e l d ’
2 inh i n t F i e l d . s ta r t Index () ;
3
4 / / de f in ing equation on the context (a ’ F i e l d ’ that
5 / / i s a ch i l d of a ’ Message ’ at pos i t i on ’ pos ’)
6 eq Message . ge t F i e l d (i n t pos) . s ta r t Index () {
7 i f (pos == 0) {
8 i f (isSubmessage ()) / / ← another a t t r i bu t e
9 / / fo r the f i r s t f i e l d in a submessage ,
10 / / use the s ta r t Index of the parent
11 return con ta in ingF i e ld () . s ta r t Index () ;
12 e lse
13 / / fo r the very f i r s t f i e l d s t a r t with 0
14 return 0 ;
15 } e l se i f (pos == 1 && isSubmessage ()) {
16 / / fo r the second f i e l d in a submessage ,
17 / / reset the index to 0
18 return 0 ;
19 } e l se {
20 / / otherwise , the s ta r t Index i s the one of the
21 / / preceding f i e l d plus i t s s i ze (in bytes)
22 return ge t F i e l d (pos−1) . s ta r t Index ()
23 + ge t F i e l d (pos−1) . b i tw id th () / 8 ;
24 }
25 }

Listing 5.3: Declaration and definition of the inherited attribute startIndex

using the information and available attributes from the non-terminal they are defined on.Finally, a (synthesized) attribute print is used to obtain a string representation of the templateconfiguration, which the template engine can use. Listing 5.4 shows (parts of) the result ofthis code generation for the imagemessage (Figure 3.3), including values computed usingthe presented attributes.

5.2.6 Template-Based Code Generation

The configuration shown in Listing 5.4 (a Yet Another Markup Language (YAML) file) configuresthe mustache template engine, which finally expands a set of templates called for this work
Hardware Description Template (HDT). The HDTs are modified VHDL modules, adapted fortemplate expansion following the conventions dictated by the chosen template engine(cf. Listing 5.5 and Listing 5.6).
The combination of RAG-based model analysis techniques with a template-based codegeneration helps to create efficient, specialized code that remains highly portable.

90

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

message-dependent template generator (IP to AXI stream frame)
syn nta TemplateConfigModel VhdlModel.constructIpToAxisFrame() {

var config = new TemplateConfigModel();
// construct the config using the VHDL model
// and its attributes...
return document;

}

ROS msg model
RosModel

intermediate model converter
syn nta VHdlModel RosModel.constructVhdlModel();
eq RosModel.getMsgToVhdlModel(){

var m = new VhdlModel();
// construct the model using the RosModel
// and its attributes...
return m;

}

intermediate message model
VhdlModel

message-dependent template generator (IP to AXI stream frame)
syn nta TemplateConfigModel VhdlModel.constructIpToAxisFrame() {

var config = new TemplateConfigModel();
// construct the config using the VHDL model
// and its attributes...
return document;

}

template config model
TemplateConfigModel

model-to-text
syn String TemplateConfigModel.print() {

StringBuilder sb = new StringBuilder();
// append configuration to sb
// ...
return sb.toString();

}

template configuration

Figure 5.6: Model transformation and code generation attributes
1 IP :
2 name : sensor_msgs_Image_to_AXIS
3 type : publ i sher
4 msg :
5 BYTES : 44
6 message :
7 isSubmessage : f a l s e
8 f i e l d s :
9 # ... other fields
10 − simple :
11 name : height
12 b i tw id th : 32 # see Listing 4.2
13 datatype : true
14 type : t _u in t32
15 s ta r t Index : 21 # see Listing 4.3
16 index :
17 − {N : 21 , MSB: 7 , LSB : 0} # N is computed with
18 − {N : 22 , MSB: 15 , LSB : 8} # the startIndex
19 − {N : 23 , MSB: 23 , LSB : 16} # attribute and
20 − {N : 24 , MSB: 31 , LSB : 24} # a byte counter
21 mul t i : f a l s e
22 # ... other fields

Listing 5.4: Template configuration file

91

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

5.3 Evaluation

The evaluation of the workflow presented in previous sections has been split into threeparts. Section 5.3.1 analyzes the complexity of message specifications supported by FIRM.Section 5.3.2 shows the evaluation performed based on real message specifications includedin both ROS versions supported and highlights the possibility of the approach also to per-forming logic validation of the autogenerated components. Lastly, Section 5.3.3 shows twouse cases with different accelerators, as publishers and subscribers, being part of a ROSsystem.

5.3.1 Complexity of Specifications

The first step to ensure full support with external components (ROS-based in this case) is toanalyze the characteristics of the middlewares to be interfaced. Based on the characteristicsanalyzed in [114], a study of the datatypes supported by ROS1 and ROS2 is performedand then compared to the features supported by FIRM, presented in previous sections.The main characteristics concerning datatypes are shown in Table 5.1. It depicts that theapproach presented in this dissertation supports all characteristics of ROS1 and ROS2, andit is extendable if needed for further characteristics. Even though some of them (9, 18, and19) are not supported by ROS, they could be easily added to FIRM if needed, following thesame approach as the extension for a new middleware, shown next in Section 5.3.2.
It was chosen not to transmit Null, Constants and Enums (5, 6, and 7) to the hardware acceler-ators as part of the AXIS frame as those values can be directly stored as LUTs because theydo not change over time. This simplifies the resulting implementations avoiding the extralogic needed to extract the values from the AXIS frame, which would imply an unnecessaryincrement of resource utilization. However, they are identified by FIRM, so they could be partof the AXIS frame if needed. In that case, they would be similar to characteristics 1 to 4 inTable 5.1, as they could become a new datatype considering that only their bitwidth needs tobe specified.
Even though Unions are not supported by ROS1 nor ROS2, they could be potentially addedto the proposed workflow by transmitting its width along with the data. Then it is figured outin the accelerator what it represents. It is a similar case as for Maps, where the key (primitivetype) and the data (which could be an AXIS by itself) are transmitted, similarly to a nestedmessage.
Once there is an understanding of the supported datatypes in both ROS versions, an analysisof their combination to form message specifications follows. The elements constituting ROSmessages can be simple fields, fixed or variable-length arrays, and simple or sub-messagearrays. Considering them, four levels of complexity have been identified, as shown in Figure 5.7.All their possible combinations are what lead to quite complex structures.
The simplest messages are those that contain one or multiple single elements of any of thebuilt-in types (e.g., uint8, int16, float32). Examples of these are height, width, is_bigendianand step in Listing 3.1. Then follow the messages in level ExpandingMessages. These canbe built-in types declared as fixed sizes arrays, which are unfolded; inlined elements of
SimpleMessage or a combination of these two as bounded-sized arrays of messages whichare unfolded and inlined. An example of the inlining is header in Listing 3.1, which is an

92

5.3 Evaluation

instantiation of the off-the-shelf std_msgs/Header message. The third level referred to
Arrays groups variable length arrays for built-in types, such as the case of data, which isconverted into an AXIS, as shown in Figure 3.3. Note that strings also form part of this levelbecause their length is not explicitly defined, so they are treated as variable-length arrays(only their upper boundmight be defined), as is the case of encoding in Listing 3.1. The upperbound of built-in type arrays is introduced in ROS2, which is also supported by FIRM. Themost complex level is VariableSubmessages. It includes variable-length arrays of messageswhich are on their own, a combination of the first three levels, or the particular case of anarray of strings (array of an array). In this case, a sub-instance of AXIS is generated for eachelement that belongs to this level of complexity.

Therefore, all these levels of complexity and their combinations need to be covered by FIRMto provide generic support for generating all sorts of complex message specifications withthe proposed workflow. Specific design rules, shown in Table 5.1 and explained previously,were followed based on this to cope with the complexity and support all the combinations ofmessages shown in Figure 5.7 by FIRM.

Table 5.1: Supported datatypes,✓mark supported, ✗ unsupported, and✛ potentially addablefeatures.

Feature ROS
1

ROS
2

FI
RM

1 Signed Integers (8, 16, 32, 64 bits) ✓ ✓ ✓2 Unsigned Integers (8, 16, 32, 64 bits) ✓ ✓ ✓3 Float/Double (32, 64 bits) ✓ ✓ ✓4 ByteBlob Type ✓ ✓ ✓ (using #2 and #8)5 Null Type ✗ ✗ ✓ (not transmitted)
6 Constants ✓ ✓ ✓ (not transmitted)7 Enums ✓ ✓ ✓ (not transmitted)8 Variable Length Arrays ✓ ✓ ✓9 Multidimensional Arrays ✗ ✗ ✛10 Fixed Length Arrays ✓ ✓ ✓ (rolled out)
11 Maps ✗ ✗ ✛12 Optional Fields ✗ ✗ ✛ (new user-defined msg spec.)13 Default Values ✗ ✓ ✓ (value always transmitted)14 Unions ✗ ✗ ✛15 Message Nesting* ✓ ✓ ✓

16 Data Type Inheritance ✗ ✗ ✗17 Namespaces ✓ ✓ ✓18 Typedefs ✗ ✗ ✛19 Any Type ✗ ✗ ✛

*In this work, nested messages are fields with another message type as data type rather than an in-place definition of a
message within another message as in [114].

93

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

5.3.2 Full ROS Support

Individual experiments were performed on all messages in the base installations from thelatest three ROS1 distributions (Kinetic, Melodic, and Noetic) and ROS2’s LTS2 Humble,to demonstrate FIRM’s support for the characteristics listed in Table 5.1. Three groups,namely amount of elements, amount of different data types, and depth of nested messages,were evaluated to showcase the diversity of these messages. These three characteristicsencompass all levels of complexity shown in Figure 5.7. The results of the experimentsdemonstrated that the generic model-based approach employed by FIRM enables it toeffectively handle arbitrary sizes of ROS messages, including those with multiple data
types and nested structures. Figure 5.8, Figure 5.9, and Figure 5.10 show the histogramsfor these three characteristics based on the evaluated ROSmessages used in the experiments.Note that ROS1 and ROS2 provide a base set of packages, including on average 150 messagespecifications in each distribution. Similar results were obtained from the experimentsperformed with all mentioned ROS versions. Additionally, different extra messages fromthe ROS open source community were used to evaluate the robustness of the proposedapproach. All the installable packages of Noetic add up to 3102 distinct message specificationsand 1346 for ROS2 Humble, as shown in Figure 5.11.
Each experiment consisted of an autogenerated project for each ROS message to run thepost-synthesis simulation to validate the logic of the interfaces. These experiments wereperformed on all distributions mentioned before, but only the extended versions of Noeticto evaluate ROS1 messages and Humble for ROS2 are shown, as these are the two latestversions of each ROS distribution. Therein, each project included:
1. the hardware interfaces (both directions) for a specific ROS message, considered theDevice Under Tests (DUTs).

SimpleMessage
dataType variableName

ExpandingMessage
dataType[N] variableName (unfold)
SimpleMessage name (inline)
SimpleMessage[N] name (unfold and inline)

Arrays
dataType[] variableName
string name
string<=N name
dataType[<=N] name (ROS2)

VariableSubmessages
SimpleMessage[] name
string[] name
SimpleMessage[<=N] name (ROS2)

M
es
sa
ge

C
om

p
le
x
it
y

Figure 5.7: Complexity of ROS messages
2Long Term Support

94

5.3 Evaluation

0 50 100 150 200 250

1

10

100

Tot
al M

ess
age

s

(a) Number of contained fields in ROS Noetic (28 messages with more than 250 and up to 1234contained fields not shown)

0 50 100 150 200 250

1

10

100

Tot
al M

ess
age

s

(b) Number of contained fields in ROS2 Humble (10 messages with more than 250 and up to 648contained fields not shown)
Figure 5.8: Histograms of contained fields in ROS Noetic and ROS2 Humble messages
2. the remaining components of the base architecture shown in Figure 3.1.
3. an input stimulus for the simulation.

In this case, one hardware interface acts as a subscriber and the other as a publisher. Thismeans that the first one receives an AXIS frame (input stimulus), which depends on the ROSmessage being tested. This is converted into individual signals for the latter to read andgenerate an out AXIS frame. A successful test implies that both AXIS streams are equal. In anactual application, the accelerators that perform computation would be in between thesetwo hardware interfaces in a publisher/subscriber combination or as shown in Figure 3.1.
Both DUTs are generated from the combination of template configurations obtained fromthe intermediate representation in FIRM and the HDTs, as depicted in Figure 5.2. Each projectfor every ROS message includes the same accelerator-related components (Chapter 3),to emulate an actual application scenario, as demonstrated in the use cases in Section 5.3.3,rather than just using the DUTs alone.
The generation of the input stimulus is also done with a combination of a new templateconfiguration obtained frommessagemodels in FIRM and a new set of templates (cf., Figure 5.2,
integration test extension), tailored to ROS code in C++. Hence, a generated native ROS nodepopulates the fields of the corresponding message being validated and stores it as a seriesof bytes for the VHDL testbench to use as the input stimulus. Note that it is advantageous to

95

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

0 10 20 30 40 50 60 70

1

10

100

1000
To

ta
l M

es
sa

ge
s

(a) Distinct types in ROS Noetic
0 10 20 30 40

1

10

100

1000

To
ta

l M
es

sa
ge

s

(b) Distinct types in ROS2 Humble
Figure 5.9: Histograms of distinct data types in ROS Noetic and ROS2 Humble messages

0 2 4 6 8 10 12

1

10

100

1000

To
ta

l M
es

sa
ge

s

(a) Nesting depth in ROS Noetic
0 2 4 6 8 10

1

10

100

1000

To
ta

l M
es

sa
ge

s

(b) Nesting depth in ROS2 Humble
Figure 5.10: Histograms of nesting depth in ROS Noetic and ROS2 Humble messages

have already available the intermediate representation of the ROS message to be evaluated.However, as specific fields in the message may have variable lengths (arrays or strings) or maybe nested messages, this needs to be accounted for in order to generate a meaningful inputstimulus. For these cases, besides considering the data type (e.g., uint8, uint16, string, float64),a random length for an element that requires it is generated. Consequently, arbitrary
message lengths are evaluated:
1. for cases in which messages do not include fields with variable length, the variety ofdifferent off-the-shelf messages (Figures 5.8 to 5.10) ensures multiple message lengths.
2. for cases in which unconstrained elements (Figure 5.11) or nested messages are in-cluded (Figure 5.10).

These two points ensure the extensive evaluation of arbitrarily large messages, whetherthey are from ROS1 or ROS2. Figure 5.8, Figure 5.9 and Figure 5.10 show a comprehensivecoverage of tested messages composed by multiple distinct variable types, ensuringthe capabilities to also support ROS messages with multiple data types.
It can be seen in the histograms that there are more messages with up to 80 fields for ROSNoetic and 50 for ROS2 Humble (Figure 5.8), including around mainly 20 distinct types forboth of them (Figure 5.9). Figure 5.10 shows that multi-level nesting is used in both ROSversions with several levels of depth (up to 11 for Noetic and 9 for Humble), which is supportedas well by FIRM. The differences in the tuples of Figure 5.8, Figure 5.9 and Figure 5.10 arebecause there are currently more projects with ROS, but the transition to ROS2 is ongoing.These results show that the generic approach proposed in this dissertation is appropriateto support large or complex messages with many distinct fields or multiple levels of nestedmessages, regardless of the ROS version. However, FIRM is not limited only to ROS1 or ROS2,

96

5.3 Evaluation

Without nested messages With nested, but no
unconstrained messages

With nested and
unconstrained messages

33.8%

66.2%

1050

1374
678

36.6%

63.4%

492

519
335

(a) ROS Noetic (b) ROS2 Humble
Figure 5.11: Amount of ROS and ROS2 messages with and without nested message

as the same process to migrate the templates from the first to the second version can befollowed for other types of message specifications.
As an early evaluation phase, a systematic approach was followed during the design processto manually generate a set of message specifications to cover all of the possibly infinitenumbers of them. This left out cases that were not considered, which is why the presentedevaluation solution relies on all installable ROS packages, which allows to automate theprocess of validation of real message specifications deployed in multiple applications. Anopen point to explore is how to generate representative datasets for these experiments tovalidate the logic design of the generated hardware component based on the informationprovided by Table 5.1. The stimulus for each evaluated component is obtained with a stimulusgenerator (a native ROS node) for each message that automatically creates a stimulus withall constraints met. Currently, only one random message is generated as a stimulus, but thiscan be extended to generate more stimulus for each message, randomly or systematically,to extend coverage. This implies the generation of multiple stimulus for each message, whichwould increase the total time to run all the experiments.
The first iteration [9] took over 41 hours with one stimulus for every 2295 for ROS Noeticmessages and ROS2 Foxy3 with 150 messages. The toolchain and the evaluation processwere improved and optimized, and even though more messages were added to ROS Noetic(3102 in total) and 1346 for ROS2 Humble, the entire evaluation took 13.8 and 3.6 hoursrespectively.

Extension for ROS2 support

The evaluation was performed on both ROS versions (Noetic and Humble), possibly due tothe simplicity of extending support for ROS2 from the existing solution for ROS1. Due tothe model-based design of FIRM, which derives the intermediate message model, and the
3Previous ROS2 LTS version

97

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

ability to design tailored templates, support for ROS2 can be easily achieved. Using .msgfor message specifications brings backward compatibility. Nevertheless, the communicationscheme in ROS2 is the main characteristic of this new version4 and the serialization of ROSmessages differs slightly. This leads to a new set of HDTs adapted to take it into account forROS2 support.
Listing 5.5 and Listing 5.6 show a snippet of the HDTs for ROS1 vs. ROS2 respectively. It ispossible to see there the specific syntax of the used template engine mustache. Tags (ascalled in mustache) are expressed between curly brackets (i.e., line 1 in Listing 5.5). These arethe fields that FIRM generates in the template configuration (Listing 5.4). Comments can bewritten by prefixing an exclamation sign to the tag (i.e., line 1 in Listing 5.5), and they will notbe generated in the resulting artifacts. Mustache checks whether the tag is present in thetemplate configuration when the symbols # or ˆ (i.e., line 3 or 6 in Listing 5.6) are present.They are used conditionally to generate the contained code in a block in the resulting artifact.The value assigned to a field will be generated when the tag is only expressed in the template,such as N in line 2 of Listing 5.6.
ROS2 includes extra logic for padding, necessary to meet any desired memory-alignmentrequirements. It is relative to the first byte of a variable, and it is determined by computing themodulo between the total number of currently streamed bytes (s_inputs in this example) andthe bitwidth of each element (size). The differences between Listing 5.5 and Listing 5.6 andhow they can be easily expanded highlight the benefits of our approach and how Challenge5.1: Adaptivity was tackled. Minor changes to include the field padding in the intermediatemessage model and a complementary set of HDTs (extended from the ones for ROS1) wereonly needed to provide support also for ROS2.
Table 5.2 shows the difference of Lines of Code (LoC) for both sets of HDTs. Note that eachset of templates is composed of multiple files (called partials) to modularize their design,improving the maintainability.
As expected from the snippets shown in Listing 5.5 and Listing 5.6, the HDTs for ROS2 havemore lines of code than the ones for ROS1. Not only the message-dependent hardwarecomponents for publishers (message specification to AXIS) and subscribers (AXIS to messagespecification) are modified. The template to generate the stimulus is also updated, mainlydue to new built-in types included in ROS2.

5.3.3 Use Cases

Two use cases were developed to prove the feasibility of the workflow presented in previoussections. The first one is related to image processing, and the second one is an FPGA-
1 { {^isSubmessage } } { { !mustache element } }
2 i f (s_counter= { {N} }) then
3 s_counter <= s_counter + ’ 1 ’ ;
4 end i f ;
5 { { / isSubmessage } }

Listing 5.5: Snippet of a HDT for ROS1
4http://design.ros2.org/articles/changes.html

98

http://design.ros2.org/articles/changes.html

5.3 Evaluation

1 { {^isSubmessage } }
2 i f (s_counter= { {N} }) then
3 { {^padding } } { {!same as for ROS1 } }
4 s_counter <= s_counter + ’ 1 ’ ;
5 { { / padding } }
6 { {#padding } } { {!extension for ROS2 } }
7 i f ((t o _ in tege r (unsigned (s_ inputs))
8 mod { { s i ze } }) = 0) then
9 s_counter <= s_counter + ’ 1 ’ ;
10 end i f ;
11 { { / padding } }
12 end i f ;
13 { { / isSubmessage } }

Listing 5.6: Snippet of a HDT for ROS2

Table 5.2: Lines of Code of ROS1 and ROS2 HDT.
HDTs Files Total Lines of Code

ROS1 ROS2
AXIS to msg 10 292 369msg to AXIS 9 296 383Stimulus 2 177 236

based mobile robot. Both of them are part of a ROS architecture with different messagespecifications.

Image Processing

The setup for this use case consists of a publisher/subscriber set on the FPGA as well as ona PC. The sequence interaction of them is shown in Figure 5.12. The latter one publishes awebcam feed (640x480@30fps) on a topic that the FPGA subscribes to. Then, it processes theraw image to publish on a different topic for the PC to subscribe to. The hardware accelerator(Sobel filter) is based on the open source “High-Level Synthesis FPGA Library for Image Pro-cessing” (HiFlipVX) [14], which offers a large set of different functions that can be combinedin a “building blocks” fashion. The ROS message specification chosen is sensor_msgs/Image(Listing 3.1), a complex one because it includes different data types, constrained and un-constrained sized variables. The process begins by writing the Configuration File (Listing 5.1),which is the input of the workflow. As previously mentioned, specific details of the platform(lines 2 to 5) are needed. Then, follows the information related to the accelerators to beinterfaced. FIRM takes it as its input, as well as the ROS message specifications listed there togenerate the required interfaces (message-dependent components). Additionally, TCL scriptsfor Vivado to build the whole project including the components shown in Figure 3.1 aregenerated. The details of these additional artifacts generated are covered in Chapter 6.

99

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

PC FPGA

Pub Sub Pub Sub Accelerator

raw image

raw image

filtered image

filtered image

Pub Sub Pub Sub Accelerator

Figure 5.12: Image processing use case sequence
FPGA-Based Mobile Robotic Platform

A skid-steer mobile robot with four DC motors and quadrature encoders is used and con-trolled with a combination of VHDL and HLS IP cores. They receive velocity commands orsend the robot’s current state through ROS messages. The direction of rotation and speedof each wheel is obtained via VHDL IP cores as well as PWM signals to set their speeds. APID (implemented in HLS) controls the speed of the wheels. The ROS message specificationused here is geometry_msgs/Twist as it is composed by linear and angular speeds in threeaxes (x,y and z). The presented workflow allows to seamlessly generate a new hardwarearchitecture by only modifying the configuration file (Listing 5.1), specifying the platform(Lines 2 to 6) and the name of the ROS message specification in Line 9.

Experiments

Tackling the challenge to have an integrated workflow allows performing experiments on twoFPGA-based SoC (Zynq UltraScale+ and Zynq 7000) with ease. Note that the family is derivedfrom the part specification, as shown in Line 5 in Listing 5.1. Zynq-7000 or Ultrascale are thesupported ones and are extendable if needed.
Both experiments rely on FreeRTOS (which provides an off-the-shelf TCP/IP stack) runningon one ARM core. A DMA is used to exchange data between PS-PL, imposing a bandwidthlimitation. Its clock frequency is set to 300MHz, and considering the design decision of using 8bits for data transfers; the maximum achievable throughput is 2.4Gb/s. Despite of this, exper-iments showed that almost 50fps for 1920x1080 image resolution can be achieved if needed,as shown in Table 5.3. Therefore, the accelerator-related and message-dependent com-ponents do not bring significant overhead in terms of execution time for the hardwareaccelerators. The execution time is slightly increased with the generated components dueto the latency of a few clock cycles of some of them, for example, the schedulers to makea decision as to which accelerator to give the grant to. However, this is not because of theautogeneration of the components but the design of some of them on their own, that theyintroduce a few clock cycles latency. The latency would be increased regardless they areautogenerated or coded manually, as their design is done manually beforehand, and theautogeneration focuses more on reproducibility and scalability.
If needed, it is possible to achieve a larger bandwidth by increasing tdata’s width (up to 256bits). However, a trade-off between the extra logic needed and the resource utilization would

100

5.3 Evaluation

Table 5.3: Execution time with and without generated components.
Resolution Execution time forthe accelerator [ms]

Execution timewith generatedcomponents [ms]
Framespersecond

640 x 480 3,07 3,08 (+0,25%) 325800 x 600 4,80 4,81 (+0,20%) 208960 x 720 6,91 6,94 (+0,40%) 1441024 x 768 7,86 7,88 (+0,19%) 1271280 x 720 9,21 9,23 (+0,15%) 1081920 x 1080 20,73 20,76 (+0,11%) 48

have to be evaluated. The overhead introduced by the autogenerated components in termsof resource utilization and performance is evaluated. Table 5.3 shows the execution time ofthe sobel filter by itself and embedded and as part of the process shown in Figure 5.12. Itcan be seen the negligible increment in the execution time the accelerator-related and
message-dependent components add.

Resource Utilization

Table 5.4 shows the difference of resource utilization of both use cases. The PS-PL Intercon-
nection will remain unchanged regardless of the application when a software solution is usedfor the communication outside the FPGA. Autogenerated Components refer to the Managerplus the hardware components based on the message specifications (message-dependent)used for each use case. It can be deduced that they will not introduce significant overheadto a design in terms of resources. The differences between use cases are because:
1. the message specification for image processing has three unconstrained variables(converted into AXIS) compared to only constrained ones for the mobile robot. Thisincreases the logic (hence LUTs) for the former one and latches (FFs) for the latter one.
2. There is only oneHLS IP core combining the splitting of the RGB channels and computinga Sobel filter on each of them, so it is optimized. The mobile robot includes multipleVHDL and HLS IP cores, mostly performing arithmetic operations, which correspondsto DSPs usage.

Automation

Listing 5.1 shows what the configuration file for the image processing use case looks like. Ittakes the targeted platform (FPGA and board), as well as the ROS message specification5.It can be seen that only a few lines are needed to model the system compared to multipleextensive VHDL modules (Table 5.5). This also reduces the probability of errors and increasesthe consistency of new designs. The time needed to generate a hardware architecture is

5It can include multiple message specifications, publishers, and subscribers.

101

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

Table 5.4: Resource utilization for both use cases
Image Processing (Zynq UltraScale+) LUT FF BRAM DSP
PS-PL Interconnection 6735 7374 2 0Autogenerated Components 759 321 0 0Hardware Accelerators 792 973 3 0Complete Implementation 8286 8668 5 0
FPGA-based Mobile Robot (Zynq 7000) LUT FF BRAM DSP
PS-PL Interconnection 6735 7374 2 0Autogenerated Components 456 126 0 0Hardware Accelerators 29671 21539 0 578Complete Implementation 36862 29039 2 578

reduced to amatter of minutes. As stated previously, only minor configuration file adaptationsare needed to generate new hardware components for different applications automatically.
The benefits of the proposed approach are that even though there is a similar effort (in termsof lines of code, shown in Table 5.5) between writing VHDL and HDT, the latter one has tobe written only once and can be reused for multiple use cases. VHDL, on the contrary, hasto be manually adapted every time for different ones. A designer would need to invest timeto adapt each of them individually. This could quickly become an issue when something isunintentionally neglected, or errors are introduced by inconsistently changing existing partsof the VHDL model.
Lastly, the approach facilitates the generation of test benches tailored for any ROS message(shown in Section 5.3.2) or any other type of specification, tackling Challenge 5.1: InterfaceCompliance. This simplifies a complete hardware architecture validation process with a singlespecification as the only input parameter.

Table 5.5: Lines of code written once for all use cases, and additional written/generated codefor each individual use case
File type WrittenOnce

Use cases
Image Processing Mobile Robot

Mustache TCL 30 0 0Static TCL 52 0 0Mustache VHDL (HDT) 588 0 0Static VHDL 171 0 0Config. File n/a 13 13
Generated TCL n/a 64 64Generated VHDL n/a 432 353

102

5.4 Summary

5.4 Summary

This chapter presented a model-based approach to automatically generate hardware com-ponents acting as interfaces for FPGAs accelerators handling the compute-intensive tasks forrobotic applications. A simple specification of the expected system is introduced, which is theonly input needed to generate the complete hardware architecture. Hardware componentsacting as interfaces for the accelerators are obtained from message specifications, support-ing arbitrary ROS messages. As demonstrated, the middleware support can be extended, ifrequired, with minimal effort.
An intermediatemessage representation is obtained from the input specification, detailing thetype of interface required. In addition to a set of templates derived from a HDL module, thisis used to generate the corresponding hardware components to interface the acceleratorsautomatically.
All message specifications included in both ROS versions (all latest distributions) were evalu-ated. Besides, two use cases show the advantages of our approach by integrating an HLSimage processing IP core as well as a combination of customized HLS and VHDL modules foran FPGA-based mobile platform into a ROS architecture. The first one required only 13 linesof code for the input specification of the workflow to deploy the entire system. It only tookminor changes to some lines (rather than entire VHDL modules) to generate the second usecase, even on a different FPGA family.
Chapter 6 describes the extension of FIRM and the details involved in data-type and data-flowanalysis for the generation and automatic deployment of the entire architecture, consideringthe accelerator-related and message-dependent components.

103

6 Model-based Generation of
Hardware/Software Architectures
for Robotics Systems

Robotic systems compute data from multiple sensors to perform several actions (e.g., pathplanning, object detection). FPGA-based architectures for such systemsmay consist of severalaccelerators to process compute-intensive algorithms. Designing and implementing suchcomplex systems tends to be an arduous task. This chapter extends the workflow presentedin Chapter 5, focusing on the modeling to generate architectures for such applications,compliant with existing robotics middlewares (e.g., ROS, ROS2). The challenge is to havea compact yet expressive system description with just enough information to generateall required components and integrate existing algorithms. This system model must begeneralizable, so it is not application-dependent and must exploit the benefits of FPGAs oversoftware solutions. Previous work mainly focused on individual accelerators rather than allcomponents involved in a system and their interactions. The proposed approach exploitsthe advantages of MDE and model-based code generation to produce all components, i.e.,message converters (message-dependent components) acting as middleware interfaces andwrappers to integrate algorithms. Data type and data flow analysis are performed to derivethe necessary information to generate the components and their connections.

6.1 Challenges and Goals

The range of robotic applications has been increasing lately, from manufacturing [2], col-laborative robots interacting with humans [3], biomedicine [4], drones [5] as well as mobilerobots [6], to name a few. Due to the wide range of applications, robotic platforms arebecoming more complex as more heterogeneous data from different types of sensors needsto be processed, preferably concurrently, to meet real-time constraints. An architectureshould facilitate the development of robotic systems by providing helpful constraints on thedesign and implementation of the desired application without being overly restrictive [126].However, designing FPGA-based architectures for such systems tends to be an arduousprocess as it requires low-level hardware knowledge and a long and complex design pro-cess. Even though the proven advantages of FPGAs for robotic applications [127, 128, 129],porting them from software to embedded hardware platforms or accelerating parts requiresthe creation of suitable interfaces. This often means the re-design of several parts of the

105

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

applications. Lastly, the interconnection of multiple components for complex applications(i.e., multiple accelerators) turns into an error-prone process.
This chapter addresses the modeling approach to generate architectures for robotic appli-cations in FPGAs. The main research questions to answer are how to generate all requiredcomponents for such architectures from a holistic model and how that model should bedefined. These bring some requirements:

• Requirement 6.1: the description should be compact, concise, but expressive enoughto contain the necessary information to derive the system’s components and theirrelations.
• Requirement 6.2: the approach must be generic rather than application-specific.
• Requirement 6.3: it must exploit the benefits of FPGAs over software solutions.

Three main challenges arise:
• Challenge 6.1: Obtain the explicit and derive the implicit information from the system
specification.

• Challenge 6.2: The system specification has to be a compact and meaningful descriptionso writing it is not as cumbersome as deploying the system manually.
• Challenge 6.3: There has to be an understanding of the specifications of interfaces togenerate the compliant components and the relations among each other.

To address these challenges, the main goals of this chapter are:
• Model Analysis: A comprehensive analysis of the system specification to derive the
holistic model that includes all the components to generate, their interfaces and howthey all interact among each other.

• Interfaces:Wrappers for accelerators based on middleware specifications to easetheir integration.

6.2 Code Generation Workflow

A typical robotics system is composed of different types of components. They can be CPUs,accelerators, and those that act as interfaces between the first two (message-dependent
components). The concepts shown in this work follow the Zynq1 device model with a PS anda PL sharing data via DMA. However, this is not limited as the CPU support can be extended(e.g., soft-cores) or removed if not needed, and the toolchain proposed in this chapter takesthis into consideration.
An example of a modeled and later generated FPGA-based robotics system following theconcepts of this dissertation is shown in Figure 6.1. It consists of a subscriber converterto receive a quaternion, an accelerator to compute the conversion to Euler angles, and a
publisher converter to broadcast the result. Note that even though the aim is to generatecomplex systems, including multiple accelerators with their middleware-based interfaces,

1ZYNQ is a trademark of Xilinx, Inc

106

6.2 Code Generation Workflow

only one accelerator with its corresponding message-dependend components are shown forsimplicity. AXIS slave (S_AXIS) and master (M_AXIS) connect to DMA through the Manager toschedule transactions between PS and PL [9]. They exchange data as the middleware (ROSin this case) runs on the ARM processor, playing the role of the Communication Interfacefrom Figure 3.1. It is mainly used to register the hardware subscriber and publisher toROS master (Figure 2.11) and exchange data with external components. The subscriberand publisher are the message-dependent components, generated with FIRM, introducedin Chapter 5. It is then imperative to understand the characteristics of all components andthe interaction among them to generate the corresponding artifacts to build such systemsbased on a given specification.

Listing 6.1 shows how to describe such a system for the proposed workflow. The interfaces ofthe accelerator (Line 15 and Line 18) include amessage type. This is used to generate wrapperswith the desired signals corresponding to that message type for the components doing thecomputation. In this case, the accelerator is an HLS component (Line 10), so the equationsfor the conversion are defined in a .cpp file (Line 11). VHDL is also supported, and additionalHDLs can be added with templates, as explained previously. A software implementation isalso possible by changing the type to ROS-SW. How to specify all components and how theyinteract with each other is shown from Line 21. Similar to the accelerators, the message typefor publishers and subscribersmust be defined. Lastly, the output of each component mustbe declared as outgoing, defining the destination block. Like so in a compact specification,the characteristics of accelerators, their interfaces, and how to establish the communicationfor incoming and outgoing data have been defined.

Multiple additional components are involved in such architectures besides the convertersand accelerators. They are the ones that depend on the integrity of the system (i.e., Manager,DMA), depending on how many converters and accelerators are involved. These componentsare not part of the system specification as they are not generated, but their configuration is
derived from it, as explained in Section 6.4.4. Additionally, tailored scripts are needed to deploythe entire architecture. The workflow of the proposed toolchain is shown in Figure 6.2, withListing 6.1 as an example of a system specification.

S AXIS Quaternion
Subscriber

/64 X

/64 Y

/64 Z

/64W

Quaternion
to Euler
Converter

/64 X

/64 Y

/64 Z

Euler
Publisher

M AXIS

ManagerDMA
MM2S

DMA
S2MM

Scheduler
External

Publisher/Subscriber

Programmable
Logic

Processing
System

Legend

ROS Node

Provided

Generated

Converters

Accelerator

AXI Stream

ROS Comm

Figure 6.1: Quaternion to Euler converter with ROS interfaces

107

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

6.2.1 Model Analysis

The model-based approach proposed here helps to have a complete understanding ofthe desired system via model analysis. This is particularly important to generate and deploycomplex systems (e.g., multiple accelerators interconnected among themwith full middleware-based interfaces) as a simple process. The information to generate the different converters,wrappers for accelerators, and tailored scripts is deduced only from the system specification.All required information that is not explicitly defined (e.g., total components to managetransactions between PS and PL) is derived by doing data-type and data-flow analysis ofthe message types and connections of the components. All individual connections (at signallevel) among all blocks, based on the specification and their interfaces, are also inferred.
1 pro jec t :
2 name : QuaternionToEuler
3 fpgaPar tpar t : xc7z020clg400−1 # Using the part can be derived

Zynq (xcXXX)
4 # or UltraScale (xczcuXXX)
5 # Accelerators can be :
6 # Provided : sources (need to be exported) or already exported
7 # Generate : Wrappers from msg for HLS or VHDL (or any other template −e

.g., verilog, systemverilog−)
8 acce le ra tors :
9 − name : QuaternionToEuler_type
10 type : HLS # can be HLS, VHDL or ROS−SW
11 sources : . / QuaternionToEuler . cpp
12 i n t e r f a ce :
13 input :
14 − middleware : ROS
15 message : geometry_msgs / Quaternion
16 output :
17 − middleware : ROS
18 message : geometry_msgs / Point
19
20 # Definition of all components and their relations
21 blocks :
22 # Subscriber
23 − name : QuaternionToEuler_sub # converter
24 type : # ROS > accelerator
25 middleware : ROS
26 mode : subscr iber
27 message : geometry_msgs / Quaternion
28 outgoing : # can have many destinations
29 − name : QuaternionToEulerConverter
30 # Accelerator
31 − name : QuaternionToEulerConverter # accelerator of the type
32 type : QuaternionToEuler_type # defined in line 8 and it
33 outgoing : # can be used multiple times
34 − name : QuaternionToEuler_pub
35 # Publisher
36 − name : QuaternionToEuler_pub # converter
37 type : # accelerator > ROS
38 middleware : ROS
39 mode : publ i sher
40 message : geometry_msgs / Point

Listing 6.1: System specification for a Quaternion to Euler system

108

6.2 Code Generation Workflow

All this derived information is expressed in an extended and detailed version of the system
specification, as a template configuration for the template engine to generate the desired artifactstailored for the specified system.

6.2.2 Template Engine

The template engine2 along with templates are used to generate the intermediate artifacts.A template is a generic source code that resembles the expected artifact. It is expandedwith given specifications (template configuration) accordingly to the needs (e.g., names, bitwidths). These templates are included in the toolchain. They are coded once and are re-usedfor any system specification. There are multiple ones involved, according to the intermediate
artifact to generate. These can be for HLS or VHDL sources (e.g., converters) or tailored
scripts as configurations for vendor dependent tools to generate the expected components.New templates can be added to the toolchain with ease to extend it for new components,additional hardware description methods (e.g., Verilog), or scripts for different vendors.
Listing 6.2 shows an example of a template. In this case, it is used to generate shell scriptsto obtain an IP block that can be used in a Vivado’s block design to instantiate the different
message-dependent components. Note that Line 12 and Line 23 are used to expand thetemplates accordingly to the template configuration derived from the model analysis. nameBDis the IP block’s name that will be used to instantiate the message-dependent component inany block design (hence BD) and nameMW is the name that the message specification receivesfor each middleware (hence MW). It can be the case where the same message-dependentcomponent is used in the same block design. Data-flow analysis is further relied on toavoid duplicate names by appending an incremental ID to every new converter that is

User input

Generated
components

Included
resource

Vendor
dependent

tool

Tool

Intermediate
artifact

Legend

Accelerators IP Converters IP Manager IP

System
specification

Template engine
Accelerator

source

Accelerator
wrapper

Accelerator
generator

Accelerator build
configuration

Model analysis

Middleware
interface

Template
configuration

Templates

Converter
source

Converters
generator

Component builder
(e.g., bash, tcl)

System builder
(e.g., bash, tcl)

System
generator

Manager
source

Manager
generator

FPGA-Based
Robotics System

Figure 6.2: Extended toolchain workflow for the generation of HW/SW architectures
2Mustache—Logic-Less Templates, https://mustache.github.io

109

https://mustache.github.io

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

instantiated. This list of IDs for each menssage-dependent component is derived from the
system specification.

6.2.3 Artifacts Generators

They take the intermediate artifacts to build and deploy the entire system. There are two types.Those that generate components (i.e., accelerators, converters), and the system generatorwhich does not generate components but uses them. The latter one takes a set of tailored
scripts for each application and the information of a (vendor-dependent) targeted platform. Itdeploys all the generated components and the derived ones (e.g., Manager, DMA). Addition-ally, as their interactions have been derived (each individual signal), it connects all of themaccordingly, as specified in the template configuration. In this work, there are bash scripts thatmanage different tcl scripts for Vivado and Vivado HLS tools to import the generated and

1 #! / bin / bash
2
3 sources_converters_path=$1
4 v i vado_pr j t s _pa th=$2
5 ip_repo_path=$3
6
7 ## Create d i r e c t o r i e s
8 mkdir −p $sources_converters_path
9 mkdir −p $ip_repo_path
10 { {#Converters } }
11 { {#AXIS_to_msg } }
12 mkdir −p " $ip_repo_path / { {nameBD} } "
13 { { / AXIS_to_msg } }
14 { {#msg_to_AXIS } }
15 mkdir −p " $ip_repo_path / { {nameBD} } "
16 { { / msg_to_AXIS } }
17 { { / Converters } }
18
19 ## Create message−dependend components with FIRM
20 ## Subscr ibers
21 { {#Converters } }
22 { {#AXIS_to_msg } }
23 j a va − j a r FIRM . j a r axis2msg { {nameMW} } $sources_converters_path
24 { { / AXIS_to_msg } }
25 { { / Converters } }
26 ## Publ i shers
27 { {#Converters } }
28 { {#msg_to_AXIS } }
29 j a va − j a r FIRM . j a r msg2axis { {nameMW} } $sources_converters_path
30 { { / msg_to_AXIS } }
31 { { / Converters } }
32
33 ## Create new vivado pro jec t to import a l l sources and export the IPs
34 v ivado −mode batch −source bu i ld_conver ters . t c l − t c l a r g s " Converters " "$v i vado_pr j t s _pa th / Converters " { {#pro jec t } } { {#plat form } } " { { part } } " { { /p lat form } } { { / p ro jec t } } $sources_converters_path $ip_repo_path

Listing 6.2: Mustache template to generate script that uses FIRM to generate all message-dependend components

110

6.3 Code Generation Challenges for HW/SW Architectures

provided sources (i.e., .cpp for the accelerators, .vhd for the converters and manager) andexport them as IPs accordingly to deploy the desired holistic system.
Listing 6.3 shows the resulting shell script obtained with the derived template-configurationand the template shown in Listing 6.2. As there are two message-dependent componentin the example shown in Figure 6.1, FIRM is called to generate the converters from AXIS tomessage and message to AXIS in Line 15 and Line 17. Then, another generated script from adifferent template is called in Line 20 that takes the VHDL generated with FIRM to exportthem as IP blocks to be instantiated in any block design.

6.3 Code Generation Challenges for HW/SW Architectures

Three main challenges arise when generating the architecture proposed in this dissertation,which are described below.

6.3.1 Concise Holistic Model

An important aspect is to have a concise but expressive description of the system (CH2), asshown in Listing 6.1. This means there has to be a mechanism to include or exclude signalsfrom one component to another. Examples of these are shown in Listing 6.4 (Line 18 andLine 20). These keywords are analyzed to determine which signals corresponding to amessagespecification (Line 15) should be connected to which component. They can be individual
1 #!/bin/bash
2
3 sources_converters_path=$1
4 v i vado_pr j t s _pa th=$2
5 ip_repo_path=$3
6
7 # Create directories
8 mkdir −p $sources_converters_path
9 mkdir −p $ip_repo_path
10 mkdir −p " $ip_repo_path / AXIS_to_geometry_msgs_Quaternion "
11 mkdir −p " $ip_repo_path / geometry_msgs_Point_to_AXIS "
12
13 ## Create converters with FIRM
14 # Subscribers
15 j a va − j a r FIRM . j a r axis2msg geometry_msgs / Quaternion$sources_converters_path
16 # Publishers
17 j a va − j a r FIRM . j a r msg2axis geometry_msgs / Point$sources_converters_path
18
19 ## Create new vivado project to import all sources and export the IPs
20 v ivado −mode batch −source bu i ld_conver ters . t c l − t c l a r g s " Converters " "$v i vado_pr j t s _pa th / Converters " " xc7z020clg400 −1 "$sources_converters_path $ip_repo_path
21

Listing 6.3: Resulting shell script to generate IP blocks for message-dependend components

111

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

signals as well as sub-messages. Analyzing the structure of the message definition allows forfiltering and deriving the desired signals from one component to another.

6.3.2 Dynamic Frame Length

Listing 6.4 shows the specification of a system which contains an HLS accelerator of animage processing application compliant with a sensor_msgs/Image message from ROS. Thismessage includes a string (i.e., frame_id) which varies with every new frame, and the imageitself could also vary depending on the application (e.g., image upscaling/downscaling). Hence,the number of bytes for the publisher to transmit (AXIS frame length) can change dynamically.Figure 6.3 depicts the generated components for such system. It contains the subscriberand publisher converters (to send/receive the image message from/to the PS over DMA), andthe image processing application itself provided by the user (Line 4). The transmission ofthe message through the publisher converter cannot start unless the total number of bytes(frame length) to transmit is known. Hence, the frame length component computes this atruntime. Considering the case that the message may not transmit all of its fields, or the onescontaining fields that change their length dynamically (e.g., strings), the total length cannotbe known at compile time. Therefore, a tailored component to compute the frame lengthof each publisher dynamically is generated when needed and added as shown in Figure 6.3.
1 acce le ra tors :
2 − name : GrayScale
3 type : HLS
4 sources : . / graySca le . cpp
5 i n t e r f a ce :
6 output : # Same for input
7 − middleware : ROS # (simplified due to space)
8 message : sensor_msgs / Image
9 inc lude : [" he ight " , " width " , " data "]
10 blocks :
11 − name : ImgF i l t e r _ sub # converter
12 type : # ROS > accelerator
13 middleware : ROS
14 mode : subscr iber
15 message : sensor_msgs / Image
16 outgoing :
17 − name : ImgF i l ter _pub
18 exclude : [" he ight " , " width " , " data "]
19 − name : GrayScale
20 inc lude : [" he ight " , " width " , " data "]
21 − name : GrayScale_acc # accelerator of the type
22 type : GrayScale # defined in line 2
23 outgoing :
24 − name : ScaleDownNearest_acc
25 inc lude : [" he ight " , " width " , " data "]
26 − name : ImgF i l te r_pub # converter
27 type : # accelerator > ROS
28 middleware : ROS
29 mode : publ i sher
30 message : sensor_msgs / Image
Listing 6.4: Snippet of the connections between accelerator and publisher converter

112

6.3 Code Generation Challenges for HW/SW Architectures

Software implementations have access to large memory blocks, and the entire message isconstantly available. This is not possible on the hardware side as data is streamed, whichmakes it necessary to have a mechanism to compute the total bytes in each frame as theycan change dynamically. The fields of a message involved in this computation are derived byanalyzing Listing 6.4. This will provide the individual lengths of dynamically changing fieldsneeded as inputs for this new component to compute the publisher’s frame length. Thefixed-sized field lengths are computed in the analysis, as these are known at compile time.
The algorithm shown in Listing 6.5 computes the length of a message from its contained fieldsusing the helper methods FieldLength to compute the length of a field and TypeLengthto compute the length of a type. Fields can be arrays of variable length not known beforereceiving a message. Thus, signals connected to AXIS must be used to obtain the length atruntime using the signal() function. Note that because arrays (and messages) can be nested,but their contents are not uniform, each information taken from a signal must be obtainedat the right time during the reception of the message. This means the TotalLength can onlybe computed once the last size signal of an array within the message has been received.Because the size signals are evaluated at different times, parts of the message might need tobe buffered [130], which is also inferred at the Model Analysis stage.
Even though the buffer size can vary frommessage to message or even from different framesfor the samemessage, theWCET concept can be followed. The transfer time of the acceleratorsbecomes the WCET. The metrics used for evaluating the proposed schedulers in Section 4.3can be used not only to determine the best algorithm for each application but also the lengthof potentially required buffers, which in this case would be equal to the maximum latenessfor each accelerator. Evidently, a smaller buffer means lower resource consumption, soobtaining the optimal design in terms of response time and resource consumption comes toan optimal decision in choosing the most fitting scheduling algorithm for the application.
From the modeling point of view, the WCET can be easily added to the system specificationto be used for the model analysis and also automate the process to determine both thebuffer length and scheduling algorithm.

Message Wrapper

S AXIS
Image

Subscriber

/
32 header seq

/
32 header stamp

/
32 header frame id length

header frame id

/
32 height

/
32

width

/
32data length

data

Image Proc.
Application

/
32 height

/
32

width

/
32 data length

data

Image
Publisher

M AXIS

Frame
Length /

32total length

/
bitwidth SignalAXI Stream interfaceProvided AcceleratorGenerated Comp.

Figure 6.3: Payload of an image publisher dynamically computed

113

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

1 funct ion MessageLength (Message m)
2 l :=4
3 fo r each Field f i n m do
4 l : = l + FieldLength(f)

5 return l
6
7 funct ion F ie ldLength (Field f)
8 l : = 0
9 i f f i s no-array then
10 l : = l + TypeLength(f)

11 e lse i f f i s fixed-length array then
12 fo r i i n range (a r ray_ leng th (f)) do
13 l : = l + TypeLength (index (f, i))
14 e lse i f f i s variable-length array then
15 l : = l + 4
16 fo r i i n range (s i gna l (f, length)) do
17 l : = l + TypeLength (index (f, i))
18 return l
19
20 funct ion TypeLength (Field f)
21 l : = 0
22 i f t ype_of (f) i s built-in type then
23 l : = s i z e _o f (t)
24 e lse i f t ype_of (f) i s message then
25 l : = l + 4
26 fo r each Field s i n f do
27 l : = l + FieldLength(s)

28 return l
Listing 6.5: Computation of message length

6.3.3 Scheduling Transactions between Hardware and Software

Dealing with hybrid hardware/software systems means that the way communication is estab-lished between these two has to be addressed. The supported middleware throughout thisdissertation is ROS (both versions), so the software part is based on it. Its default schedulingscheme to receive new messages is shown in Figure 6.4a. It consists of a shared callback
queue for all subscribers. Hence, the callback queue must be read three times (retrievingB) before A can be read in a First In First Out (FIFO) manner. This can cause a messagenot to be longer usable for a given subscriber. Therefore, a modification to this scheme isproposed (Figure 6.4b) by taking advantage of the use of individual callback queues for eachincoming message. This leads to the question of which spinner thread should get a hold ofthe DMA to exchange data between PS and PL. The proposed solution here is inspired by theLRU algorithm, used to manage buffer memories and caches. Unlike a FIFO, the last spinner

Receiver
Thread

AB B B B

Subscriber queue for A

Subscriber queue for B
Callback queue

Spinner
Thread

(a) Default ROS callback scheme

Receiver
Thread

AA A A A

BB B B B

Queue A

Queue B

Callback queue A

Callback queue B

Spinner A
Thread

Spinner B
Thread

(b) Proposed LRU-based ROS callback scheme
Figure 6.4: ROS scheduling schemes

114

6.4 FPGA Architectures for Robotics (FAR) Tool

thread that shares data between PS and PL (reading from its callback queue) is pushed to theend of the priority list (highest priority). This changes dynamically over time, allowing eachindividual spinner thread to get a hold of the DMA (with the lowest priority) with a maximumdelay of N-1 in a round, being N the number of subscribers. A similar analysis as the oneshown in Section 4.3 can be followed for the software side. From the software perspective,experiments showed LRU to be good enough. However, the proposed workflow can alsobe extended to include a similar software evaluation to decide, case by case, the optimalalgorithm for both software and hardware counterparts.
The concepts explained until here concerns the transmission from PS to PL. A hardwarecounterpart is needed to schedule the transactions from PL to PS, which is the reason whymultiple algorithms are proposed in Chapter 4. As there are no “one fits all” solutions, havingmultiple options allows for obtaining the most optimal design for each application. Themodel-based approach for code generation allows for exchanging these components withminimal effort and, ideally, transparently for the end-user.
Even though the evaluation of the schedulers is fully automatized, the criteria to decidewhich algorithm will be the most fitted one based on the characteristics specified in thesystem specification is not yet realized as an optimization algorithm to be integrated into theproposed workflow, which is left for future work.

6.4 FPGA Architectures for Robotics (FAR) Tool

After discussing the toolchain in Section 6.2 and three particular challenges in Section 6.3, thissection explains the technical details of the implementation and argues why a model-drivenapproach is beneficial. Model-driven engineering [131, 90] offers a systematic and domain-oriented development approach using domain-specific models, model transformation, andcode generation to create comprehensible and maintainable software. The toolchain shownin Figure 6.2, called FPGA Architectures for Robotics (FAR), has two essential components:the model analysis and a set of provided resources and inputs that are used to constructthe system using a template engine. In this case, a logic-less template approach is used withsimple placeholders in the template rather than programmed instructions, simplifying thetemplates’ definition for domain experts. Therefore, all analysis and reasoning must happen
within the tool.
FAR uses and extends FIRM [9] introduced in Chapter 5, and thus also uses a grammar-basedmodeling approach based on attribute grammars [116]. As opposed to other modelingapproaches, grammars describe trees rather than models comprised of arbitrarily structuredelements. This approach was used to derive all required information to generate the con-verters for individual messages. For FAR, the middleware-based interfaces generation is alsoused, and the approach is extended to the generation of the entire system [25]. Thus, theanalysis must be able to derive all relevant information for the creation from the system

specification (e.g., in Listing 6.1) and the provided static resources. Attribute grammars arean approach to computing semantic properties of a language (or, in this case, a model) in adeclarative and formalized way. In this case, the concept of higher-order attributes [120] isused, which additionally allows the computed properties to be entire new artifacts. For this,
relational reference attribute grammars [33, 121] are employed, which allow efficient linking oftree elements with cross-tree relations.

115

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

The three challenges identified in Section 6.1 are used to illustrate why such a model-basedapproach is a necessary and adequate solution to generate hardware/software architec-tures.

6.4.1 Tailored Information using Intermediate Representations

Since a significant target of the proposed system is to have concise specifications (CH2), mostrequired information to construct a complete system is only included implicitly. However,the employed template engine needs all information explicitly specified; thus, an analysiswith computed attributes on the input model is used. However, doing this transformationin one step is complex and does not allow for reuse (R2) since there are multiple templateconfigurations to be created. Therefore, multiple intermediate representations are employed,i.e., models based on reference attribute grammars obtained using model transformationusing higher-order attributes.
One example is an extended system specification model. As suggested in Section 6.3.1, tokeep the input specification concise and the implementation efficient, signals connectingmessages can be filtered using include and exclude hints. This is a shorthand for thespecification of all required signals, which is only possible because the contents and nestingsof message types are analyzed. In the full system specification, the inclusion hints are expandedto contain a (potentially long) list of all individual fields to be included.

6.4.2 Simplifying Runtime Computation

The computation of the length of the message was already highlighted in Listing 6.5. Itconsists of two main functions used in a recursive process following the nested structure ofa message definition. The first benefit of the chosen approach is that the algorithm can besimplified when considering the intermediate message representation from [9], which nolonger contains fixed-length arrays and fewer nested messages, which have been flattenedwhenever possible. This removes the else branch in lines Line 11 to Line 13 of the algorithmshown in Listing 6.5 and reduces the nesting depth of the function calls. Secondly, since thesignal data required in the algorithm are available at different times, function calls have to beinlined depending on the message type. So, again, type analysis is required. Finally, the signalsrequired by the algorithm must be connected, which requires a data flow analysis, which canbe performed using the attribute grammar approach[132]. Additionally, optimization can beapplied if signals are known at compile time, e.g., when signals are not connected.

6.4.3 Benefits of Model Analysis in the Development Lifecycle

In addition to the analysis previously mentioned and optimization steps, using a model-based, attribute grammar analysis approach allows for further potential analysis improvingperformance at development time, compile time, and runtime. During development, theconstruction and verification of the system model can be aided by static analysis, aidingthe developer with syntactic and semantic checks, code completion and suggestions, andrefactoring support. During compile time, knowledge of the entire system can help withthe generation of optimized code beyond the abilities of the FPGA compiler toolchain or

116

6.4 FPGA Architectures for Robotics (FAR) Tool

optimizations for better resource utilization. One example of runtime benefits is the use ofWCET analysis to ensure real-time guarantees in combination with Listing 6.5 to adapt thescheduling scheme dynamically, knowing the time left for the accelerator.

6.4.4 Details of the Model Analysis

The system specification is centered around the user perspective, as it includes characteristicsa non-FPGA expert would use to describe the desired system, such as the accelerators ormiddleware-specific desired interfaces. The first thing to present is the grammar used torepresent its structure, shown in Listing 6.6. All the characteristics that can be included asinput are explicitly defined, as well as their relations. All elements followed with an asterisk *(e.g., Block) represent lists, meaning there can bemultiple of them. Its visual representation asa UML class diagram is shown in Figure 6.5a, depicting classes (an object or a set of objects thatshare a common structure and behavior) and their relations. This is an abstract representationof the system specification, and a more specific representation can be obtained by visualizingthe AST that is obtained from a concrete system specification. It depicts an object (modelelements representing instances of a class or of classes) diagram, representing all instancesand their relations. Figure 6.6 depicts the AST for the example shown in Figure 6.1, usingas input Listing 6.1. It can be seen that it has the three instances of block, representing theaccelerator and both message-dependent components with their respective characteristics(e.g., middleware, type, where it outputs connects to). Having an AST representation likethis is beneficial because it allows one to loop through all the objects, simplifying the codegeneration process.
The template configuration, which are the generated artifacts from the model analysis in Fig-ure 6.2, include all low-level and FPGA-related specifications. All this information has to be
derived from the available information provided by the systems specification. As mentionedpreviously, doing this transformation in one step is complex, so a new grammar (Figure 6.5b)that fits the structure of the template configuration is required. This new structure serves asthe intermediate representation of the extended system’s model, containing the required infor-mation and fields for the different artifacts that will be generated in later steps of the workflow.The differences between these two grammars can be seen in Figure 6.5, one focusing on theuser’s perspective and the other one on the low-level details, which are derived from the for-mer one. A snippet of the template configuration containing the derived information obtainedwith the model analysis for the components generated with FIRM is shown in Listing 6.7.Here, there is a further string manipulation based on themessage specification’s name used togenerate the artifact to instantiate these components (TCL script in this case). Three differentaspects can be highlighted for the message-dependend components. The first one concernsthe type of converter, either for subscribers (AXIS to message) or publishers (message toAXIS). Then is the message type as defined by the middleware (nameMW). These two are theinput parameter needed by FIRM to generate the VHDL artifacts. Lastly, nameBD representsthe identifier used in a block design to instantiate each message-dependent component.
Having the system model represented as an AST is advantageous as it is possible to traverseit easily to obtain all the information that the template engine needs to generate the desiredartifacts and do further manipulations, as highlighted in the example above. The analysisperformed concerns concretely the transformation from the system specification (Figure 6.5a)to the template configuration (Figure 6.5b), which is done with attributes.

117

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

1 Conf ig : : = Pro jec t Acce lera tor* Block * ;2 Pro jec t : : = <Name> <fpgaPart > ;
3 Acce lera tor : : = <Name> <Sources> <Type> In te r f a ce ;
4 I n t e r f a ce : : = Input : In ter faceType* Output : In ter faceType * ;5 In ter faceType : : = <Middleware> <Message> Inc lude : S i gna l s * Exclude : S i gna l s * ;6 Block : : = <Name> Type <DataType> Outgoing * ;7 Type : : = <Middleware> <Mode> <Acce lerator > <Source > ;
8 Outgoing : : = <Name> Inc lude : S i gna l s * Exclude : S i gna l s * ;9 S i gna l s : : = <Name> ;

Listing 6.6: System specification’s grammar

InterfaceType

Middleware
Message

Accelerator

Name
Sources
Type

Config

Block

Name
Message

Outgoing

Name

Type

Middleware
Mode
Accelerator
Source

Signals

Name

Project

Name
fpgaPart

Interface

Include

*

Exclude

*

1

1
*

*

1

*

Include

*

Exclude

*

Input

*

Output

*

(a) UML representation of the systemspecification’s grammar

BlockAcceleratorType

Name
SourcePath
Target

Project

Name

InterfaceType

Middleware
Message

Platform

Board
Part
Zynq
UltraScale

ConverterType

nameBlockDiagram
nameMessageMiddleware

Connection

From
To

Converter Block

BlockConverterType

Name
Type
ID

Interface

Signals

Name
Type
Bits
AXIS

ConfigDerived

1

1

Include

*

Exclude

*

Publishers

*

Subscribers

*

Publisher

*

Subscriber

*

Accelerator

*

Input

*

Output

*

1 *
*

*

(b) UML representation of the derivedsystem specification’s grammar
Figure 6.5: UML representations of the system specification ASTs

Config

Project

Name = QuaternionToEuler

Platform

Board = PYNQ-Z1
Part = xc7z020clg400-1
Zynq = true
UltraScale = false

Accelerator

Name = QuaternionToEuler_type
Type = HLS
Sources = QuaternionToEuler/QuaternionToEuler.cpp

Interface

InterfaceType

Message = geometry_msgs/Quaternion
Middleware = ROS

InterfaceType

Message = geometry_msgs/Point
Middleware = ROS

Block

Name = QuaternionToEuler_sub
DataType = geometry_msgs/Quaternion

Type

Middleware = ROS
Mode = subscriber

Outgoing

Name = QuaternionToEulerConverter

Block

Name = QuaternionToEuler_pub
DataType = geometry_msgs/Point

Type

Middleware = ROS
Mode = publisher

Block

Name = QuaternionToEulerConverter

Type

Mode = QuaternionToEuler_type

Outgoing

Name = QuaternionToEuler_pub

Project
Accelerator[0] Block[0] Block[1] Block[2]

Platform Interface

Input[0] Output[0]

Type Outgoing[0] Type
Type Outgoing[0]

Figure 6.6: Quaternion to Euler’s AST.

118

6.4 FPGA Architectures for Robotics (FAR) Tool

1 Converters :
2 AXIS_to_msg :
3 − nameBD : AXIS_to_geometry_msgs_Quaternion
4 nameMW: geometry_msgs / Quaternion
5 msg_to_AXIS :
6 − nameBD : geometry_msgs_Point_to_AXIS
7 nameMW: geometry_msgs / Point

Listing 6.7: Derived configuration file (converters part)

An example of a data-flow attribute to obtain the output interfaces of the specified ac-celerators is shown in Listing 6.8. The getInterfaceOutput() attribute is used for everyaccelerator in the AST from the system specification to obtain the information and build theAST for the template configuration with the derived information. Internally, it loops through allthe different interface types (output in this case). Line 6 and Line 7 in Listing 6.8 show how themiddleware-related information is obtained. The getVhdlMessage() attribute (Line 8), takenfrom FIRM, is used to retrieve all the low-level signals for the message specification. Lastly,the signals are filtered with filterIncluded() (Line 12) and filterExcluded() (Line 15)attributes, based on the include and exclude lists from the system specification. Here it isalso evident the advantages of the use of RAG, allowing to retrieve and manipulate infor-mation from complex data structures in a straightforward manner by combining multipleattributes.
Another example of the model analysis is how to derive the connections of all blocks. The
system specification only defines on a high level which variables from the middleware message
specification are to be used from one block to another. However, the low-level signals are

1 syn L is tE lement Acce lera tor . get Inter faceOutput () {
2 L is tE lement outputs = new ListE lement () ;
3
4 fo r (In ter faceType otype : ge t I n te r f a ce () . getOutputL is t ()) {
5 MappingElement out = new MappingElement () ;
6 out . put (" middleware " , otype . getMiddleware ())
7 . put ("message " , otype . getMessage ()) ;
8 VhdlMessage parsed = conta in ingConf ig () . getVHDLParsedMsg (otype .getMessage ()) . getMsgToVhdl () . getVhdlMessage () ;
9 i f (otype . ge t I n c l udeL i s t () . getNumChild () == 0 && otype .ge tExc ludeL i s t () . getNumChild () == 0) {
10 out . put (" inc lude " , parsed . ge t L i s tMsg f i e l d s (parsed) .toL is tE lement ()) ;
11 } e l se i f (otype . ge t I n c l udeL i s t () . getNumChild () > 0) {
12 out . put (" inc lude " , parsed . ge t L i s tMsg f i e l d s (parsed) .f i l t e r I n c l u d ed (otype . ge t I n c l udeL i s t ()) . toL is tE lement ()) ;
13 }
14 i f (otype . ge tExc ludeL i s t () . getNumChild () > 0)
15 out . put (" inc lude " , parsed . ge t L i s tMsg f i e l d s (parsed) .f i l t e r E x c l uded (otype . ge tExc ludeL i s t ()) . toL is tE lement ()) ;
16 outputs . add (out) ;
17 }
18 return outputs ;
19 }

Listing 6.8: Attribute to obtain output interfaces for specified accelerators

119

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

needed for the template configuration and further on the corresponding artifact. Followinga similar approach as the one shown in Listing 6.8, the explicitly defined elements of the
message specification are obtained and with the help of the getVhdlMessage() attribute, thecorresponding signals (according to their datatype) are derived. Once that list is generated,further manipulation has to be performed to format the strings accordingly in the template
configuration. A snippet of this is shown in Listing 6.9. On the one hand, it can be seen (fromLine 2 to Line 9) the expected signal. Note that here it is also included which component is thesource and which one is the destination, as well as its entity’s port name. On the other hand,as the destination block has been defined as HLS, its corresponding signals are deduced,namely start and done. The clock and reset signals are also included. All these signals arecompletely transparent for the user, who might not even be aware of them, simplifying theuse of FPGAs for non-experts.

6.5 Evaluation

The fulfillment of the requirements and how the challenges are solved with the contributionslisted in Section 6.1 are analyzed below, through four different use cases.

6.5.1 Quaternion to Euler

This use case addresses the challenge of obtaining all the information (explicit and implicit)from the system specification (CH1). Listing 6.1 shows that with only 31 lines of code (withoutcomments and empty spaces for better formatting), the system depicted in Figure 6.1 can begenerated and deployed. It can be seen that the input and output signals of the Quaternion to
Euler Converter have not been individually specified. They have been defined by their messagetype (Line 15 and Line 18 in Listing 6.1). This means that all the signals that constitute suchmessages are generated (CH3). Even though they have not been explicitly defined, they arederived by analyzing the message type. The information derived (template configuration) also

1 Connections :
2 − from : QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion / x_out
3 to : QuaternionToEulerConverter / x _ in
4 − from : QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion / y_out
5 to : QuaternionToEulerConverter / y _ i n
6 − from : QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion / z_out
7 to : QuaternionToEulerConverter / z _ i n
8 − from : QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion / w_out
9 to : QuaternionToEulerConverter / w_in
10 − from : QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion / s t a r t
11 to : QuaternionToEulerConverter / ap_s ta r t
12 − from : QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion /done
13 to : QuaternionToEulerConverter / ap_done
14 − from : QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion / c l k
15 to : processing_system7_0 / FCLK_CLK0
16 − from : QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion / r s t
17 to : rst_ps7_0_100M / per iphera l _aresetn

Listing 6.9: Input configuration file (connections part)

120

6.5 Evaluation

includes the integration of the components shown in Figure 6.1 to the PS via DMA, whichis where native ROS is running to communicate with external nodes. Additionally, a wizardis provided to avoid manually writing the system specification but generate it interactively.This further reduces the possibility of making mistakes in such an error-prone process. Thesubscriber and publisher take 35 and 28 clock cycles, respectively. The Quaternion to EulerConverter takes 373 clock cycles. Therefore, the interfaces are not an overhead with respectto the time it takes to perform the computation (8%, 6%, and 86%, respectively). Table 6.1shows the speedup obtained with the Quaternion to Euler conversion in hardware withrespect to software running on the PS.

6.5.2 Image Processing

An image processing use case consisting of pipelined functions (i.e., RGB to Grayscale, Down-scaling, and Integral computation) was generated. Listing 6.4 shows a snippet of the system
specification used, defining the interfaces for the accelerators (CH3), which are targeted to bein HLS. It also includes which elements of each interface are connected to where. Table 6.1shows the execution time of each function. They take images with an input resolution of1920x1080 (full HD) scaled down to 640x480. A speedup of 12.9x, 18.4x, and 10.2x, re-spectively, was achieved. In this case, the length of the images (and therefore the resultingAXIS frame) can change. Therefore, the frame length is dynamically computed, as shownin Figure 6.3. The component to compute it is obtained following the algorithm shown inListing 6.5, and it only consumes 48 LUTs, as it is a purely combinational logic. In this case,the sensor_msgs/Image does not contain nested arrays or messages, so there is no need tobuffer any signals to wait for their sizes signals.

6.5.3 Multi-type Messages

A system consisting of multiple converters for different types of messages was generated. Thedifferent message-specification were chosen to have different lengths and datatypes, namely
sensor_msgs/Image, sensor_msgs/LaserScan and geometry_msgs/TwistStamped which resultsin different transfer times (cf., Section 4.3). Moreover, they also have different frequencies.Each set of converters (one publisher and one subscriber for each type of message) had apass-through component in between (considered as the accelerator). This use case aims toevaluate the use of individual callback queues combined with the scheduling as proposed inSection 6.3.3. On the software side, three different callback queues were set. They received

Table 6.1: Execution time of hardware accelerated functions.
Function Software∗[ms] Hardware+ [ms] Speedup

Quaternion to Euler 0.012884 0.003730 3.45Gray Scale Conversion 801.45 62.20 12.9Scale Down Nearest 381.95 20.73 18.4Integral 212.22 20.73 10.2Robotic Arm Kinematics 0.017 0.008 2.12
∗Cortex-A9 running at 666 MHz — +HLS IPs running at 100 MHz

121

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

three types of ROS messages with different lengths at different frequencies. Depending onthe dynamically changing priority list of the LRU scheduler, transactions between PS to PLoccurred. On the hardware side, its counterpart (presented in Chapter 4) was used. Thisuse case proved the feasibility of having one callback queue per message, which wouldcorrespond to each accelerator. The resource utilization of the hardware implementationhas already been analyzed in Figure 4.5, showing a linear growth with respect to the numberof inputs (requests from publishers).

6.5.4 Robotic Arm Position Estimation

A system to compute the forward kinematics of a 7 Degrees of Freedom (DoF) robotics arm3
was generated. This sort of computation becomes relatively complex and proportional to theamount of DoF. This is particularly important when performing motion control by generatinga trajectory without colliding with objects. All specifications, inputs, and outputs that describethe robotics arm are defined in a ROSmessage specification. The names used for this evaluationare the ones from that specification. The accelerator is based on the desired and measuredjoint state values (q and q_d), and the measured and desired end-effector spatial matrices(O_T_EE and O_T_EE_d), read from the franka_msgs/FrankaState message. The outputsare the pose of each joint as fourteen spatial matrices (T1 to T7 and T1_d to T7_d, based on qand q_d), and the medium square error (T_mse) of the calculated spatial matrices concerning
O_T_EE and O_T_EE_d. The reason why the LoC for the Generated Artifacts (Table 6.2) is solarge is due to the extend of the franka_msgs/FrankaState message. However, this is nota concern when writing the system specification as it only requires including the elementsthat contain the joint states as the input interface of the HLS accelerator to compute thekinematic equations. Table 6.1 shows a speedup of 2x compared to the software execution,which would be beneficial to perform collision detection by knowing the position of eachjoint (spatial matrices) as soon as possible.

6.5.5 Manual Vs. Generated Deployment

Table 6.2 compares the LoC that are manually written (or generated interactively via thewizard) of the system specification and of all intermediate artifacts for all use cases. Even thoughnot all the artifacts would have to be manually written, the ratio between the LoC of the
system specification and all the intermediate artifacts exemplifies the effort needed to deployeach use case manually with respect to the workflow proposed in this work.
The numbers are not an exact representation as they are affected by the message specifi-cations used by each use case and whether all signals of that message are used. However,the order of magnitude makes a difference. On the one hand, the first three use cases showone order of magnitude ratio, as the messages used are not very long. On the other hand,the robotics arm use case relies on a quite large and complex message specification, whichimplies the artifacts for the message-dependent components are pretty extensive. Besides,not all elements from that message specification are part of the computation done by theaccelerator, but they must be part of the converter because the message is always broad-casted entirely. However, the system specification for this use case is the second smallest one

3https://frankaemika.github.io

122

https://frankaemika.github.io

6.6 Wizard

Table 6.2: Lines of code of input vs. generated artifacts
Use Case Input Generated Artifacts Generated

to Input
Ratio

SystemSpecification TemplateConfiguration Acc. Wrappersand Scripts Convertersand Scripts SystemComponents CombinedArtifactsQuaternion to Euler 35 99 22 459 102 682 19.48Image Processing 83 136 34 692 107 969 11.67Multi Accelerator System 143 322 34 2320 172 1848 19.91Robotic Arm 45 1007 22 16540 307 17876 397.24

thanks to the include and exclude options, resulting in two orders of magnitude difference (interms of LoC) compared to the total artifacts.
Themore complex the project becomes (more accelerators and converters andmore complexmessage specifications), the higher the effort to write every component manually, which doesnot mean an increment in the effort to write the system specification.

6.6 Wizard

The systems specification for an architecture like the one shown in Figure 6.1 can be writtenmanually as shown in Listing 6.1. The process needs to bemeticulous about the special formatand indentation required by the YAML format. However, for larger andmore complex systemswith multiple accelerators involved, writing it manually becomes error-prone. Therefore,an interactive wizard has been included in FAR to aid the user in generating the system

specification. It is based on the grammar shown in Listing 6.6. Hence, interactively, it traversesit and builds dynamically through the command line a resulting AST. Once all the elementsand characteristics of the desired system have been entered, a YAML file is generated, whichcan be used as the input for FAR shown in Figure 6.2. The block diagram in Figure 6.7 showsan overview of the procedure, which prompts the corresponding elements according tothe different elements to be entered. For example, the type of the accelerator suggests thethree currently supported options, namely VHDL, HLS, or software. One last characteristic ofthe wizard is that it not only helps to create a new system specification from scratch, but it ispossible to load an existing one for further work from within the wizard.
Implementing such a command line tool is not complex as it is a matter of traversing theAST correctly (knowing whether a branch represents a list or not, based on its grammar),which is quite simple thanks to relying on RAGs, as shown previously. However, a wizard viacommand line might be a familiar tool for a computer scientist, but a graphical approachmight be a more general solution, which is left for future work.

123

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

Start

Show Main Menu

Read Input

View Current
State

Show config

Add new Part
Show New
Part Menu

”2”

Project Read Name and
FPGA Part

”1”

Compute
FPGA Family

Accelerator
Read Name
and Sources

”2”

Type

VHDL Set VHDL

HLS Set HLS

SW Set SW

Input or Output
Set Middleware
and msg type

Set Include or
Exclude Signals

Block Read Name Set Middleware

Set Outgoing
and msg type

Import Config Import ConfigSave Config

Save Config

”1”

Exit

Input/Output

Process

Decision

Legend

Figure 6.7: Workflow of interactive tool to create a system specification interactively.

6.7 Adaptability and Extendability

Even though the evaluation in Section 4.3 showed that the proposed architecture (Figure 3.1)can be scaled up with the Manager thanks to the proposed schedulers in Chapter 4, therecould be cases where other components are a better option. For example, NoCs have beenproposed [133] and studied for large scalable systems [134, 135, 136], so they are a good fitto replace the Manager. Having a NoC in the system means that the Manager is replaced, andtherefore, there would be no need for the proposed schedulers.
Replacing or adding components requires some changes to adapt mainly FAR (Section 6.4)to new requirements and extend it to fulfill them by generating these new components andintegrating them into the existing architecture shown before. Considering the case wherea NoC is the chosen component to replace the Manager with, the first thing to modify isthe grammar for the derived system’s specification (Figure 6.5b), which needs to reflect thenew component of the system that is to be generated. This grammar has to be extended tocontain all the derived information via model analysis regarding the characteristics of theNoC to generate its components (e.g., number of nodes, topology, routing algorithm) thatare most fitted for the specified system. Note that the grammar for the system’s specification(Figure 6.5a), which is used for FAR’s input (written by the user), does not need to be modified

124

6.7 Adaptability and Extendability

as this extension of the system is transparent to the end-user.
Figure 6.8 shows the class diagram of the extended grammar for the system to include aNoC. The nodes in the resulting AST corresponding to the extended grammar representthe characteristics of the NoC. The topology is the first thing to define, which will dictatethe routing algorithm for its routers. Each router will have an (X , Y) coordinate to define itsposition if amesh topology is chosen, for example. Besides, connection ports to other routersand a PE for each are also defined. Lastly, the source of the PE is expected, similarly to thesource of the accelerators as explained previously.
Once the grammar has been extended, the details of the system have to be derived withmodel analysis. To do this, some attributes can be re-used. For example, to count how manyaccelerators (which for the NoC determines the total number of routers) are specified. Eachaccelerator acts as the PE for each router. Then this information will then be the input for a
new attribute to determine the dimension (X , Y) of the NoC. Lastly, new attributes are requiredto analyze each accelerator based on potential given characteristics (i.e., WCET) to map themonto the NoC. This can also lead to specific NoC-based attributes to perform DSE to obtain theoptimal position for each accelerator in the NoC. Once the position of each accelerator in thegiven topology has been established, the connections to its router follow. In this case, as thetarget of this dissertation is robotics applications, the interfaces will be generated with FIRM,

ConverterType

nameBlockDiagram
nameMessageMiddleware

RouterCoordinate

X
Y

BlockAcceleratorType

Name
SourcePath
Target

NoC

Topology

InterfaceType

Middleware
Message

Signals

Name
Type
Bits
AXIS

NoCPE

Source

Config

Block

BlockConverterType

Name
Type
ID

Interface

Project

Name

Platform

Board
Part
Zynq
UltraScale

Connection

From
To

RouterInterfaces

Port

Type
Input
Output

Router

Algorithm

Converter

1

*

Include

*

Exclude

*

PEInterface

1

1
**

*
1

Publisher

*

Subscriber

*

Accelerator

*

Input

*

Output

*

1

North

1

South

1

East

1

West

1

PE

1

1
1

1

Publishers

*

Subscribers

*

Existing Nodes

Extended Nodes

Figure 6.8: Adapted grammar including a Network-on-Chip.

125

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

following the methodology presented earlier in this chapter. However, this is not mandatory,as the methodology described here can also be used for non-robotics applications or othermiddlewares besides ROS. In those cases, FIRM will have to be adapted.
Once themodel analysis has been done, all the information to deploy theNoC and the positionof the accelerators have been determined. This information is used to extend the templateconfiguration. Therefore, new templates are required to use this derived information to buildthe component as a hardware IP for the NoC. The advantage of generating a custom NoC isthat the port’s entity can be generated in terms of the number of accelerators (and routers)for each application. Then a similar outcome to the one shown in Listing 6.9 follows, which isto deploy this new component to replace theManager. Concerning the automatic deployment,the instantiation of the Manager has to be replaced to instantiate the autogenerated NoC inthe script that creates the project with all the components defined to constitute a roboticssystem. There is one detail to keep in mind. The Manager has been designed to have onemaster and one slave AXIS port to connect them to the DMA. In this example case of extendingthe system to contain a NoC, the first approach is to use any of its nodes for communicatingwith the DMA. Traditionally in a mesh topology, each router has four ports to communicatewith other routers (north, south, east and west). The advantages in this case relying on theMDE technique is that all edge routers which do not need all communication ports do notneed to leave unconnected signals but rather generate tailored routers depending on theircoordinate (X , Y) dictating which ports they need. It is left for future work to explore how toimprove this, either at the algorithm level for the routers or the mapping part.

6.8 Summary

This chapter focuses on the automatic generation of holistic hardware/software architecturesfor FPGA-based robotics systems with the FAR tool. It uses and extends FIRM, presentedin Chapter 5, meaning that robotics middlewares and their specifications are a central part ofthe expected outcome. One main challenge is reducing the effort to realize said architectures.Thus, the input of the proposed workflow used to specify the system must be concise yetexpressive enough that it explicitly contains all characteristics of the desired systems orimplicit in a way that they can be deduced. Consequently, the core of this chapter focuses onthe data-type and data-flow analysis required to obtain all the information to generate thedifferent artifacts for every architecture.
Following the MDE approach, details about the grammar used for the system specificationas well as for the derived system’s model are given to understand further the advantagesof RAGs for hardware-centric code generation and how the analysis is done via attributes.An evaluation is performed with heterogeneous use cases to highlight the benefits of theproposed techniques, showing in terms of LoC the differences in orders of magnitude thatwould represent deploying these large and complex systems manually compared to usingFIRM in combination with FAR.
Two points are left for future work. On the one hand, one challenge concerning the datatransmission between PS and PL with ROS involved is addressed. The solution based onmultiple callback queues is proposed, which can be combined with the different schedulersproposed in Chapter 3. However, the integration of an algorithm to select which schedulingalgorithm is the most fitted one for every system to be generated is left for future work. On

126

6.8 Summary

the other hand, the system specification written in YAML requires following strict rules relatedto the language it is written. This is no problem when the system does not include many
message-dependent components or accelerators. However, it becomes pretty error-prone,which would decrement the benefits gained by generating the rest of the system automaticallyif the input of the proposed tool FAR introduces complexity into the process. Even thougha command-line tool is included in FAR, a Graphical User Interface (GUI)-based generationof system specifications is left for future work to research aspects on the grammar-basedgeneration of system specifications from a GUI and using the features of attribute grammars(static analysis) to aid the user in the process.

127

7 Conclusion

The current trend towards increasing heterogeneity in modern robotics platforms andapplications has highlighted the need for computational solutions that can meet the strictreal-time constraints imposed by these systems. The standard embedded CPUs typically usedin robots have limitations in processing the vast amounts of data and complex algorithmsthat are increasingly common in these systems. As a result, there is a considerable need tofind alternative solutions for PEs that can fulfill these real-time demands effectively.
On the one hand, GPUs have been widely adopted as a solution for PEs in many applications,including robotics. However, like any technology, GPUs have both benefits and drawbacks thatmust be considered when evaluating their suitability for a particular application. GPUs have amore straightforward programming model compared to other options, such as FPGAs. Thismakes GPUs more accessible for software developers and reduces the time and resourcesrequired to develop and implement solutions. In terms of high performance, GPUs aredesigned to perform parallel computations on large amounts of data, making them ideal forapplications that require high-performance computation. In addition, GPUs often have morememory bandwidth and computing power than traditional CPUs, allowing for more efficientprocessing of large amounts of data. Lastly, GPUs are widely used in many applications,including computer graphics and scientific computing, making them a well-established andwidely supported technology. This provides a large pool of expertise and resources that canbe leveraged to develop and implement solutions. In summary, GPUs have many benefitsthat make them a suitable solution for some robotics applications. However, their limitationsand drawbacks must also be considered when evaluating their suitability for a particularapplication. GPUs are designed for specific functionalities, making it difficult to adapt to theunique and constantly evolving requirements of robotics systems. Additionally, they do notprovide the level of customization and adaptability needed in robotics applications. As a result,GPUs may not be the best solution for processing elements in all robotics application cases,especially when dealing with complex algorithms and large amounts of data that requirereal-time processing. It is essential to carefully consider the application’s requirements andchoose a solution capable of meeting those requirements while balancing the benefits anddrawbacks of the available options.
On the other hand, FPGAs are an alternative solution for PEs in robotics and other applicationsalike. As with GPUs, FPGAs have their own set of benefits and drawbacks that must beconsidered when evaluating their suitability for a particular application. They are highlyversatile, providing almost no limitations in terms of functionality. This makes them ideal forapplications that require advanced capabilities and specialized functions. FPGAs are capableof computing multiple things (i.e., processing data from sensors, algorithms) concurrently,making them well-suited for applications that require real-time processing and low latency.

129

7 Conclusion

Lastly, they are highly efficient, with low power consumption, making them well-suited forapplications that are constrained by size and power requirements, such as mobile andembedded systems. However, FPGAs have limitations in terms of programmability comparedto other options, such as GPUs. This can result in increased development time. Additionally,special low-level and hardware-related skills knowledge are required to design FPGA-basedsystems that might not be in the skill set of all development teams, especially in robotics.Hence, this makes it more challenging to develop and implement solutions. Lastly, thedebugging and verification of FPGA-based designs can be time-consuming and complex,requiring specialized tools and techniques. In summary, FPGAs offer a high degree of versatilityand processing capability, making them a suitable solution for many robotics applications.However, their programmability and specialized skill requirements can make them morechallenging to implement and maintain than other options, such as GPUs. Therefore, itis important to consider the application’s requirements carefully, as well as the availableresources and expertise within the development team when evaluating the suitability ofFPGAs for a particular application.
Considering this, FPGAs have been proposed as a suitable solution due to their capability tohandle complex algorithms and perform concurrent computing. They are the chosen PEsin this dissertation. Their use in robotics, however, presents particular technical challenges.The primary obstacle is the difficulty in programming them, which limits their widespreadadoption by the robotics community. Despite this, using FPGAs can offer significant benefitsin robotics, as long as they do not make the existing robotics workflow even harder. Hence,this dissertation has undertaken further research to address the challenges associated withprogramming FPGAs and explore their potential benefits in robotics applications. Ultimately,the successful implementation of FPGAs in robotics can significantly advance the state-of-the-art in this field, enabling the development of more advanced and capable robotic systems.
The development of robotic platforms involves expertise from multiple fields, including hard-ware, software, and control systems. Integrating diverse computing systems and componentsinto these platforms further complicates their design and operation. Specialists in each fieldmust focus on their area of expertise to achieve optimal results while complementing eachother in the development process. However, the challenges in integrating these complexand heterogeneous systems into a unified platform still remain. It is essential to providedesigners with simple and efficient tools that allow them to concentrate on their areas ofexpertise to overcome these challenges.
A component-oriented approach is beneficial in designing FPGA-based systems for roboticsapplications because it enables modularity and separation of concerns. This approach allowsdifferent system components to be developed and tested independently, reducing the com-plexity of the overall system and facilitating debugging and maintenance. The modular designalso enables easy replacement and upgrade of individual components without affecting therest of the system. Furthermore, separating concerns fosters specialization, allowing eachcomponent to focus on a specific task, leading to improved performance and increasedreusability. In short, the component-oriented approach leads to more organized, scalable,and maintainable systems.
Therefore, this dissertation proposes a component-oriented approach to simplify FPGA-baseddesign in robotics, to make the process accessible and efficient, and preserve the versatilityand real-time processing capabilities of FPGAs. This approach enables easy integrationinto a system or architecture by utilizing code-generation based on MDE for obtaining

130

components from simple system specifications to automatically obtain and deploy a full FPGA-based robotics application. The methodology is application-independent, and generating newcomponents and systems for further applications is straightforward. Additionally, it closesthe gap in the current state-of-the-art as there have been partial contributions addressingthe use of FPGAs for specific robotics applications. However, a comprehensive examinationof their integration into the field of robotics and holistically considering FPGAs have beenlacking in the literature.
The proposed component-oriented approach aims to simplify the design process of FPGA-based designs for robotics applications. The components are designed to depend on eachother, as their functionalities are complementary, allowing for a more efficient design process.An architecture is proposed to serve as the base for all generated systems. It is crucial forsuccessful Hardware/Software Co-Designs as it includes the essential components neededto exchange data between software and hardware components seamlessly. To ensure theend solution is functional, the base architecture must be versatile and able to accommodatevarious applications, no matter their complexity. Moreover, the architecture is designed tobe scalable and able to adapt to the growing needs of complex systems without requiringexcessive effort for generation and deployment. This property makes it a solid foundationfor integrating FPGAs into robotics systems, especially considering that these systems oftenconsist of multiple, potentially complex components. The architecture is designed to behighly flexible, making it possible to incorporate new components and update existing onesas needed easily. The modular design also enables the reuse of components across differentdesigns, further simplifying the design process and reducing the time and effort requiredfor design implementation. One key component in the base architecture is the scheduler,which handles data transactions between software and hardware components. Severalalgorithms implemented as hardware components are proposed and tested for scalability.This evaluation also helps to analyze each system specification to asses which of theseschedulers would fit best for each application.
Traditional robotics systems are composed of various software applications that are con-nected together through a middleware layer. The middleware serves as the intermediarybetween the different software components, facilitating the exchange of data between themby following pre-defined message protocols. The pre-defined specifications for transmittingdata between software and hardware components must bemapped into additional hardwarecomponents to achieve the seamless integration of FPGAs into traditional robotics systems.The mapping process must ensure that data exchange between hardware and softwarecomponents is seamless and effortless. The generation of these components must alsobe achieved without affecting the design flow of the systems. The entire process must betransparent to the designer. Then, these components act as hardware interfaces that aregenerated based on the pre-defined (message) specifications from robotics middlewares.They translate incoming or outgoing messages from/to the accelerators (where the compu-tation is performed). They are connected to them using either given parts of the messagespecification (i.e., a set of signals representing variables) or a standard streaming interfacesuch as the AXIS for arrays, depending on the needs of the accelerator. Several steps arerequired to obtain these components, which are performed by the proposed tool FIRM basedon the MDE technique, in which models are transformed in iterations. In this case, relyingon models benefits the design of hardware components based on message specification.The specifications can be complex, and manually designing the state machines for the hard-ware interfaces can be cumbersome, particularly with complex specifications. Additionally,a complex robotics system comprises several parts with different message specifications,

131

7 Conclusion

which benefits from automatic code generation. An extensive evaluation is performed tovalidate the correctness of the generated logic for the components obtained by FIRM, as itmust be able to support and generate hardware components for any off-the-shelf or custommessage specification. The evaluation process ensures this. For this dissertation, the mostpopular robotics middleware ROS was used in both current versions, and the evaluationincluded all available public message specifications. The MDE approach simplified the processof extending FIRM when ROS2 was added to the tool. The analysis in terms of the diversity,complexity, and size of these messages proved to be valid to confirm the extensive supportof ROS1 and ROS2 by FIRM.
Once all the components are available, they need to be connected all together. In order todo so, an understanding of the expected system is needed. Besides, the components of thebase architecture are generated depending on the specific needs. For this, data-type anddata-flow analysis is performed on the system specification to derive which are the interfacecomponents that need to be generated with FIRM, which accelerators are present in thedesign, and how all of them interact among each other. Hence, FIRM has been incorporatedinto the FAR toolchain, which only takes a simple system specification as input. Its purposeis to automatically deploy the entire system, making the design process more efficient andstraightforward. FAR system automates the deployment of the design, reducing the timeand effort required for manual deployment. It also provides a convenient way to updateand maintain the system, making it easier to keep the design up to date and ensure optimalperformance. Hence, FAR’s output is the entire generation and deployment process of anFPGA-based robotics application from a concise description of the expected system.
In conclusion, the component-oriented approach proposed in this dissertation provides apractical and scientifically rigorous solution for the design and implementation of FPGA-baseddesigns for robotics applications. An overview of this dissertation is shown in Figure 7.1. Themodular architecture, the hardware interfaces generator FIRM, and the toolchain FAR providea comprehensive design process that enables the development of complex FPGA-baseddesigns in a more straightforward and efficient manner. The component-oriented approachhas the potential to advance the state-of-the-art in FPGA-based designs significantly forrobotics applications and to promote their wider adoption and use by specialists withoutmuch FPGA knowledge.

Future work

The focus of this dissertation was to investigate the seamless integration of FPGAs intorobotics systems. This integration was achieved by developing the FIRM tool and the FARtoolchain. The results of the study indicate that a significant advancement has been made inthis direction. However, there are still opportunities for further improvement and open topicsthat can be addressed in future work. These directions include: (1) replacing the schedulerand modeling a NoC as part of the modular architecture, (2) simplifying the design process ofinterface templates, and (3) modeling the behavior of accelerators with a tool, also capableof optimizing resource utilization and of being included as part of FAR. By addressing thesepoints, future work has the potential to enhance the integration of FPGAs into roboticssystems, resulting in even more efficient and effective solutions.

132

System Specification

FAR

JastAdd Mustache

FIRM

JastAdd Mustache

FPGA-based Robotics System

HW/SW

Scheduler

Accelerators Base
Architecture

Middleware

Interfaces

Figure 7.1: Dissertation overview

Analysis and Code Generation for NoCs: Hardware/Software Co-Design was proposedin this dissertation with a component that integrates a scheduler (with several algorithmsimplemented to choose from), which might be replaced with a NoC. The goal is to takeadvantage of model analysis to generate the input and output ports of the NoC in a tailoredway for each specific application instead of a generic solution which can include unusedresources when deployed to the FPGA. This can also impact the routing algorithm, whichcan be modeled accordingly. The research can explore how the code can be tailored foreach specific router in each coordinate of the NoC and how the links between routers areaffected. Similarly to the schedulers proposed in this dissertation, it can be evaluated whichNoC topology and routing algorithm would fit best for each application.

Model-based Templates Generation from Specifications: The process of designing thetemplates for the interface components is time-consuming and arduous and can be improved.Currently, the templates are created using message examples, which can become difficult todebug as they grow larger, leading to increased development time. To simplify this process,future work could focus on generating templates based on message specification rules andprotocols. The research would explore what modeling techniques can be used and howthey can be integrated into the existing tools, FIRM and toolchain FAR. Even though a newset of templates was created for ROS2 by extending the ones for ROS1, the process waslengthy due to differences in the rules used for serializing/deserializing the messages tooptimize memory usage. This future work would not only simplify the process of creatingtemplates but also make it easier to extend the tools to new communication specifications,like protobuf, which requires a different set of templates due to differences in the rules usedfor serializing/deserializing messages.

133

7 Conclusion

Model-base Design of Hardware Accelerators: The current limitation of FAR is the require-ment of pre-existing accelerators. In their absence, FAR generates placeholder wrappersderived from data-type and data-flow analysis of the system specification. Future researchmay address this limitation by focusing on modeling accelerators from a behavioral perspec-tive while considering resource utilization restrictions. The ultimate goal is to integrate theseaccelerators into the design process of FAR, leading to the optimization of resource utilizationand making it beneficial for low-power applications.

134

Bibliography
[1] Guang-Zhong Yang et al. “The Grand Challenges of Science Robotics”. Science robotics3.14 (2018), eaar7650. DOI: 10.1126/scirobotics.aar7650.
[2] Arkadeep Kumar. “Methods and Materials for Smart Manufacturing: Additive Manu-facturing, Internet of Things, Flexible Sensors and Soft Robotics”. Manufacturing Letters15 (2018), pages 122–125. DOI: 10.1016/j.mfglet.2017.12.014.
[3] Ana Correia Simões, António Lucas Soares, and Ana Cristina Barros. “Factors Influenc-ing the Intention ofManagers to Adopt Collaborative Robots (Cobots) inManufacturingOrganizations”. Engineering and Technology Management 57 (2020), page 101574. DOI:

10.1016/j.jengtecman.2020.101574.
[4] Fernando Soto and Robert Chrostowski. “Frontiers of Medical Micro/Nanorobotics: InVivo Applications and Commercialization Perspectives Toward Clinical Uses”. Frontiers

in Bioengineering and Biotechnology 6 (2018), page 170. DOI: 10.3389/fbioe.2018.
00170.

[5] UMRaoMogili and BBVLDeepak. “Review on Application of Drone Systems in PrecisionAgriculture”. Procedia Computer Science 133 (2018), pages 502–509. DOI: 10.1016/j.
procs.2018.07.063.

[6] Mary B Alatise and Gerhard P Hancke. “A Review on Challenges of AutonomousMobileRobot and Sensor Fusion Methods”. IEEE Access 8 (2020), pages 39830–39846. DOI:
10.1109/ACCESS.2020.2975643.

[7] Kaveh Azadeh, René De Koster, and Debjit Roy. “Robotized and Automated Ware-house Systems: Review and Recent Developments”. Transportation Science 53.4 (2019),pages 917–945. DOI: 10.2139/ssrn.2977779.
[8] Abadi Martin et al. “TensorFlow: A System for Large-Scale Machine Learning”. Sympo-

sium on Operating Systems Design and Implementation (OSDI). 2016, pages 265–283.DOI: 10.5281/zenodo.4724125.
[9] Ariel Podlubne, Johannes Mey, René Schöne, Uwe Aßmann, and Diana Göhringer.“Model-Based Approach for Automatic Generation of Hardware Architectures forRobotics”. IEEE Access 9 (2021), pages 140921–140937. DOI: 10.1109/ACCESS.2021.

3119061.
[10] Yasuhiro Nitta, Sou Tamura, and Hideki Takase. “A Study on Introducing FPGA to ROSBased Autonomous Driving System”. International Conference on Field Programmable

Technology (FPT). 2018. DOI: 10.1109/FPT.2018.00090.
[11] Ian Kuon and Jonathan Rose. “Measuring the Gap Between FPGAs and ASICs”. Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems 26.2 (2007), pages 203–215. DOI: 10.1109/TCAD.2006.884574.

135

https://doi.org/10.1126/scirobotics.aar7650
https://doi.org/10.1016/j.mfglet.2017.12.014
https://doi.org/10.1016/j.jengtecman.2020.101574
https://doi.org/10.3389/fbioe.2018.00170
https://doi.org/10.3389/fbioe.2018.00170
https://doi.org/10.1016/j.procs.2018.07.063
https://doi.org/10.1016/j.procs.2018.07.063
https://doi.org/10.1109/ACCESS.2020.2975643
https://doi.org/10.2139/ssrn.2977779
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1109/ACCESS.2021.3119061
https://doi.org/10.1109/ACCESS.2021.3119061
https://doi.org/10.1109/FPT.2018.00090
https://doi.org/10.1109/TCAD.2006.884574

Bibliography

[12] Eriko Nurvitadhi, Jaewoong Sim, David Sheffield, Asit Mishra, Srivatsan Krishnan, andDebbie Marr. “Accelerating Recurrent Neural Networks in Analytics Servers: Compar-ison of FPGA, CPU, GPU, and ASIC”. International Conference on Field Programmable
Logic and Applications (FPL). 2016. DOI: 10.1109/FPL.2016.7577314.

[13] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao, Song Han,Yu Wang, and Huazhong Yang. “Angel-Eye: A Complete Design Flow for Mapping CNNonto Embedded FPGA”. Transactions on Computer-Aided Design of Integrated Circuits
and Systems 37.1 (2017), pages 35–47. DOI: 10.1109/TCAD.2017.2705069.

[14] Lester Kalms, Ariel Podlubne, and Diana Göhringer. “HiFlipVX: An Open Source High-Level Synthesis FPGA Library for Image Processing”. International Symposium on Applied

Reconfigurable Computing (ARC). 2019. DOI: 10.1007/978-3-030-17227-5_12.
[15] Jiantao Qiu et al. “Going Deeper with Embedded FPGA Platform for ConvolutionalNeural Network”. International Symposium on Field Programmable Gate Arrays (FPGA).Association for Computing Machinery, 2016, pages 26–35. DOI: 10.1145/2847263.

2847265.
[16] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,Rob Wheeler, and Andrew Y Ng. “ROS: an Open-Source Robot Operating System”.

International Conference on Robotics and Automation (ICRA) - Workshop on Open Source

Software. Kobe, Japan. 2009, page 5.
[17] Lester Kalms, Ariel Podlubne, and Diana Göhringer. “HiFlipVX: An open source high-level synthesis fpga library for image processing”. International Symposium on Applied

Reconfigurable Computing (ARC). Springer. 2019, pages 149–164. DOI: 10.1007/978-
3-030-17227-5_12.

[18] Lester Kalms and Diana Göhringer. “Exploration of OpenCL for FPGAs Using SDAcceland Comparison to GPUs and Multicore CPUs”. International Conference on Field

Programmable Logic and Applications (FPL). IEEE, Sept. 2017. DOI: 10.23919/FPL.
2017.8056847.

[19] Ariel Podlubne and Diana Göhringer. “Reconfigurable Computing Systems as Compo-nent Oriented Designs for Robotics”. International Conference on Field Programmable
Logic and Applications (FPL). 2021, pages 1–4. DOI: 10.1109/FPL53798.2021.00052.

[20] Ariel Podlubne andDianaGöhringer. “Modeling FPGA-based Architectures for RoboticsSystems”. International Conference on Field Programmable Technology (FPT). IEEE, 2022,pages 1–4. DOI: 10.1109/ICFPT56656.2022.9974412.
[21] Ariel Podlubne and Diana Göhringer. “FPGA-ROS: Methodology to Augment the RobotOperating Systemwith FPGA Designs”. International Conference on ReConFigurable Com-

puting and FPGAs (ReConFig). IEEE. 2019, pages 1–5. DOI: 10.1109/ReConFig48160.
2019.8994719.

[22] F. J. Furrer. Future-Proof Software-Systems. Springer, 2019, pages 107–108. DOI: 10.
1007/978-3-658-19938-8_4.

[23] Uwe Aßmann et al. Tactile Internet with Human-in-the-Loop. Elsevier, 2021. Chapter U2:"Human-robot Cohabitation in Industry", pages 41–73. DOI: 10.1016/B978-0-12-
821343-8.00013-7.

[24] Sanjit A. Seshia, Natasha Sharygina, and Stavros Tripakis. “Modeling for Verification”.
Handbook of Model Checking. Edited by Edmund M. Clarke, Thomas A. Henzinger,Helmut Veith, and Roderick Bloem. Cham: Springer International Publishing, 2018,pages 75–105. DOI: 10.1007/978-3-319-10575-8_3.

136

https://doi.org/10.1109/FPL.2016.7577314
https://doi.org/10.1109/TCAD.2017.2705069
https://doi.org/10.1007/978-3-030-17227-5_12
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1007/978-3-030-17227-5_12
https://doi.org/10.1007/978-3-030-17227-5_12
https://doi.org/10.23919/FPL.2017.8056847
https://doi.org/10.23919/FPL.2017.8056847
https://doi.org/10.1109/FPL53798.2021.00052
https://doi.org/10.1109/ICFPT56656.2022.9974412
https://doi.org/10.1109/ReConFig48160.2019.8994719
https://doi.org/10.1109/ReConFig48160.2019.8994719
https://doi.org/10.1007/978-3-658-19938-8_4
https://doi.org/10.1007/978-3-658-19938-8_4
https://doi.org/10.1016/B978-0-12-821343-8.00013-7
https://doi.org/10.1016/B978-0-12-821343-8.00013-7
https://doi.org/10.1007/978-3-319-10575-8_3

[25] Ariel Podlubne, Johannes Mey, Sergio Pertuz, Uwe Aßmann, and Diana Göhringer.“Model-based Generation of Hardware/Software Architectures for Robotics Systems”.
International Conference on Field Programmable Logic and Applications (FPL). IEEE. 2022,pages 1–7. DOI: 10.1109/FPL57034.2022.00034.

[26] Ariel Podlubne, Johannes Mey, Andreas Andreou, Sergio Pertuz, Uwe Aßmann, andDiana Göhringer. “Model-based Generation of Hardware/Software Architectures withHybrid Schedulers for Robotics Systems”. IEEE Transactions on Computers (2023). DOI:
10.1109/TC.2023.3323804.

[27] Ariel Podlubne and Diana Göhringer. “A survey on Adaptive and Parallel Computing inRobotics: Modelling, Methods and Applications”. IEEE Access 11 (2023), pages 53830–53849. DOI: 10.1109/ACCESS.2023.3281190.
[28] Schmidt. “Model-Driven Engineering”. Computer Society, Computer 39.2 (2006), pages 25–31. DOI: 10.1109/MC.2006.58.
[29] Felleisen. “On the Expressive Power of Programming Languages”. Science of Computer

Programming 17.1-3 (1991), pages 35–75. DOI: 10.1007/3-540-52592-0_60.
[30] Andrea Suardi, Eric C Kerrigan, and George A Constantinides. “Fast FPGA PrototypingToolbox for Embedded Optimization”. International Conference on European Control

Conference (ECC). IEEE. 2015, pages 2589–2594. DOI: 10.1109/ECC.2015.7330928.
[31] Alberto Rodrigues da Silva. “Model-Driven Engineering: A Survey Supported by theUnified Conceptual Model”. Computer Languages, Systems and Structures 43 (2015),pages 139–155. DOI: 10.1016/j.cl.2015.06.001.
[32] Amelie Flatt, Arne Langner, and Olof Leps. Model-Driven Development of Akoma Ntoso

Application Profiles: A Conceptual Framework for Model-Based Generation of Xml Sub-

schemas. Springer Nature, 2023. DOI: 10.1007/978-3-031-14132-4.
[33] Görel Hedin. “Reference Attributed Grammars”. Informatica (Slovenia) 24.3 (2000),pages 301–317.
[34] Sven Karol. “An Introduction to Attribute Grammars”. Department of Computer Science.

Technische Universitat Dresden, Germany (2006).
[35] Görel Hedin and EvaMagnusson. “JastAdd: an Aspect-Oriented Compiler ConstructionSystem”. Science of Computer Programming 47.1 (2003), pages 37–58. DOI: 10.1016/

S0167-6423(02)00109-0.
[36] Torbjörn Ekman and Görel Hedin. “The JastAdd Extensible Java Compiler”. International

Conference on Object-Oriented Programming Systems, Languages and Applications. 2007,pages 1–18. DOI: 10.1145/1297027.1297029.
[37] Görel Hedin. “An Introductory Tutorial on JastAdd Attribute Grammars”. International

Summer School on Generative and Transformational Techniques in Software Engineering.Springer. 2009, pages 166–200.
[38] Zishen Wan, Bo Yu, Thomas Yuang Li, Jie Tang, Yuhao Zhu, Yu Wang, Arijit Raychowd-hury, and Shaoshan Liu. “A Survey of FPGA-Based Robotic Computing”. Circuits and

Systems Magazine 21.2 (2021), pages 48–74. DOI: 10.1109/MCAS.2021.3071609.
[39] Minxi Jin and Tsutomu Maruyama. “Fast and Accurate Stereo Vision System on FPGA”.

Transactions on Reconfigurable Technology and Systems (TRETS) 7.1 (2014), pages 1–24.DOI: 10.1145/2567659.

137

https://doi.org/10.1109/FPL57034.2022.00034
https://doi.org/10.1109/TC.2023.3323804
https://doi.org/10.1109/ACCESS.2023.3281190
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1007/3-540-52592-0_60
https://doi.org/10.1109/ECC.2015.7330928
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1007/978-3-031-14132-4
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1109/MCAS.2021.3071609
https://doi.org/10.1145/2567659

Bibliography

[40] Wenqiang Wang, Jing Yan, Ningyi Xu, Yu Wang, and Feng-Hsiung Hsu. “Real-Time High-Quality Stereo Vision System in FPGA”. Transactions on Circuits and Systems for Video
Technology 25.10 (2015), pages 1696–1708. DOI: 10.1109/TCSVT.2015.2397196.

[41] Oscar Rahnama, Tommaso Cavalleri, Stuart Golodetz, Simon Walker, and Philip Torr.“R3SGM: Real-Time Raster-Respecting Semi-Global Matching for Power-ConstrainedSystems”. International Conference on Field Programmable Technology (FPT). IEEE. 2018,pages 102–109. DOI: 10.1109/FPT.2018.00025.
[42] Michal C Malin et al. “The Mars Science Laboratory (MSL) Mast Cameras and DescentImager: Investigation and Instrument Descriptions”. Earth and Space Science 4.8 (2017),pages 506–539. DOI: 10.1002/2016EA000252.
[43] Quentin Gautier, Alexandria Shearer, Janarbek Matai, Dustin Richmond, Pingfan Meng,and Ryan Kastner. “Real-Time 3D Reconstruction for FPGAs: A Case Study for Evaluat-ing the Performance, Area, and Programmability Trade-OFFs of the Altera OpenCLSDK”. International Conference on Field Programmable Technology (FPT). IEEE. 2014,pages 326–329. DOI: 10.1109/FPT.2014.7082810.
[44] Mohamed Abouzahir, Abdelhafid Elouardi, Rachid Latif, Samir Bouaziz, and Abde-louahed Tajer. “Embedding SLAM Algorithms: Has It Come of Age?” Robotics and

Autonomous Systems 100 (2018), pages 14–26. DOI: 10.1016/j.robot.2017.10.019.
[45] Konstantinos Boikos and Christos-Savvas Bouganis. “Semi-Dense SLAM on an FPGASoc”. International Conference on Field Programmable Logic and Applications (FPL). IEEE.2016, pages 1–4. DOI: 10.1109/FPL.2016.7577365.
[46] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and Daniel J Sorin. “TheMicroarchitecture of a Real-Time Robot Motion Planning Accelerator”. International

Symposium on Microarchitecture (MICRO). IEEE. 2016, pages 1–12. DOI: 10.1109/
MICRO.2016.7783748.

[47] Uday Bondhugula, Ananth Devulapalli, James Dinan, Joseph Fernando, Pete Wyckoff,Eric Stahlberg, and P Sadayappan. “Hardware/Software Integration for FPGA-BasedAll-Pairs Shortest-Paths”. International Symposium on Field Programmable Custom

Computing Machines (FCCM). IEEE. 2006, pages 152–164. DOI: 10.1109/FCCM.2006.
48.

[48] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and James CPhillips. “GPU Computing”. IEEE 96.5 (2008), pages 879–899. DOI: 10.1109/JPROC.
2008.917757.

[49] Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. “Performance Com-parison of FPGA, GPU and CPU in Image Processing”. International Conference on
Field Programmable Logic and Applications (FPL). IEEE. 2009, pages 126–131. DOI:
10.1109/FPL.2009.5272532.

[50] David H Jones, Adam Powell, Christos-Savvas Bouganis, and Peter YK Cheung. “GPUVersus FPGA for High Productivity Computing”. International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE. 2010, pages 119–124. DOI: 10.1109/
FPL.2010.32.

[51] Sparsh Mittal. “A Survey on Optimized Implementation of Deep Learning Modelson the NVIDIA Jetson Platform”. Systems Architecture 97 (2019), pages 428–442. DOI:
10.1016/j.sysarc.2019.01.011.

138

https://doi.org/10.1109/TCSVT.2015.2397196
https://doi.org/10.1109/FPT.2018.00025
https://doi.org/10.1002/2016EA000252
https://doi.org/10.1109/FPT.2014.7082810
https://doi.org/10.1016/j.robot.2017.10.019
https://doi.org/10.1109/FPL.2016.7577365
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1109/FCCM.2006.48
https://doi.org/10.1109/FCCM.2006.48
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/FPL.2009.5272532
https://doi.org/10.1109/FPL.2010.32
https://doi.org/10.1109/FPL.2010.32
https://doi.org/10.1016/j.sysarc.2019.01.011

[52] Gopalakrishna Hegde and Nachiket Kapre. “CaffePresso: Accelerating ConvolutionalNetworks on Embedded SoCs”. Transactions on Embedded Computing Systems (TECS)17.1 (2017), pages 1–26. DOI: 10.1145/3105925.
[53] John M Pierre. “Spatio-Temporal Deep Learning for Robotic Visuomotor Control”. Inter-

national Conference on Control, Automation and Robotics (ICCAR). IEEE. 2018, pages 94–103. DOI: 10.1109/ICCAR.2018.8384651.
[54] Ze Wang, Weiqiang Ren, and Qiang Qiu. “Lanenet: Real-Time Lane Detection Networksfor Autonomous Driving”. arXiv preprint arXiv:1807.01726 (2018). DOI: 10.48550/

arXiv.1807.01726.
[55] Nitin J Sanket, Chahat Deep Singh, Kanishka Ganguly, Cornelia Fermüller, and YiannisAloimonos. “Gapflyt: Active Vision Based Minimalist Structure-Less Gap Detection forQuadrotor Flight”. Robotics and Automation Letters 3.4 (2018), pages 2799–2806. DOI:

10.1109/LRA.2018.2843445.
[56] Ratnesh Madaan, Daniel Maturana, and Sebastian Scherer. “Wire Detection usingSynthetic Data and Dilated Convolutional Networks for Unmanned Aerial Vehicles”. In-

ternational Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pages 3487–3494. DOI: 10.1109/IROS.2017.8206190.
[57] Nasrin Attaran, Abhilash Puranik, Justin Brooks, and Tinoosh Mohsenin. “EmbeddedLow-Power Processor for Personalized Stress Detection”. Transactions on Circuits and

Systems II: Express Briefs 65.12 (2018), pages 2032–2036. DOI: 10.1109/TCSII.2018.
2799821.

[58] Tahmid Abtahi, Colin Shea, Amey Kulkarni, and Tinoosh Mohsenin. “AcceleratingConvolutional Neural Network with FFT on Embedded Hardware”. Transactions on Very
Large Scale Integration (VLSI) Systems 26.9 (2018), pages 1737–1749. DOI: 10.1109/
TVLSI.2018.2825145.

[59] Ali Jafari, Ashwinkumar Ganesan, Chetan Sai Kumar Thalisetty, Varun Sivasubramanian,Tim Oates, and Tinoosh Mohsenin. “Sensornet: A Scalable and Low-Power DeepConvolutional Neural Network for Multimodal Data Classification”. Transactions on
Circuits and Systems I: Regular Papers 66.1 (2018), pages 274–287. DOI: 10.1109/TCSI.
2018.2848647.

[60] S Rallapalli, H Qiu, A Bency, S Karthikeyan, R Govindan, B Manjunath, and R Urgaonkar.“Are Very Deep Neural Networks Feasible on Mobile Devices”. Trans. Circ. Syst. Video
Technol (2016).

[61] Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H Anderson, FDonelson Smith, Alex Berg, and Shige Wang. “An Evaluation of the NVIDIA TX1 forSupporting Real-Time Computer-Vision Workloads”. International Real-Time and Em-
bedded Technology and Applications Symposium (RTAS). IEEE. 2017, pages 353–364.DOI: 10.1109/RTAS.2017.3.

[62] Travis Manderson, Juan Camilo Gamboa Higuera, Ran Cheng, and Gregory Dudek.“Vision-Based Autonomous Underwater Swimming in Dense Coral for CombinedCollision Avoidance and Target Selection”. International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2018, pages 1885–1891. DOI: 10.1109/IROS.2018.8594410.

[63] Shenshen Gu, Xinyi Chen, Wei Zeng, and Xin Wang. “A Deep Learning Tennis BallCollection Robot and the Implementation on NVIDIA Jetson TX1 Board”. International
Conference on Advanced Intelligent Mechatronics (AIM). IEEE. 2018, pages 170–175. DOI:
10.1109/AIM.2018.8452263.

139

https://doi.org/10.1145/3105925
https://doi.org/10.1109/ICCAR.2018.8384651
https://doi.org/10.48550/arXiv.1807.01726
https://doi.org/10.48550/arXiv.1807.01726
https://doi.org/10.1109/LRA.2018.2843445
https://doi.org/10.1109/IROS.2017.8206190
https://doi.org/10.1109/TCSII.2018.2799821
https://doi.org/10.1109/TCSII.2018.2799821
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TCSI.2018.2848647
https://doi.org/10.1109/TCSI.2018.2848647
https://doi.org/10.1109/RTAS.2017.3
https://doi.org/10.1109/IROS.2018.8594410
https://doi.org/10.1109/AIM.2018.8452263

Bibliography

[64] Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. “Middleware for Robotics: ASurvey”. International Conference on Robotics, Automation and Mechatronics (ICMRA).IEEE. 2008, pages 736–742. DOI: 10.1109/RAMECH.2008.4681485.
[65] Herman Bruyninckx. “Open Robot Control Software: The OROCOS Project”. Interna-

tional Conference on Robotics and Automation (ICRA). IEEE. 2001, pages 2523–2528.DOI: 10.1109/ROBOT.2001.933002.
[66] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. “YARP: Yet Another Robot Plat-form”. International Advanced Robotic Systems 3.1 (2006), page 8. DOI: 10.5772/5761.
[67] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the Performance ofROS2”. International Conference on Embedded Software (EMSOFT). 2016, pages 1–10.DOI: 10.1145/2968478.2968502.
[68] Kento Hasegawa, Kazunari Takasaki, Makoto Nishizawa, Ryota Ishikawa, Kazushi Kawa-mura, and Nozomu Togawa. “Implementation of a ROS-Based Autonomous Vehicleon an FPGA Board”. International Conference on Field Programmable Technology (FPT).2019. DOI: 10.1109/ICFPT47387.2019.00092.
[69] Yasuhiro Nitta, Sou Tamura, Hidetoshi Yugen, and Hideki Takase. “ZytleBot: FPGAIntegrated Development Platform for ROS Based Autonomous Mobile Robot”. Inter-

national Conference on Field Programmable Technology (FPT). 2019. DOI: 10.1109/FPL.
2019.00077.

[70] J. Peña Queralta, F. Yuhong, L. Salomaa, L. Qingqing, T. N. Gia, Z. Zou, H. Tenhunen,and T. Westerlund. “FPGA-Based Architecture for a Low-Cost 3D Lidar Design andImplementation from Multiple Rotating 2D Lidars with ROS”. Sensors. IEEE. 2019,pages 1–4. DOI: 10.1109/SENSORS43011.2019.8956928.
[71] Stefano Aldegheri, Nicola Bombieri, Nicola Dall’Ora, Franco Fummi, Simone Girardi,and Marco Panato. “A Framework for the Design and Simulation of Embedded VisionApplications Based on OpenVX and ROS”. International Symposium on Circuits and

Systems (ISCAS). 2018. DOI: 10.1109/ISCAS.2018.8351514.
[72] Kazushi Yamashina, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota. “Pro-posal of ROS-compliant FPGA Component for Low-Power Robotic Systems”. CoRRabs/1508.07123 (2015). arXiv: 1508.07123.
[73] Dayang NA Jawawi, Rosbi Mamat, and Safaai Deris. “A Component-Oriented Program-ming for Embedded Mobile Robot Software”. Advanced Robotic Systems 4.3 (2007),page 40. DOI: 10.5772/5678.
[74] Kazushi Yamashina, Hitomi Kimura, Takeshi Ohkawa, Kanemitsu Ootsu, and TakashiYokota. “cReComp: Automated Design Tool for ROS-Compliant FPGA Component”.

International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC).IEEE. 2016, pages 138–145. DOI: 10.1109/MCSoC.2016.47.
[75] Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu Ootsu, andTakashi Yokota. “Automatic Generation Tool of FPGA Components for Robots”. IEICE

Transactions on Information and Systems 102.5 (2019), pages 1012–1019. DOI: 10.
1587/transinf.2018RCP0004.

[76] Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu Ootsu, andTakashi Yokota. “Architecture Exploration of Intelligent Robot System Using ROS-Compliant FPGA Component”. International Symposium on Rapid System Prototyping

(RSP). IEEE. 2016, pages 1–7. DOI: 10.1145/2990299.2990312.

140

https://doi.org/10.1109/RAMECH.2008.4681485
https://doi.org/10.1109/ROBOT.2001.933002
https://doi.org/10.5772/5761
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1109/ICFPT47387.2019.00092
https://doi.org/10.1109/FPL.2019.00077
https://doi.org/10.1109/FPL.2019.00077
https://doi.org/10.1109/SENSORS43011.2019.8956928
https://doi.org/10.1109/ISCAS.2018.8351514
https://arxiv.org/abs/1508.07123
https://doi.org/10.5772/5678
https://doi.org/10.1109/MCSoC.2016.47
https://doi.org/10.1587/transinf.2018RCP0004
https://doi.org/10.1587/transinf.2018RCP0004
https://doi.org/10.1145/2990299.2990312

[77] Takeshi Ohkawa, Kazushi Yamashina, Hitomi Kimura, Kanemitsu Ootsu, and TakashiYokota. “FPGA Components for Integrating FPGAs into Robot Systems”. IEICE Trans-
actions on Information and Systems 101.2 (2018), pages 363–375. DOI: 10.1587/
transinf.2017RCP0011.

[78] Yuhei Sugata, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota. “Accelerationof Publish/Subscribe Messaging in ROS-Compliant FPGA Component”. International
Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART).2017, pages 1–6. DOI: 10.1145/3120895.3120904.

[79] David Sidler, Zsolt István, and Gustavo Alonso. “Low-latency TCP/IP stack for data cen-ter applications”. International Conference on Field Programmable Logic and Applications
(FPL). 2016, pages 1–4. DOI: 10.1109/FPL.2016.7577319.

[80] Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, and Takeshi Ohkawa. “FPGAAcceleration of ROS2-Based Reinforcement Learning Agents”. International Symposium
on Computing and Networking Workshops (CANDARW). IEEE. 2020, pages 106–112. DOI:
10.1109/CANDARW51189.2020.00031.

[81] Marc Eisoldt, Steffen Hinderink, Marco Tassemeier, Marcel Flottmann, Juri Vana,Thomas Wiemann, Julian Gaal, Marc Rothmann, and Mario Porrmann. “ReconfROS:Running ROS on Reconfigurable SoCs”. Workshop on Drone Systems Engineering. Drone
Systems Engineering (DroneSE). 2021, pages 16–21. DOI: 10.1145/3444950.3444959.

[82] Takeshi Ohkawa, Yuhei Sugata, Harumi Watanabe, Nobuhiko Ogura, Kanemitsu Ootsu,and Takashi Yokota. “High-Level Synthesis of ROS Protocol Interpretation and Com-munication Circuit for FPGA”. International Workshop on Robotics Software Engineering
(RoSE). IEEE. 2019, pages 33–36. DOI: 10.1109/RoSE.2019.00014.

[83] Hideki Takase, TomoyaMori, Kazuyoshi Takagi, andNaofumi Takagi. “mROS: A LightweightRuntime Environment for Robot Software Components onto Embedded Devices”.
International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies

(HEART). 2019, pages 1–6. DOI: 10.1145/3337801.3337815.
[84] Hideki Takase, TomoyaMori, Kazuyoshi Takagi, andNaofumi Takagi. “mROS: a LightweightRuntime Environment of ROS 1 Nodes for Embedded Devices”. Information Processing28 (2020), pages 150–160. DOI: 10.2197/ipsjjip.28.150.
[85] Mohammad Hosseinabady and Jose Luis Nunez-Yanez. “Run-Time Power Gating inHybrid ARM-FPGA Devices”. International Conference on Field Programmable Logic and

Applications (FPL). IEEE. 2014, pages 1–6. DOI: 10.1109/FPL.2014.6927503.
[86] Christian Lienen, Marco Platzner, and Bernhard Rinner. “ReconROS: Flexible HardwareAcceleration for ROS2 Applications”. International Conference on Field Programmable

Technology (FPT). IEEE, 2020, pages 268–276. DOI: 10.1109/ICFPT51103.2020.00046.
[87] Andreas Agne, Markus Happe, Ariane Keller, Enno Lübbers, Bernhard Plattner, MarcoPlatzner, and Christian Plessl. “ReconOS: An Operating System Approach for Recon-figurable Computing”. Micro 34.1 (2014), pages 60–71. DOI: 10.1109/MM.2013.110.
[88] Christian Lienen andMarco Platzner. “ReconROS Executor: Event-Driven Programmingof FPGA-Accelerated ROS 2 Applications”. CoRR abs/2201.07454 (2022).
[89] Edson de Araújo Silva, Eduardo Valentin, Jose ReginaldoHughes Carvalho, and Raimundoda Silva Barreto. “A Survey of Model-Driven Engineering in Robotics”. Computer Lan-

guages 62 (2021), page 101021. DOI: 10.1016/j.cola.2020.101021.

141

https://doi.org/10.1587/transinf.2017RCP0011
https://doi.org/10.1587/transinf.2017RCP0011
https://doi.org/10.1145/3120895.3120904
https://doi.org/10.1109/FPL.2016.7577319
https://doi.org/10.1109/CANDARW51189.2020.00031
https://doi.org/10.1145/3444950.3444959
https://doi.org/10.1109/RoSE.2019.00014
https://doi.org/10.1145/3337801.3337815
https://doi.org/10.2197/ipsjjip.28.150
https://doi.org/10.1109/FPL.2014.6927503
https://doi.org/10.1109/ICFPT51103.2020.00046
https://doi.org/10.1109/MM.2013.110
https://doi.org/10.1016/j.cola.2020.101021

Bibliography

[90] Thomas Stahl, Markus Völter, and Krzysztof Czarnecki. Model-Driven Software Develop-
ment: Technology, Engineering, Management. Hoboken, NJ, USA: John Wiley and Sons,Inc., 2006.

[91] Arne Nordmann, Nico Hochgeschwender, and SebastianWrede. “A Survey on Domain-Specific Languages in Robotics”. Simulation, Modeling, and Programming for Autonomous
Robots. Springer International Publishing, 2014, pages 195–206. DOI: 10.1007/978-
3-319-11900-7_17.

[92] Ruediger Willenberg, Zamira Daw, Christian Englert, andMarcus Vetter. “Generation ofDeterministic MCU/FPGAHybrid Systems fromUML Activities”. International Conference
on Field Programmable Logic and Applications (FPL). IEEE. 2010, pages 340–345. DOI:
10.1109/FPL.2010.74.

[93] Chiraz Trabelsi, Samy Meftali, and Jean-Luc Dekeyser. “Decentralized Control forDynamically Reconfigurable FPGA Systems”. Microprocessors and Microsystems 37.8(2013), pages 871–884. DOI: 10.1016/j.micpro.2013.04.012.
[94] Chiraz Trabelsi, Samy Mettali, Rabie ben Atitallah, and Jean-Luc Dekeyser. “Model-Driven Design Flow for Distributed Control in Reconfigurable FPGA Systems”. Confer-

ence on Design and Architectures for Signal and Image Processing (DASIP). IEEE. 2014,pages 1–6. DOI: 10.1109/DASIP.2014.7115631.
[95] Chiraz Trabelsi, Samy Meftali, and Jean-Luc Dekeyser. “Distributed Control for Recon-figurable FPGA Systems: A High-Level Design Approach”. International Workshop on

Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC). IEEE. 2012, pages 1–8. DOI: 10.1109/ReCoSoC.2012.6322871.
[96] Remigiusz Wiśniewski, Grzegorz Bazydło, Luis Gomes, and Aniko Costa. “DynamicPartial Reconfiguration of Concurrent Control Systems Implemented in FPGA Devices”.

IEEE Transactions on Industrial Informatics 13.4 (2017), pages 1734–1741. DOI: 10.
1109/TII.2017.2702564.

[97] Vladimir Estivill-Castro, René Hexel, and Morgan McColl. “High-Level Executable Mod-els of Reactive Real-Time Systems with Logic-Labelled Finite-State Machines andFPGAs”. International Conference on ReConFigurable Computing and FPGAs (ReConFig).IEEE. 2018, pages 1–8. DOI: 10.1109/RECONFIG.2018.8641710.
[98] Vladimir Estivill-Castro and René Hexel. “Arrangements of Finite-State Machines Se-mantics, Simulation, and Model Checking”. International Conference on Model-Driven

Engineering and Software Development. Volume 2. 2013, pages 182–189. DOI: 10.5220/
0004317101820189.

[99] Taylor Riché, Jim Nagle, Joyce Xu, and Don Hubbard. “Converting Executable Floating-Point Models to Executable and Synthesizable Fixed-Point Models”. International
Conference on Model-Driven Engineering Languages and Systems Companion (MODELS-C).IEEE. 2019, pages 354–361. DOI: 10.1109/MODELS-C.2019.00055.

[100] Mouna Baklouti, Manel Ammar, Philippe Marquet, Mohamed Abid, and Jean-LucDekeyser. “AModel-Driven Based Framework for Rapid Parallel SoC FPGA Prototyping”.
International Symposium on Rapid System Prototyping (RSP). IEEE. 2011, pages 149–155.DOI: 10.1109/RSP.2011.5929989.

[101] Ciprian Teodorov, Damien Picard, and Loic Lagadec. “FPGA Physical-Design Automa-tion Using Model-Driven Engineering”. International Workshop on Reconfigurable Com-
munication Centric Systems-on-Chip (ReCoSoC). IEEE. 2011, pages 1–6. DOI: 10.1109/
ReCoSoC.2011.5981495.

142

https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1109/FPL.2010.74
https://doi.org/10.1016/j.micpro.2013.04.012
https://doi.org/10.1109/DASIP.2014.7115631
https://doi.org/10.1109/ReCoSoC.2012.6322871
https://doi.org/10.1109/TII.2017.2702564
https://doi.org/10.1109/TII.2017.2702564
https://doi.org/10.1109/RECONFIG.2018.8641710
https://doi.org/10.5220/0004317101820189
https://doi.org/10.5220/0004317101820189
https://doi.org/10.1109/MODELS-C.2019.00055
https://doi.org/10.1109/RSP.2011.5929989
https://doi.org/10.1109/ReCoSoC.2011.5981495
https://doi.org/10.1109/ReCoSoC.2011.5981495

[102] Roberto de Medeiros, Marcilyanne M Gois, Drausio L Rossi, and Vanderlei Bonato.“Designing Embedded Systems with MARTE: A PIM to PSM Converter”. International
Symposium on Industrial Embedded Systems (SIES). IEEE. 2012, pages 303–306. DOI:
10.1109/SIES.2012.6356602.

[103] Marcela Leite, Cristiano D Vasconcellos, and Marco Aurélio Wehrmeister. “EnhancingAutomatic Generation of VHDL DescrIPtions from UML/MARTE Models”. International
Conference on Industrial Informatics (INDIN). IEEE. 2014, pages 152–157. DOI: 10.1109/
INDIN.2014.6945500.

[104] Marcela Leite and Marco Aurélio Wehrmeister. “Aspect-Oriented Model-Driven En-gineering for FPGA/VHDL Based Embedded Real-Time Systems”. International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Computing. IEEE.2014, pages 261–268. DOI: 10.1109/ISORC.2014.45.

[105] Huafeng Zhang, Yu Jiang, Han Liu, Hehua Zhang, Ming Gu, and Jiaguang Sun. “Model-Driven Design of Heterogeneous Synchronous Embedded Systems”. International
Conference on Automated Software Engineering (ASE). IEEE. 2016, pages 774–779. DOI:
10.1145/2970276.2970280.

[106] Franz-Josef Streit, Martin Letras, Stefan Wildermann, Benjamin Hackenberg, JoachimFalk, Andreas Becher, and Jürgen Teich. “Model-Based Design Automation of Hard-ware/software Co-Designs for Xilinx Zynq MPSoC”. International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig). IEEE. 2018, pages 1–8. DOI: 10.1109/
RECONFIG.2018.8641736.

[107] Andrea Enrici, Julien Lallet, Renaud Pacalet, Ludovic Apvrille, Karol Desnos, and ImranLatif. “Model-Based Programming forMulti-Processor Platformswith TTool/DIPLODOCUSand OMC”. International Conference on Model-Driven Engineering and Software Develop-
ment. Springer. 2018, pages 56–81. DOI: 10.1007/978-3-030-11030-7_4.

[108] Jorgiano Vidal, Florent De Lamotte, Guy Gogniat, Jean-Philippe Diguet, and SebastienGuillet. “Dynamic Applications on Reconfigurable Systems: from UML Model Designto FPGAs Implementation”. International Conference on Design, Automation and Test in
Europe (DATE). IEEE. 2011, pages 1–4. DOI: 10.1109/DATE.2011.5763315.

[109] Jorgiano Vidal, Florent De Lamotte, Guy Gogniat, Jean-Philippe Diguet, and PhilippeSoulard. “UML Design for Dynamically Reconfigurable MultIProcessor EmbeddedSystems”. International Conference on Design, Automation and Test in Europe (DATE).IEEE. 2010, pages 1195–1200. DOI: 10.1109/DATE.2010.5456989.
[110] Gilberto Ochoa, El-Bay Bourennane, Hassan Rabah, and Ouassila Labbani. “High-Level Modelling and Automatic Generation of Dynamicaly Reconfigurable Systems”.

Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE.2011, pages 1–8. DOI: 10.1109/DASIP.2011.6136900.
[111] Gilberto Ochoa-Ruiz, Sébastien Guillet, Florent De Lamotte, Eric Rutten, El-Bay Bouren-nane, Jean-Philippe Diguet, and Guy Gogniat. “An UML Approach for Rapid Prototypingand Implementation of Dynamic Reconfigurable Systems”. Transactions on Design Au-

tomation of Electronic Systems (TODAES) 21.1 (2015), pages 1–25. DOI: 10.1145/
2800784.

[112] Youenn Corre, Jean-Philippe Diguet, Loic Lagadec, Dominique Heller, and DominiqueBlouin. “Fast Template-BasedHeterogeneousMPSoC Synthesis on FPGA”. International
Symposium on Applied Reconfigurable Computing (ARC). Springer. 2013, pages 154–166.DOI: 10.1007/978-3-642-36812-7_15.

143

https://doi.org/10.1109/SIES.2012.6356602
https://doi.org/10.1109/INDIN.2014.6945500
https://doi.org/10.1109/INDIN.2014.6945500
https://doi.org/10.1109/ISORC.2014.45
https://doi.org/10.1145/2970276.2970280
https://doi.org/10.1109/RECONFIG.2018.8641736
https://doi.org/10.1109/RECONFIG.2018.8641736
https://doi.org/10.1007/978-3-030-11030-7_4
https://doi.org/10.1109/DATE.2011.5763315
https://doi.org/10.1109/DATE.2010.5456989
https://doi.org/10.1109/DASIP.2011.6136900
https://doi.org/10.1145/2800784
https://doi.org/10.1145/2800784
https://doi.org/10.1007/978-3-642-36812-7_15

Bibliography

[113] Wolfgang Ecker, Keerthikumara Devarajegowda, Michael Werner, Zhao Han, andLorenzo Servadei. “Embedded Systems’ Automation Following Omg’s Model-DrivenArchitecture Vision”. International Conference on Design, Automation and Test in Europe
(DATE). IEEE. 2019, pages 1301–1306. DOI: 10.23919/DATE.2019.8715154.

[114] JohannesWienke, ArneNordmann, and SebastianWrede. “AMeta-model and Toolchainfor Improved Interoperability of Robotic Frameworks”. Simulation, Modeling, and Pro-
gramming for Autonomous Robots. Springer Berlin Heidelberg, 2012, pages 323–334.DOI: 10.1007/978-3-642-34327-8_30.

[115] Fábio M Costa, Karl A Morris, Fabio Kon, and Peter J Clarke. “Model-Driven Domain-Specific Middleware”. International Conference on Distributed Computing Systems (ICDCS).IEEE. 2017, pages 1961–1971. DOI: 10.1109/ICDCS.2017.197.
[116] Donald E Knuth. “Semantics of Context-Free Languages”. Mathematical systems theory2.2 (1968), pages 127–145. DOI: 10.1007/BF01692511.
[117] R. Farrow. “Generating a Production Compiler from an Attribute Grammar”. English.

Software 1.04 (Oct. 1984), pages 77–93. DOI: 10.1109/MS.1984.229467.
[118] Christoff Bürger, Sven Karol, and Christian Wende. “Applying Attribute Grammars forMetamodel Semantics”. International Workshop on Formalization of Modeling Languages.ACM, 2010, page 1. DOI: 10.1145/1943397.1943398.
[119] Jesper Öqvist. “ExtendJ: Extensible Java compiler”. Conference Companion of the 2nd

International Conference on Art, Science, and Engineering of Programming. Program-ming’18 Companion. New York, NY, USA: Association for Computing Machinery, Apr.2018, pages 234–235. DOI: 10.1145/3191697.3213798.
[120] Harald H Vogt, S Doaitse Swierstra, and Matthijs F Kuiper. “Higher Order AttributeGrammars”. SIGPLAN Notices 24.7 (1989), pages 131–145. DOI: 10.1145/73141.74830.
[121] Johannes Mey, René Schöne, Görel Hedin, Emma Söderberg, Thomas Kühn, NiklasFors, Jesper Öqvist, and Uwe Aßmann. “Relational Reference Attribute Grammars:Improving ContinuousModel Validation”. Computer Languages 57 (2020), page 100940.DOI: 10.1016/j.cola.2019.100940.
[122] Object Management Group (OMG). Interface Definition Language, Version 4.2. OMGDocument Number formal/18-01-05 (https://www.omg.org/spec/IDL/4.2). 2018.
[123] Johannes Mey, Thomas Kühn, René Schöne, and Uwe Assmann. “Reusing Static Anal-ysis across Different Domain-Specific Languages Using Reference Attribute Gram-mars”. The Art, Science, and Engineering of Programming 4.3 (Feb. 1, 2020), 15:1–36.DOI: 10.22152/programming-journal.org/2020/4/15.
[124] Chris Wanstrath. mustache - Logic-Less Templates. https://mustache.github.io.Accessed: 2020-07-20. 2020.
[125] Jishnu Saurav Mittapalli and Menaka Pushpa Arthur. “Survey on Template Engines inJava”. en. ITM Web of Conferences 37 (2021). Publisher: EDP Sciences, page 01007. DOI:

10.1051/itmconf/20213701007.
[126] Eve Coste-Maniere and Reid Simmons. “Architecture, the Backbone of Robotic Sys-tems”. International Conference on Robotics and Automation (ICRA). Volume 1. IEEE. 2000,pages 67–72. DOI: 10.1109/ROBOT.2000.844041.

144

https://doi.org/10.23919/DATE.2019.8715154
https://doi.org/10.1007/978-3-642-34327-8_30
https://doi.org/10.1109/ICDCS.2017.197
https://doi.org/10.1007/BF01692511
https://doi.org/10.1109/MS.1984.229467
https://doi.org/10.1145/1943397.1943398
https://doi.org/10.1145/3191697.3213798
https://doi.org/10.1145/73141.74830
https://doi.org/10.1016/j.cola.2019.100940
https://www.omg.org/spec/IDL/4.2
https://doi.org/10.22152/programming-journal.org/2020/4/15
https://mustache.github.io
https://doi.org/10.1051/itmconf/20213701007
https://doi.org/10.1109/ROBOT.2000.844041

[127] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zambreno, and PhillipH Jones. “Comparing Energy Efficiency of CPU, GPU and FPGA Implementations forVision Kernels”. International Conference on Embedded Software and Systems (ICESS).IEEE. 2019, pages 1–8. DOI: 10.1109/ICESS.2019.8782524.
[128] Onur Ulusel, Christopher Picardo, Christopher B Harris, Sherief Reda, and R Iris Bahar.“Hardware Acceleration of Feature Detection and Description Algorithms on Low-Power Embedded Platforms”. International Conference on Field Programmable Logic

and Applications (FPL). IEEE. 2016, pages 1–9. DOI: 10.1109/FPL.2016.7577310.
[129] Stylianos I Venieris and Christos-Savvas Bouganis. “fpgaConvNet: Mapping Regularand Irregular Convolutional Neural Networks on FPGAs”. Transactions on Neural Net-

works and Learning Systems 30.2 (2018), pages 326–342. DOI: 10.1109/TNNLS.2018.
2844093.

[130] Stephanie Soldavini and Christian Pilato. “A Survey on Domain-Specific Memory Archi-tectures”. arXiv preprint arXiv:2108.08672 (2021). DOI: 10.29292/jics.v16i2.509.
[131] D.C. Schmidt. “Model-Driven Engineering”. Journal Computer 39.2 (2006), pages 25–31.DOI: 10.1109/MC.2006.58.
[132] EmmaNilsson-Nyman, Görel Hedin, EvaMagnusson, and Torbjörn Ekman. “DeclarativeIntraprocedural Flow Analysis of Java Source Code”. Electronic Notes in Theoretical

Computer Science 238.5 (2009). International Workshop on Language Descriptions,Tools and Applications (LDTA), pages 155–171. DOI: https://doi.org/10.1016/j.
entcs.2009.09.046.

[133] Luca Benini and Giovanni De Micheli. “Networks on Chip: A New Paradigm for Systemson Chip Design”. International Conference on Design, Automation and Test in Europe
(DATE). IEEE. 2002, pages 418–419. DOI: 10.1109/DATE.2002.998307.

[134] Tobias Bjerregaard and Shankar Mahadevan. “A Survey of Research and Practices ofNetwork-On-Chip”. Computing Surveys (CSUR) 38.1 (2006), pages 1–52. DOI: 10.1145/
1132952.1132953.

[135] Salma Hesham, Jens Rettkowski, Diana Goehringer, and Mohamed A Abd El Ghany.“Survey on Real-Time Networks-On-Chip”. Transactions on Parallel and Distributed

Systems 28.5 (2016), pages 1500–1517. DOI: 10.1109/TPDS.2016.2623619.
[136] Boris Grot, Joel Hestness, Stephen W Keckler, and Onur Mutlu. “Kilo-NoC: A Het-erogeneous Network-On-Chip Architecture for Scalability and Service Guarantees”.

International Symposium on on Computer Architecture (ISCA). IEEE. 2011, pages 401–412.DOI: 10.1145/2000064.2000112.
[137] Habib Khan, Ariel Podlubne, and Diana Göhringer. “Intrusive FPGA-in-the-loop de-bugging using a rule-based inference system”. Microprocessors and Microsystems 64(2019), pages 185–194. DOI: 10.1016/j.micpro.2018.11.004.
[138] Habib Khan, Gökhan Akgün, Ariel Podlubne, Felix Wegener, Amir Moradi, DianaGöhringer, et al. “Cycle-Accurate Debugging of Multi-clock Reconfigurable Systems”.

International Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE. 2019,pages 1–5. DOI: 10.1109/ReConFig48160.2019.8994806.
[139] Habib Khan, Ariel Podlubne, Gökhan Akgün, Diana Göhringer, et al. “Cycle-AccurateDebugging of Embedded Designs Using Recurrent Neural Networks”. International

Symposium on Applied Reconfigurable Computing (ARC). Springer. 2020, pages 1–5. DOI:
10.1007/978-3-030-44534-8_6.

145

https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1109/FPL.2016.7577310
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.29292/jics.v16i2.509
https://doi.org/10.1109/MC.2006.58
https://doi.org/https://doi.org/10.1016/j.entcs.2009.09.046
https://doi.org/https://doi.org/10.1016/j.entcs.2009.09.046
https://doi.org/10.1109/DATE.2002.998307
https://doi.org/10.1145/1132952.1132953
https://doi.org/10.1145/1132952.1132953
https://doi.org/10.1109/TPDS.2016.2623619
https://doi.org/10.1145/2000064.2000112
https://doi.org/10.1016/j.micpro.2018.11.004
https://doi.org/10.1109/ReConFig48160.2019.8994806
https://doi.org/10.1007/978-3-030-44534-8_6

Bibliography

[140] Ronny Seiger et al. “Immersives verteiltes Robotic Co-working”. Informatik Spektrum43.6 (2020), pages 425–435. DOI: 10.1007/s00287-020-01297-w.
[141] Ahmad Sadek, Ananya Muddukrishna, Lester Kalms, Asbjørn Djupdal, Ariel Podlubne,Antonio Paolillo, Diana Goehringer, and Magnus Jahre. “Supporting Utilities for Hetero-geneous Embedded Image Processing Platforms (STHEM): An Overview”. International

Symposium on Applied Reconfigurable Computing (ARC). Springer. 2018, pages 737–749.DOI: 10.1007/978-3-319-78890-6_59.
[142] Ariel Podlubne, Julian Haase, Lester Kalms, Gökhan Akgün, Muhammad Ali, HabibUlhasan Khar, Ahmed Kamal, and Diana Göhringer. “Low Power Image ProcessingApplications on FPGAs Using Dynamic Voltage Scaling and Partial Reconfiguration”.

International Conference on Design and Architectures for Signal and Image Processing

(DASIP). IEEE. 2018, pages 64–69. DOI: 10.1109/DASIP.2018.8596910.
[143] Safdar Mahmood et al. “Prospects of Robots in Assisted Living Environment”. Electron-

ics 10.17 (2021), page 2062. DOI: 10.3390/electronics10172062.
[144] Tina Bobbe, Hans Winger, Ariel Podlubne, Florian Wieczorek, Lisa-Marie Lüneburg,Ievgen Kharabet, Jens Wagner, and Sergio Pertuz. “Reflections on "Rock, Paper, Scis-sors": Communicating Science to the Public through a Demonstrator”. International

Conference on Human-Robot Interaction (HRI). IEEE, 2022, pages 1208–1209. DOI:
10.1109/HRI53351.2022.9889613.

[145] Johannes Mey, René Schöne, Ariel Podlubne, and Uwe Aßmann. “Specifying ReactiveRobotic Applications With Reference Attribute Motion Grammars”. International Con-
ference on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE, 2022. DOI:
10.1109/ACSOSC56246.2022.00035.

[146] Sergio Pertuz, Ariel Podlubne, and Diana Göhringer. “An Efficient Accelerator forNonlinear Model Predictive Control”. International Conference on Application-Specific
Systems, Architectures, and Processors (ASAP). IEEE. 2023, pages 1–8. DOI: 10.1109/
ASAP57973.2023.00038.

146

https://doi.org/10.1007/s00287-020-01297-w
https://doi.org/10.1007/978-3-319-78890-6_59
https://doi.org/10.1109/DASIP.2018.8596910
https://doi.org/10.3390/electronics10172062
https://doi.org/10.1109/HRI53351.2022.9889613
https://doi.org/10.1109/ACSOSC56246.2022.00035
https://doi.org/10.1109/ASAP57973.2023.00038
https://doi.org/10.1109/ASAP57973.2023.00038

	Title page
	Selbstständigkeitserklärung
	Kurzfassung/Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Structure

	2 Background and State-of-the-Art
	2.1 Zynq and UltraScale FPGA Families
	2.2 AXI Stream Protocol
	2.3 Model-Driven Engineering
	2.4 The Building Blocks of Languages in Computer Science
	2.5 JastAdd: The Meta-Compilation System
	2.6 Template Engines
	2.7 Robotic Applications in Adaptive Computing
	2.7.1 FPGA Applications
	2.7.2 GPU Applications

	2.8 Robotics Middlewares
	2.8.1 The Robot Operating System Enhanced with Field Programmable Gate Arrays
	2.8.2 Operating Systems Support for Reconfigurable Computing
	2.8.3 Roboticists Interests

	2.9 Model-Driven Engineering
	2.9.1 Control and Handling of Events
	2.9.2 Architecture Structures and Viewpoints
	2.9.3 Combined Control and Handling of Events with Architecture Structures and Viewpoints

	3 Modular Hardware Architecture
	3.1 Challenges and Goals
	3.2 Accelerator-Related Components
	3.3 Messages-Dependent Components
	3.4 Components of the Modular Architecture
	3.4.1 Accelerators as Publishers and Subscribers
	3.4.2 Middleware-Based Hardware Interfaces
	3.4.3 Manager
	3.4.4 Communication Interface

	3.5 Evaluation
	3.6 Summary

	4 Hybrid Hardware/Software Schedulers
	4.1 Challenges and Goals
	4.2 Scheduling Algorithms
	4.2.1 Least Recently Utilized (LRU)
	4.2.2 Fixed Priority (FP)
	4.2.3 Earliest Deadline First (EDF)
	4.2.4 Least Slack Time (LST)

	4.3 Evaluation
	4.3.1 Scalability
	4.3.2 Schedulability
	4.3.3 Performance
	4.3.4 Corner Cases
	4.3.5 Combined Schedulers

	4.4 Schedulers Comparison
	4.5 Summary

	5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications
	5.1 Challenges and Goals
	5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool
	5.2.1 A Model-Driven Toolchain
	5.2.2 Characteristics of the Model-Driven Toolchain
	5.2.3 The Models
	5.2.4 Attributes
	5.2.5 Attribute-Controlled Model Transformation
	5.2.6 Template-Based Code Generation

	5.3 Evaluation
	5.3.1 Complexity of Specifications
	5.3.2 Full ROS Support
	5.3.3 Use Cases

	5.4 Summary

	6 Model-based Generation of Hardware/Software Architectures for Robotics Systems
	6.1 Challenges and Goals
	6.2 Code Generation Workflow
	6.2.1 Model Analysis
	6.2.2 Template Engine
	6.2.3 Artifacts Generators

	6.3 Code Generation Challenges for HW/SW Architectures
	6.3.1 Concise Holistic Model
	6.3.2 Dynamic Frame Length
	6.3.3 Scheduling Transactions between Hardware and Software

	6.4 FPGA Architectures for Robotics (FAR) Tool
	6.4.1 Tailored Information using Intermediate Representations
	6.4.2 Simplifying Runtime Computation
	6.4.3 Benefits of Model Analysis in the Development Lifecycle
	6.4.4 Details of the Model Analysis

	6.5 Evaluation
	6.5.1 Quaternion to Euler
	6.5.2 Image Processing
	6.5.3 Multi-type Messages
	6.5.4 Robotic Arm Position Estimation
	6.5.5 Manual Vs. Generated Deployment

	6.6 Wizard
	6.7 Adaptability and Extendability
	6.8 Summary

	7 Conclusion
	Bibliography

