6 iz .
DRESDEN Al

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Dissertation

Reconfigurable Computing Systems
for Robotics using a
Component-Oriented Approach

Ariel Podlubne

Born on: 29th May 1987 in Salta, Argentina
Matriculation year: 2017

to achieve the academic degree

Doktor-Ingenieur (Dr.-Ing.)

Supervisor and examiner
Prof. Dr.-Ing. Diana Gohringer

Co-examiner
Prof. Dr. Pedro Diniz

Submitted on: 4th May 2023
Defended on: 28th June 2023

UNIVERSITAT A
DRESDEN A\A\

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Statement of authorship

| hereby certify that | have authored this document entitled Reconfigurable Computing Sys-
tems for Robotics using a Component-Oriented Approach independently and without undue
assistance from third parties. No other than the resources and references indicated in this
document have been used. | have marked both literal and accordingly adopted quotations
as such. During the preparation of this document | was only supported by the following
persons:

Diana Gohringer

Additional persons were not involved in the intellectual preparation of the present document.
| am aware that violations of this declaration may lead to subsequent withdrawal of the
academic degree.

Dresden, 4th May 2023

Ariel Podlubne

UNIVERSITAT A
DRESDEN A\A\

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Abstract

Robotic platforms are becoming more complex due to the wide range of modern applications,
including multiple heterogeneous sensors and actuators. In order to comply with real-time
and power-consumption constraints, these systems need to process a large amount of
heterogeneous data from multiple sensors and take action (via actuators), which represents
a problem as the resources of these systems have limitations in memory storage, bandwidth,
and computational power.

Field Programmable Gate Arrays (FPGAs) are programmable logic devices that offer high-
speed parallel processing. FPGAs are particularly well-suited for applications that require
real-time processing, high bandwidth, and low latency. One of the fundamental advantages
of FPGAs is their flexibility in designing hardware tailored to specific needs, making them
adaptable to a wide range of applications. They can be programmed to pre-process data
close to sensors, which reduces the amount of data that needs to be transferred to other
computing resources, improving overall system efficiency. Additionally, the reprogrammability
of FPGAs enables them to be repurposed for different applications, providing a cost-effective
solution that needs to adapt quickly to changing demands. FPGAS' performance per watt is
close to that of Application-Specific Integrated Circuits (ASICs), with the added advantage of
being reprogrammable.

Despite all the advantages of FPGAs (e.g., energy efficiency, computing capabilities), the
robotics community has not fully included them so far as part of their systems for several
reasons. First, designing FPGA-based solutions requires hardware knowledge and longer
development times as their programmability is more challenging than Central Processing
Units (CPUSs) or Graphics Processing Units (GPUs). Second, porting a robotics application (or
parts of it) from software to an accelerator requires adequate interfaces between software
and FPGAs. Third, the robotics workflow is already complex on its own, combining several
fields such as mechanics, electronics, and software.

There have been partial contributions in the state-of-the-art for FPGAs as part of robotics
systems. However, a study of FPGAs as a whole for robotics systems is missing in the literature,
which is the primary goal of this dissertation. Three main objectives have been established to
accomplish this. (1) Define all components required for an FPGAs-based system for robotics
applications as a whole. (2) Establish how all the defined components are related. (3) With
the help of Model-Driven Engineering (MDE) techniques, generate these components, deploy
them, and integrate them into existing solutions.

The component-oriented approach proposed in this dissertation provides a proper solution
for designing and implementing FPGA-based designs for robotics applications. The modular
architecture, the tool “FPGA Interfaces for Robotics Middlewares” (FIRM), and the toolchain
“FPGA Architectures for Robotics” (FAR) provide a set of tools and a comprehensive design
process that enables the development of complex FPGA-based designs more straightfor-
wardly and efficiently. The component-oriented approach contributed to the state-of-the-art
in FPGA-based designs significantly for robotics applications and helps to promote their wider
adoption and use by specialists with little FPGA knowledge.

Abstract

Acknowledgment

I would like to express my sincere gratitude to Prof. Diana Gohringer for providing me with
the opportunity to join the Chair of Adaptive Dynamic Systems. | am thankful for the open
door that was meant for “five minutes” but often extended into hour-long discussions, even
when they took unexpected turns and led us into discussions completely unrelated to the
original topic. Your guidance over the years, with precise redirections and the freedom to
explore different ideas, has been invaluable.

My deepest appreciation goes to Johannes Mey, marking the longest collaboration of my
Ph.D. journey'. Thank you for the countless discussions, collaborative problem-solving, and
the dedicated hours that shaped this research. | extend my gratitude to Sergio Pertuz for
joining Johannes and me towards the end of our work. | look forward to seeing the positive
impact of our collaborative work in many years to come.

Special thanks to René Schone for his critical perspectives, which have significantly enhanced
the rigor of this research, and to my office mate, Ahmed Kamaledin, for the endless conver-
sations and the shared time.

Lastly, I am profoundly grateful for my family, who consistently supports me in both good
times and, especially, when things do not go as expected.

"Work funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of
Germany's Excellence Strategy - EXC 2050/1 - Project ID 390696704 - Cluster of Excellence “Centre for Tactile
Internet with Human-in-the-Loop” (CeTl) of Technische Universitat Dresden.

Contents

List of Figures
List of Tables
List of Listings
Acronyms

1 Introduction
1.1 Motivation
1.2 Objectives
1.3 Contributions
1.4 Thesis Structure

2 Background and State-of-the-Art
2.1 Zyng and UltraScale FPGA Families
2.2 AX| Stream Protocol
2.3 Model-Driven Engineering

2.4 The Building Blocks of Languages in Computer Science
2.5 JastAdd: The Meta-Compilation System

2.6 Template Engines.

2.7 Robotic Applications in Adaptive Computing

2.7.1 FPGA Applications
2.7.2 GPU Applications
2.8 Robotics Middlewares

2.8.1 The Robot Operating System Enhanced with Field Programmable Gate

Arrays

2.8.2 Operating Systems Support for Reconfigurable Computing

2.8.3 Roboticists Interests
2.9 Model-Driven Engineering

2.9.1 Controland Handling of Events

2.9.2 Architecture Structures and

Viewpoints L.

2.9.3 Combined Control and Handling of Events with Architecture Structures

and Viewpoints

3 Modular Hardware Architecture
3.1 Challenges and Goals
3.2 Accelerator-Related Components

NS, I NN

1M
13
13
15
19
23
26
26
29
32

33
37
38
38

42

Contents

3.3 Messages-Dependent Components 50
3.4 Components of the Modular Architecture 52
3.4.1 Accelerators as Publishers and Subscribers 52
3.4.2 Middleware-Based Hardware Interfaces 52
343 Manager 52
3.44 CommunicationInterface 54
3.5 EBEvaluation, 56
3.6 SUMMArNY o 58
Hybrid Hardware/Software Schedulers 59
4.1 Challengesand Goals 59
4.2 Scheduling Algorithms 61
4.2.1 LeastRecently Utilized (LRU) 61
4.2.2 FixedPriority (FP) 61
423 Earliest Deadline First (EDF) 62
424 LeastSlack Time (LST) 62
43 Bvaluation 63
431 Scalability 64
432 Schedulability 64
433 Performance 68
434 Corner Cases 72
435 Combined Schedulers 74
4.4 Schedulers Comparison 78
A5 SUMMAIY . .« . 79
Generation of Hardware Interfaces Compatible with Robotics based on Specifi-
cations 81
51 Challengesand Goals 81
5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool 82
52.1 AModel-Driven Toolchain, 83
5.2.2 Characteristics of the Model-Driven Toolchain 86
523 TheModels 87
524 Attributes 89
5.2.5 Attribute-Controlled Model Transformation 89
52.6 Template-Based Code Generation 90
5.3 EBvaluation 92
5.3.1 Complexity of Specifications 92
53.2 FullROSSupport 94
533 UseCases 98
54 SUMMANY . . o oo 103
Model-based Generation of Hardware/Software Architectures for Robotics Systems105
6.1 Challengesand Goals 105
6.2 Code Generation Workflow 106
6.2.1 Model Analysis 108
6.2.2 Template Engine 109
6.2.3 Artifacts Generators 110
6.3 Code Generation Challenges for HW/SW Architectures 111
6.3.1 Concise Holistic Model 111

Contents

6.3.2 Dynamic Frame Length

6.3.3 Scheduling Transactions between Hardware and Software

6.4 FPGA Architectures for Robotics (FAR) Tool
6.4.1 Tailored Information using Intermediate Representations . . .
6.4.2 Simplifying Runtime Computation
6.4.3 Benefits of Model Analysis in the Development Lifecycle . . .
6.4.4 Details of the Model Analysis

6.5 Evaluation
6.5.1 Quaternionto Euler,
6.5.2 Image Processing
6.53 Multi-type Messages
6.5.4 Robotic Arm Position Estimation.
6.5.5 Manual Vs. Generated Deployment

6.6 Wizard

6.7 Adaptability and Extendability oL

6.8 SUMMArY

7 Conclusion

Bibliography

List of Figures

Total ROS packages downloaded (data based on ROS community metrics) . . 3
Objectives and contributions 5
Component-oriented workflow for the generation of FPGA-based robotic ap-
plications 7
2.1 Related FPGA and GPU publications for robotic applications. 10
2.2 Reconfigurable computing system's diagram. 11
2.3 Zyng®-7000 SoC architectural overview 12
2.4 AXIStream protocolexample 14
2.5 Example of how a lexer and a parser generate an AST 16
2.6 Synthesizedvs. inherited attributes o 18
2.7 Generated syntax tree for BNF grammar example for input string 3« (4+2)+8 18
2.8 Custom DSL and graphical representation of a desired state machine 20
2.9 Populated AST for the example state machine 23
2.10 Code generation process used in this dissertation 23
2171 Basic ROS architecture 34
2.12 Complexity of ROSmessages 34
2.13 Aspects of architectures & programming of robotics in the state-of-the-art. . 40
3.1 Generic base architecture 48
3.2 TCP/IP five-layer network model 49
3.3 Hardware portforimage msg 51
34 Manager 52
3.5 AXISID extractionsignals 54
3.6 SPI'master architecture with AXISinterfaces. 56
3.7 Resource utilization in common IPs inside the manager 57
3.8 Multiplexer and demultiplexer 58
4.1 Adaptable statechart, generic for all scheduling algorithms 60
4.2 Fixed priority scheduling with and without preemption. 61
4.3 Earliest deadline first scheduling 62
44 Leastslacktimescheduling 63
4.5 Schedulers' resource utilization Lo 65
4.6 Accelerators that finished or gotthegrant 66
4.7 Preemptions per accelerator (per completed transaction) 67
4.8 LRU example with four accelerators 67
4.9 Response time and lateness metrics oL 68

List of Figures

VI

410 Schedulers’average responsetime 69
4.11 Schedulers average lateness 71
4.12 Schedulers' maximum lateness 71
4.13 Communication channel utilization 72
4.14 Schedulers' corner cases: Average preemption per algorithm 73
415 Schedulers' corner cases: Responsetime 75
4,16 Schedulers' corner cases: Lateness 76
4.17 Schedulers' corner cases: Channel utilization 77
418 Combined schedulers 78
5.1 ROS message and hardware equivalence 83
5.2 Workflow to generate hardware architectures 84
53 Meta-modelsinthe FIRMtool. 86
5.4 ROS message model for sensor_msgs/Image 87
5.5 Intermediate message model for sensor_msgs/Image 88
5.6 Model transformation and code generation attributes 91
5.7 Complexity of ROSmessages 94

5.8 Histograms of contained fields in ROS Noetic and ROS2 Humble messages . 95
5.9 Histograms of distinct data types in ROS Noetic and ROS2 Humble messages 96

5.10 Histograms of nesting depth in ROS Noetic and ROS2 Humble messages. . . 96
5.11 Amount of ROS and ROS2 messages with and without nested message 97
5.12 Image processing use Case SEqQUENCE v v v v v v i e 100
6.1 Quaternion to Euler converter with ROS interfaces 107
6.2 Extended toolchain workflow for the generation of HW/SW architectures . . . 109
6.3 Payload of an image publisher dynamically computed 113
6.4 ROS schedulingschemes 114
6.5 UML representations of the system specification ASTs 118
6.6 Quaternionto Euler's AST.. 118
6.7 Workflow of interactive tool to create a system specification interactively. . . 124
6.8 Adapted grammar including a Network-on-Chip. 125
7.1 Dissertation OVerview 133

List of Tables

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1
52
53
54
55

6.1
6.2

AST specification syntax used inJastAdd 21
FPGA applicationsinrobotics 28
GPU applicationsinrobotics 31
Integration of FPGAs and ROS. 38
MDE approaches for FPGAs 46
Decoder with two input's truthtable. 54
Decoder with four input's truth table 54
Resource utilization in common IPs inside the manager 57
Schedulers' resource utilization 64
Resource-optimized vs. latency-optimized EDF tradeoff 66
Schedulers'responsetime 70
Schedulers'lateness 70
Combined schedulers' resource utilization 78
Schedulers comparison 79
Supported datatypes and potentially addable features 93
Lines of Code of ROST and ROS2 HDT. 99
Execution time with and without generated components. 107
Resource utilization for bothusecases 102
Lines of code written once for all use cases, and additional written/generated

code for each individualusecase 102
Execution time of hardware accelerated functions. 121
Lines of code of input vs. generated artifacts 123

Vil

List of Listings

2.1
2.2
2.3
2.4
2.5

3.1

5.1
52

53
54
55
56

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9

Example ofa BNFgrammar 16
JastAdd grammar for state machines oL 21
Manually coded state machinesinVHDL 22
Template configuration for state machines 24
Mustache template for state machines 25
ROS sensor_msgs/Image specification 51
Configuration file for an image processinguse case 85
Declaration and equations for the synthesized attribute bitwidth for the non-

terminal Field 89
Declaration and definition of the inherited attribute startindex 90
Template configurationfile 91
Snippet of a HDT for ROST 98
Snippet of a HDT for ROS2 99
System specification for a Quaternion to Euler system 108
Mustache template to generate script that uses FIRM to generate all message-

dependend components 110
Resulting shell script to generate IP blocks for message-dependend components111
Snippet of the connections between accelerator and publisher converter . . 112
Computation of message length L 114
System specification’s grammar 118
Derived configuration file (converterspart) 119
Attribute to obtain output interfaces for specified accelerators 119
Input configuration file (connectionspart) 120

Acronyms

API Application Programming Interface.
ASIC Application-Specific Integrated Circuit.
AST Abstract Syntax Tree.

AXIS AXI Stream.

BNF Backus-Naur Form.

CAD Computed Aided Design.

CFG Context-Free Grammar.

CLB Configurable Logic Block.

CPU Central Processing Unit.

DDS Data Distribution Service.

DMA Direct Memory Access.

DNN Deep Neural Network.

DoF Degrees of Freedom.

DPR Dynamic Partial Reconfiguration.
DSE Design Space Exploration.

DSL Domain Specific Language.

DSP Digital Signal Processor.

DUT Device Under Test.

EDF Earliest Deadline Frist.

FAR FPGA Architectures for Robotics.

FF Flip-Flop.

FIFO First In First Out.

FIRM FPGA Interfaces for Robotics Middlewares.
FP Fixed Priority.

FPGA Field Programmable Gate Array.

Acronyms

FPS Frames per Second.

FSM Finite State Machine.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HDL Hardware Description Language.
HDT Hardware Description Template.
HLS High-Level Synthesis.

IDL Interface Definition Languages.

loT Internet of Things.

IP Intellectual Property.

LHS Left-Hand-Side.

LoC Lines of Code.

LOEDF Latency-Optimized Earliest Deadline First.
LRU Least Recently Used.

LST Least Slack Time.

LUT Lookup Table.

MARTE Modeling and Analysis of Real-Time and Embedded Systems.
MDA Model-Driven Architecture.

MDE Model-Driven Engineering.

NoC Network-on-Chip.

NPFP Non-Preemptive Fixed Priority.
NTA Non-Terminal Attribute.

(0N Operating System.

PE Processing Element.

PFP Preemptive Fixed Priority.

PIM Platform Independent Model.

PL Programmable Logic.

PS Processing System.

PSM Platform Specific Model.

RAG Reference Attribute Grammar.
RCS Reconfigurable Computing System.
RHS Right-Hand-Side.

ROEDF Resource-Optimized Earliest Deadline First.

Xl

Acronyms

ROS
RPC
RTL
SIMD
SLAM
SoC
SPI
UML
VHDL
WCET
YAML

Robot Operating System.

Remote Procedure Call.

Register Transfer Level.

Single Instruction Multiple Data.
Simultaneous Localization and Mapping.
System-on-Chip.

Serial Peripheral Interface.

Unified Modeling Language.

Very High Speed Hardware Description Language.

Worst Case Execution Time.

Yet Another Markup Language.

X

1 Introduction

1.1 Motivation

Robotics has become an important field over the last decades in the research community
as well as in industry, but there are still open challenges to solve, such as new fabrication
schemes, new power sources, battery technology, and energy-harvesting schemes, navigation
in extreme environments or artificial intelligence for robotics [1]. The application fields range
from manufacturing [2], collaborative robots (cobots) interacting directly with humans [3],
biomedicine [4], drones for different application [5] as well as mobile robots [6], to name a
few. Due to the wide range of applications, robotic platforms are becoming more complex,
including heterogeneous sensors and actuators. Complexity increases even more, when
multiple robots are part of the same system, such as an automated warehouse [7]. All
these systems need to process a large amount of heterogeneous raw data from multiple
sensors and take action (via actuators), complying with real-time and power-consumption
constraints. However, these systems usually have limited resources in terms of memory
storage, bandwidth, and computational capabilities.

On the one hand, Central Processing Units (CPUs) have been traditionally the defacto Pro-
cessing Element (PE) as they can handle a wide range of tasks quickly, and there is much
support concerning their programmability. However, even though they include multiple cores,
they are limited in terms of running many tasks in parallel. On the other hand, heterogeneous
computing has grown over the last years, improving the innovations on accelerating compute-
intensive workloads such as artificial intelligence [8]. The field of computer architecture has
become quite diverse with the emergence and constant improvements of CPUs, Digital Signal
Processors (DSPs), Graphics Processing Units (GPUs), and Field Programmable Gate Arrays
(FPGASs). Lately, these last two have been explored as PEs for robotics.

GPUs include a large number of processing cores designed to run simultaneously, enabling
a vast level of parallelism. In terms of their programmability, different frameworks have
been used by developers. The parallel programming paradigm Compute Unified Device
Architecture (CUDA®) was released by NVIDIA® in 2007. It is very similar to the C language,
oriented to GPUs. It combines serial and parallel executions and contains a particular C
function (kernel) executed concurrently on a fixed number of threads. The Open Computing
Language (OpenCL™) was launched to provide benchmarks for heterogeneous computing.
It offers a portable language for GPUs and is used to design applications that are general
enough to run on different architectures.

1 Introduction

FPGAs are ideal candidates to process a large amount of heterogeneous data due to their
intrinsic parallel architecture [9]. They provide versatility to design hardware according to
the needs precisely, can pre-process data very close to sensors [10], and can be, from the
performance per watt, close to Application-Specific Integrated Circuits (ASICs) [11, 12], but
they are more flexible as they are reprogrammable. However, their programmability is not as
easy as CPUs or GPUs. A similar approach to CUDA® and OpenCL" is High-Level Synthesis
(HLS), which is also a C-like design process in which a high-level functional description of
a design can be compiled into Register Transfer Level (RTL). It allows designers with basic
hardware knowledge to re-use software applications with minimal changes to comply with
some hardware constraints, such as data movement between different components (calling
functions in terms of software). Therefore, FPGAs are not limited anymore to experienced
hardware developers with knowledge in Hardware Description Languages (HDLs). Never-
theless, designers still need some basic hardware knowledge to consider when “coding”
new accelerators (also called Intellectual Property (IP) cores, hardware IPs, or just IPs). The
flexibility of FPGAs is due to the programmability of their Configurable Logic Blocks (CLBs)
and the interconnection among them. Besides, FPGAS's programmable connections to ex-
ternal components make them very versatile for systems with many sensors and actuators,
whether existing or new ones that may be required. These last two points are the main
reasons why FPGAs are becoming an ideal candidate to be used as a computational element
in robotic applications. The challenge with FPGASs, as with GPUs, is how to integrate them
into a given system or architecture, which is the main motivation of this dissertation. It is
important to note that the embedded systems community has also focused its attention
towards FPGASs [13], bringing new tools and programming paradigms, primarily based on
HLS. Different commercial (e.g., Xilinx® OpenCV, Matlab® HDL Coder), as well as academic
frameworks [14, 15] are available, providing multiple functions as individual elements (e.g.,
filters) to be integrated into a given architecture. Lastly, they are a good fit to self-adaptive
systems, as some blocks can be modified dynamically at runtime.

Robotic platforms are a combination of software and hardware, requiring specific knowledge
of multiple fields (i.e., hardware, software, control). Extending their capabilities with different
computing systems increases their complexity even further. Ideally, experts in each field
focus on a specific system part according to their expertise in developing robots. They
should complement each other, and designers should be provided with simple tools to focus
mainly on their expertise. However, there are challenges in coping with these sophisticated
heterogeneous systems and how to integrate them.

Regarding software, the robotics community adopted the Robot Operating System (ROS) [16]
as the mainstream middleware over the last years. Figure 1.1 shows the total number of
packages downloaded over the last decade, which include standard algorithms for basic
tasks such as localization, control, or mapping, to name a few, freely available in ROS due to
its large community behind it. Lately, efforts have been put into ROS2 to improve its real-time
features and safety-critical related systems and ROS-industrial to extend the capabilities of
ROS software to industrial relevant hardware and applications. All of these lead to more
designers working on complex robotic systems, demanding more computational power and
often needing to process a large amount of data in parallel.

One aspect to remember in software development is that CPUs have been normally designed
to fulfill generic operations such as addition or subtraction. Therefore, in order to obtain
any given result, multiple operations have to be performed. A second aspect is that complex

Thttp://wiki.ros.org/Metrics

http://wiki.ros.org/Metrics

1.1 Motivation

Downloads [Millions]

2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 1.1: Total ROS packages downloaded (data based on ROS Community Metrics')

operations can be achieved by designing specific hardware. For example, multiple functions
for image processing can be implemented in an FPGAs, combined and produce powerful
algorithms [17]. A third aspect concerns that these complex robots have to perform many
computations. Reaching the desired performance represents a challenge, especially in the
case when they are equipped with embedded computers consuming a lot of energy, which
is limited in a mobile system that is usually battery operated. Therefore, other computational
resources, such as FPGAs or GPUs, which are more power efficient, should be considered for
robotics. The first one is advantageous due to their versatility in obtaining custom designs
capable of performing heavy computations with reduced power consumption. Moreover,
they have been proven to be more efficient in terms of energy compared to general purpose
processors [18]. Besides, FPGAs handle parallel and logic operations better than CPUSs.

Despite all these and the advantages of FPGAs mentioned before, the robotics community
has not fully included them so far as part of their systems for several reasons. First, designing
FPGA-based solutions requires hardware knowledge and longer development times than
software solutions. Second, porting a robotics application (or parts of it) from software
to an accelerator requires adequate interfaces between software and FPGAs. Third, the
robotics workflow is already complex on its own, combining several fields such as mechanics,
electronics, and software. Hence, increasing the effort to develop these systems is not
desired [19, 20]. Lastly, there is a knowledge gap in system integration besides significant
design engineering costs, which is detrimental to integrating new Reconfigurable Computing
Systems (RCSs) into robotics.

The main four points to take into account when considering RCSs for robotics are:

1. The hardware platform must be able to comply with the power, computing and energy
consumption requirements needed for robotic applications. They should be flexible
and adaptable for reusability, and provide simple programmability.

2. Traditional robotics systems are software-based, so there has to be an easy integration
of existing architectures to a new platform to enhance their capabilities [21].

3. The usability of such new platforms must be easily adapted by roboticists to attract
them to use such systems.

1 Introduction

4. Developing FPGA-based architectures and system integration is a complex and arduous
process that is usually overlooked, the generation of all components needed and their
complete deployment should ideally not require much manual intervention.

These points already involve too many aspects to consider, so a simplification is required,
at least from a design point of view. A model is an abstraction of a system or the real world
concentrating on specific structural or behavioral properties and representing them in a
syntactically and semantically defined language [22]. Systems and, therefore, robots can be
developed and tested based on such models exploiting their ability to abstract. By abstracting
some details of a system in its model, the complexity of the modeled system is hidden, thus
enhancing the understanding of the system [23]. In this respect, a suitable level of abstraction
and an appropriate system view must be determined. A too detailed model may not only be
limited to a single use case but also be hard to construct because of time constraints or high
complexity [24]. However, a too generic model may not provide the required expressiveness.
Thus, the selection of the right level of abstraction is essential.

Figure 1.2 shows an overview of the objectives and contributions of this dissertation. The
figure depicts the three main aspects to consider and the solutions proposed to achieve
said objectives. Based on the motivation and background in this section, in the following one,
existing research challenges are discussed, shaping the objective of this work.

1.2 Objectives

There have been partial contributions in the state-of-the-art for RCSs, particularly FPGAS, as
part of robotics systems [27]. However, a study of FPGAs as a whole for robotics systems is
missing in the literature. This means that defining which are all the components required for
an FPGA-based system for robotics applications as a whole, their integration into existing
solutions as well as the generation of said components has not been done, which are the
main objectives of this dissertation. In order to achieve this, the following points have been
defined, as they have not been done so far, making them the three main objectives for this
dissertation:

1. Objective 1: Define all components required for an FPGA-based system for robotics
applications as a whole.

2. Objective 2: Establish how all the defined components are related.

3. Objective 3: The generation of these components, their deployment and integration
into existing solutions.

All along this work, Xilinx® has been the FPGA reference, particularly the Zyng® model, which
includes processors, called the Processing System (PS) and the logic part, referred to as
Programmable Logic (PL). Note that the concepts described in this work are not only valid for
Xilinx® FPGAs as one could also think of soft-core processors such as MicroBlaze™ or RISC-V
cores.

The following section describes the contributions proposed to meet the objectives described
previously.

1.3 Contributions

RobOt

ne
a .
21 Inters, by,
C@S

FPGA-based
Robotics System

Figure 1.2: Objectives and contributions

1.3 Contributions

The main contributions of this dissertation are presented below:

- FPGA-ROS: Methodology to Augment the Robot Operating System with FPGA De-
signs [21]

The first contribution of this dissertation is the foundation of the work. It concerns a
methodology to design custom FPGA-based architectures compatible with the main-
stream robotics middleware ROS. The aim is for highly computational algorithms im-
plemented as dedicated hardware modules to increase the processing power of any
heterogeneous robotics system, taking advantage of the freedom and versatility that
FPGAs provide. A modular design is foreseen to ease the adaptability to changes in the
system. The selection of the AXI Stream (AXIS) protocol enables modules to be added
or removed dynamically (“plug & play”). Furthermore, they can be designed in HDL (e.g.,
Very High Speed Hardware Description Language (VHDL), Verilog) or HLS. Message
specifications (either off-the-shelf or custom ones) representing data structures for
the entities of accelerators are used. Converters act as encoders/decoders for the
IP cores and the common AXIS interface to communicate with other modules in the

architecture.

1 Introduction

+ Hybrid Hardware/Software Schedulers for Tailored Architecture [26]

The base architecture is generic so that it can host any number of accelerators, whether
they exchange data among them, receive data from the PS or send data to the PL.
Therefore, how this communication is established has to be addressed. On the software
side, where the native middleware runs, the goal is to share the most up-to-date
incoming data with accelerators. On the hardware side, the main goal is to serve all
accelerators in the system and avoid them being unable to send or receive data. Six
different schedulers are proposed to cover multiple scenarios for different robotics
applications. They are scalable and easy to adapt to manage either a small or large
number of accelerators. Furthermore, the evaluation framework can also be used to
select the most fitted algorithm for each application, depending on the total number of
accelerators and their characteristics.

+ Generation of Middleware-Compatible Interfaces and their Validation [9]

The base architecture needs suitable interfaces compatible with robotic applications.
They must be compatible with middleware specifications, which describe data types
and structures to transfer information from/to different parts of the architecture. These
specifications are what define the converters. Their hardware implementation deals with
low-level details, usually abstracted in the software workflow. Therefore, writing these
converters manually is a cumbersome and error-prone process. On the one hand,
a model-based toolchain that automatically generates these hardware components
(VHDL modules) from existing message specifications is proposed. On the other hand,
the model-based approach allows for validating their correct logic. Lastly, the approach
facilitated the extension from ROS1 to easily provide support for ROS2, and other
middlewares can also be incorporated.

+ Modelling FPGA-based Robotic Systems [25, 19]

The system integration of all generated components to deploy complex systems compli-
ant with existing robotics middlewares (e.g., ROS, ROS2) is an arduous and error-prone
process. Therefore, a modeling approach to solve this is proposed. As the aim is not to
increase the workflow of roboticists, the way the system is specified must be compact
yet expressive with just enough information to generate all required components and
to integrate existing algorithms. The proposed approach (c.f., Figure 1.3) exploits the
advantages of Model-Driven Engineering (MDE) and model-based code generation to
produce all components. Data type and data flow analysis are performed to derive the
necessary information to generate the components and their connections.

An overview of the process, including all contributions listed above, is presented in Fig-
ure 1.3 [19]. It is based on the MDE technique [28], which uses a staged model transfor-
mation process in which models are transformed in iterations. To separate the resulting
logical structure of the code from the concrete syntax, a logic-less (i.e., containing no complex
template expansion logic) template engine is used (Generators in Figure 1.3). Their inputs
are specifications of the component they will generate, an intermediate model (template
configuration) containing all the information to generate the tailored artifacts (i.e., VHDL, C++
files for HLS, TCL or bash scripts) and their corresponding template. The workflow can be
split into three branches. The first refers to the base architecture, which includes two distinct
generators. One for the architecture-dependent components, like a manager (which includes
the scheduler) to handle N accelerators and a communication interface to exchange data
with external non-hardware components. The other one handles the components of the
processor-related (hard or soft processors). The second branch handles the interfaces to robotic

1.4 Thesis Structure

entity {{interface}} is
ort

P (-
clk, rst: in std_logic;
{{Variable}}: {{Direction}} std_logic.vector({{Bits}} downto 0); pecification

)i

T
Snippet of a HDT

\2 y

Middleware

Specification Base Architecture

Middleware ~ + | [Hardware Deseription] '~ 5.7 777377 | [ProcessorSpecs| "I 077G

]] Hardware Description b S M Processor Specs]]
i Interface ! Template (HDT)) eE=Ee) Template (PST)) BmEEEs |
Middleware Interfaces

Generator

ol
o5
3
3
P 29
S 7
g8
ea

e ‘ A e ; ;
 Wittdlarene {MPSoC Integration| Accelerators | Architecture- -, | Accelerator !
. dependent " (TCL, Bash) (VHDL/HLS) . dependent | (VHDL/HLS) |
b (vhbL) ‘ . ‘ | IP(VHDL) ‘ ‘

| System’s Builder 1

L _(TCL Bash) | FPGA-Based Robotic Application

Figure 1.3: Component-oriented workflow for the generation of FPGA-based robotic applica-
tions

applications. The last branch generates accelerators based on the expected behavior for a
given application, compatible with middleware specifications (interfaces). The output of all of
them is a set of artifacts for all components needed to automatically deploy an FPGA-based
robotics application from a simple system’s specification.

1.4 Thesis Structure

This dissertation is structured in six chapters, including this one. An overview of each of them
is given below.

Chapter 2 presents the background and state-of-the-art review of the related topics of
this dissertation. Three main points are discussed, which complement each other, to pave
the way for the contributions presented previously. The first one explores traditional (non-
hardware-oriented) methodologies followed in robotics. Then, an overview is given about
which applications in the robotics field use GPUs and FPGAs to understand their complexity,
advantages, and challenges they bring. Furthermore, they depict why especially FPGAs are
a good fit for robotics applications. Lastly, an analysis of different modeling technigques to
tackle the complexity of these applications and how to circumvent them by code generation
is presented.

Chapter 3 introduces the base architecture, discusses why a modular approach is needed,
the reason for each component to be part of the system, how they relate to each other,
and how each of them interact with one another. Then, it presents the details of all the
components that constitute it, analyzing their scalability and generalizability to multiple use
cases.

Chapter 4 presents several scheduler algorithms to arbitrate the exchange of data between
software and hardware components. Experimental results are presented, describing all the
characteristics that can be used to select the most appropriate one for each application.

Chapter 5 addresses the generation of hardware interfaces compatible with standard robotics
systems, based on specifications. The chapter starts with the goals and challenges, followed
by a description of the toolchain proposed. The fundaments of the model-based approach

1 Introduction

chosen and why a logicless template engine is chosen are described. The underlying reason
for the need for a toolchain is discussed based on the complexities of message specifications.
Furthermore, the full ROS support and the means to extend the toolchain for ROS2 are
explained. An evaluation of the toolchain follows to show the correctness of the logic of the
generated components and the claimed full ROS support.

Chapter 6 describes the extended toolchain to generate the entire FPGA-based system in
addition to the hardware interfaces. It starts with the requirements on how to describe the
system in a compact yet power expressive [29] way to obtain the explicit and implicit charac-
teristics of the system. Then, a description of the system’'s model is illustrated, which is used
to generate all components. Three challenges faced in the generation of such architecture
are presented and how they are solved with the proposed approach. Lastly, an evaluation
with several use cases is performed, followed by comparing the effort to write them manually
versus using the resulting toolchain to highlight its benefits.

Chapter 7 summarizes and concludes this dissertation and presents the future work.

2 Background and State-of-the-Art

In recent years, robotics research has witnessed remarkable advancements in various applica-
tions, ranging from manufacturing, healthcare, and logistics, to name a few. These applications
require powerful computational systems that can process large amounts of heterogeneous
data from multiple sensors fast, usually at real-time, to enable quick and precise decisions
that trigger appropriate actions on different actuators. Despite significant progress in robotics
technology, the challenge of processing and integrating data from diverse sources in real-time
remains a significant issue that researchers still need to tackle. Furthermore, new PEs have
been emerging over the last years. However, but their integration into the current robotics
workflow tends to be an arduous process, leaving them out of consideration by roboticists
due to their difficulties in regards to usability and programmability. Efficient robotic systems
require innovative solutions that can handle large-scale, complex data processing tasks.
These solutions should be robust, reliable, and scalable, and easy to integrate into existing
systems.

All these systems need to process a large amount of heterogeneous raw data from multiple
sensors and take action (via actuators), complying with real-time and power-consumption
constraints. However, these systems usually have limited resources in terms of memory
storage, bandwidth, and computational capabilities. Traditionally, CPUs have been the defacto
PE as they can handle a wide range of tasks quickly, and there is much support concerning
their programmability. However, even though they include multiple cores, they are limited in
terms of running many tasks in parallel. Lately, two other options have been explored as PEs,
namely GPUs and FPGAs.

GPUs include a large number of processing cores designed to run simultaneously, enabling
a vast level of parallelism. In terms of their programmability, different frameworks have been
used by developers. The parallel computing platform and application programming interface
Compute Unified Device Architecture (CUDA) was released by NVIDIA in 2007. It is very similar
to the C language oriented to GPUSs. It combines serial and parallel executions and contains a
particular C function (kernel) executed concurrently on a fixed number of threads. The Open
Computing Language (OpenCL) was launched to provide benchmarks for heterogeneous
computing. It offers a portable language for GPUs and is used to design applications that are
general enough to run on different architectures.

FPGAs are ideal candidates to process a large amount of heterogeneous data due to their
intrinsic parallel architecture [9]. They provide versatility to design hardware according to the
needs precisely and can pre-process data very close to sensors [10]. Moreover, they provide
better performance per Watt than a standard CPU-based architecture [30]. However, their
programmability is not as easy as CPUs or GPUs. A similar approach to CUDA and OpenCL is

2 Background and State-of-the-Art

HLS, which is also a C-like design process in which a high-level functional description of a
design can be compiled into RTL. Nevertheless, designers still need some basic hardware
knowledge to take into account some details when “coding” new accelerators (also called
hardware IPs). FPGAs offer a better energy efficiency compared to CPUs and GPUs [18],
becoming an ideal candidate to be used as a computational element in robotic applications.

Despite the advantages of FPGAs and GPUs, their programmability and integration as individ-
ual modules into existing systems are cumbersome. An efficient option to aid the integration
of multiple components are middlewares, which provide services beyond those available from
the Operating System (OS). They make it easier for developers to implement communication
and input/output to focus on the application’s specific purpose. Nevertheless, there are
plenty from the software side. However, only a little support from the hardware side focuses
on accelerators, so the experience is needed to incorporate them into existing solutions.
To simplify the process, a higher level of abstraction helps, which is why model-based ap-
proaches have been proposed to integrate, generate and deploy hybrid software/hardware
systems.

Robotic systems require specific knowledge of multiple fields (i.e., hardware, software, control).
Extending their capabilities with different computing systems increases their complexity even
further. Figure 2.1 shows data from peer-reviewed articles, depicting how GPUs and FPGAs
have been part of robotic-related research, which has not been increasing over the last ten
years. Furthermore, Figure 2.1 also shows in terms of percentage, how many publications
related to robotics (that include the word robot) are concerned with FPGA or GPU. It can
be observed that FPGAs have not been widely adopted as an alternative PEs in robotics
since the early 2010s. In recent years, GPUs have gained popularity, most likely due to the
increasing affordability of embedded GPUs. This represents one of the primary motivations
for this dissertation, which aims to investigate the underlying reasons for the limited use of
FPGAs in robotics and propose methodologies and tools for enhancing their adoption as a
viable PE option in this field.

robot AND FPGA '\ 2.00
robot AND GPU / \

—— ((robot AND FPGA)/robot)*100 [\
1000 —— ((robot AND GPU)/robot)*100 “‘c \\

=
N
a

800 \

=
%
o

=
N
a

600

g
=3
S

400

"robot FPGA" and "robot GPU" searches

e
N
o

Percentage of "robot FPGA" and "robot GPU" in "robot" searches

/

/

’!

)
/\
N

0.25

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 2.1: Related FPGA and GPU publications for robotic applications.

10

2.1 Zyng and UltraScale FPGA Families

Ideally, to develop robots, experts in each field focus on a specific system part according
to their expertise. However, there are challenges in coping with these sophisticated hetero-
geneous systems and how to integrate them. MDE copes with the challenges of building
complex heterogeneous systems [28]. A model can be defined as an abstraction of a system
often used to replace the system under study [31]. They represent a partial and simplified
view of a system. So, modeling all parts of the system separately is usually necessary to better
represent and understand the system under study [31].

It is important to define some concepts that will be used for the remaining of this manuscript,
before exploring the state-of-the-art. These are introduced in Sections 2.1 and 2.3 to 2.6.

2.1 Zynqg and UltraScale FPGA Families

This section introduces the main concepts about FPGAs followed in this dissertation. Figure 2.2
show a generic representation of FPGAs which helps to understand why they are considered
an ideal candidate for robotics systems in this work. First of all, they include CLBs, which are the
essential resources FPGAs include. They usually include Flip-Flops (FFs), Lookup Tables (LUTs)
and multiplexer, enabling the programmability mentioned before. They also include DSPs and
memory blocks, even though these last ones are limited in size and special care needs to be
taken at design time. The interconnection among these blocks is also programmable, which
is the main reason for the flexibility of FPGAs mentioned before. Lastly, their programmable
connections to external components make them very versatile for systems with many sensors
and actuators, whether existing or new ones that may be required.

As mentioned in Section 1.2, the Zyng® model from Xilinx® is used in this dissertation,
particularly the Zyng®-7000 and Zyng® UltraScale+™ families. They include dual-core or
single-core ARM® Cortex"-A9, and 64-bit quad-core or dual-core ARM® Cortex®-A53 and
dual-core ARM Cortex-R5F based PS, respectively. Both families include in the single device
Xilinx®'s PL. The PL allows users to design their own digital circuits using an HDL and then
program them onto the FPGA. This allows the creation of customized hardware solutions
for a wide range of applications, from signal processing to data center acceleration. As a

Programmable Programmable

/Interconnections

Logic Components

Programmable ,M CLB
Connections to
External Components \Digital Signal

Processor

Figure 2.2: Reconfigurable computing system's diagram.

11

2 Background and State-of-the-Art

reference, the architectural overview of the Zyng®-7000 System-on-Chip (SoC) is shown
in Figure 2.3.

Zyng® devices provide a good balance between performance and power consumption, mak-
ing them suitable for a wide range of applications, including embedded vision, industrial
control, and Internet of Things (IoT). On the other hand, UltraScale+" is a family of FPGA de-
vices that offers high performance and scalability for applications that require high-bandwidth
data processing. These devices have a more advanced architecture than Zyng® devices, with
features like high-speed serial transceivers, 28Gbps transceivers, and advanced memory
interfaces. UltraScale+" devices are typically used in high-performance computing, wired
and wireless communications, and video processing applications.

For both families, the PS has a wide range of peripheral interfaces such as USB, Ethernet,
UART, SPI, and 12C. These interfaces can be used to connect to various devices, such as
storage devices, network devices, and sensors. Furthermore, a boot loader can be loaded
on the device to initialize the hardware as well as load a Linux kernel into memory. Having
a Linux kernel loaded into memory allows the OS to take control of the device and run a
native Linux distribution as in a regular desktop PC with the advantages of this particular
embedded system (e.g., high-performance, low-power processing).

Zyng-7000 SoC
o Processing System
Peripherals Application Processor Unit
G eﬁ';)r:: on I | Reset | SwDT op e e a
/ usB FPU and NEON Engine |[I| FPU and NEON Engine ||
USB 2x UsB MMU ARM Cortex-A9 : MMU ARM Cortex-A9 :
GigE 2x GigE System- CPU | CPU |
GigE 2x SD Level 32 KB 32 KB I| 32KB 32KB |l
sD Control |-Cache D-Cache |l I-Cache D-Cache |l
SDIO Regs e e === -
IRQ |
SD = GIC || Snoop Contraller, AWDT, Timer il
SDIO 'Yy |
GPIO | |~ | «f{ DMAS | A 512 KB L2 Cache & Controller |
O | UART H Channel
= UART | | I Y
o ocM | 256K
T __ | Interconnect | SBAM 1
12C ' Memory
SPI Central Interfaces
SFI Interconnect -
DDR2/3,
m CoreSight DDRAL,
- m,;?;‘gg; = Components é_P[t)Dh:te
\ SRAM p A ontroller
NOR —
ONFI 1.0 B 1 DAP * A
NAND -] DevCl Programmable Logic to
0-5PI = Memory Interconnect
CTRL
1 rv t4 S N N
EMIO General-Purpose DMA IRQ | Config High-Performance Ports ACP
XADC
12-Bit ADG Ports Sync AES/ .
SHA Programmable Logic
) SelectlO
Notes: o Resources|
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AX| 32-Bit/64-Bit, AX] 64-Bit, AX| 32-Bit, AHB 32-Bit, APB 32-Bit, Custom
3) Dashed line box indicates 2nd processor in dual-core devices

Figure 2.3: Zyng®-7000 SoC architectural overview'

12

2.2 AX| Stream Protocol

2.2 AXI Stream Protocol

The AXIS Protocol is a widely-used interface protocol for efficient and reliable communication
between digital circuits. The protocol is designed to provide a high-speed, point-to-point
communication link between system components, such as between the CPU and peripheral
devices like accelerators. AXIS is a packet-based protocol that operates over a single, unidirec-
tional data channel, unlike the AXI4 protocol that supports bidirectional communication.

The protocol works in a master-slave configuration. The first one is the one that produces
the data, and the second one consumes it. Four signals must always be part of the interface,
namely:

+ TDATA is the primary payload used to provide the data. The width of the data is an
integer number of bits, typically 8, 16, 32, or 64.

+ TVALID indicates that the master has data available to be transferred.
+ TREADY indicates that the slave can consume the data produced by the master.
+ TLAST indicates the last element to transfer (packet boundary).

For a master, TDATA, TVALID, and TLAST are output signals, and TREADY is input. For a slave,
TDATA, TVALID, and TLAST are input signals, and TREADY is output.

A frame consists of a group of packets (bytes that are transported together across an AXIS
interface), and there is a handshake process for the transmission to begin. For a transfer to
occur, both TVALID and TREADY signals must be asserted irrespectively of their order (or
at the same clock cycle). However, there are some restrictions. A master cannot wait until
TREADY is asserted. It must always assert TVALID when new data is available, independently
of TREADY . Once TVALID has been asserted, it must remain asserted until the handshake
occurs. Similarly, a slave cannot wait until TVALID is asserted. It must always assert TREADY
whenever it can consume data from the master. The slave must keep TREADY asserted until
the handshake occurs. Figure 2.4 shows an example of a proper transmission that only starts
once TVALID and TREADY have been both asserted, where the payload is the sequence of
bytes on TDATA .

2.3 Model-Driven Engineering

MDE is a software engineering approach that focuses on creating models that capture a
system’s structure, behavior, and functionality and using those models to generate code
and other artifacts. The goal of MDE is to improve the efficiency and quality of software
development by emphasizing using models as a primary artifact throughout the development
process. MDE is often used in complex systems, where the use of models can help manage
the system’s complexity and improve the development team'’s productivity. It can also be
helpful in domains with strict requirements, as using models can help ensure that the system
meets those requirements.

"Image taken from https://docs.xilinx.com/v/u/en-US/ds190-Zynqg-7000-0verview

13

https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview

2 Background and State-of-the-Art

Figure 2.4: AXI Stream protocol example

MDE is designed to improve software development productivity by boosting compatibility
between systems, simplifying the design process, and easing communication among indi-
viduals and teams working on the system. One key advantage of MDE is that it facilitates
the reuse of standardized models, which can help simplify the development process and
promote compatibility between different systems. In addition, MDE promotes the use of
models to capture recurring design patterns in the application domain, which can simplify
the design process and reduce the likelihood of errors.

Another important benefit of MDE, vital for this dissertation, is that it promotes communication
between individuals and teams working on the different parts of a system, where experts
in different domains work. By standardizing the terminology and best practices used in the
application domain, MDE can help ensure that everyone involved refers to the same concepts
(from their expert knowledge), which can reduce misunderstandings and improve the overall
quality of the system.

One common technique used in MDE is model-driven development, in which technical
artifacts such as source code, documentation, and tests are generated algorithmically from a
domain model [32]. This approach can help reduce the amount of manual effort required
during the development process and can also improve the accuracy and consistency of the
resulting artifacts.

The key MDE aspects used along this dissertation are:

+ Modeling: creating models representing the system being developed or generated.
These models may include high-level models of the system’s architecture, as well as
more detailed models of individual components and their interactions.

+ Transformation: using automated tools to transform the models into other artifacts,
such as source code, test cases, and potential documentation.

14

2.4 The Building Blocks of Languages in Computer Science

* Validation: verifying that the models and their transformations are correct and consis-
tent with the system’s requirements.

+ Simulation: using the models to simulate the system'’s behavior under different condi-
tions, such as different inputs or system configurations.

2.4 The Building Blocks of Languages in Computer Science

In order to understand the main concepts exploited in Chapters 5 and 6, some language-
related definitions used in computer science are required, which are explained below:

Grammar: are a set of rules that define the structure and syntax of a language, including the
relationships between its elements.

Context-Free Grammar (CFG): is a formal grammar whose production rules can be applied to
non-terminal symbols regardless of its context, that can generate a language. It is a formalism
used to specify the syntax of a language in a way that is independent of any particular
implementation. In particular, in a CFG, each production rule is of the form A — a, with A a
single non-terminal symbol, and a a string of terminals and/or non-terminals.

Backus-Naur Form (BNF): is a type of meta-language used to formally describe the syntax of
programming languages and other computer languages. It is a notation of CFG that it is used
to define the set of valid strings in the language. Variables (non-terminals) are enclosed via
special brackets "<var>" to distinguish them from terminal symbols. The symbol "::="is used
to indicate an equivalence similar to the derivation function in CFGs (—). The symbol "|"is
used to separate alternatives. Listing 2.1 shows the grammar that can be used to process
expressions like 3 x (4 +2) + 8. This is also used to show further definitions.

Semantics: refers to the meaning of language and symbols in a particular context. For a
programming language, semantics describe what a program does and what values it produces
rather than how it does it. They can specify the rules for evaluating expressions, defining
variables, and executing statements or how a program should behave in different situations.

Abstract Syntax Tree (AST): is a data structure used in compilers and interpreters to represent
the structure of a program. It is a tree-like representation of the source code or a model,
where each node in the tree represents a construct in the element (i.e., language, specification)
being parsed.

Constructs: can be anything from a simple variable declaration to a complex function defi-
nition. The construct is an abstraction of the source code that captures the meaning of a
particular code structure. For example, a function definition is a construct in many program-
ming languages. The construct represents the entire function, including its name, arguments,
and body. The construct provides a high-level view of the function, allowing the parser to
understand the relationship between the different elements in the source code.

Token: is a sequence of characters in the source code that represents a single unit of meaning.
The lexer or lexical analyzer generates tokens by breaking down the source code. Tokens
can be keywords, identifiers, operators, and literals. Usually, the lexer reads the source code
character by character and groups them into token based on predefined rules. The tokens are
passed on to the parser, which processes them and generates a parse tree, which represents

15

2 Background and State-of-the-Art

A wN =

<expr> ::= <term> "+" <term> //Non-terminal

<term> ::= <factor> "*" <factor> | <number> //Non-terminal

<factor> ::= "(" <expr> ")" | <number> //Non-terminal

<number> ::= "0" o2t "3t "4t "5t et | 7 | "8 | "9 //Terminal

Listing 2.1: Example of a BNF grammar

the structure of the code based on the grammar rules. Tokens can be either terminals or
non-terminals. An example is shown in Figure 2.5.

Terminal: also known as a leaf node, is a basic symbol in a grammar that represents the
smallest possible unit of the language being parsed. Terminals are usually represented as
keywords, identifiers, operators, or other literal values in the source code (c.f.Lines 1 to 3
in Listing 2.1).

Non-Terminal is a symbol in a grammar that represents a higher-level structure in the
language being parsed. Non-terminals are usually represented as variables or expressions
that are composed of other symbols, including terminals and other non-terminals (c.f, Line 4
in Listing 2.1).

Production rules: are a fundamental concept in formal language theory and are used to
define the syntax of a language. They specify how the components of a language, such as
terminals and non-terminals, can be combined to form valid sentences or expressions in the
language. In the context of parsing and compiler construction, production rules are used to
define the grammar of a language, which is then used by a parser to recognize and analyze
the syntax of a program written in that language. Production rules consist of two parts: a
Left-Hand-Side (LHS), which specifies a non-terminal symbol, and a Right-Hand-Side (RHS),
which specifies a sequence of terminals and/or non-terminals that can replace the non-
terminal symbol on the LHS. The LHS and RHS of a production rule together define a single
transformation of a language, where the non-terminal symbol on the LHS is transformed
into the sequence of symbols on the RHS. A language's set of all production rules defines
its syntax, and a parser uses these rules to analyze and interpret programs written in the
language. An example is shown in Listing 2.1. The characters ::= divide the LHS and RHS of
the production rules.

Attributes: are values that describe properties of elements in a grammar (i.e., types, values).
An attribute can be a reference to an AST node. Therefore, attributes can connect different
AST nodes to each other (forming a graph). They can be synthesized or inherited:

- Synthesized Attributes: All the information is available on the values of other attributes
in the same node or its children (subtree) (Figure 2.6a).

Abstract Syntax Tree

—_—
Tokens Expression
input Sting UM PLUS UM
30 4 74 — Lexer T35 i 74 — Parser o
PN
32 + 74

Figure 2.5: Example of how a lexer and a parser generate an AST

16

2.4 The Building Blocks of Languages in Computer Science

+ Inherited Attributes: All the information is available outside the subtree (parent) (Fig-
ure 2.6h).

Attribute Grammars: used to specify the syntax and the semantics of programming languages
or a Domain Specific Language (DSL). They are an extension of traditional grammars by
associating additional information (attributes) with elements of the grammar, making it
possible to generate code automatically.

Reference Attribute Grammar (RAG): is an attribute in an abstract syntax tree that holds a
reference to another node in the tree. The value of a reference attribute is determined by
the node it references. Reference attributes help create relationships between nodes in the
tree, such as parent-child relationships or relationships between siblings. There is no need in
RAGs to replicate the information available in the syntax tree into attributes as the AST can
be used as the information source by using RAGs [33].

A lexical analyzer, also known as a lexer, transforms an input stream of characters into a
stream of tokens, which are the smallest units that a parser can handle. A syntactic analyzer,
also known as a parser, converts the input stream of tokens into an attributed syntax tree [34].
Thereby, the AST is generated by the parser, which processes the tokens generated by the
lexer and uses the grammar rules to construct a tree-like structure that represents the
program’s structure (Figure 2.5). The AST captures the program'’s logical structure, including
its syntax, control flow, and relationships between different elements in the source code. In
this context, each node in the tree represents a single construct in the language being parsed.
The nodes are connected to form a tree-like structure, where the parent node represents
a higher-level construct, and the child nodes represent lower-level constructs. This tree-
like structure provides a hierarchical representation of the source code that captures the
relationships between different elements in the program.

Once the AST is generated, it can be used for various purposes, such as code optimization,
code analysis, code generation, and others. Compilers and interpreters also use the AST to
generate machine code or execute the program. In summary, the AST is a crucial component
of the language processing pipeline, providing a structured representation of the program
that can be used for various purposes.

Considering the BNF grammar example from Listing 2.1 that takes the mentioned input
3% (4+2)+ 8, the lexer will generate the following list of tokens: <number:3>, <symbol:*>,
<symbol.(>, <number:4>, <symbol:+>, <number:2>, <symbol.)>, <symbol:+>, <number:8>. These
will be taken by the parser to construct the syntax tree shown in Figure 2.7.

The following section describes the compiler framework used in this dissertation.

17

2 Background and State-of-the-Art

Inherited

S

Synthesized

(a) Synthesized Attribute (b) Inherited Attribute

Figure 2.6: Synthesized vs. inherited attributes

Legend

Non- Terminal

Figure 2.7: Generated syntax tree for BNF grammar example for input string 3 % (4 +2) + 8

18

2.5 JastAdd: The Meta-Compilation System

2.5 JastAdd: The Meta-Compilation System

JastAdd [35, 36] is a flexible system that allows compiler behavior to be implemented con-
veniently based on an object-oriented AST [35]. The "meta" in "meta-compilation” refers to
the fact that JastAdd can be used to generate compilers for other programming languages
instead of being a compiler on its own. Then, being a "meta-compiler" makes it possible to
use JastAdd to develop custom compilers that can parse, analyze, and generate code for a
specific programming language or DSL. The compilers built with JastAdd are tailored to the
needs of the particular language or domain, making it possible to add new features and
functionality in a flexible and modular manner.

JastAdd is a compiler framework that facilitates the creation of compilers, parsers, and inter-
preters for programming languages [37]. The name JastAdd implies the ease of extensibility:
just add to the AST. These are the three main ideas contribute to the modularity and extensi-
bility of JastAdd:

1. Attribute Grammars are a type of grammar that describe a tree-based data structure,
where each node in the tree has a set of attributes. These grammars can be used to
define the semantics of a programming language, and JastAdd provides support for
writing attribute grammar specifications.

2. JastAdd is also object-oriented, as it is implemented in Java and provides a set of
classes and methods for building compilers and extensions. This object-oriented design
makes it easy to add new functionality to the framework and reuse existing code
when building new compilers. The object-oriented architecture also allows for the
integration of jastAdd-based compilers with other tools and libraries, such as debuggers
and performance profiling tools.

3. JastAdd supports declarative thinking through the use of attribute grammars. Attribute
grammars allow specifying the properties and relationships in a declarative manner. This
means it is possible to describe what the language should do rather than how it should
be done, making implementing compilers and extensions much simpler. By specifying
the language in a declarative way, JastAdd provides a higher level of abstraction for
writing compilers, making it easier to understand and maintain the code. This approach
can also make it easier to reason about the behavior of the language, as the focus is
on the desired properties and relationships rather than the implementation details.
Additionally, the declarative specification can be more concise and easier to read
than imperative code, making it easier to collaborate and share knowledge about the
language.

These three modularity and extensibility points make JastAdd the proper framework to fulfill
the aims of this dissertation.

It is built with a Java-based architecture that offers flexibility and modularity for designing and
implementing language extensions and compilers. Attributes can be seen as methods of AST
nodes. They are similar to abstract methods?, and equations are similar to method implemen-
tations. The framework enables the development of custom programming languages, the
creation of DSLs, or the augmentation of existing programming languages. The key feature of
JastAdd is that it allows properties (attributes) of AST nodes to be programmed declaratively.

’Template for methods in related subclasses providing a common interface among them.

19

2 Background and State-of-the-Art

The attributes can be simple values like integers, sets, or reference values pointing to other
nodes in the AST [37]. This is a crucial aspect, as it enables the explicit definition of the graph
properties of a program. Therefore, as nodes in the AST are objects with including attributes,
the resulting data structure is an object-oriented graph model rather than a simple AST.

JastAdd's ability to declaratively program the attributes of abstract syntax tree nodes is a
crucial feature. This results in an object-oriented graph model, implemented using Java
classes, with the attributes forming a method Application Programming Interface (API) for
those classes. Attributes may have parameters, making it possible to transfer or assign
complex computations from one node to another by accessing a parameterized attribute
through a reference attribute.

The parser builds the abstract syntax tree and calculates the values of attributes using
attribute grammars, which are defined using equations. The method API can then be used to
access these values. There are two noteworthy points to consider. First, it does not matter
the order in which the attributes are evaluated. Second, it is possible to add new attributes,
equations, and syntax rules, which facilitates the extensibility of the language or DSL.

Table 2.1 showcases the syntax specification for the AST used in JastAdd. An example of
the grammar for a language that generates state machines can be seen in Listing 2.2. The
root of the AST is StateMachine with a /ist of Declaration components. The purpose of the
abstract declaration is to provide a common base type for all specific declarations. This allows
them to be processed in a generic manner. In this grammar, a State and a Transition are
both considered to be Declaration. However, they have different properties. The specific
properties of State and Transition can be captured by making it abstract. At the same time,
they can still be processed in a common way. This makes writing code that can handle all types
of declarations easier without repeating the same logic for each specific type of declaration.
State contains only the Name component denoting the name of the state. Transition has
three components, namely Source, Target, and Condition. These components express
from which state to which state the transition should happen and the condition to trigger it.
Figure 2.8a shows a custom DSL that describes the state machine depicted in Figure 2.8b.
The VHDL code, written manually for it, is shown in Listing 2.3.

The goal is to have a generic approach, to automatically generate VHDL code for any state
machine specified via the custom DSL. For this, the defined grammar in Listing 2.2 is used to
obtain an AST representing the desired state machine. The DSL is parsed, and the resulting
populated AST for the example shown in Figure 2.8 is displayed in Figure 2.9. In the next
section, the function of template engines is discussed, outlining the process of how this
populated AST is utilized to obtain the VHDL code shown in Listing 2.3, as well as any

state S71;
state S2;

1 1
. start — 1
trans S1->S2:input=1;

trans S2->S1:input=0; 0
trans S2->S3:input=1;
trans S3->S2:input=1;

~N o W=

(a) Example of a DSL for state machines (b) Diagram of the expected state machine

Figure 2.8: Custom DSL and graphical representation of a desired state machine

20

2.5 JastAdd: The Meta-Compilation System

Table 2.1: AST specification syntax used in JastAdd

Syntax Meaning

A; AST class
B:S; AST class, abstract
B::=Y; Child component Y
B::=MyY:Y; Child component MyY of type Y
X::=Cx*; List component C, containing C nodes
X::=MyC:C*; List component MyC, containing C nodes
Y::=[DJ]; Optional component D
Y::=[MyD:D]; Optional component MyD of type D
Z::=<E>; Token component E of type String
Z::=<F:Integer>; Token component F of type Integer
U::=/V/; NTA component V
U::=/G:V/; NTA component G of type V

1 StateMachine ::= Declaration*;

2 abstract Declaration;

3 State : Declaration ::= <Name:String >;

4 Transition : Declaration ::= <Source:String> <Target:String> <Condition:String >;

Listing 2.2: JastAdd grammar for state machines

other state machine specified with the custom DSL. The complete process is depicted
in Figure 2.10.

27

2 Background and State-of-the-Art

1 library IEEE;

2 use |EEE.STD_LOGIC_1164.ALL;

3

4 entity state_machine is

5 Port (clk : in STD_LOGIC;

6 input : in STD_LOGIC;

7 current_state : out STD_LOGIC_VECTOR (1 downto 0));
8 end state_machine;

9

10 architecture Behavioral of state_machine is
11 type state_type is (ST, S2, S3);

12 signal present_state, next_state : state_type;
13 begin

14 process (clk)

15 begin

16 if (clk’event and clk = '1') then
17 present_state <= next_state;
18 end if;

19 end process;

20

21 next_state_process : process (present_state, input)
22 begin

23 case present_state is

24 when S1 =>

25 if (input = "1') then

26 next_state <= S2;

27 end if;

28 when S2 =>

29 if (input = "1') then

30 next_state <= S3;

31 end if;

32 if (input = '0') then

33 next_state <= S1;

34 end if;

35 when S3 =>

36 if (input = '1") then

37 next_state <= S2;

38 end if;

39 if (input = '0") then

40 next_state <= S3;

41 end if;

42 end case;

43 end process;

44

45 current_state <=

46 "00" when present_state = S1 else
47 "01" when present_state = S2 else
48 "10" when present_state = S3;

49 end Behavioral;

Listing 2.3: Manually coded state machines in VHDL

22

2.6 Template Engines

StateMachine

Declaration

O

[0] [1] [2] (3] (4] [51
Transition Transition Transition Transition
State State State Target = S2 Target = S1 Target = S3 Target = S2
Name = S1 Name = S2 Name = S2 Source = S1 Source = S2 Source = S2 Source = S3
Condition = input=1 Condition = input=0 Condition = input=1 Condition = input=1

Figure 2.9: Populated AST for the example state machine

Templates

Template
Engine
(Mustache)

Parser +
Attributes
(JastAdd)

Specification
(DSL)

Template
Configuration

Figure 2.10: Code generation process used in this dissertation

2.6 Template Engines

A template engine is a software component that is used to generate source code from a
set of templates and data sources (i.e., template configuration). The templates consist of
placeholders and control structures, such as conditional statements and loops, that define
the structure and content of the output. The data sources provide the values that are used
to populate the placeholders in the templates. The advantage of using a template engine is
that it separates the presentation of the data from its underlying logic and data storage.

Templates provide a way to separate the presentation of information from the underlying data
and logic. In this way, templates allow the implementation of a clean separation of concerns,
where the data and logic are managed in one part of the code, and the presentation of that
data is handled in another part. This makes it easier to maintain and update the code, as
changes to the outcome (generated code) can be made independently of changes to the data
and logic. Additionally, templates can also help to encapsulate the implementation details
and hide them from the generated code, promoting modularity and encapsulation.

Mustache 3 is the logic-less template engine used in this dissertation. The templates them-
selves only specify what should be displayed and not how it should be displayed (hence
logic-less). This separation of concerns allows developers to work on the logic of the applica-
tion and the presentation of the data independently, making it easier to maintain and update
the code. Mustache templates are written in a simple syntax, using placeholders to denote
the insertion of data. This data can be passed to the template engine as a context, containing
the actual values inserted into the template. With the use of attributes, the populated AST

3Mustache—Logic-Less Templates, https://mustache.github.io

23

https://mustache.github.io

2 Background and State-of-the-Art

can be traversed to derive the necessary information and obtain the template configuration
shown in Listing 2.4. The combination of said template configuration with a template shown
in Listing 2.5 allows the template engine to produce the expected code, also known as an
artifact.

The mustache syntax works as follows. Everything that is between {{}} is a place holder, such
as Line 5 in Listing 2.5 where the content of entity_name from the template configuration
(Line 1) will be replaced in the artifact. {{#NAME}} acts as a conditional True statement
whereas {{"NAME}} is its False counterpart, such as Line 38 or Line 41 in Listing 2.5. Both
statements are closed with {{/NAME}}, as shown in Line 40 or Line 43. Everything that is
located in a conditional statement will be part of the artifact, depending on whether the
condition is met. One last thing that is part of the mustache syntax are partials templates,
which are not shown in this example but are later used in the following chapters. They are
reusable templates that can be included in a main template, which contain a specific portion
of the overall template that is used multiple times throughout the main template. They can
be considered as recursive templates, helpful in expanding lists of lists, for example.

From the next section onwards, the state-of-the-art in acceleration focused on robotics is
presented, software aspects related to middlewares, and MDE works to generate robotics
systems easily.

1 entity_name: state_machine
2 state_type: (S1, S2, S3)
3 states:

4 - state_name: S1

5 transitions:

6 - input: 1

7 target_state: S2
8 - state_name: S2

9 transitions:

10 - input: 1

1 target_state: S3
12 - input: O

13 target_state: S1
14 - state_name: S3

15 transitions:

16 - input: 1

17 target_state: S2
18 - input: O

19 target_state: S3
20 output:

21 - value: "00"

22 present_state: S1

23 - value: "01"

24 present_state: S2
25 - value: "10"

26 present_state: S3
27 last: True

Listing 2.4: Template configuration for state machines

24

2.6 Template Engines

1 {{#state_type}}

2 library IEEE;

3 use I|EEE.STD_LOGIC_1164 . ALL;

4

5 entity {{entity_name}} is

6 Port (clk : in STD_LOGIC;

7 input : in STD_LOGIC;

8 current_state : out STD_LOGIC_VECTOR (1 downto 0));
9 end {{entity_name}};

10

11 architecture Behavioral of {{entity_name}} is

12 type state_type is {{state_type}};

13 signal present_state, next_state : state_type;
14 Dbegin

15 process (clk)

16 begin

17 if (clk’'event and clk = '1') then

18 present_state <= next_state;

19 end if;

20 end process;

21

22 next_state_process : process (present_state, input)
23 begin

24 case present_state is

25 {{#states }}

26 when {{state_name}} =>

27 {{#transitions}}

28 if (input = "{{input}}’) then

29 next_state <= {{target_state}};
30 end if;

31 {{/transitions}}

32 {{/states}}

33 end case;

34 end process;

35

36 current_state <=

37 {{#output}}

38 {{#last}}

39 "{{value}}" when present_state = {{present_state}};
40 {{/last}}

41 {{Nlast}}

42 "{{value}}" when present_state = {{present_state}} else
43 {{/last}}

44 {{/output}}

45 end Behavioral;

46 {{/state_type}}

Listing 2.5: Mustache template for state machines

25

2 Background and State-of-the-Art

2.7 Robotic Applications in Adaptive Computing

Even though the main focus of this work is adaptive computing (i.e., FPGAs), GPUs cannot be
left out for a comprehensive literature review. This is due two two reasons. The first one is
the competitiveness in terms of programmability and the second one is availability, specially
in the last years. They both have different advantages and disadvantages, depending on the
applications, which are shown below. Different robotic applications have been proposed,
targeting FPGAs and GPUs as their main PE. It is important to start this study with the different
applications in robotics, which are increasing their complexities due to a large amount of
data that needs to be processed from several sensors and how accelerators (i.e., FPGAs
and GPUs) are needed to ease this. This section explores them to understand which type of
applications benefit of these alternative to accelerate compute-intensive tasks.

2.7.1 FPGA Applications

Robotic systems are generally complex ones as they integrate different technologies and
multiple heterogeneous sensors and actuators. This means that many algorithms are needed
to obtain meaningful information from raw sensor data to perform specific actions via
actuators, imposing several challenges for designers. On the one hand, there is a limitation
concerning the amount of onboard resources, such as memory storage and computational
power, making it hard to meet real-time constraints. On the other hand, most state-of-the-art
robotic systems will have power constraints, so efficient designs are needed to cope with
this.

FPGAs have been attracting attention in the research community as an energy-efficient PE.
Their specialized design hardware logic allows FPGA-based accelerators to surpass CPUs
and GPUs in terms of performance and energy efficiency [38]. Their main advantage is
the possibility to achieve high energy efficiency via custom hardware designs compared to
CPUs or GPUs. However, it is pretty challenging due to the more significant design effort
required. The span of robotic applications proposed in FPGAs ranges from sensing (extracting
meaningful information from raw sensors data), perception (building a representation of the
robot's environment), and decision (control of actuators). Here some of them are explored,
understanding which are the goals of the research community to solve the challenges
mentioned before, in this case via hardware acceleration.

Much effort has focused on perception (e.g., stereo vision, object detection, semantic, classi-
fication). Navigation and obstacle avoidance are two popular applications that have been
increasing in popularity lately, relying on real-time and stereo vision systems. This consists
of capturing images with two cameras from different points of view of the same scene. The
disparities between the corresponding pixels in both images are searched with matching
algorithms, and the depth information can be computed from the inverse of the disparity [38].
Stereo matching algorithms can be divided into local (compute disparity by processing and
matching the pixels around the point of interest) and global (compute disparity by matching
all pixels and minimizing a global cost function) algorithms. The first ones are faster and high
parallelizable, but their accuracy is lower. The latter ones require more resources to achieve
higher accuracy.

26

2.7 Robotic Applications in Adaptive Computing

Perception

Jin and Maruyama [39] presented a stereo matching local algorithm using Cost Aggregation
(CA) and Fast Locally Consistent (FLC) to achieve a low error rate while maintaining a high
processing speed. The focus was on the RTL, and they achieved 507/ps for 640x480 pixel
images. The evaluation was done on a Xilinx Virtex-6 and compared with two GPUs (GTX480
and 7900GTX). Results show a lower FPGA power consumption by one order of magnitude
and one order of magnitude higher for the processing speed. The authors concluded that
the resource utilization of their proposed algorithm is well suited for modest-size FPGAs.

Wang et al. [40] focused on Semi-Global Matching (SGM), which computes disparity by
comparing local pixels, and then approximates an image-wide smoothness constraint with
global optimization. Despite more robust disparity maps, the challenge for this approach is
the need for more storage resources. The implementation also focused on the RTL design
and was evaluated on an Altera Stratix-IV. They achieved 67fps and 42fps for 1024x768 and
1600x1200 pixel-images respectively.

While both previous works implemented at RTL, Rahnama et al. [41] used HLS for their
SGM variation. Their evaluation was a Xilinx ZC706 FPGA, achieving similar levels of accuracy
compared to related work while reducing the power consumption by two orders of magnitude.
In their case, 72fps were achieved for 1242x375 pixel-images. Overall, for image processing
and stereo vision applications, these publications [39, 40, 41] and others alike showed
that FPGA-based designs obtained higher energy efficiency compared to GPUs and CPUs.
However, higher effort in terms of design and fine-tuning was required.

As far as space applications, Malin et al. [42] reports on the new Rover that was sent to
Mars. It heavily relies on FPGAs for scientific instrument control, image processing, and
communications. Specifically for image processing, it consists of a Xilinx Virtex-ll with a
Microblaze soft-core processor. All core functionalities (timing, interface, and compression)
are implemented as RTL which are peripherals for the Microblaze.

Navigation and Obstacle Avoidance

Another highly parallelizable application is Simultaneous Localization and Mapping (SLAM),
used for path planning, which has had much attention as well. Gautier et al. [43] presented
the implementation of two low-power 3D reconstruction algorithms, namely “Iterative Closest
Point” and “Volumetric Integration”. The work was based on an Altera Stratix V FPGA using
OpenCL by porting the original CUDA implementation of each algorithm. This allowed them
to do some optimizations for memory access and synchronization between computing units.
Moreover, they improved the original code manually using a double nested loop with one
index being a function of the other, resulting in a poor optimization for the compiler. The
solution was to remove the index dependencies and unroll the loops manually.

Abouzahir et al. [44] evaluated the processing time of different SLAM algorithms in several
embedded systems. They concluded that Fast-SLAM2.0 is the ideal compromise between
accuracy and computational time. Then, the algorithm was optimized to implement it on
GPU with combining OpenCL and OpenGL and on FPGA with HLS. The FPGA implementation
obtain a 7.5x acceleration with respect to the GPU one.

27

2 Background and State-of-the-Art

Boikos and Bouganis [45] focused on the acceleration of Large-Scale Direct Monocular (LSD)
SLAM in a SoC Zyng-7020. In their case, the intermediate data produced is too large, so it is
shared between accelerators via DDR memory. They highlighted the importance of optimizing
memory architectures (e.g., data movement, caching) in an application like this to ensure the
scalability and compatibility of the design.

Murray et al. [46] presented an FPGA-based architecture for motion planning, focusing on
collision detection. In this case, compared to previous work [45], they avoid storing and
accessing pre-computed data in memory. Instead, data is encoded as a binary represen-
tation and create logical circuits to represent collision data, hence the reason to call the
approach “microarchitecture”. They achieved sub-millisecond speed for motion planning and
an improvement for power consumption of one order of magnitude with respect to a GPU
implementation.

Bondhugula et al. [47] proposed a parallel FPGA-based implementation for graph search,
which is the next thing to compute after collision detection. This algorithm tries to find the
shortest and safe path to the targeted position. In this case, the authors achieve a 15x
speedup compared to an optimized CPU-based implementation.

A first conclusion to draw from the summary shown here is that FPGA-based designs have
shown a higher energy efficiency compared to GPUs and CPUs for most image processing
applications [38] and other parallelizable applications. It can be depicted from Table 2.2 that
the more complex the application is, the higher the abstraction of the design (HLS rather than
HDL). This is usually because most modern tools take care of the data movement, leaving
the designer to focus only on the targeted problem'’s acceleration (e.g., stereo-matching,
SLAM). However, incorporating the resulting accelerators contributes to the integration
problem mentioned earlier in general for robotic systems. Most of the works presented here
adopt a similar FPGA-SoC architecture, accelerating the most compute-intensive parts of
the algorithms. However, integrating these applications into existing robotic environments is
usually unattended.

Note that Table 2.2 summarizes the different applications that have been proposed on FPGAs.
It does not cover by all means each of the applications or fields mentioned there. The reader
is encouraged to follow up on [38] for a more fine-grained literature review on each topic.

A vast range of applications in robotics can be parallelized and thus accelerated on FPGAs.
However, there are two main challenges to face. On the one hand, extra effort is needed to
integrate them into already running systems. On the other hand, the complexity of achieving
energy-efficient implementations is high, despite newer techniques such as HLS.

Table 2.2: FPGA applications in robotics

Reference Platform Application Focus Abstraction Level Metric Result
Eps 507 (640x480), 199 (1024x768)
Jin-and Maruyama (2014) [39] Xilinx Virtex-6 Stereo vision Accelerator RTL 76 (1920x1080 -full HD-)
Power 10.6W
Wang et al. (2015) [40] Altera Stratix IV & V Stereo vision Accelerator RTL FPS 68 (1024x768), 43 (1600x1200)
fps 301 (38x4288), 198 (450x375)
Rahnama et al. (2018) [41] Xilinx ZC706 Stereo vision Accelerator HLS 109 (640x480), 72 (1242x375)
Power 3W
Gautier et al. (2014) [43] Altera Stratix V SLAM CPU-FPGA Architecture OpenCL FPS 28
Abouzahir et al. (2018) [44] Altera Arria 10 SLAM Accelerator HLS, OpenCL & OpenGL FPS 102
. . . FPS 4.55 (320x240)
Boikos and Bouganis (2016) [45] Xilinx Zyng-7020 SLAM HW/SW Co-Design C&HLS Power 295w
Murray et al. (2016) [46] Intel Xeon Motion planning HW/SW Co-Design C&RTL - -
Bondhugula et al. (2006) [47] Intel Xeon Graph search HW/SW Co-Design C&RTL Speedup 15x (average)
Malin et al. (2017) [42] Xilinx Virtex-II Space HW/SW Co-Design C&RTL FPS 6 (1280x720)

28

2.7 Robotic Applications in Adaptive Computing

2.7.2 GPU Applications

GPUs are specialized circuits designed to rapidly manipulate and vary memory to accelerate
the creation of images in frame buffers, most commonly used in embedded systems, mobile
phones, personal computers, workstations, and gaming consoles. They achieve higher effi-
ciency than general-purpose CPUs due to their highly parallel structure [48]. Even though
multiple works have compared GPUs and FPGAs [49, 50, 18], they mainly based the compari-
son on workstations or personal computers.

The maininterest here is robotic applications, so the works presented in this section are mainly
related to that field. This mainly refers to embedded systems, targeting a balance between
accuracy, throughput, and power budget. These objectives are crucial for applications in
several domains such as robotics, autonomous driving, and drones [51]. Therefore, the focus
is on embedded GPUs, mainly NVIDIA's Jetson, being one of the most widely used ones as it
provides high performance per watt due to its performance-efficient and low-power GPU
cores. It is essential to highlight that most works over this platform focus on deep learning
models. They can be split into those that have a pure GPU implementation and those that
combine GPUs with CPU.

Computation on GPU

Most of these works rely mostly on the GPUs to do the computation and use the CPUs mainly
as data movers. As far as targeting embedded systems, Hegde and Kapre [52] present a
Caffe*-compatible tool for generating and optimizing code, targeting devices with a power
budget of up to 20W. The evaluation is based on a comparison among a GPU (Jetson TX1), DSP
(Tl Keystone II), RISC+Network-on-Chip (NoC)-based multicore (Parallella’s Epiphany-V), and an
FPGA (Xilinx ZC706). One main difference is that the DSP and FPGA perform pixel operation
in 16 bits fixed-point format, whereas GPU and Epiphany-V support single-precision floating-
point format. As far as performance and energy efficiency, the Jetson outperformed all other
embedded platforms. In terms of programmability, GPUs also showed easier ways, followed
by DSPs. However, to further improve the performance by optimizing the designs, Epiphany-V
and especially FPGAs provide better outcomes at the expenses that they require more effort
to ensure a correct operation and better results in terms of performance improvements.

Pierre [53] focused on perception and visuomotor control to allow a robot to follow another
one. This work presented a technique that uses a spatio-temporal Deep Neural Network
(DNN) with only RGB images from a camera as an input. It perceives the robot's motion by
studying its environment and relative velocities to other objects. Interestingly, due to the
memory capacity of DNNs, this technigue allows the leader robot to be out of sight for short
periods.

Wang et al. [54] proposed a lane detection algorithm for autonomous driving. Their algorithm
is split into two steps. The first one classifies each pixel, whether it belongs to a lane, to
estimate a lane edge. The second step localizes the lanes based on the estimations. They
achieved remarkable Frames per Second (FPS), being 330 and 1300 respectively for the two
steps involved in the algorithm on a Titan XP GPU. The overall performance reaches 250 FPS.
26 FPS are achieved on a Jetson TX1.

“Deep learning framework (https://caffe.berkeleyvision.org/)

29

https://caffe.berkeleyvision.org/

2 Background and State-of-the-Art

Regarding drone navigation, Sanket et al. [55] presented an approach for a quadcopter to fly
through a gap by only using a monocular camera and onboard sensors. The technique is
based on finding the contour of an opening as the position where the discrepancy in spatial
depth is maximum. The work is based on FlowNet> and a PID controller for the altitude and
position of the drone. In this case, the chosen platform is a Jetson TX2 running both the vision
and control algorithms. Another drone application is presented by Madaan et al. [56] to
detect wires by only using a monocular camera for perception. Their work is based on a Jetson
TX2, achieving up to 4.4. FPS with higher precision and speed than previous technigues.

Attaran et al. [57] presented a personal monitoring system based on two machine learning
classifiers, including Support Vector Machine (SVM and k-nearest neighbors (KNN)). They used
four different physiological sensors, requiring multiple sampling and processing capabilities
with low-power consumption requirements. Hence, they proposed a reconfigurable processor
for SVM and KNN for personalized stress detection. In their case, a comparison among an
embedded CPU (ARM A53) (used as a baseline), GPU (Jetson TX1 and TX2), and FPGA showed
an improvement in the energy efficiency of the latter one by two orders of magnitude
compared to the GPUs. An evaluation with (post-layout) ASIC was performed, showing the
best results. However, this option has the drawback of high costs and a longer time to
market. The authors concluded that even though GPUSs still offer better energy efficiency
than the baseline, FPGAs would be the best solution considering the high energy efficiency
and accuracy besides being reprogrammable. Several other works [58, 59] followed a similar
approach targeting different applications, and combine GPUs and CPUs. They all reached
similar conclusions as [57], meaning that there is an active part of the research community
focusing on low-power embedded systems that could be used for different applications.

Afield that is increasingly showing interest in robotics is heterogeneous platforms, where
several works have been proposed, relying on DNNs on GPUs and are described below.

GPU combined with CPU

Most of these works distribute the computation between CPUs and GPUs. Rallapalli et al. [60]
investigated the feasibility of running DNNs on embedded devices. As these devices have
limited memory capacity and mainly do not include memory management schemes, they
concluded that large algorithms like the famous YOLO are not fitted for such devices. They
evaluated several techniques for efficient memory usage, such as targeting only inference
and not allocating memory for variables that are not required during this stage. They obtained
a reduction from 4.4GB to 2.8GB. Besides, they split the algorithm into GPUs and CPUs in
a pipelined architecture manner by offloading some operations to the CPU which includes
memory management.

Otterness et al. [61] evaluated the consequences of different memory management tech-
niques. There are three schemes in the Jetson, namely “conventional”, “zero-copy” and “unified
memory”. The first one refers to explicitly copying data from CPU to GPU, bringing large data
transfer overheads. The second one allows the CPU and GPU to access the same memory
region, without the need to allocate GPU memory, but without caching. The last one is similar
to “zero-copy” by sharing memory points, and the benefit is that caching is allowed. One of
the main conclusions that they drew was the importance of the proper choice of CUDA to
obtain the best performances for each scheme.

>Evolution of Optical Flow Estimation with Deep Networks

30

2.7 Robotic Applications in Adaptive Computing

Manderson et al. [62] presented controller for the swimming robot "AQUA". The main focus is
a control algorithm to guide the robot underwater to navigate close to coral reefs with obstacle
avoidance. They also present a heterogeneous design by having the control algorithms on a
CPU and the neural network on a Jetson. They achieved a 10 FPS with an accuracy of 41%.
A similar approach was shown by Gu et al.[63], using YOLO to detect tennis balls and then
perform path planning to collect them.

Table 2.3 summarizes what has been presented previously. It can be inferred that embedded
GPUs devices are valuable resources when power-budget requirements are in place. GPUs
devices are usually easier to program compared to FPGAs, but there would be cases where
still some partition of applications or algorithms is needed. This will usually increase the
complexity of the design, moreover when considering optimizations that can be done. As
their programmability is closer to CPUs, there have not been many efforts from the modeling
side. However, due to current trends and possibilities, robotic systems can be composed of
multiple PE and similarly to FPGAs, middlewares are helpful for system integration.

Middlewares help designers to combine multiple components, which can help to address
the challenge of integration. However, most research focuses on the integration of software
components. Lately, efforts on integrating FPGAs with robotics middlewares have emerged,
which are discussed in Section 2.8.1.

Table 2.3: GPU applications in robotics

Reference Platform Application or Field GPU + CPU Metric Result
Jetson TK1, Tl Keystone |l Handwriting recognition (MNIST)
Hegde and Kapre Q017 [52] iy 70706 and Epiphany.V and object detection (CIFAR-10) X Throughput 35 Gops/s
Pierre (2018) [53] Jetson TK1 Perception and visuomotor control - Qualitative -
Titan XP GPU ‘ 250
Wang et al. (2018) [54] Jetson TK1 Lane detection X FPS 26
Sanket et al. (2018) [55] Jetson TX2 Drone navigation X Success rate 85%
Madaan et al. (2017) [56] Jetson TX2 Drone wire detection X FPS 4.4
1.48/1.53
L
(KNN/SVM) Classifier 0.798/0.702
0.076/0.039
ARM A53 (baseline) 2/5.29
TK1) 130/212
Attaran et al. (2018) [57] Ti2 Perso”j;szﬂeﬂ'm””g x T(Qm /gshvwé?;szsﬂzcr) 225/357
Xilinx Artix-7 195/121/1250000
ASIC 243902/2941176
Tx/1x
Energy efficiency 46x/29x
improvement 69x/39x
over baseline 200044x/514903x
(KNN/SVM) Classifier 2373712x/21586294x%
. . Execution time (ms) 36/21/12
. Jetson TK1, ARM A53 Signal processing (FFT)
Abtahi et al. (2018) [58] Xilinx Zynq 7020 (Direct-Conv/FET-Conv/FFT-OVA-Conv) v Thrgggeh%ﬁ ET’\JA)B o 13)?3/3)%/%
Latency (ms) 0.9/2/14.8
. -) .) . Throughput (labels(sec)) 1185/491/67
Jafari et al. (2018) [59] Jetson TK2, Xilinx Artix-7, ASIC Multimodal data classification v Power (mW) 1763/175/18.5
Energy (m)) 1.5/0.35/0.27
Rallapalli et al. (2016) [60] Jetson TK1 Object detection with YOLO v Memory usage reduction 63.63%
Otterness et al. (2017) [61] Jetson TK1 Traffic sign recognition v - -
‘ FPS 10
Manderson et al. (2018) [62] Jetson TK2 Perception and visuomotor control v Accuracy 21%
Gu et al. (2018) [63] Jetson TK1 Object detection and path planning v - -

31

2 Background and State-of-the-Art

2.8 Robotics Middlewares

A middleware is a computer software that provides services to software applications (e.g.,
communication). It could be envisaged as an abstraction layer between the OS and the
application running on it. Generally speaking, middlewares are the mediator between the
application front-end (i.e., client) and back-end resources (e.g., hardware device) for which
the client might request data. A middleware should be customizable to different scenarios
and applications. Older generations of robots were designed with one task in mind and built
only for that purpose. Modern ones usually follow a modular design and implementations.
They can be considered complex distributed systems with many heterogeneous hardware
components (e.g., sensors, actuators) and software modules. These are jointly needed to
achieve a given task, but their integration is not usually trivial. Even though modularity
brings benefits from the engineering perspective, it raises some integration issues such
as communication, interoperability, and configuration. Relying on a middleware helps to
glue all components together, supporting concurrency-intensive operations, robustness,
and modularity [64]. However, they should not increment the already challenging task of
developing robotic systems. On the contrary, middlewares should simplify the development
process by providing an abstraction layer with simplified interfaces. They should also provide
efficient communication and simple interoperability mechanism modules. These become
essential characteristics of the abstraction for the heterogeneity of hardware components
to share data among them and their software counterparts. Ideally, middlewares should
provide real-time interaction services with other systems considering ubiquitous robotic
systems’ interaction.

Multiple works and research projects have focused on the issues mentioned before, primarily
from the software perspective. An early survey [64] identified the following objectives and
grouped several approaches accordingly:

+ Enhancing the development process by providing some form of modular design mech-
anism, high level of abstraction, and component-based development.

+ Reusability of existing components.
+ Better utilization of resources and real-time support.
+ Integration with external components.

This work covers mainly the integration of robotic systems but from a hardware perspective.
Therefore, only a brief overview of the most relevant existing middlewares is discussed next,
as a motivation for this dissertation.

The Orcos Project developed a general-purpose modular framework for robot and machine
control [65]. The Real-Time Toolkit (RTT) and Orcos Component Library (OCL) established a
component-based infrastructure and a library of ready-to-use components, providing the
high-level management of interactions within an application.

Yet Another Robot Platform (YARP) [66] aims to minimize the effort devoted to infrastructure-
level software development by facilitating code reuse, modularity and so maximize research-
level development and collaboration. It supports building a robot control system as a collec-
tion of programs communicating in a peer-to-peer way, with an extensible family of connection
types (e.g., TCP, UDP, multicast, local, MPI) that can be swapped depending on the needs of
the developer.

32

2.8 Robotics Middlewares

The open-source middleware ROS [16] is a software solution that eases the building process of
robotic applications. It runs on top of Linux and has been gaining popularity in the robotics
community over the last years. Different aspects of the ROS community are measured and
reported yearly®. Among these, the total ROS packages downloaded are individually taken
for each year and shown in Figure 1.1. Besides, not only the research community has shown
its interest but also the industry. A consortium integrated by worldwide companies from
multiple sectors, such as automotive or aerospace, has been growing over the years to
extend the advanced capabilities of ROS software to manufacturing. Currently, there is much
effort focused on a new version of the middleware as ROS2 since the first version does not
satisfy real-time requirements. Therefore, ROS2 is based on Data Distribution Service (DDS),
which is a standard protocol used in industry that meets real-time constraints due to its
various transport configurations (e.g., deadlines and fault-tolerance). The decrease of ROS
package downloads in 2021 may be due to more developers are slowly migrating to ROS2.
As ROS became the mainstream option for roboticists and there are already several works
on integrating FPGAs with it, more details are given in Section 2.8.1. It not only answers what
are the trends in robotics, from a software perspective but extends it, exploring the method
proposed in the state-of-the-art to enhance ROS with FPGAs.

2.8.1 The Robot Operating System Enhanced with Field Programmable Gate
Arrays

As discussed previously, ROS became the most popular middleware as it provides many open
source packages supporting all kinds of robots, data processing, and planning algorithms.
Some concepts are explained to understand better the contributions shown in this section,
focusing on integrating FPGAs into ROS.

ROS defines nodes where computations are performed. They communicate among each
other via topics, characterized by the type of message (as different data structures) they
transport. Nodes can be publishers (produce and broadcast data) or subscribers (consume
data to process), and a combination of both. ROS provides all the communication mechanisms
and protocols for all nodes in a system to communicate. The flexibility of nodes and messages
allows for the reusability of ROS components to deploy algorithms in a distributed software
system quickly. They can be programmed in various languages, for which client libraries
exist.

The traditional communication scheme in ROS is shown in Figure 2.11. Every time a new node
registers in the system, it does it with the master node via XML-RPC’. During the registration'’s
handshake, meta-data information to send/receive data over topics to/from other topics
is also shared. When a node wants to send or receive information to/from another node,
a direct connection is established but over TCPROS®, which is a transport layer for ROS
messages and services. It uses standard TCP/IP sockets for transporting message data.

Message types are defined by an Interface Definition Languages (IDL). Therefore, specific code
generators for each programming language can take advantage of this to generate language-
specific bindings for each message type. Figure 2.12 shows an example of ROS message
and depicts the complexity of the data structure that can be achieved as multi-level nesting

®http://wiki.ros.org/Metrics
7Remote Procedure Protocol (RPC) which uses XML to encode its calls and HTTP as a transport mechanism
8http://wiki.ros.org/R0OS/TCPROS

33

http://wiki.ros.org/Metrics
http://wiki.ros.org/ROS/TCPROS

2 Background and State-of-the-Art

XML-RPC
ROS
Master TCPROS
Registration Registration
Topic

Figure 2.11: Basic ROS architecture

(message within a message) is possible. More details about the complexity of messages and
how that is addressed in terms of hardware components is detailed in Chapter 5.

The industry has been paying attention to it with the arrival of ROS2, improving the quality of
ROS1 by relying on industry standards, thus enabling more commercial use cases [67]. Each
field will impose specific requirements for the robotic systems, such as performance, energy
consumption, or real-time guarantees.

There have been different approaches to combine FPGAs with ROS. They can be grouped into
three categories. The first one consists of focusing on a specific application. The second tries
to generalize the concepts by proposing several frameworks, tools, and methodologies. The
last one is based on the OS with support for reconfigurable systems, and ROS is integrated
into it.

Application Specific

Some related works mainly focus on specific applications, accelerating some parts of a ROS-
based software implementation. ROS is classically designed to run on a CPU which can also
be combined with GPUs by enabling efficient management of data flow and shared memory.
Lately, several works proposed to combine FPGAs with it [68, 69]. They mainly rely on Xilinx's

E Header header :::::_':_’:: """ :

i string child_frame_id . :
E geometry msgs/PoseWithCovariance F}E,'s'é':;;‘::‘{:‘_,_w
| geometry_msgs/TwistWithCovariance twist ‘:

uint32 seq
time stamp
string frame_id

geometry_msgs/Pose pose

float64[36] covariance -~
geometry_msgs/Point geometry_msgs/Quaternion Fmmm oo oo oo oEE H
ittt ittt ! geometry_msgs/Point position !
i float64 x i float64 x | geometry_msgs/Quaternion orientation !
| float6dy ! | float6dy ! T
! float64 z i ! float64 z i
""""""" | float64 w !

Figure 2.12: Complexity of ROS messages

34

2.8 Robotics Middlewares

SoCs FPGAs, which are capable of running Linux on their PS. Therefore, these designs cannot
be realized in the absence of a PS capable of running an operating system as Linux. Queralta
et al. [70] proposed a low cost 3D Lidar-based design. They rely on low-cost sensors to obtain
3D point clouds for localization and mapping algorithms. All the processing is implemented
in VHDL. However, the communication with ROS, running on a PC, is done via the UART
interface. Besides, they focus on a specialized design.

Frameworks, tools and methodologies

Some more generic approaches have been proposed, aiming to provide solutions for any
ROS-based application.

Aldegheri et al. [71] presented a framework for the design and simulation of embedded video
applications that integrate OpenVX standard with ROS. It does not target a single application
but the specific field of image processing. It combines OpenVX, CUDA/OpenCL, and OpenMP
to increase the embedded applications’ parallelism and portability. Even though its portability,
it is restricted to software implementations as it relies on a CPU (to run Linux) and the ROS
API library to communicate with external systems.

Yamashina et al. [72] focus on component-oriented developments as a well-known method for
reduction of costs in the development of software for robotics [73]. Hence, they propose FPGA-
components as ROS-compliant ones, setting the following requirements: (A) the functionality
of the ROS-compliant FPGA-component is equivalent to one implemented in software, and
(B) the message type and data format used as the input and output of the ROS-compliant
FPGA-component is equivalent to software implementations. This means that each ROS
message type and data format used in ROS-compliant FPGA-component must be the same
as the software ROS component. The authors rely on Xillinux?, taking advantage of Xilinx's
FPGAs-based SoCs (that include ARM processors). It allows effortless communication between
PS and PL. The system is based on a file descriptor on the software side and a corresponding
FIFO on the hardware side. Therefore, ROS is executed on the PS (running Linux), and the
interaction between the hardware in the PL and ROS is straightforward via the file descriptor.
The authors recognized the large amount of time and high development costs of these
ROS-compliant FPGA-components and hardware IPs (HDLs-based) in general. Hence, they
propose an automated design tool to improve the productivity of ROS-compliant FPGAs
components [74, 75]. It is a design support tool that converts any targeted circuit (user logic
in HDLs) into a component by giving a simple specification definition for data transfer [75].
The tool generates the interface circuit (hardware as HDLs files to interface accelerators) and
software interface (C++ files). An input configuration file sets parameters such as bit width of
communication channels, data ports for user logic, or transfer rates (input and output). Then,
they are used to generate the corresponding interface via the artifacts mentioned previously.
Like this, the integration of user logic is wrapped to easily integrate it into ROS via Xillinux.
However, there is still the need to have Linux running on the PS to support ROS. Regarding
the accelerators, the approach is shown with HLS techniques, but most probably, it would
support HDLs-based accelerators with some changes to the automation tool. As far as the
HDLs, they are the interfaces of the FIFO from Xillinux and a state machine to control the
HLS accelerator.

“http://xillybus.com/xillinux

35

http://xillybus.com/xillinux

2 Background and State-of-the-Art

Ohkawa et al. [76] discuss a methodology to take advantage of these last two previous
works [74, 75]. First, the Hardware/Software partitioning is done, like any HW/SW Co-Design.
However, in this case, the partitioning is at the ROS level. This means that ROS nodes are split
into multiple ones, all connected via topics. Like that, itis simple enough to identify which node
will become a hardware accelerator to later on obtain the ROS-compliant FPGA-component.

Every new ROS node registers with the master node via XML-RPC'9. During the registration’s
handshake, meta-data information is shared to send/receive data over topics to/from other
topics. When a node wants to send or receive information to/from another node, a direct
connection is established but over TCPROS™", which is a transport layer for ROS messages
and services. It uses standard TCP/IP sockets for transporting message data. Ohkawa et al. [78,
77] acknowledged the significant communication latency with the ROS-compliant approach
mentioned previously, which also follows this connection scheme. They evaluated the latency
introduced in the process of sending and receiving data as standard ROS publishers and
subscribers running on an ARM core and from there to the ROS-compliant components. They
concluded that for that approach to be functional in applications such as image processing,
the way data is shared with the accelerators must have low latency. Therefore, they proposed
to have an entire hardware implementation of the ROS Publisher/Subscriber communication
scheme (for the TCPROS part, to exchange data directly between nodes) without the use
of a SoC. The registration of nodes remains in software, which is done only once at the
beginning. To achieve this, a TCP/IP stack needs to be available on the PL-side. The efficient
hardware implementation SiTCP [79] was chosen. However, its drawback is that it provides
the possibility to establish one connection at a time. Therefore, only the data transmission
part is implemented into hardware, leaving the registration part on software. Consequently,
this approach still relies on the PS, and it requires a technique to exchange data with the
PL.

ROS was the leading middleware considered so far, mainly since it became the mainstream
option for roboticists as shown previously in Figure 1.1. Other approaches have also been
proposed targeting ROS but using other frameworks and tools as the center of their research,
focusing on the issue of integrating hardware accelerators into ROS. Leal et al. [80] provide a
tool that relies on the open-source PYNQ project ' from Xilinx, which is also Linux-based.
They automatize the generation of drivers to exchange data between PS and PL (only the
data to be processed, not the entire ROS message). Therefore, it also generates a new ROS
message type with only the payload of the ROS message that is transmitted to the hardware
accelerator. Like this, it eases the integration of hardware accelerators but increases the
complexity on the software side, as a bridge or interface to other ROS messages present in
the system would still be needed.

Eisoldt et al. [81] focus on the integration of accelerators from the algorithmic point of view.
Similar to previous references, there is a dependency on an embedded processor compatible
with Linux. ROS runs on the PS, and the accelerated algorithmic calculations are on the
PL. The authors take advantage of the shared memory between PS and PL and map the
registers of the processing blocks to the node’s virtual memory. This is done for data as
well as controlling the start and stop of the processing blocks. So, they heavily rely on the
memory management capabilities of the OS. However, for applications that require a large
amount of data, only algorithmic parameters are mapped to memory, and data is streamed

'Remote Procedure Protocol (RPC) which uses XML to encode its calls and HTTP as a transport mechanism
"http://wiki.ros.org/R0OS/TCPROS
2http://www.pynq.io/

36

http://wiki.ros.org/ROS/TCPROS
http://www.pynq.io/

2.8 Robotics Middlewares

over dedicated memory ports. There are references to specific HLS-related registers (e.g.,
AP_DONE, AP_CTRL), but no reference of HDLs accelerators is mentioned.

Ohkawa et al. [82] builds upon [77] to propose an HLS design flow for ROS protocol and com-
munication circuit for FPGAs. It takes a definition of a ROS message, ROS related information
(e.g., name of node, topic) and an application written in C++ for HLS to autogenerate an IP
core. However, it is based on a hardwired TCP/IP stack that only allows one publisher per
FPGAs. Their work can be considered a more general approach as it takes ROS definitions,
despite being limited to HLS implementations.

In this dissertation, a generic architecture is proposed [21], to have a full hardware imple-
mentation without the need for any CPUs to close the gaps of these previous works. It is
generic so that it can incorporate hardware accelerators designed in HDLs or HLS. Moreover,
it leaves the possibility to replace the communication block if a different device is used or
communications are handled by a CPUs if available or desired. In this case, FreeRTOS'> was
used to handle the communication between hardware accelerators (hardware nodes) and
external ROS nodes, with an external Serial Peripheral Interface (SPI) device providing the
TCP/IP stack. Similarly to [83, 84] (relying on the open-source lightweight IP (IwIP'4) as the
TCP/IP stack), an APIs provided functions to register/deregister hardware nodes as well as
exchanging information between publishers and subscribers. However, there is no limitation
concerning the size of data to be transferred in this dissertation (c.f., Chapter 3) [21] as in [83,
84], which was 512KB of data every 100ms. In case ROS is not the chosen middleware, and
a different one is needed, the modular architecture allows replacing the specific-related
middleware IP block thanks to the “plug&play” design. Lastly, it opens the possibility for robotic
applications to use Dynamic Partial Reconfiguration (DPR), which can use the same hardware
resources to implement different steps of a time-multiplexed algorithm. Consequently, the
flexibility and power efficiency would be enhanced as well [85]. However, it still has an open
point to generate the interfaces based on message specifications. This is tackled in Chapter 5,
focusing on the generation of ROS and ROS2 components to integrate hardware accelerators
into an FPGA-SoC [9]. An MDE approach is followed, with an extensive data-type analysis of
ROS messages to generate VHDL components to produce AXIS frames to match the data
representation of said messages. These components can be used together with Direct Mem-
ory Access (DMA) to exchange data between CPUs and accelerators. Like this, integrating
accelerators into an already existing ROS system is aided with the tool detailed in Chap-
ter 5. Lastly, Chapter 6 presents the workflow that generates the entire software/hardware
architecture that includes multiple accelerators [25].

2.8.2 Operating Systems Support for Reconfigurable Computing

Lienen et al. [86] highlight the lack of a consistent programming model for implementing
software and hardware functions. They close that gap by integrating ROS to ReconOS [87],
tailored for multithreaded programming of hardware and software threads for reconfigurable
computers. Similarly to [81], they also relied on the Linux virtual address space and shared
memory to exchange data between PS and PL. In the follow-up work [88], they extended the
support to partially reconfigure pre-allocated slots for either software or hardware executions
based on callbacks.

Bhttps://www.freertos.org/
"https://savannah.nongnu.org/projects/lwip/

37

https://www.freertos.org/
https://savannah.nongnu.org/projects/lwip/

2 Background and State-of-the-Art

2.8.3 Roboticists Interests

This summary shows that there is clearly increasing interest in the research community
to provide tools and methodologies to attract roboticists to adaptive computing systems,
particularly FPGAs. Three main characteristics would be considered by them:

+ Tools & Methodologies [74, 21, 81, 80]
+ Acceleration of internal ROS communication (i.e., interaction between nodes) [78]
+ Optimization of ROS computational graph [76, 68, 69, 70]

A pattern is starting to emerge concerning the clear division of expertise as these groups
focus on a specific topic. However, considering robotic systems as holistic ones, they are all
tightly coupled.

Table 2.4 summarizes the main characteristics to consider at the time of integrating FPGA-
based robotic systems into ROS. Even though middlewares help with integration aspects,
designers still need to have -at least- some understanding of the low-level details concerning
accelerators. That is why MDE can serve as a bridge between them. By using a general
approach, designers can create simpler models that abstract away low-level details, while still
being able to interconnect them and add new characteristics in each iteration. In the MDE
line of thought, it is better to have a general approach in order to have simpler models and
add new different characteristics in each iteration.

2.9 Model-Driven Engineering

MDE is described as the technique for using a staged model transformation process in
which models are transformed in iterations [28]. It raises the level of abstraction, potentially
circumventing any incompatibilities by abstracting middleware-specific characteristics. Be-
sides, it helps non-experts to focus only on their areas of expertise (e.g., HW/SW Co-design,
algorithms, control).

MDE focuses on creating and exploring domain models, which are conceptual models of all
topics related to a problem-specific domain [89]. Concretely, a model is an abstraction of a
system that often represents a partial and simplified view of a system (or a specific aspect) [31].
These models are usually more understandable and usually Platform Independent Models
(PIMs). They can also be Platform Specific Models (PSMs).

Table 2.4: Integration of FPGAs and ROS.
Characteristics [68,69] [70] [711 [80] [81] [82] [86] This Dissertation

Generalized Approach

Vendor Independent

CPU Independent

Handle Multiple Hardware Accelerators
Supports Multiple Middlewares
Generates Complete Architecture

x X% N\ X X %
x X X X N\ X
N X N X% X% X%
x X N\ X X X%
N X N\ %X % N
x % %X N\ X N
NG GEVEVIEN
AN N N N NN

38

2.9 Model-Driven Engineering

MDE changed the paradigm from code-to-model-based development [90]. Models can be
combined with automatic code generation techniques. Each additional information added to
the final model is used to generate the desired code artifacts (e.g., C/C++, TCL scripts, VHDL).
This new model-based paradigm allows to describe the application independently from a
software and hardware platform, thanks to the levels of abstraction due to adding different
aspects iteratively to the models. Different models can represent system elements in different
domains and be part of the system’s functionality, structure, or behavior. Additionally, MDE
speeds up the development process and the formalization of such abstractions enabling the
use of automated tools to verify the consistency of the generated artifacts, improving the
reliability.

From the software side, MDE makes programming easier because low-level details are hidden
behind abstractions that are easier to manage. From the hardware side, there has to be a
description of the system concerning the low-level details that are hidden from the software
side. Due to this complexity, the support of different languages and tools must be considered
when following an MDE approach. For this, it is necessary to build conceptual descriptions of
the systems to capture all the crucial characteristics for representing a formal model through
a concrete syntax [31].

The development of advanced systems is challenging as expertise from multiple domains
needs to be integrated conceptually and technically. Particularly for robotics, the main focus
of the research community for software development based on models has been automatic
code generation. One must consider that robotic systems involve several fields, so specific
knowledge is required to combine all its constituting parts. There is a significant challenge for
design, development, and implementation. MDE provides an efficient and flexible approach
for developing robotics applications that copes with this challenge. By raising the level of
abstraction, models become easier to understand, and it also simplifies the validation of the
system. Another benefit of MDE is that it increases the level of automation, helping the process
of code generation to bridge the gap between modeling and implementation [91]. However,
the support for variability with regards to the targeted platform (e.g., embedded computers,
FPGAs, middlewares) needs to be accounted for, namely PSM. Flexible model transformation
and code generation techniques need to interface generated and non-generated artifacts,
and models need to be adaptable to new information required by developers to cover all
potential incompatibilities that could arise.

Generally speaking, from a software perspective, the field of robotics has been of great
interest over the last few decades. Nordmann et al. [91] showed in a survey focusing on
design-specific modeling languages for robotics how MDE has grown in the field since the 2010s.
Even though the focus was on DSL, the preliminary analysis of the 137 publications gives an
idea of the most relevant topics in the field. Over 53% of the surveyed literature focuses on
the aspects of Architectures and Programming (c.f., Figure 2.13). The rest is divided into specific
features related to robotics, such as kinematics (the motion of bodies in robotic mechanisms
without taking the forces/torques causing the motion into account), sensing, and estimation
or motion planning. This is of particular interest to understand which are the main aspects
to be explored in robotic systems when focusing on MDE techniques to obtain artifacts to
realize such systems. Understanding the techniques used in software fosters synergy among
software, hardware and roboticists. In more detail, the subdomains from Architectures and
Programming are characterized as follows:

+ Control & Handling of Events: Organization of data and control flow as well as handling

39

2 Background and State-of-the-Art

of reactive and temporal events.

Architectural Structures and Viewpoints: Description of architectural structures and soft-
ware designs in general.

» Distribution of Components: Distribution of the software across the hardware, communi-

cation of components, and how middleware can be used to deal with heterogeneous
software.

* Architectural Styles: Descriptions and guidance for the high-level organization of soft-

ware providing a specialization of element and relation types, together with a set of
constraints on how they can be used.

+ Concurrency: Decomposition of software into processes, tasks, and threads, dealing

with related issues of efficiency, atomicity, synchronization, and scheduling.

Interaction and Presentation: Structuring and organization of interactions with users as
well as the presentation of information.

« Error and Exception Handling and Fault Tolerance: Prevention, toleration, and processing

of errors as well as dealing with exceptional conditions.

* Families of Programs and Frameworks: Software product lines or frameworks encapsu-

lating commonalities among elements and targeting re-use by designing customizable
components that account for variability.

+ Security and Safety: Prevention of unauthorized access to and manipulation of informa-

tion and other resources. Limiting damage, the continuation of service, speed-up of
repair, and how to fail and recover securely.

+ Design Patterns: Typically employed at a lower abstraction level than architectural styles.

Control & Handling of Events
Arch. Structures & Viewpoints
Distribution of Components
Arch. Styles

Concurrency

Interaction & Presentation
Error & Exeption Handling
Fam. of Prog. & Frameworks
Security & Safety

Design Patterns

Arch. Design Decisions

Data Persistence

Figure 2.13: Aspects of architectures & programming of robotics in the state-of-the-art (based

40

on [91])

2.9 Model-Driven Engineering

« Architecture Design Decisions: Impact of quality attributes and the trade-offs among
competing quality attributes that provide the basis for design decisions.

+ Data Persistence: Handling of long-lived data.

The distribution of publications of each subdomain from Architectures and Programming is
shown in Figure 2.13. It can be seen how the first 5 ones, namely Control & Handling of
Events, Architectural Structures and Viewpoints, Distribution of Components, Architectural Styles
and Concurrency cover over 74% of the topics. This helps to see their relevance of software
in robotics. These domains overlap with hardware research, as shown in Section 2.7.

The following sections analyze how robotics benefited from embedded systems, namely
GPUs and FPGAs, and how MDE improved the workflow development of these systems.

2.9.1 Control and Handling of Events

Willenberg et al. [92] proposed a framework to generate VHDL modules from behavioral
models. They consist of hand-written kernels with aggregated buffered data-flow structures.
The main goal is to obtain hybrid C++ and VHDL systems by bridging programming models
and interfaces with activity diagrams, modeling data, and control flow. They opted to include
synchronous FIFOs to avoid complex flow control in pipelined designs with generic control
logic to protect it from illegal reads and writes.

Trabelsi et al. [93, 94] extended [95] by proposing a control design approach for FPGA-
based reconfigurable systems. The approach is based on a semi-distributed control model. It
splits different control concerns (monitoring, decision-making, and reconfiguration) between
autonomous modular controllers. The splitting reduces the control design complexity and
facilitates design verification, reuse, and scalability. According to the authors, the distribution
of the control problem compared to a centralized one facilitates reuse as the latter is tightly
dependent on the implemented design. Transitions in a centralized decision-making system
depend on a global view of the system. Therefore, the whole decision model must be rewritten
to include other reconfigurable regions. A new controller for each new region is only needed
with their semi-distributed decision-making model. Their approach is based on Modeling and
Analysis of Real-Time and Embedded Systems (MARTE), and due to following MDE techniques,
it allows them to hide low-level technical details from designers and to automate code
generation from high-level models.

Wisniewski et al. [96] proposed a method for prototyping control systems with the possibility
to include DPR. It is based on Unified Modeling Language (UML) state machine diagrams
which are transformed into Finite State Machines (FSMs). There, each state can be either
static (non-reconfigurable) or reconfigurable. A model-to-code process follows to generate
VHDL files, which are used for synthesis, implementation, and the generation of bitstreams,
including those for DPR.

Estivill-Castro et al. [97] recognized the difficulties in the semantics of UML that prevent
FPGA implementations of complex real-time systems’ models. This issue arises because
UML concerns about how to describe a system rather than building it. Logic-labelled FSMs
(LLFSMs) provide executable models with precise and defined semantics [98]. Hence, the
authors proposed adapting LLFSMs with time-triggered semantics suitable for FPGAs. This
approach enforces determinism for massively parallel, communicating LLFSMs. Models of

41

2 Background and State-of-the-Art

complex real-time behavior with perfect knowledge of timing requirements at design time
can be implemented due to deterministic timing for each state. Furthermore, time-triggered
deterministic behavior allows communication between multiple FSMs without race conditions
or complex synchronization mechanisms.

Riché et al. [99] highlights that most algorithm experts do their design using floating-point
without considering the limited resources available in FPGAs. For this, a fixed-point repre-
sentation is always advised to deploy such algorithms in FPGAs. The authors presented
an MDE-based tool as part of the LabVIEW NXG FPGA module to aid experts in obtaining
fixed-point algorithms. The tool works on executable models built on the graphical dataflow
model of computation “G". The novelty in their approach is that rather than analyzing the
algorithm, data from a testbench is used to suggest fixed-point types within constraints
provided by the user.

2.9.2 Architecture Structures and Viewpoints

Baklouti et al. [100] presented an MDE approach for Single Instruction Multiple Data (SIMD)
SoC designs, based on UML and MARTE. The workflow consists of application programming,
system modeling, deployment, and implementation generation. Like this, it is possible to
generate a SIMD configuration at RTL from a high-level model. This also facilitates rapid
prototyping and generation of different SoC for the exploration of configurations that best
fit the requirements of the targeted applications. The different configurations can also be
simulated as the artifacts, in this case, are VHDL files. The communication among all PEs is
handled by a NoC in a 2D mesh topology.

Teodorov et al. [101] focused on the low-level flow of FPGA design. They proposed an
MDE approach to model the physical synthesis process, focusing mainly on reconfigurable
architectures. The authors argue that even though HLS has adopted the MDE methodology,
physical synthesis is a complex resource allocation problem, which supposes a more complex
model transformation. The core of their solution is to create a physical design automation
Computed Aided Design (CAD) flow. This allows separating the application and design from
the software tool for design and implementation. By allowing a precise specification of
concepts and relations between them, MDE helps to reduce the complexity of developing
and maintaining physical design tools. For this, they presented a generic metamodel’ for
describing hierarchical interconnected systems with arbitrary abstraction levels. As in similar
publications, Design Space Exploration (DSE) is improved, enabling algorithm re-utilization.

Medeiros et al. [102] discuss a PIM to PSM converter. The modeling is based on MARTE, and
the PSM are used to synthesize for FPGA implementations. MARTE is the chosen modeling
language because it provides a clear distinction between hardware and software models
compared to SysML. Moreover, real-time aspects can be modeled, which is important for
embedded systems. In this case, DSE is also possible thanks to the proposed converter. It
allows users to generate a set of embedded system configurations with particular needs for
different hardware resources.

Leite et al. [103] aims to support the automatic generation of VHDL modules from a high-level
specification of embedded systems. They propose a set of mapping rules to convert MARTE
models into synthesizable VHDL description. The model-to-code transformation allows code

15SA metamodel is a model of a model (i.e., a simplified model of an actual model of a circuit, system or software)

42

2.9 Model-Driven Engineering

optimizations which result in an improvement of FPGA area consumption as well as system
performance. Note that the proposed work supports synchronous and asynchronous method
calls from sequence diagrams, which was a feature missing in the literature. In this case, the
high-level model is converted into a PIM as a VHDL module. They extended the approach
in [104], focusing on Aspect-Oriented Software Development. Here, a new set of mapping
rules has been created for the model-level aspects to match their corresponding VHDL
statements.

Zhang et al. [105] presented a toolkit to facilitate the design of complex asynchronous embed-
ded systems with hardware and software components. The graph-based modeling approach
allows validation through simulation and a more straightforward system construction. VHDL
and C artifacts are generated for hardware and software respectively. The characteristics
of the heterogeneous behavior of hardware and software are in a unified co-design model.
The toolkit solves the challenge of extracting them, as the behavior of hardware modules
for synchronous applications is usually controlled by a hardware clock, and the timing of a
software module usually depends on the size and complexity of the code. Hence, a scheduling
mechanism to keep the timing consistent and in sync among different hardware and software
modules is also generated.

Streit et al. [106] proposed an automation flow to explore different hybrid hardware and
software FPGA implementation from MATLAB/Simulink models. The novelty in the approach
compared to the related work is the joint modeling of hardware and software within the same
Simulink model for the generation of a holistic design. The difference is that an individual
model for every component is needed in Simulink. That means two separate models for the
hardware and one for the software. The approach would facilitate automatic DSE. They bridge
Simulink with HLS and Vivado tools via CMake'®, in order to have PIMs. The code generated
by Simulink has to be customized for hardware implementations due to its specific structure.
Hence, code-based optimizations and the MDE-based model transformation are performed.
The AXIS protocol achieves high-speed data streaming for inter-block communication.

Enrici et al. [107] proposed an approach to compiling system-level models into standard C
code to optimize memory footprint. software implementation for a DSP platform as well as
hardware accelerators are generated from this optimized C code. The base of this research
focuses on the fact that multi-processor architectures raise the need to increase the level of
abstraction of software paradigms. Besides, code generation from model-based specifications
is considered to be more efficient than traditional paradigms where software is developed
from code. In this case, the model is based on UML/SysML, and a model-to-code process
is involved in obtaining an intermediate representation. The intermediate representation
is used to optimize the system’s memory footprint to produce the C code for the memory
allocation and scheduling of signal-processing operations.

2.9.3 Combined Control and Handling of Events with Architecture Structures
and Viewpoints

Vidal et al. [109, 108] proposed a design methodology to model DPR in UML. It targets
multiprocessor systems. The first goal is to optimize the area through DPR. The second
one is to increase the flexibility of the resulting system. Area optimization is achieved by

®https://cmake.org

43

https://cmake.org

2 Background and State-of-the-Art

reconfiguring co-processors connected to embedded ones. Flexibility is done by dynamically
changing the behaviors of the co-processors at runtime. The proposed modeling approach,
based on MDE techniques, intends to aid non-FPGA experts to include DPR in their designs.
In this case, the artifacts are a set of bitstreams, including the one for the base design and
the partial ones.

Ochoa et al. [110] proposes an approach based on MARTE, exploiting the capabilities of
IP-XACT to model and automatically generate DPR SoC designs. IP-XACT is an XML format
that defines and describes individual, reusable electronic circuits facilitating their use in
creating integrated circuits. The aim is to obtain HDL code from high-level models of the
system description. In this case, IP-XACT is used as an intermediate model to configure the
accelerators for DPR and to automate the system integration. This work was extended in [111]
to permit the verification of the platform description at different stages in the development
process.

Trabelsi et al. [95] aims to increase the design productivity of FPGA-based reconfigurable
systems. They do so by combining control distribution and high-level modeling to decrease
the complexity and improve reutilization and scalability. Similarly to [93], control aspects such
as monitoring, decision, and reconfiguration are distributed among individual controllers.
However, a coordinator is used to keep the global system’s constraints. The high-level mod-
eling is based on MARTE. The proposed approach allows modeling adaptation aspects at
different design levels (i.e., application, architecture, allocation, and deployment).

Corre et al. [112] focused on the lack of underlying platform architectures for FPGAs and
proposed architecture models based on templates (source-code like sources that can be
expanded according to the requirements). They then provide pre-parametrized designs
according to the target domains (e.g., DSP, video). The approach improves reusability, code
generation, and performance estimation. This last point is of particular interest to perform
DSE. Hence, the designer can combine the parameters in the templates with the constraints
for the expected design. Once a result satisfies the expected tradeoffs between cost and per-
formance, the synthesized code for the hardware platform, the adapted software code of the
application, and the project files corresponding to the FPGA backend tools are generated.

Ecker et al. [113] presents an automated process to generate hardware and software for em-
bedded systems following OMG's Model-Driven Architecture (MDA)'’. Their MDA adaptation
consists of splitting the translation process into multiple layers. It starts with a formalized
specification transformed into code. The code is then compiled (software) or synthesized
(hardware) to finally be assembled into an embedded system design. The process is split into
three layers. Model-of-Thing (MoT) represents the formalized specification. Model-of-Design
(MoD) contains the implementation architecture (PIM). Model-of-View (MoV) are the PSM
implementations. The process consists of translating MoT into MoD to translate it into MoV
for code generation. The translation between models is done based on templates.

As mentioned previously in Section 2.8, different robotics middlewares have emerged over
the years (e.g., YARP, OROCOS). This could become an issue due to incompatibilities of data-
types between different middlewares [114]. Many approaches also developed types-libraries
with common comparable semantics but using different approaches for IDLs, serialization
schemes, and APIs. On the one hand, Costa et al. [115] proposed the use of model-driven
engineering concepts to develop specialized middlewares for particular application domains.
The approach centers on building blocks, as meta-models, used to create models to specify

https://www.omg.org/mda/

44

https://www.omg.org/mda/

2.9 Model-Driven Engineering

the configuration of the targeted middleware. The authors showed the feasibility of their
approach with four domain-specific applications. On the other hand, since multiple robotics
middlewares are available, Wienke et al. [114] proposed using model-based techniques for
component reusability. They addressed data type compatibility in a structured way by devel-
oping a generic meta-model capable of representing data types from different middlewares
and their relations. This is possible because the middlewares produce and consume serialized
data to be streamed over a network. The meta-model describes data from various robotics
middlewares in an abstract and unified way, but including the variables to be serialized. That
model is used to generate serialization code to reuse the existing data-types of different
middlewares. Moreover, they evaluated the features commonly found in different IDLs, which
served as the base for the evaluation presented in Chapter 5 (cf. Table 5.1).

Table 2.5 summarizes these publications about MDE and FPGAs. Note that the two categories
“Control & Handling of Events” and “Architecture Structures & Viewpoints” (c.f. Figure 2.13)
cover 45% of the literature in the software-related state-of-the-art. It can be deduced from
the literature shown above that these two categories are also the most relevant topics in
adaptive computing systems, particularly FPGAs. It can be inferred that the primary purpose
of these works, and in general for MDE, is to aid non-experts in a field (FPGAs in this case) to
obtain the desired implementation. This is why either bitstreams or source code (VHDL or Q)
are generated from a high-level representation of the system, usually in UML (or derivatives
such as MARTE). The main reason, according to the authors [94, 96, 108, 95, 110, 109] is to
facilitate the workflow, which is usually cumbersome, especially for non-FPGA developers.
Also, 25% of the publications analyzed in this work already support DPR, which is always a
tedious process to do manually.

The main takeaway for this section is that MDE is a helpful modeling and design method-
ology to circumvent the arduous process of designing FPGA systems, whether they target
organization of data and control flow as well as designs from an architectural viewpoint
(system level). This has been proven to be successful, which is the main reason for this work,
to now incorporate such techniques into robotic systems on FPGASs, considering the com-
bined complexity of hardware design as well as the ones from the robotics field. Integrating
FPGAs into ROS (Section 2.8.1 and Section 2.8.2) is an active research area as well as MDE
techniques for code generation of FPGA-based systems Section 2.9. However, these two are
mostly explored individually, opening possibilities for future research on how to combine
their proven benefits to aid the workflow of FPGA-based robotic systems.

To conclude, Section 2.7 onwards introduced the state-of-the-art, in which the works pre-
sented showed different MDE techniques to facilitate the design process of FPGA-based
systems. However, most of them focus on particular solutions or accelerators rather than
on integration aspects. The techniques discussed previously are used to generate a system
according to specified requirements. However, further specifications analysis is required to
understand the system and determine its low-level details fully. These techniques are often
only partially suitable for this analysis, and a technology that interprets the specified system
is preferred. MARTE, the UML profile for modeling and analyzing real-time and embedded
systems, is the most popular in the literature. MARTE supports modeling the timing behavior
of FPGA-based systems (clock skew, jitted, and propagation delay). Furthermore, there is
support for code generation and verification of FPGA-based systems. Therefore, it allows
developers to model the behavior of hardware components and generate code for the
hardware IPs. However, extra tools are needed before generating all the desired components
to achieve the three objectives listed in Section 1.2. The ones proposed in this dissertation

45

2 Background and State-of-the-Art

Table 2.5: MDE approaches for FPGAs

Architectures and Models
Reference Programming Artifacts DPR

Control® Architecture” Levels Language Framework

Trabelsi et al. (2014) [94] v X PSM UML, GASPARD2 VHDL v
MARTE
Riché et al. (2019) [99] v X PSM - LabVIEW NXG VHDL, Verilog X
FPGA Module
Willenberg et al. (2010) [92] v X PSM UML DMOSES/Eclipse VHDL X
Wisniewski et al. (2017) [96] v X PSM UML - Bitstreams v
Estivill-Castro et al. (2018) [97] v X PIM UML - VHDL X
Vidal et al. (2011) [108] v X PSM UML, - Bitstream v
MARTE
Trabelsi et al. (2013) [93] v X PSM UML, GASPARD2 VHDL X
MARTE
Baklouti et al. (2011) [100] X v PIM UML, SIMD Frame- VHDL X
MARTE work
Streit et al. (2018) [106] X v - Simulink Matlab Bitstream X
Medeiros et al. (2012) [102] X v PIM, UML, Papyrus Bitstream X
PSM MARTE
Leite et al. (2014) [103] X v PIM UML, AmMODE-RT VHDL X
MARTE
Zhang et al. (2016) [105] X v PIM SyncBlock Tsmart-Edola C, VHDL X
Enrici et al. (2018) [107] X v PIM UML DIPLODOCUS Bitstream X
Teodorov et al. (2011) [101] - v PIM, Generic - Bitstream X
PSM metamodel
Leite and Wehrmeister (2014) [104] v v PIM UML, AmoDE- VHDL X
MARTE RT/GenERTICA
Trabelsi et al. (2012) [95] v v PSM UML, GASPARD2 C, VHDL v
MARTE
Ecker et al. (2019) [113] v v PIM, Custom Infineon C, VHDL X
PSM metamodel
Ochoa et al. (2011) [110] 4 v PSM UML, - VHDL, C, Sys- v
MARTE, temC
IP-XACT
Vidal et al. (2010) [109] v v PIM UML, - C, VHDL v
MARTE
Ochoa-Ruiz et al. (2015) [111] v v PIM RecoMARTE FAMOUS C, VHDL X
design
Corre et al. (2013) [112] v v PIM Kahn Custom tem- C, Bitstream X
Process plate based
Network
*Control & Handling of Events — *Architecture Structures & Viewpoints
Platform Independent Model (PIM) — Platform Specific Model (PSM) — Dynamic Partial Reconfiguration (DPR)

are described in Chapters 5 and 6. They are needed to perform data-type and data-flow
analysis (described in Chapter 6), which is why JastAdd is more appropriate than frameworks
like MARTE, as it is used for constructing compilers and tools alike.

Choosing one or the other does not mean they are not complementary. There might be cases
where both frameworks can be used together. They are two different types of frameworks
that serve different purposes. While MARTE is a UML profile for modeling and analyzing
real-time and embedded systems, JastAdd is a metacompiler framework for implementing
compilers and related tools, which is more fitted for the objectives of this dissertation. It allows
to obtain a model of the system from a specification to be analyzed with MDE techniques
and derive necessary information to further generate the components specified, validate
them, and deploy the entire system automatically. All details to achieve these are explained
in the following chapters.

46

3 Modular Hardware Architecture

Components within a heterogeneous distributed system, such as a robotic platform, usu-
ally exchange data. They can either generate or consume it; in this work, they are called
publishers or subscribers respectively. As the goal is to combine FPGAs with robotic systems,
hardware accelerators as publishers and subscribers exchange data with external software
components in a distributed system, as shown in Figure 3.1. The main requirement is that
external components do not make any distinctions with hardware accelerators, so they can
be interchangeable if needed.

The aim here is to take advantage of the freedom and versatility that FPGAs provide for
power-demanding applications to be part of any ROS (or any other middleware) architecture
in an efficient way so that they can be seen from other ROS nodes as a regular one. This
means that they behave like them in the way that they can send data as a publisher or
receive data as a subscriber. This will allow deploying any given application, whether it is
a heterogeneous system like a robot with multiple sensors and actuators or a distributed
system such as a group of robots collaborating together, into any ROS system.

Most elements in the proposed hardware architecture are foreseen to be on the PL side
but are not limited as some functionalities can reside on the PS side or external peripherals
(e.g., communication from/to outside the FPGA [21]). The blocks shown in Figure 3.1 can be
classified as:

1. Accelerator-related components comprising the base architecture needed to han-
dle multiple hardware accelerators. Their design is only affected by the number of
accelerators in the system.

2. Message-dependent components refer to those that follow a specification required for
accelerators to be incorporated into the distributed systems.

47

3 Modular Hardware Architecture

E— PS or PL
tandard | OVEi ;
Publisher : to DFixed in PL
AXIS Frame
Standard IP
Publisher : to
AXIS Frame
N | 5(0).AXIS | External |
Publisher Standard IP S(1)AXIS Component
and : to ’
Subscriber AXIS Frame '_1 S MO_AXIS T
\ . ! . ROMLS Manager —Communication
: . . : . M(1) AXIS «—— Interface ~
Publisher Standard IP J oS 05 -
and, : to J M(2).AXIS / ‘
Subscriber AXIS Frame External |
\) —1 M(N)_AXIS | |
Component
/Standard IP\
Subscriber |t to
AXIS Frame
Standard IP
Subscriber | i to
AXIS Frame FPGA

Figure 3.1: Generic base architecture’.

3.1 Challenges and Goals

The main goal of the proposed modular architecture is to integrate hardware accelerators
into robotics systems to enhance their efficiency. The first challenge is ensuring that the
architecture components are extensible and reusable. The architecture must provide modu-
larity to accommodate a wide range of hardware accelerators to achieve this. Furthermore,
its components should be designed to allow for the easy integration of new accelerators
without requiring significant changes to the overall architecture.

The second challenge is ensuring the proposed architecture is application-independent,
allowing it to adapt effortlessly to new requirements. This requires the development of a
standardized interface between the hardware accelerators and the software applications.
This interface should be well-defined and independent of the specific application, enabling the
system to support a wide range of applications without requiring significant modifications.

This chapter proposes a modular hardware architecture that leverages the principles of
modularity, reusability, and standardization to address these challenges It is designed to
provide a flexible and extensible architecture that can be easily customized to meet the
specific requirements of different robotics applications. The following sections introduce the
different components designed to achieve these goals.

TAccelerators can have intra-FPGA connections (omitted to have a simplified diagram).

48

3.2 Accelerator-Related Components

3.2 Accelerator-Related Components

They are responsible for exchanging data between accelerators in FPGAs and external parts
of the distributed system. Considering that most robotics systems follow a data flow graph-
based-model design, the AXIS protocol is chosen as the standard interface among all blocks
due to its simplicity and widespread usage. Additionally, if blocks or modules share the
same interface, it can lead to different techniques such as DPR for efficient and low power
designs [85]. The main component is the Manager block (Figure 3.4). The entity port (input
and output signals) and the behavior of the accelerator-related components depend on
the number of publishers and subscribers in the design, which is different for each use case.
One could easily neglect one parameter by mistake as multiple modules are involved, raising
the need to automatize their generation.

The accelerator-related components could have been simplified by relying on Xilinx's
AXl4-Stream Interconnect IP core. However, this would imply becoming vendor-dependent,
which reduces the possibility of porting to other vendors or platforms (e.g., Intel, Microsemi).
Moreover, Xilinx's IP Core has a maximum of 16 interfaces per instance. Its resource utilization
for 1 master and 4 slaves (16 bits for TDATA) is around 150 LUTs and 300 FFs for the simplest
configuration. A similar solution following the approach presented in this work uses 364 LUTs
and 67 FFs but four times the number of slaves, allowing for managing more accelerators
with roughly a similar resource utilization?.

The block handling the communication (Communication Interface)isinspired by the TCP/IP
Five-Layer Network Model (Figure 3.2), where individual layers are adapted according to
different needs. On the one hand, the Application (protocol), Transport (TCP or UDP), and
Network layers (IP) will depend on each application. On the other hand, the Data Link (Ethernet
or WiFi) and Physical (10 Base T or 802.11 standards) layers will depend on the device used
for communication (e.g., onboard interface as Ethernet in case of some development boards,
external devices such as the ESP32 providing Ethernet or the WIZ820io for WiFi, both with
SPl interface).

In this proposed architecture, using the PS is not mandatory but optional. This feasibility is
shown in [21] where ROS was not running under Linux. The Communication Interface was
in the PL as a SPI-controlled device handling communications over Ethernet with external

(.
Application
(Protocol)
Depend on J Transport
application (TCP or UDP)
Network
(IP)
-)

D d Data Link
epend on (Ethernet or WiFi)
available \ X

device Physical
(Standards)
-

Figure 3.2: TCP/IP five-layer network model

2This numbers are for the Zyng-7000 SoC-FPGA (xc7z020clg400-1)

49

3 Modular Hardware Architecture

components. The versatility of the architecture is shown further in [9] by having native ROS
running on the PS, acting as the link (on the software side) between external components
and accelerators.

3.3 Messages-Dependent Components

They are the interfaces between hardware accelerators and external software components,
which depend on message specifications (e.g., ROS msg format). The serial part of their entity
is either AXIS master or slave, and the message specification determines the parallel part to
interface. Each publisher or subscriber IP core needs its own block to convert its input and
output ports (parallel) into an AXIS frame (serial).

A design simplification has been chosen, to use 8 bits for data and only use the minimum
signals of the AXIS protocol (TLAST to denote the last byte in the transmission, TVALID and
TREADY for handshaking). Reducing to byte widths allows to orient these blocks’ design in
a generic manner to ease the automatic code generation later on (Chapter 5). By doing so,
each variable, regardless of its data type (e.g., int, float), is split into bytes to multiplex them
individually. Variables (arrays or strings) and nested messages are transformed into an AXIS
if their sizes are not fixed, relying on TLAST to denote their length. Figure 3.3 shows an
example of an accelerator taking the role of a publisher with its interface component for the
sensor_msgs/Image message specification (Listing 3.1). There it is possible to see that the
fields header, encoding and data have been converted into AXIS while the rest have a bit-width
according to their built-in data type. This message specification is used throughout the work
as an example to highlight specific characteristics of the techniques shown, leading to an
image processing use case.

Due to the design decision of using 8 bits for TDATA, a stream of bytes (AXIS frame) will be
formed with the variables to interface. startindex in Figure 3.3 depicts the position of the first
byte of each variable in the resulting AXIS frame.

As it can be seen, message specifications can become complex data structures if they are
formed by different data types, arrays with and without specified length, or even nested
messages. Hence, manually writing their corresponding hardware components becomes a
quite tedious and much more likely error-prone process. All their details, design decisions,
and code generation is specified in Chapter 5.

50

3.3 Messages-Dependent Components

Bitwidths Field's name startIndex
) /22 total_length oo
//32 header_seq s
//32 header_stamp_sec s
//32 header_stamp_nsec M.

//32 header frame_id_length | .

IR o -1« -1l § =TT T M D (S

//32 height »lo1
idth M_AXIS
= Wi ~25 Standard [P it
Publisher /32 encoding_length .. to

7
SNCQINE A S srrsngzs AXIS Frame

//s is_bigendian M.,
//32 step »135
/32 data_length w3

/

ISR «) - - . {1- ST S P

Bits Legend
Signal with specific bitwidth

meeennnPp- AX| Stream interface

Figure 3.3: Hardware port for image msg

O W oo ~NJOoOuUu b WwWwN =

N

std_msgs/Header header
uint32 seq
time stamp
string frame_id
uint32 height
uint32 width
string encoding # unconstrained size
uint8 is_bigendian
uint32 step
uint8[] data

nested message

Listing 3.1: ROS sensor_msgs/Image specification

57

3 Modular Hardware Architecture

3.4 Components of the Modular Architecture

There are four components in the proposed architecture, shown in Figure 3.1, and each of
them are explained below.

3.4.1 Accelerators as Publishers and Subscribers

The accelerators within the architecture, those that perform the computation, can be of two
types. Those that consume data to process it and those that produce data to be processed
further. The former ones are defined as Subscribers and the latter ones Publishers. They can
also be a combination of both, and their interfaces will be defined depending on their type.

3.4.2 Middleware-Based Hardware Interfaces

These are the components that convert from an AXIS frame to a message specification and
vice-versa. Depending on the type of accelerator, they will be used by either subscribers
or publishers. Subscribers receive data from DMA, so a conversion from AXIS to message
is required. Publishers send data through the DMA, so they need to convert the message
specification to an AXIS frame. These two types convert from parallel signals to a serial AXIS
frame and vice-versa. All their details, design decisions, and code generation is specified
in Chapter 5.

3.4.3 Manager

The Manager handles the proper communication between the two central parts of the system,
namely the accelerators (as programmable logic) and the Communication Interface to
external components. The Manager is composed of multiple blocks shown in Figure 3.4. Most
of them are static, meaning they do not change their behavior. They have different purposes,
which are explained below. Multiple options are proposed for the schedulers, which are
explained in Chapter 4.

|

Ctrl |

|

ID |

S.AXIS AXIS I_D Com to IPs !
L EXtraCtIOn M_AXIS. S_AXIS MO,A:XIS —‘> -

w
0
[
2
=
MNAXIS |1 g SR

p)

D1iunwwo

—>

ERLIIEET]

e

|
|
|
|) .
| Arbiter

Decoder

—» Scheduler <" —pCtr M.AXIS— P>

19nd sisenbay

|

|

IPs to Com \
SO0-AXIS |
| SNLAXIS :

Figure 3.4: Manager

52

3.4 Components of the Modular Architecture

Communication

The Com to IPs and IPs to Com are the ones that route the AXIS frames from/to the
Communication Interface to/from Subscribers and Publishers, respectively. As the AXIS uses
one (8 bit) signal for data (TDATA) and three for handshaking (TVALID, TREADY and TLAST
), they have to be multiplexed and demultiplexed because the communication is 1-to-N or
N-to-1, depending on the direction.

On the one hand, the Com to IPs handles the communication from PS to PL. Hence, data
for all accelerators comes from one DMA and needs to be demultiplexed to each accelerators.
Hence, this module is composed by three demultiplexers for TDATA, TVALID and TLAST and
one multiplexer for TREADY . On the other hand, the IPs to Com handles the communication
from PL to PS. Therefore, data from each accelerator is multiplexed towards the DMA. So,
this module is composed by three multiplexers for TDATA , TVALID and TLAST and one
demultiplexer for TREADY .

The bit-width of the multiplexers and demultiplexers is determined by the number of acceler-
ators, which will influence the bit-width of their control signal, computed with Equation (3.1).

AXIS ID Extraction

Each AXIS frame must include an ID to route it to/from the corresponding accelerator. The ID
is inserted on the software side for the frames coming from the DMA (for subscriber IPs), and
has to be extracted on the PL before it can be demultiplexed. Figure 3.5 shows an example
of an AXIS frame streamed from the PS to PL that corresponds to a ROS message composed
by an 8-bit integer array with two elements. The AXIS frame starts with the ID, "01" in this
case. It follows the total number of bytes to be transmitted, six in this case. It ends with the
array’s length (two bytes) and the two corresponding integers. Details about the creation
of AXIS frames from ROS message specifications are given in Chapter 5. The frames from
the accelerators to the Communication Interface alsoinclude an ID, which is added by the
converters, explained in detail also in Chapter 5.

Figure 3.5 shows a simplified version, omitting the signals for handshaking. Below the clock,
the input, TDATA , shows the complete frame. The ID is extracted on the first clock cycle and
latched to the output, which serves as the control signal for the following block (Com to IPs).
The ID to be latched is converted from decimal to binary, and its bit-width is determined
by Equation (3.1). Besides optimizing this block's resources, the bit-width needs to be adjusted
to optimize the multiplexers and demultiplexers, where the input and output ports are
also expanded or shrank accordingly to the total number of accelerators in the expected
architecture. This is the main reason these components are called accelerator-dependent
because their entities vary accordingly to the total number of accelerators involved in the
architecture. The other output of the AXIS ID Extraction is the AXIS frame itself, which
starts on the next clock cycle. As seen in Figure 3.5, this block does not introduce any delays.

IDbjt-wiaen(N) = ceiling (éggg) (3.1)

=

where N is the number of accelerators.

53

3 Modular Hardware Architecture

Clock

O

.

00 06 00 02 00 10 11

o
o

s_axis_tdata

L

00

ID
=}
S}

B

00 06 00 02 00 10 11

(=]
o

m_axis_tdata

-

Figure 3.5: AXIS ID extraction signals

Arbiter Decoder

This block takes as input the grants from the scheduler. Therefore, its bit-width will be equal
to the number of accelerators. Table 3.1 and Table 3.2 show two minimal examples of the
decoders for inputs of two and four grants for accelerators. Because the control signal of the
multiplexers or demultiplexers is in binary, this decoder is needed. Only one accelerator can
receive the grant for a shared resource at any clock cycle, and the communication blocks
have to select the corresponding signals accordingly to route the AXIS frame from/to the
correct accelerator. As the multiplexers or demultiplexers in the Communication to IPs
and IPs to Communication need as many bits as Equation (3.1) determines, this decoder is
needed to convert from grants to control signals with the same number of bits.

3.4.4 Communication Interface

The synergy between software architectures and FPGAs is a challenging task. Usually, for
robotic systems, the first one runs on an embedded computer, while the second one is a
hardware platform on its own. Hence, one of the challenges is establishing communication

Table 3.2: Decoder with four
Table 3.1: Decoder with two input’s truth table
input’s truth table

Input Output

Input Output Grant[3:0] sel[1:0]
Grant[1:0] sel[0:0] 0001 00
01 0 0010 01
10 1 0100 10
1000 11

54

3.4 Components of the Modular Architecture

between both systems to integrate one another. This Communication Interface isthenthe
one that establishes the connection between the components in the FPGA and external ones.
The aim is to integrate accelerators as publishers or subscribers into existing robotic systems
as standard components (i.e., ROS nodes), making no distinctions with external components.
This means that they behave like them in the way that they can send data as publishers and
receive data as subscribers. The use case in this work is based on the ROS communication
protocols, but it can be generalized and adapted if needed.

The most basic architecture of a ROS system is composed of three nodes, which is where
processes perform computations. ROS Master is aware of all existing nodes in the architecture
and coordinates them accordingly. A Publisher can broadcast messages over a topic for other
nodes to receive. A Subscriber can receive a message if a compatible topic is available. All
the communication within ROS is done via TCP Sockets. They allow communication between
applications, either on the local system or spread in a distributed TCP/IP-based network
environment. There are two different actions involved in the communication between nodes.
The first one is the registration or unregistration of a node. This only involves the ROS master
and the node performing the action. The Remote Procedure Call (RPC) protocol XML-RPC,
which uses XML to encode its calls and HTTP as a transport mechanism, is used. The second
communication protocol is a transport layer based on TCP/IP sockets (TCPROS) to establish
direct communication between nodes and transfer data. Initially, a subscriber requests from
the master a given topic. If it exists, the master will inform the subscriber about the node
publishing the requested topic and, subsequently, its IP address and port number. Afterward,
the subscriber will contact the publisher directly to request the topic, and the connection
between them will be established. Every time the publisher has new data to broadcast, it will
send it directly over the earlier connection to the subscriber. At this point, the ROS master
does not take any action as the connection is directly between publisher and subscriber.

As all the communication is based on TCP/IP, a publisher can have multiple subscribers. The
publisher will communicate with the ROS master over one socket and listen to another one
for any subscribers requesting a topic. When this happens, communication via a new socket
is permanently established with each subscriber. Hence, a publisher will have 2 + n sockets,
where n is the number of subscribers.

Hence, the Communication Interface has to be able to handle specific communication
protocols (TCP/IP in this case) to integrate accelerators in an existing software solution. There
are several ways to achieve this, considering the available resources on current FPGA boards
and depending on the physical layer of the communication (e.g., Ethernet).

External solutions can be used if there is no available ethernet connected to the PL. As
demonstrated in [21], an external SPI-Ethernet component was used. The design is based
on the WIZ820io, a compact-sized module that includes a W5200 (MAC, Ethernet, and PHY
layers plus a TCP/IP stack) and an RJ45 jack, controlled via SPI. The controller used is shown
in Figure 3.6. The AXIS Receiver is the one that will receive the AXIS frame coming from the
Manager containing data to be sent over TCP/IP and metadata needed to establish the TCP/IP
communication (i. e., IP and port). Therefore, it will push the data into a FIFO and extract
the metadata to send it directly to the WIZ820io Interface block. This one acts as an SPI
master to send and receive proper commands to the W5200, which is the one managing the
actual TCP/IP connection. The AXIS Sender block retrieves the incoming data from external
components and sends it over AXIS to the corresponding IP. The FIFOs circumvent any
transfer rate difference between AXIS (100MHz) and SPI Stream (50MHz).

55

3 Modular Hardware Architecture

WI1Z820 Controller
= T T T T T T T T T T T T s s s s s s s s s s s — s — e — e — i — - |

| FIFO FIFOE‘} NS @%
| — NS \Seﬁi
| Address (16)

AXIS Length (12) :
! Receiver Operation (1) :
: MISO !
: < Handshaking >
I
\ S S

Figure 3.6: SPI master architecture with AXIS interfaces.

193]
wn

WIZ820io SCLK '
Interface MOSI !

YVYVYY

This is the first solution to show that the entire architecture depicted in Figure 3.1 can be
entirely realized on hardware. However, there also exists the case that the ethernet is present,
and in the case of most of Xilinx's development boards, it is routed directly to the PS. This
opens up two possibilities. The first one consists of using a standalone application or relying
on a real-time OS, for example, FreeRTOS, which is very well supported by Xilinx's tools. The
second one, followed in [21, 9], consists of relying on the capabilities of the ARM processors
to run an OS. This allows having Ubuntu and native ROS on top. However, there are some
challenges to solve with this approach related to the exchange of data between PL and PS
which is addressed by the hybrid hardware/software schedulers.

3.5 Evaluation

The evaluation of the modular architecture proposed in this chapter is splitinto two parts. The
first one concerns all the blocks included in the Manager, which are the same for all designs
as they only depend on the number of accelerators. The second one is for the proposed
schedulers, which are, in fact, part of the Manager, but they not only depend on the total
number of accelerators but the different algorithms. These have different consequences, and
there are several metrics proposed to understand the behavior of each of them appropriately.
All results shown here are after synthesis for the Xilinx's Zyng UltraScale+ xczu7ev-ffvc1156-
2-e.

Table 3.3 shows the resource utilized by each of the components included in the Manager
(Figure 3.4), which are common for all designs. Even though the Manager includes a scheduler,
its different options are evaluated separately in Section 4.3. It can be seen that the AXIS ID
Extractionisthe only module that utilizes FFs. The reason is that it requires some registers to
keep the ID of the frame for the entire time it is being streamed, so it is latched. The remaining
modules do not require FFs as they are decoders, multiplexers, and demultiplexers which
are purely combinational circuits.

Figure 3.7 shows the overall representation of how each of the components affects the
resource utilization for the Manager as a whole. The Arbiter Decoder does not consume
much LUT for a small number of accelerators, but the logic increases the more accelerators
are in the system. Having more accelerators in the system means that the output port of
this decoder and, therefore, its logic will increase. The total number of output signals is given
by Equation (3.2), where the condition given by Equation (3.3) has to be met.

56

3.5 Evaluation

[Arbiter Decoder

[AXIS ID Extraction
I Comto IPs
IPs to Com
103
2102
E10
.}
10 I I I
10
2 4 8 16 32 64 128 256

Accelerators

-

o

Figure 3.7: Resource utilization in common IPs inside the manager

Decoder Output = 2", N e€1,2,3,4,5,6,7,8 (3.2)
Total Accelerators < 2V (3.3)

The LUTs for AXIS ID extraction are roughly the same for all number of accelerators. How-
ever, they influence the total resource consumption more when there are a few accelerators
because the other components do not consume much.

Table 3.3 shows the LUTs and FFs utilized by the AXIS ID Extraction component. The LUTs
do not increase when the accelerators do as the logic is the same. However, the FFs increase
because the signals to latch increase when more accelerators are included in the design as

Table 3.3: Resource utilization in common IPs inside the manager

Arbiter AXIS ID Communication IPs to
Accelerators Decoder Extraction to IPs Communication
LUTs FFs LUTs FFs LUTs FFs LUTs FFs
2 1 0 8 12 11 0 6 0
4 1 0 8 13 22 0 13 0
8 6 0 9 14 42 0 24 0
16 16 0 9 15 84 0 48 0
32 61 0 10 16 329 0 122 0
64 128 0 10 17 345 0 239 0
128 773 0 11 18 1138 0 478 0
256 1837 0 11 19 2644 0 946 0

57

3 Modular Hardware Architecture

their binary representation requires more bits the larger the number is (c.f., Equation (3.1)).
This is the only component that consumes FFs because it latches the ID, making this a
sequential circuit compared to the rest which are only combinatorial circuits.

The two blocks concerning communication have a constant resource utilization relative to
the number of accelerators in the design. However, the main reason for the doubling of LUT
of the Communication to IPs block with respect to the IPs to Communication liesinthe
fact that the former one is formed by three demultiplexers and one multiplexer and the
latter one of three multiplexers and one demultiplexer. The LUT will double because, based
on Xilinx's CLBs which only contains multiplexers, to build a demultiplexer, two multiplexers
are needed, as shown in Figure 3.8.

3.6 Summary

This chapter introduced the base architecture that serves as the playground for this entire
work. It is a modular architecture to be used as the foundation for integrating FPGAs into
existing robotics solutions. An explanation and reason for each component included in the
architecture are detailed, as well as their need and how they interact with each other. The
design of each component is generalizable, easing their code generation and automatic
deployment of the entire system. The evaluation focuses on the resource utilization and
scalability of the accelerator-related components, which are the ones that are affected
by the total number of accelerators in each design where the modular architecture is used.
It is worth mentioning that all results are shown for Xilinx's Zyng UltraScale+. However,
the implementations described in this chapter (and this dissertation) can be ported to any
other target device available from Vivado and other vendors as all components are vendor-
independent and based on the VHDL-93 standard.

Details of the modelling, code generation and automatic deployment of the components
described in this chapter are presented in Chapters 5 and 6.

in[7:0]

out[7:0]
2tol

in[7:0] j
out[7:0]
2tol ———
in[15:8]
sel[0:0]
out[15:8]
. 2tol ——m
— in[7:0]
sel[0:0] —
(a) 2 to 1 multiplexer (b) 1 to 2 demultiplexer

Figure 3.8: Multiplexer and demultiplexer

58

4 Hybrid Hardware/Software
Schedulers

Different scheduling algorithms are proposed to have different options to adapt to the needs
of each application. A software implementation is needed to schedule the transactions from
PS to PL, and hardware counterpart for PL to PS ones. The hardware implementation details
are described below, as one needs to consider the low-level signals that are not needed in
software. Particularly for this work, tasks represent the time each component can stream
its data. In general, a scheduler has multiple inputs for the requests from the accelerators,
meaning that they have data available to broadcast and they are ready to be scheduled. The
output will be the grant, allowing only one accelerator to perform the transmission at any
given time. An example is shown in Figure 4.8, and all the details are explained below.

4.1 Challenges and Goals

The schedulers play a critical role in the modular architecture described in 3, and are part
of the Manager. As a result, they need to meet specific requirements regarding extensibility
and adaptability to new applications. It is essential to achieve this to have a diverse range of
schedulers available, which can be selected based on the specific needs of each application,
including their extensibility (i.e., the number of hardware accelerators required).

The schedulers must be designed to be independent of both the hardware accelerators and
the applications they are scheduling to ensure maximum flexibility. This means schedulers
should be able to accommodate varying numbers of accelerators without requiring significant
modifications. Ultimately, the goal is to provide a wide range of schedulers that can adapt to
the specific needs of each application while remaining extensible and independent of the
underlying hardware architecture.

As the AXIS is the chosen communication protocol, TVALID is used as requests and TREADY
is used as grants. Each of the implemented schedulers shown below works as follows. Each
accelerator that sets TVALID to one will get a grant as long as it is the only one that set
a request. Only one accelerator can get the grant on each clock cycle. Therefore, it will be
computed accordingly to each algorithm when multiple accelerators have data to stream
(TVALID settoone)atthe same time. The end of each task is denoted with TLAST, as dictated
by the AXIS protocol.

There are four characteristics considered for the schedulers:

59

4 Hybrid Hardware/Software Schedulers

+ Preemptive: a running task is paused when a higher priority task arrives and gets the
grant. The first one resumes after the latter one completes.

+ Non-Preemptive: this algorithm will not interrupt the currently executing task until the
execution is terminated.

+ Fixed Priorities: priorities are set at the start of the application and kept fixed for the
entire runtime of the process.

* Dynamic Priorities: priorities are updated dynamically during runtime according to the
scheduling algorithm.

Considering that the end goal is to generate all these components from an abstract descrip-
tion of the system, the core of the implementation of the different schedulers has to be
generalizable. Therefore, the adaptable statechart shown in Figure 4.1 is used as the base for
all proposed algorithms. It is composed of two types of states and transitions. Ones are static,
common for all schedulers, and others are adapted for the needs of each algorithm, whether
it is a specific computation (e.g., deadline, slack) or conditions for the transitions. Therefore,
only certain parts of the statechart differ from one scheduler to the other. A priority table is
initialized at the beginning. The algorithm-dependent conditions are computed to use them
for updating the priority table accordingly, depending on the algorithm. The updated priorities
are used in the Set Grant superstate to find the maximum value (highest priority) to asses
which accelerator will get the grant. The transitions within this superstate also depend on the
algorithm, as each of them dictates how to react to new requests or internal conditions.

There is no relation between multiple accelerators and the schedulers, so there is data
independency for all tasks. As far as deadlines, multiple definitions exist:

+ Implicit deadline: when the relative deadline D; is equal to the period T; , i.e. D; = T;, for
every task 1.

+ Constrained deadline: when the relative deadline D; is not larger than the period T; , i.e.,
D; < T;, for every task 1;.

* Arbitrary deadline: when the relative deadline D; could be larger than the period T; for
some task 1.

Legend
(Static) (Algorithm dependent) requests/=0

Compute Priorities Set Grant c
Compute Condition Update requests/=Q
(e.g., deadline, slack) Priorities

requests=0]

Highest
Priority

New requests
or end of frame

requests/=0

Waiting
Requests

Figure 4.1: Adaptable statechart, generic for all scheduling algorithms

60

4.2 Scheduling Algorithms

4.2 Scheduling Algorithms

Four different algorithms are proposed, two of them with two variations, making six schedulers
in total. They are based on traditional software solutions with the corresponding adaptations
to hardware implementations and the chosen streaming interface. Implicit deadlines are
chosen for the Earliest Deadline Frist (EDF) and Least Slack Time (LST) algorithms presented
below. Moreover, soft real-time constraints are assumed for the system, meaning that missed
deadlines will not have catastrophic consequences.

4.2.1 Least Recently Utilized (LRU)

The Least Recently Used (LRU) algorithm is mainly used to manage buffer memories and
caches. It dynamically changes the priorities based on the accelerator that got the grant the
latest. This one will be moved to the bottom of the priority list, allowing all accelerators to
get the grant. On the positive side, this guarantees that there will be no resource starvation.
On the negative side, some accelerators will likely miss their deadlines. This is more evident
the more accelerators are included because it takes N rounds (in the worst case) for an
accelerator to be on top of the priority list. In order to mitigate this, only the accelerators
which set their requests are considered each time the priorities are evaluated.

4.2.2 Fixed Priority (FP)

The Fixed Priority (FP) algorithm is a static priority one, meaning that priorities will remain
unchanged during the entire execution time. Figure 4.2 shows a minimal example for the
preemptive and non-preemptive versions. For the non-preemptive, each accelerator will
complete its task before another receives the grant. For the preemptive, the accelerator
with the lowest priority (Acc7) is preempted as soon as Acc2 (with the highest priority) sets
its request. Priorities are set based on the port defined in the entity of the module. As the
goal is to have a generalizable design to ease the automatic code generation, all input ports
(AXIS-related signals) are defined as variable-sized vectors. Hence, the position of each signal
(acting as request) in the TVALID [N] array will dictate the priority of each accelerator. The
lower the N, the higher the priority.

Scheduler Clk 1|2|3|4|5|6 7|8|9|10
Non-Preemptive FP Accl Acc2
Preemptive FP Accl | Ac2 [Accl

Figure 4.2: Fixed priority scheduling with and without preemption

This algorithm has two variants, namely, Preemptive Fixed Priority (PFP) and Non-Preemptive
Fixed Priority (NPFP). The difference lies in whether the grant changes in every clock cycle.
The computation’s logic is only generated if needed to improve resource utilization. As the
algorithm’s name suggests, the priority table is never updated. It is initialized once, based on
the width of the reqguests port depending on the number of accelerators (N), from O to N-1.
Accelerators are assigned indexes, and the one with the lowest index, which sets its request,
is assigned the grant.

61

4 Hybrid Hardware/Software Schedulers

4.2.3 Earliest Deadline First (EDF)

EDF is a dynamic priority schedule. This means that priorities will change on each clock cycle
for the entire running time, depending on the state of the requests and how close each
deadline is with respect to the current time. Deadlines are decremented for each accelerator,
with the request set to one on every clock cycle. Newly arrived requests are assigned for
priority based on their implicit deadline. Figure 4.3 shows the behavior of the scheduler with
two tasks and how AccT is preempted when Acc2's deadline is closer, so according to the
algorithm it must run first in order to avoid missing its deadline. Once this one finishes, AccT
can resume.

Scheduler Clk [1]2]3]4]5]6]7]8]9]10
EDF Accl Acc2 Accl

Figure 4.3: Earliest deadline first scheduling

Theoretically, EDF can achieve a 100% utilization (U) according to Equation (4.1).

nC,'

7 (4.1)

Uepr =
i—0

where (; is the Worst Case Execution Time (WCET) of a task with period T;, and n represents
the total number of tasks in the system.

Particularly for EDF, two main computations are required. The first one is to decrement
the deadlines of every accelerator to increase their priorities. As this is a dynamic priority
scheduler, priorities are updated every time a new request arrives to update the priority
table.

There are two versions proposed. On the one hand, the resources-optimized one (Resource-
Optimized Earliest Deadline First (ROEDF)) follows the statechart shown in Figure 4.1. There
will always be a two-clock difference when grants are assigned. On the other hand, the
latency-optimized version (Latency-Optimized Earliest Deadline First (LOEDF)) is a slight
modification of the generic statechart as some computations are merged into the same state.
This will reduce the state transitions (leading to fewer clock cycles) but increases resource
consumption. Therefore, a tradeoff between resource utilization and latency is detailed
in Section 4.3.

4.2.4 Least Slack Time (LST)

LST is also a dynamic priority schedule. Contrary to EDF, this algorithm evaluates the slack
time of the accelerator requesting the grant on every clock cycle following Equation (4.2)

Si = d,‘ -Q0; - (4-2)
where s; is the slack time (priority) of the accelerator | with a deadline of d;. The time acg;

sets its request is represented by a;, and ¢; is the remaining execution time for the task. The
accelerator that holds the grant will get a; incremented and ¢; decremented by one on each

62

4.3 Evaluation

clock cycle to keep its slack time until it finishes its transmission or an accelerator with a higher
priority preempts it. For all other accelerators with request set to one, their arrival time will
be incremented by one, resulting in a lower slack time on each clock cycle.

Figure 4.4 shows how LST looks like with two accelerators, considering the changes in their
slack time causing them to preempt each other.

Scheduler Clk [1]2]3]4]5]6]|7]8]9]10
LST Accl Acc2 |Accl|Acc2

Figure 4.4: Least slack time scheduling

This algorithm is the most complex one as it needs to keep track of the remaining processing
time, deadlines, and arrival time of new requests. All these have their own functions, which
are translated into a higher resource consumption compared to the previous ones shown
before.

4.3 Evaluation

The proposed schedulers are, in fact, part of the Manager, but they not only depend on
the total number of accelerators but the different algorithms. These have different conse-
guences, and there are several metrics proposed to understand the behavior of each of
them appropriately. All results shown here are after synthesis for the Xilinx's Zynqg UltraScale+
xczu7ev-ffvc1156-2-e.

The accelerators competing to get a hold of the DMA have two parameters. One is the
transfer time (T), in this case, representing the length of its payload to be streamed in bytes
(one byte per clock cycle is transmitted). The other is the frequency (F), the number of clock
cycles after its last transmission, and the availability of new data to be streamed. These
two definitions are adapted from software to hardware implementation with a streaming
interface between accelerators and the schedulers. Each pair is called a set S; = {T, f}, and
the evaluation methodology followed for the schedulers consisted of a normal distribution for
the generation of N sets for M = {2,4,8,16, 128,256} accelerators. The evaluation was done
until 256, but it is not limited as larger values can be used. The N-sets constitute a dataset
Dy = {(51,01),....(Sn, On)}, where g is its standard deviation. Every algorithm is evaluated
with the same dataset to understand the behavior of each scheduler for the same scenario.
There are two types of exploration spaces (composed of the datasets). On the one hand, a
large one with 200 sets, centered around Sjyge = ({100, 100}, 50). Therefore, there will be
evenly distributed sets between 50 and 150 for transfer time and frequency. This dataset
gives a heterogeneous exploration space to have a general evaluation. On the other hand,
the so-called corner cases are evaluated with four different datasets of ten sets each. They
are centered around S = ({20, 20}, 10), Scez = ({20,180}, 10), Seez = ({180, 20}, 10) and
Sces = ({180,180}, 10). These represent short and long transfer times and frequencies in
extreme conditions, and as ¢ is small, these exploration spaces are homogeneous, and
focused on small areas around the centers.

The simulation time for the large dataset is 100us. The sets are heterogeneous enough, so
it is a mix of long and short slack, and it is enough simulation time for a proper evaluation.
The simulation time for the corner cases is 500us because when either the transfer time of

63

4 Hybrid Hardware/Software Schedulers

frequency is large, there is less slack, so datasets with a large number of accelerators are
preempted more (mainly the dynamic priority ones), so they need more time to complete
their transactions. Hence, to have equal comparisons for all four corner cases, all of them
have the same simulation time. These four ones do not require many datasets as their sets
are homogeneous due to the small standard deviation. All simulations were performed at
100Mhz.

Three different characteristics are evaluated for the proposed schedulers. Scalability shows
how FFs and LUTs scale up to support large number of accelerators. Schedulability explores
how many requests are actually granted. Performance is measured in multiple metrics, pro-
viding each of them with different characteristics of the schedulers.

4.3.1 Scalability

The design of the schedulers is meant to rely only on LUTs and FF. An analysis of how resource
utilization scales up is shown in Table 4.1. Figure 4.5 shows that both LUTs and FFs have
linear behavior, which is desired for larger designs, so the resource consumption does not
explode.

Table 4.2 shows the ratio for resource utilization between the two versions of EDF. It can be
seen that there are 5% less FFs for ROEDF but 40% less LUTs in average. Hence, there is a
tradeoff between resource utilization and latency as ROEDF consumes less, but its response
time and lateness (c.f., Section 4.3.3) are higher than for LOEDF.

4.3.2 Schedulability

The schedulability is studied to understand the different algorithms' capabilities to schedule
tasks (give accelerators the grant). It has a significant impact on the evaluation of the perfor-
mance done below. It is important then to evaluate the different scenarios by scaling up the
design. In order to do so, the characteristics of each accelerator have to have representative
values to provide a challenging scenario.

The total number of accelerators that got the grant at least once are shown in Figure 4.6.
These numbers can be further analyzed by dividing them by how many of those were able to
complete at least one transaction (full bars) and how many did not (striped bars). To further
understand the schedulability, Figure 4.7 shows each algorithm’s average preemptions per

Table 4.1: Schedulers' resource utilization

Non-Preemptive Preemptive Resource-Optimized Latency-Optimized

Accelerators LRU FP FP EDF EDF Lot
LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs
2 209 103 16 9 20 11 156 71 180 75 233 201
4 570 170 34 14 54 17 304 138 565 145 726 399
8 1261 307 94 23 95 27 799 271 1298 285 1593 799
16 2494 578 321 40 421 45 1365 536 2697 561 4246 1582
32 4999 1106 858 76 783 82 3288 1065 6659 1111 8790 3167
64 9971 2172 2030 146 2715 155 5772 2122 13375 2234 18478 6346
128 18826 4312 5931 292 4249 307 16704 4298 25459 4473 40516 12637
256 36273 8521 17023 583 17552 601 38224 8460 52009 8745 92123 25136

64

4.3 Evaluation

10° LRU
Non-Preemptive FP

Preemptive FP
[Resource-Optimized EDF
104 [Latency-Optimized EDF
s LST
102 | I '
2 4 8 16 32 6

4 128 256

LUTs
=
o

w

Accelerators

(a) Schedulers’ LUTs

LRU
Non-Preemptive FP

104 Preemptive FP

[Resource-Optimized EDF

[Latency-Optimized EDF

s LST
103
10
10

2 4 8 16 32 64 128 256

Accelerators

(b) Schedulers' FFs

FFs

N

-

Figure 4.5: Schedulers’ resource utilization

65

4 Hybrid Hardware/Software Schedulers

Table 4.2: Resource-optimized vs. latency-optimized EDF tradeoff

ROEDF/LOEDF

Accelerators _— 777
LUTs FFs
2 0.87 0.95
4 0.54 0.95
8 0.62 0.95
16 0.51 0.96
32 0.49 0.96
64 0.43 0.95
128 0.66 0.96
256 0.73 0.97

accelerator (per completed transactions). There is a clear difference of LST to the other
dynamic priority algorithms, as this one preempts accelerators at least four times more. The
reason is that this algorithm not only considers the time to the deadline but when the request
was set (unlike EDF), which has a significant influence on the slack, which translates to more
priority updates making it preempt the accelerators more often. These have consequences
when many accelerators are in the architecture (128 and 256) that more accelerators get
the grant, and not all of them can complete the transactions in the simulation time set for
the evaluation. However, a longer simulation time allows more accelerators to complete
their transactions. So, it is not a flaw of the scheduler but a restriction on the evaluation
methodology. A simulation time of 100us provides good results to obtain an appropriate
general understanding of the algorithms, as more accelerators complete their transactions.
Extending this time did not modify the results shown here; it only improved the schedulability,
as expected.

The FP schedulers stand out in Figure 4.6 as they cannot give the grant to many accelerators,

LRU NPFP PFP [ROEDF [LOEDF B LST 256
Striped Bars: Accelerators that got the grant once but have not finished a transaction 128
1021 Full Bars: Accelerators that finished at least one transaction /
64
©
Q@
3 32
Q
<
(9]
b 16
i
210! /
o 7 7 8
< 4 7
o Z L
< %, 2 4
7 7 7 7
Z A 7
% Z 74 2
10°
2 4 8 16 32 64 128 256

Accelerators available

Figure 4.6: Accelerators that finished or got the grant

66

4.3 Evaluation

with a small maximum (around eight) compared to the other algorithms, and just one or two
can complete their transactions. This is expected as all accelerators have the same priorities
during execution time, and the ones on the top of the priority list will be scheduled regularly.
It can be seen in Figure 4.6 the differences between the two non-preemptive algorithms.
The counterpart of the limitations of NPFP mentioned before can be seen with the LRU,
with completed transactions for almost all accelerators that get the grant. This algorithm

Preemptive FP .m
14/ ~* Resource-Optimized EDF s :
Latency-Optimized EDF -
- @ - ST
12
- = . N
| |

10 ,
)]]
>
< .
5 8 .
2
o
€
g 6
[

4 n

2

®----------°-*% - [] [] ®------------ o - - Y
-4
0
2 4 8 16 32 64 128 256

Accelerators

Figure 4.7: Preemptions per accelerator (per completed transaction)

o

o

o

o

o

o

o

o

o

o

gnt(0) gnt(1) gnt(2) gnt(3) tlast(0) tlast(1) tlast(2) tlast(3) req(0) req(l) req(2) req(3)

°

01 2 3 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Clock

Figure 4.8: LRU example with four accelerators

67

4 Hybrid Hardware/Software Schedulers

ensures that all accelerators will get a grand at some point, as shown in Figure 4.8 ', with
the compromise of missing some deadlines. The LRU is a dynamic priority scheduler that
ensures each accelerator gets the grant. When an accelerator completes its transaction, the
scheduler increases the priority of the remaining accelerators by one. This process continues
until all the accelerators are eventually placed at the top of the priority list for scheduling.
Even though the priority of all accelerators is increased to reach the top of the list, some
may miss their deadlines. However, it is ensured that all accelerators can complete their
transactions eventually. Nevertheless, as shown below, this has some drawbacks with its
performance.

4.3.3 Performance

The metrics shown below characterized the performance of the different scheduling algo-
rithms.

Average Response Time

The response time (r;) represents how long it takes for an accelerator to get the grant since
the moment it set the reqguest. This can be expressed as shown in Equation (4.3)

ri=gi-0a (4.3)

where g; is the time at which the grant was set and o; is the arrival time of the request.
Figure 4.9 shows what the response time represents in terms of signals.

The average response time (rq,g) for n completed transactions is defined by Equation (4.4).

n
,",
lavg = - (4.4)

i=0

Table 4.3 shows the minimum, average and maximum response time measured for all
proposed algorithms with the eight different variants of accelerators as inputs. Figure 4.10

Request

Response Time

Lateness

Grant

0 1 2 3 4 6 7 8 9 10

5
Clock

Figure 4.9: Response time and lateness metrics

TAll signals are obtained from a Vivado simulation and re-plotted with a custom Python script for homogeneous
formatting with the rest of this dissertation.

68

4.3 Evaluation

shows the average response time. It can be seen that both FP versions are the ones with
the shortest response time, which would lead to thinking this is a good result. However,
the schedulability of these two is the worst for all algorithms, as explained before, due to
the small number of accelerators scheduled. As expected, LRU is the one with the worst
results. This is not an issue as performance is not the main characteristic of this algorithm
but ensures accelerator schedulability. LST is the one that shows the best performance with
the drawback that it takes a bit longer for all accelerators to complete their transactions.
There is a clear difference between both EDF versions, being LOEDF the one with the shorter
response time, approaching the same results as LST, but with the tradeoff of more significant
resource consumption.

LRU
Non-Preemptive FP .l
Preemptive FP -
Resource-Optimized EDF o
Latency-Optimized EDF }
103 ST -
o
Q
E
l_ ,
) -
%]
C
8
$102
o
101! :
&
2 4 8 16 32 64 128 256
Accelerators
Figure 4.10: Schedulers’ average response time
Lateness

Denotes how much later than the deadline the data transmission was completed and is
computed as Equation (4.5). A negative /ateness means the transmission was completed
before its deadline.

Li=fi-d (4.5)

The measured lateness is shown in Table 4.4. Note that positive values (TLAST after implicit
deadline) are due to the restricted simulation times. In a real scenario, accelerators would
meet their deadlines or complete their transactions. The only requirement to measure the
lateness is that accelerators must complete at least one transmission. Similar to the response
time, the lateness (Figure 4.11) shows that accelerators with both FP finish the transactions
before, but at the expense of not scheduling a large number of them. Also, LRU has the
largest lateness. For this metric, both EDF versions outperform LST since the latter one will
preempt more accelerators leading them to finish their transactions in a longer time. LOEDF

69

4 Hybrid Hardware/Software Schedulers

Table 4.3: Schedulers' response time

Non-Preemtpive Preemtpive Resources-Optimized Latency-Optimized
LRU LST
FP FP EDF F
Accelerators

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

2 4.99 45.77 101.78 20 4011 9498 20 1945 74.5 2.8 16.21 63.68 292 7.68 457 1.78 6.88 44.37
4 412 219.02 31692 2.0 9962 22512 216 5434 77014 284 20191 29982 288 65.85 300.87 1.94 60.16 303.82
8 3.58 607.5 754.82 2.0 9855 2299 24 8255 266209 28 577.5 759.2 2.69 2209 729.66 199 219.52 708.05
16 2.82 136262 16376 20 9546 22146 238 7406 26564 268 129933 165147 248 55513 158208 199 571.94 1526.0
32 224 261618 3336.02 20 9434 2278 23 7081 247612 258 246468 3331.88 248 135482 321972 1.99 1326.1 3109.53
64 168 431182 681248 20 9576 22736 223 7488 262971 268 400535 673058 252 305505 65576 1.99 25983 626749
128 15 479567 982338 2.0 9357 23244 223 732 264325 3.08 432091 98414 274 373433 976936 1.95 3306.09 9606.79
256 148 4790.68 982051 2.0 9209 22332 224 7659 27319 323 394811 979194 283 384578 983041 1.71 3808.68 9801.34

Values shown in number of clock cycles. 10ns used as clock period for simulation.

shows better performance compared to ROEDF, as intended. The reason for this is a shorter
latency, which also translates to the smallest lateness for LOEDF among all dynamic priority
schedulers.

The maximum lateness (c.f.,, Figure 4.12) in any given system specification with multiple
accelerators can be used to estimate the length of buffers that might be needed to counteract
this maximum values.

Communication Channel Utilization

This is a measurement of how much time any of the accelerators get a grant and transmits its
data. To be fair with all schedulers, the time for which there are requests is only considered.
It is measured following Equation (4.6).

M
U Z ace; 46)

where acc; stands for the total time accelerator acg; set its request and was given the grant.
tsim Stands for the total simulation time in clock cycles.

The communication channel utilization measured is shown in Figure 4.13. Same as the other
metrics, LRU is the one that performs the worst due to its design to avoid resource starvation,
leading to long response time and lateness, which translates to less channel utilization. Both
FP schedulers show a high communication channel utilization, but one has to keep in mind
the low number of accelerators that are actually able to finish a transaction. However, it is
worth mentioning that as there is no time to update the priority table, this algorithm reacts
fast to give the grant to accelerators. In terms of EDF, the resource-optimized version (ROEDF)
takes longer to give grants and also preempts the current accelerator holding the grant every
time a new request arrives to recalculate the priorities, which translates into lower channel
utilization compared to LOEDF. This directly impacts the channel utilization as accelerators

Table 4.4: Schedulers' lateness

(RU Non-Preemtpive Preemtpive Resources-Optimized Latency-Optimized LsT
FP FP EDF EDF
Accelerators

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

2 -129.11 -65.9 -1.81 -132.74 -72.01 94 -116.17 -60.71 2004 -130.72 -60.01 41.08 -109.27 -71.48 -34.11 -102.85 -59.11 -2511
4 -121.05 11912 253.07 -126.5 1.16 129.63 -109.18 5286 254892 -114.18 111.04 27258 -83.75 94.79 195.04 -54.54 101.77 295.27
8 -124.66 52131 73028 -13539 236 1585 -118.66 7411 3536.53 -110.52 503.08 716.41 -81.3 462.78 646.34 -48.3 467.87 707.31
16 -130.75 126035 165591 -13996 464 15284 -126.16 7015 3361.17 -107.31 121151 157444 -82.71 113139 14835 -51.07 1150.08 1492.51
32 143.06 255377 353798 -147.93 494 15966 -131.65 8214 397465 -12067 2420.03 331593 9356 228135 32025 7554 232648 3176.69
64 -14522 418375 6797.08 -151.81 556 14649 -13995 6478 3567.84 -11538 385592 653814 -93.53 367772 648542 -89.28 3967.88 6231.99
128 -145.06 4596.29 9558.06 -157.15 -7.57 12657 -14212 7727 393442 -11776 412437 9564.02 -8595 359957 940152 -9732 425653 9423.2
256 -152.03 4596.35 9568.82 -16245 -035 14643 -14954 7294 324499 -110.16 3847.78 9571.47 -79.53 3717.64 9540.13 -96.74 407841 9526.57

Values shown in number of clock cycles. 10ns used as clock period for simulation. Positive values mean tlast was set after the implicit deadlines (period+length).

70

4.3 Evaluation

LRU
Non-Preemptive FP
Preemptive FP PTES: SAEETI
40001 - ® - Resource-Optimized EDF g so-- .
Latency-Optimized EDF °
= - LST
_.3000
o
>
<
7)) []
0 [
e
8 2000
©
|
1000
A
0 oot -
2 4 8 16 32 64 128 256

Accelerators

Figure 4.11: Schedulers’ average lateness

can stream their data faster (in terms of when each can restart after being preempted). The
last point is that as more accelerators get the grant with LST (Figure 4.6), the communication
channel utilization is the largest for this algorithm.

10000

LRU ‘ P e a

Non-Preemptive FP

Preemptive FP

® - Resource-Optimized EDF
8000 Latency-Optimized EDF
- - ST
X 6000
© o
2
7))
n
Q
c
9 4000
|
2000 .
A
-
-
0]
2 4 8 16 32 64 128 256

Accelerators

Figure 4.12: Schedulers’ maximum lateness

71

4 Hybrid Hardware/Software Schedulers

100
»- » n = 4 R g
n
S
c 95
Rel
-+
©
N
E
=)
g 90
c
©
c
(@)
c
h=t
]
©
L 85
c
>
1S LRU
g Non-Preemptive FP
@] Preemptive FP
80 o Resource-Optimized EDF
Latency-Optimized EDF
= - LST
2 4 8 16 32 64 128 256

Accelerators

Figure 4.13: Communication channel utilization

4.3.4 Corner Cases

As previously mentioned, four cases with different transfer times and frequencies were
evaluated to understand the behavior of the schedulers in these areas of the exploration
space. The metrics used previously are also used here to understand their behavior.

Schedulability

In these four cases, the FP algorithms only schedules a low number of accelerators as before.
However, all accelerators for the dynamic priority schedulers finished a transaction at least
once. The average preemptions per accelerator are impacted by the different transfer times
and frequencies, as shown in Figure 4.14. In all cases, LST continues to be the algorithm
that preempts most of the accelerators, and the preemptions increase significantly with
more significant transfer times, regardless of their frequency. This is clear because each
accelerator requires to have the grant for more time to finish a transaction which causes
more preemptions. Moreover, these four datasets have a small . Therefore, the possibility
for laxity ties (two or more accelerators with the same priority constantly preempting each) is
high.

Performance

The transfer time of the accelerators affects the response time, increasing it with higher
values, as shown in Figure 4.15. It is possible to see that the response time increases by one
order of magnitude in the cases with the largest transfer time. Previously, LOEDF and LST

72

4.3 Evaluation

2.00 Preemptive FP -m - -
N - Resource-Optimized EDF -~ -« g . . oocoooo---m-" -
Latency-Optimized EDF
1.75 - LST
1.50 =
:%’1.25
S
£ 1.00
£ - © . - - - .
P
2 0.75
&
-
0.50
0.25
0.00
> P 8 16 32 64 128 256
Accelerators
(a) Transfer Time=20 - Frequency=20
2.00 Preemptive FP -
@ - Resource-Optimized EDF e -
Latency-Optimized EDF (oo coome
1.75 - LST
1.50
-
S1.25
=
5
2 1.00
=N -
% ’ - - - -
Lo.75 -
-
0.50
0.25 - .
-
0.00
> P 8 16 32 64 128 256
Accelerators
(b) Transfer Time=20 - Frequency=170
30 Preemptive FP -
- Resource-Optimized EDF
Latency-Optimized EDF)
-<E- LST -
25
=20 -
S
=
5 -
=15
-
g - -
L --
%10
5
.- - e . s > - a
o
2 4 8 16 32 64 128 256
Accelerators
(c) Transfer Time=170 - Frequency=20
Preemptive FP -
30 Resource-Optimized EDF
Latency-Optimized EDF -
- LST -
25
=20 -
S
=
S =
215 -
-
qE) -
4
-
%10
5
o . s S H $::: - . .
2 4 8 16 32 64 128 256

Accelerators

(d) Transfer Time=170 - Frequency=170

Figure 4.14: Schedulers' corner cases: Average preemption per algorithm

73

4 Hybrid Hardware/Software Schedulers

had similar performance. Here, for short transfer times, it is actually LOEDF with a shorter
response time (as opposed to LST in Figure 4.10), same as for long transfer times but up to a
certain number of accelerators. When more than 64 are present, LST has a lower response
time, making it a better candidate for this situation. The lateness is affected by the shortest
period, as it takes longer for the accelerators to complete their transactions, either when
their frequency is short or long (Figure 4.16a and Figure 4.16Db). Figure 4.16¢ and Figure 4.16d
depict the worst-case scenario when the transfer time is the longest, meaning that it takes
significantly more time (one order of magnitude) to finish. Note how LST diverges from the
other accelerators after 128 accelerators due to the significant increase of preemptions at
this point. As for LRU, it is the algorithm with the worst performance for these corner cases
because its goal is to ensure that all accelerators can finish their transactions at least once.

The longer the transfer time, the higher the channel utilization (Figure 4.17). This is particularly
clear for LRU, with an increase of 20% (Figure 4.17a and Figure 4.17b vs. Figure 4.17c
and Figure 4.17). The frequency decreases mainly the channel utilization with high values,
and when there are few accelerators because there are extended periods without any
requests, reducing the channel utilization. However, when many accelerators are involved,
there will almost always be at least one requesting the grant, even though the channel
utilization never reaches 100%.

4.3.5 Combined Schedulers

The possibility of improving the schedulability can be achieved by smartly combining different
schedulers. For this, a baseline with a dataset of 256 accelerators was used to evaluate how
many get the grant with LOEDF and LST as these two showed to be the most promising ones,
and the question is whether the results shown previously can be improved. Two different
cases are studied. The first consists of splitting the accelerators into smaller datasets, in this
case, dividing one large scheduler with 256 accelerators into two of the same algorithm but
with 128 accelerators each. The second one also splits into a smaller number of accelerators
per scheduler, but with two different algorithms. All these require a third scheduler also to
manage the new smaller ones. LRU is chosen for this study as it ensures that all requests
get a grant. The results are shown in Figure 4.18. Splitting them does not increase the
number of accelerators that got the grant for LOEDF but increases 1.16x for LST. Combining
schedulers resulted better for LOEDF (1.29x) as it was done with LST, which showed better
schedulability. However, in the LST case, combining it with LOEDF was, in fact, detrimental.
Note that every combination of schedulers is possible. However, it does not guarantee
improved schedulability as the decision on which schedulers to pick for the best result should
be done following a similar design exploration as shown previously for the evaluation of each
algorithm. The resource consumption of these combinations is shown in Table 4.5.

74

4.3 Evaluation

Response Time

Response Time

Response Time

Response Time

103

102

10*

103

102

10t

104

=
o
w

"
o}
N

10*

104

R
o
w

"
(o}
N

10*

LRU
Non-Preemptive FP
Preemptive FP
Resource-Optimized EDF
Latency-Optimized EDF
LST

.
s -
-
a4 8 16 32 64 128 256
Accelerators
(a) Transfer Time=20 - Frequency=20
LRU s
Non-Preemptive FP
Preemptive FP s
- Resource-Optimized EDF --
Latency-Optimized EDF
= LST “ -
- -
- -
-
.
-
-
=
4 8 16 32 64 128 256
Accelerators
(b) Transfer Time=20 - Frequency=170
LRU *
Non-Preemptive FP -
Preemptive FP
®- Resource-Optimized EDF “ -
Latency-Optimized EDF p -=m
= LST -
.
-
.
-
.
-
-
a4 8 16 32 64 128 256
Accelerators
(c) Transfer Time=170 - Frequency=20
LRU -
Non-Preemptive FP -
Preemptive FP -
@ - Resource-Optimized EDF -
Latency-Optimized EDF - -
-m- LST -
.
-
.
-
.
-
-
a4 8 16 32 64 128 256

Accelerators

(d) Transfer Time=170 - Frequency=170

Figure 4.15: Schedulers’ corner cases: Response time

75

4 Hybrid Hardware/Software Schedulers

76

LRU

6000 Non-Preemptive FP
Preemptive FP .
) Resource-Optimized EDF
5000 Latency-Optimized EDF
= LST -
__4000
=
5
=
2 3000 .
= .
2 L
s
2000
-
g
1000
2
BB
o R — R -
> 2 8 16 32 64 128 256
Accelerators
(a) Transfer Time=20 - Frequency=20
6000 LRU
Non-Preemptive FP
Preemptive FP -
- Resource-Optimized EDF
5000 Latency-Optimized EDF
= LST -
4000
=)
>
=
% 3000
8 .
s .
= o
<
— 2000 :
1000 -
= 2
o b L L L PISTTTEIesy -
> a 8 16 32 64 128 256
Accelerators
(b) Transfer Time=20 - Frequency=170
LRU -
35000 Non-Preemptive FP S
Preemptive FP
‘- Resource-Optimized EDF
30000 Latency-Optimized EDF
‘m- LST
25000 .
=)
>
=< 20000
a §
g -
2 15000
S
10000 -’
5000 -
..... a
o e m---omtTT T —
> a 8 16 32 64 128 256
Accelerators
(c) Transfer Time=170 - Frequency=20
LRU -
35000 Non-Preemptive FP :
Preemptive FP
- Resource-Optimized EDF
30000 » Latency-Optimized EDF
-m- LST
25000
8
=)
>
< 20000
a .
4 .
£ 15000
5
10000 -
5000 .-
........ -
o P — i —
> a 8 16 32 64 128 256

Accelerators

(d) Transfer Time=170 - Frequency=170

Figure 4.16: Schedulers’ corner cases: Lateness

4.3 Evaluation

Communication Channel Utilization [%]

Communication Channel Utilization [%)]

Communication Channel Utilization [%)

Communication Channel Utilization [%)

o5l meeei - - .- - W------eeeeean -
90
85
- - - - e d
.
80
LRU
Non-Preemptive FP
Preemptive FP
- Resource-Optimized EDF
75 Latency-Optimized EDF
- LST
8 16 32 64 128 256
Accelerators
(a) Transfer Time=20 - Frequency=20
o m .- e m
90
- - - - -
80 g
=
o
70
60
50
40
LRU
Non-Preemptive FP
30 Preemptive FP
- Resource-Optimized EDF
Latency-Optimized EDF
20 --m- LST
8 16 32 64 128 256
Accelerators
(b) Transfer Time=20 - Frequency=170
e . - - o -
99.0
98.5
98.0
97.5
. - - . . .
97.0
LRU
Non-Preemptive FP
Preemptive FP
96.5 - Resource-Optimized EDF
Latency-Optimized EDF
-m- LST
8 16 32 64 128 256
Accelerators
(c) Transfer Time=170 - Frequency=20
100.0
[-— _— - _— -
97.5 - - - - - -
95.0
92.5
90.0
87.5
85.0 LRU
Non-Preemptive FP
Preemptive FP
82.5 - Resource-Optimized EDF
Latency-Optimized EDF
80.0 - - LST
8 16 32 64 128 256

Accelerators

(d) Transfer Time=170 - Frequency=170

Figure 4.17: Schedulers' corner cases: Channel utilization

77

4 Hybrid Hardware/Software Schedulers

LOEDF256
200 (LOEDF128+LOEDF128)+LRU2 1.16x
(LOEDF128+LST128)+LRU2
175 B 1ST256
s (LST128+LST128)+LRU2
150 1_29)(} wem (LST128+LOEDF128)+LRU2
125
e
©
5100
75
50
25
0 LOEDF
Scheduler

Figure 4.18: Combined schedulers

4.4 Schedulers Comparison

An overview of the proposed schedulers described above is shown in Table 4.6. It describes
the features to consider when choosing the best scheduler for a given application, also
considering some requirements.

For example, in a situation with limited resources, one could look at the table to check
which scheduler offers the minimum usage of LUTs and FFs. However, the table also shows
which are the algorithms that present a high number of accelerators that completed their
transactions (which are different from the ones that consume fewer resources). So, in this
case, NPFP and PFP schedulers are the ones that consume fewer resources, but they do not
ensure that all accelerators will finish their transactions, which implies a trade-off that will
depend on the application. If there are not many accelerators in the given application, then
the FP schedulers will meet the requirements.

Another example could be the case where the application presents between 32 and 64
accelerators, and they must finish their transactions. Table 4.6 shows that LOEDF and LST

Table 4.5: Combined schedulers’ resource utilization
Schedulers LUTs FFs

LOEDF256 52009 8745
(LOEDF128+LOEDF128)+LRUZ 64142 17109
(LOEDF128+LST128)+LRU2 78175 25277
LST256 92123 25136
(LST128+LST128)+LRU2 86673 33515
(LST128+LOEDF128)+LRU2 75578 25315

78

4.5 Summary

Table 4.6: Schedulers comparison

Accelerators Minimum Minimum Most Accelerators With LeaSF Mimimum Minimum Maximum Com.mun.\'cat\'om
LUTs FFs completed transactions Preemptions Response Time Lateness Channel Utilization
2 NPFP NPFP ROEDF PFP LST NPFP LOEDF
4 NPFP NPFP LST PFP PFP NPFP LOEDF
8 NPFP NPFP LRU, ROEDF, LOEDF, LST PFP PFP NPFP LST
16 NPFP NPFP LRU, ROEDF, LOEDF, LST PFP PFP NPFP LST
32 PFP NPFP LRU, ROEDF, LOEDF, LST PFP PFP NPFP LST
64 NPFP NPFP LOEDF, LST LOEDF PFP NPFP LST
128 PFP NPFP LOEDF LOEDF PFP NPFP LST
256 NPFP NPFP LOEDF LOEDF PFP NPFP LST

meet this requirement. However, the table also shows that, on the one hand, LOEDF preempts
the accelerators the least, which could be better for the given application. On the other hand,
LST has a higher communication channel utilization, which might be a requirement to consider
when selecting the most suitable scheduler.

4.5 Summary

The base architecture is meant to deal with software and hardware components, meaning that
data is exchanged between two different types of systems. Both systems communicate over
a shared resource, namely DMA. As multiple components can be on each of them, the access
to the DMA, in both directions, must be arbitrated. Therefore, a hybrid software/hardware
scheduler is needed. This chapter presents six scheduling algorithms to be part of the
Manager to manage the transactions between PS and PL. It is a hybrid scheduler to provide
fair access to the shared resource from a software component to its hardware counterpart
and vice-versa. Several algorithms are proposed in this chapter to be versatile and have
multiple options for different applications. Same as for the other components of the base
architecture, they are vendor-independent as they are based on the VHDL-93 standard. The
implementation methodology for all algorithms focuses on scalability and adaptability, easing
their code generation tailored for different use cases.

The evaluation focuses on the proposed scheduling algorithms, studying their scalability,
schedulability, and performance. These metrics help understand the behavior for different
scenarios. A comparison of all schedulers derived from this evaluation helps to decide
which algorithm will be the most fitted for a given application. The evaluation focuses on
the hardware components as there are more demanding requirements, mainly in terms of
resources (i.e., LUTs, FFs). The scalability and schedulability are mainly independent of where
it is implemented (software or hardware).

79

5 Generation of Hardware Interfaces
Compatible with Robotics based on
Specifications

Increasingly complex robotic platforms incorporate heterogeneous sensors and actuators.
They are usually coupled with embedded computers but rely on software solutions not entirely
suited for processing a large amount of data concurrently and fast enough to keep real-time
constraints. FPGAs are ideal candidates to enhance those systems’ computing capabilities
while still being programmable. They are used in a wide variety of applications due to their
intrinsic parallelism capabilities for algorithms, their flexibility, and energy efficiency. However,
they impose some challenges to be combined with software solutions. It is cumbersome
to manually incorporate them into new or existing systems because providing accelerators
with a specific integration capability limits their applicability. The goal is to seamlessly replace
software components with FPGA-based ones while retaining the same communication inter-
face. Therefore, designing scalable and reusable interfaces between these two is desired
to achieve good synergy between FPGAs and software systems. This chapter presents an
approach to generating hardware interfaces for accelerators compatible with robotics based
on message specifications. A model-based toolchain automatically generates the necessary
hardware components (VHDL modules) from existing message specifications to exchange
data with the accelerators. Instead of writing several hundred lines of VHDL, a dozen input
specification lines are sufficient with the approach presented in this work. The results are
validated by evaluating all message specifications included in the latest ROS versions. The
3102 messages from ROS1T and 1346 messages from ROS2 evaluated show the robustness
of the approach'’s capabilities to support arbitrarily large ROS messages types, multiple data
types, and nested messages. Moreover, the approach facilitates the extension from ROS1 to
provide support for ROS2 easily. Finally, two use cases are shown to prove the approach’s
feasibility in real applications. The first one incorporates a hardware accelerator for image
processing obtained by HLS into an existing software architecture. The second one consists
of a fully FPGA-based mobile platform with ROS features incorporated.

5.1 Challenges and Goals

Despite all the advantages of FPGAs, the robotics community has not fully included them so
far as part of their systems for several reasons. First, designing FPGA-based solutions requires
hardware knowledge and longer development times than software solutions. Second, porting

81

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

a robotics application (or parts of it) from software to an accelerator requires adequate
interfaces between software and FPGAs. Consequently, there is a need to investigate new
approaches to take advantage of the concurrent processing capabilities of FPGAs and to easily
incorporate them into heterogeneous distributed systems to enhance their computational
power. These new approaches would ease their utilization by other fields, such as robotics,
and improve their processing capabilities. However, these impose the following challenges:

+ Challenge 5.1: Interface Compliance: Hardware accelerators need to comply with
available interface specifications from middlewares and frameworks such as ROS, so
they can communicate with other components, either in software or other accelerators.

+ Challenge 5.2: Adaptivity: Provide flexibility to be extensible for new features, hard-
ware components (e.g., sensors and actuators), and middlewares.

+ Challenge 5.3: Complex Architectures: Manage multiple accelerators and their
communication with other components from the distributed system.

A holistic approach requires considering all three of them. Challenge 5.1: Interface Compliance
and Challenge 5.1: Adaptivity are the aims of this chapter, and Challenge 5.1: Complex
Architectures is addressed in Chapter 6.

Needless to say, a workflow to integrate these three challenges must be available to include
FPGAs in robotic applications without increasing the complexity of the traditional robotics
workflow design. Therefore, the goals shown in this chapter are a flexible model-based work-
flow to generate hardware interfaces (message-dependent components) for accelerators
based on robotics message specifications with:

* an open-source toolchain providing code and configurations to create hardware com-
ponents automatically.

+ seamless integration of the autogenerated parts into a hardware architecture capable
of handling and interfacing multiple accelerators.

The extension of the toolchain to generate and automatically deploy hardware architectures
is further detailed in Chapter 6, as mentioned before.

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

As illustrated in Chapter 3, the message-dependent hardware components have to be created
since accelerators have to be aware of the semantics of the data structure they process. For
ROS components, this is done using software client libraries, which provide serialization and
deserialization functions to translate the received data into the concepts of the respective
programming language the component is written in. For example, the gencpp tool! creates
the header files containing the data structures and methods required to process messages
in C++.

In this work, the goal is to construct a similar tool to create the required message-dependent
components. These are VHDL files to convert ROS messages from and to an AXIS frame.
An example is shown in Figure 5.1. It can be seen the equivalence between the message
specification (Figure 5.1a) and the resulting hardware entity (Figure 5.1b) in VHDL. The

Thttp://wiki.ros.org/gencpp

82

http://wiki.ros.org/gencpp

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

resulting AXIS frame is shown in Figure 5.1¢, where each of the variables are split in bytes
(TDATA) and streamed in the order they are defined in the message specification. However,
due to the much lower level of abstraction VHDL provides compared to languages such as
C++ and Python, this process is much more complicated, mainly because data type sizes are
relevant, and there are no built-in language mechanisms to support custom or composite
data types. Thus, it is beneficial to describe the properties of both the ROS message formats
and the resulting AXIS explicitly using models rather than encoding them implicitly in simple
scripts.

The use of models also allows the use of both an explicit and declarative formulation of
the required analysis of the ROS message data structures. This, in turn, enables explicit
and declarative transformations of the ROS data structures into the desired target format.
Additionally, both the message format and the resulting VHDL code are not fixed and can
be adapted to newer requirements. For example, the introduction of ROS2 has already
introduced new features into the message definition. Additionally, the backends might change.
Not only does the ROS serialization differ between ROS1 and ROS2 (in which furthermore
different middlewares and thus serializations can be used), but also VHDL might require
different revisions when using other synthesizers or hardware from different vendors.

Therefore, a flexible and extensible model-driven toolchain to generate hardware interfaces
for ROS components is proposed. All the details and design decisions are shown below.

5.2.1 A Model-Driven Toolchain

MDE [28] describes the technique to use a staged model transformation process. Each
additional information added to the final model is used to generate the desired code artifacts,
which in this case is a set of VHDL components. The remainder of this section explains the
proposed process and highlights the benefits of MDE and model-based code generation.

Figure 5.2 gives an overview of the code generation workflow, centering around the model-
driven process implemented in the tool called FPGA Interfaces for Robotics Middlewares
(FIRM).

1 geometry_msgs/Quaternion 1 entity Quaternion is
2 float64 x 2 Port (quaternion_x : out std_logic_vector (63 downto 0);
3 float6édy 3 quaternion_y : out std_logic_vector (63 downto 0);
4 float64 z 4 quaternion_z : out std_logic_vector (63 downto 0);
5 float64 w 5 quaternion_w : out std_logic_vector (63 downto 0));
(a) Simplified ROS message (b) Equivalent Hardware Entity

TVALID

TLAST

TDATA

[quaternion _x [quaternion_y | quaternion z | quaternion_w

(€) Resulting AXIS Frame

Figure 5.1: ROS message and hardware equivalence

83

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

Using a configuration file and a set of ROS message specifications, a model-driven code
generation tool constructs the VHDL message-dependent components described in the
previous chapter. Within the tool, a parser, a sequence of model transformations, a model-
to-text generator, and finally, a template engine are used.

The primary input is a single configuration file. An example of such a file is shown in Listing 5.1.
Besides some configuration options for the hardware platform (Lines 1 to 5), this configuration
contains a list of the ROS messages that are published and subscribed to and the names of all
interfaces for publishers and subscribers (accelerators) (Lines 6 to 12). This configuration is
parsed into a configuration model, which is used to generate both the accelerator-related

configuration
(cf. Listing 4.1)

|
|
|
|
|
- - ROS 1 ROS 2 |new
toolchain toolchain } [rmiddleware

=\

code - - y

. interm. interm.
generation model model
tool converter converter

:toolchain
'
¥ X \
ROS 1 ROS 2 Y|
[msg parser] [msg parser] :
¥ v
AL ROS 1 ROS2 ||,
model- msg model] msg model] |
driven T T —— :
I
I
I
I
I

i r
/ P Integration test
intermediate extension
message model message test
4 generator
accelerator-related message-dependent T
template config template config T eslt
generator generator ; Gl
\
|conﬁg model” |config model” |config model”
(model—to—text) (model—to—text) (model—to—text)
Hardware
Description template template template
configurati configuratio configuratio
Template (n |gl{1r ion [n Igl." jon lon |gur‘| n
(HDT)
(template engine) (template engine) (template engine)

accelerator accelerator- message- ROS test nodes
(VHDL/HLS)|:| related dependent f

; | 1P (VHDL) IP (VHDL) :

. accelerated

* application : hardware architecture (cf. Fig. 3.1)] validation
L SR 3 architecture

Legend

tool / :outputf
\component, D 3

Figure 5.2: Workflow to generate hardware architectures

configurable
internal specification

generated code

|input provided by| 7 ficati
specification

middleware / user

84

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

and the message-dependent components of the hardware architecture. Besides the actual
accelerator, this is the only artifact that has to be provided for every use case.

While parts of the process depend on whether ROS or ROS2 is used, this is not resembled
in the configuration file since it can be deduced from the context in which the tool is run,
which adds portability. The generated components require information about the structure
of the ROS messages, which serve as interfaces to the accelerator. Therefore, a dedicated
ROS message parser is used to retrieve the message specifications from ROS and obtain ROS
message models (see the meta-model in Figure 5.3a). Note that Figure 5.2 shows the possibility
to extend FIRM with other middlewares besides ROS and ROS2 following the same approach
described here.

Analysis has to be performed in preparation for the interface generation (i.e., to compute
the relative positions of its elements) required in the message-dependent IP cores, using
these models as well as the configuration model. Because this analysis does not have to
be aware of all details contained in the ROS message format and should ideally be reusable
for different message specifications, the ROS message model is then transformed into an
intermediate message model, containing all information to generate the message-dependent
components (a meta-model is shown in Figure 5.3b). The code for the accelerator-related
components can be generated using only this intermediate model and the configuration,
decoupling the code generation from the message specification.

A logic-less (i.e., containing no complex template expansion logic) template engine is used to
separate the resulting logical structure of the code from the concrete syntax. The template
engine is configured by files produced by generator components and model-to-text trans-
formations for the accelerator-related and message-dependent parts. Additionally, the
template engines require templates for the desired artifacts (i.e., VHDL files and scripts for the
FPGA-related toolchain). Note that while the toolchain generates the template configurations,
the templates must be defined manually once. Still, one set of templates can be used to
generate multiple architectures using any kind and combination of messages.

The major conceptual and technical design decisions of the workflow and their relation to
the challenges presented in Section 5.1 are described next.

1 project:

2 name: Sobel Filter

3 platform:

4 board: zcu104

5 FPGA: xczu7ev-ffvc1156-2-e

6 messages:

7 - type: ROS # supported middleware
8 name: sensor_msgs/Image # message specification
9 subscribers:

10 - AXIS2Image # names for interfaces
1M publishers: # to midleware used by
12 - Image2AXIS # accelerators

Listing 5.1: Configuration file for an image processing use case

85

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

(a) ROS message meta-model (b) Intermediate message meta-model
|- ------------------- » VhdiModel
Type RosFieldType RosModel diMode!
— o [TTTTTTTTTTTTTTTTTT
Name Bits
% OtherMsg
— .
BuiltinType RosMsg
Size " Package Message DataType
T T Name
—l Field Size "
BoundedBuiltinType RosFieldDescription
Name
MaxLength Nam‘er ‘r Type
1
ConstantDescription .
P FieldDescription | DataTypeField
Value K
,—| FieldDescriptionWithDefault
TypeUse MessageStreamField | |DataTypeStreamFieId
\Wl Default
I I (c) Template configuration
StandardTypeUse | FixedLengthArrayUse | VariableLengthArrayUse |
x meta-model (excerpt)
Length 1
B jedLengthArrayUse L 2
MaxLength | TemplateConfigModel
(Abstract) Type PR ———— 3 > ROS 1 elements ; :
- Composition relation | o¢erence relation subtype relation) mtermedlatz | template model
Terminal Symbol (contained child) (non-contained) ROS 2 extension message mode i

with multiplicity intrinsic / computed elements elements

Figure 5.3: Meta-models in the FIRM tool.

5.2.2 Characteristics of the Model-Driven Toolchain

The toolchain is modeled using RAGs [33] and implemented using the RAG system JastAdd [36].
Grammars specify a language using tokens (also known as terminal symbols) and non-terminal
types with production rules defining the types and order of their contained elements. A
sequence of tokens is an element of the grammar if a derivation tree can be found that
constructs it using the production rules; this tree is also known as the AST. Attribute grammars
are a suitable modeling approach since they provide integrated declarative static analysis by
adding semantic-defining attributes to non-terminal nodes in the AST, which are formally
specified using equations [116]. In the JastAdd system, these equations are defined in a Java-
based DSL and thus offer similar features as Java methods. Furthermore, attribute grammars
and RAGs were developed specifically for the construction of compilers [117, 118, 119], which
the approach presented here classifies for as well because there is a transformation from
a source language (a configuration file and a message specification) into a target language
(VHDL). The general idea for using attributes in FIRM is to generate tailored code for specific
messages. In order to do this, supporting attributes are used to compute, among others,
names, types, sizes, and positions of data fields in the AXIS frame. This is a non-trivial task
because of message nesting, unconstrained array types, and built-in data types that require
further conversions. Furthermore, the model transformation and code generation steps are
also performed using higher-order attributes [120], computing entire derived models rather
than simple properties.

The relational RAG extension [121]is employed to be able to handle (graph-shaped rather than
tree-shaped) conceptual models such as the configuration and message models described

86

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

previously more conveniently. Relational RAG adds a secondary graph structure to the AST,
thus allowing more concise attribute specifications when dealing with nested message types
and field types.

Using RAGs, this approach addresses Challenge 5.1: Adaptivity and Challenge 5.1: Complex
Architectures. It follows a well-structured (model-based), formal (grammar- and attribute-
based), and concise definition (using attribute equations) of all aspects of the toolchain
including configuration, message analysis, and code generation. Next, a closer look at the
employed models and attributes to further illustrate the workings and benefits of the chosen
approach is presented.

5.2.3 The Models

Figure 5.3 shows a meta-model representation of the employed models. While a grammar-
based technique is used, the models are shown in a graphical UML notation for clarity,
where grammar production rules are shown using composition edges. Since the grammar
specification format of JastAdd uses production rule inheritance, this feature is also used
here and is interpreted as usual, i.e., a subclass inherits the terminal symbols and contained
children of its supertype. Relations originating from the relational RAG extension are also
shown.

The structure of the ROS message model shown in Figure 5.3a is obtained from the ROS
system using the respective version, depending on the context in which the tool is run.
The model contains (below a top-level RosModel node) one message (RosMsg), which itself
contains fields, which might be constants or regular fields and use a type. This TypeUse
specifies whether the field is an array and contains a reference to a type, which itself might
be a BuiltInType or a RosMsg - the latter describes message nesting. An instance of the
ROS message model for the sensor_msgs/image message is shown in Figure 5.4.

In fact, there are two meta-models, one for each ROS version (cf. Section 5.3.2) — the ROS2
metamodel extends the ROST metamodel with additional types. The aspect-oriented specifi-
cation of attribute grammars [36] is used to extend the grammar. Additional elements are
simply added using a ROS2 grammar module; additional attributes and attribute equations
are added using a grammar aspect.

While the ROS2 communication system got a complete overhaul (internally, its messages are
defined in the Interface Definition Language [122]), the (concrete) syntax is mostly backward
compatible so that a common parser can be used. Likewise, the model (or abstract syntax) for

| :FieldDesc [N :Msg

s
Name = header Name = Header

“FieldDesc Package = std_msgs i
e :FieldDesc
Name = height = :BuiltinType

Name = frame_id)
:FieldDesc Name = uint32
Name = widtl Size=4
:FieldDesc =
Name = encoding :BuiltinType
:Msg = Name = string
Name = image e :FieldDesc Size=1
Package = sensor_msgs Name =is_bigendian —
:FieldDesc ’:\FLINNW_%
Y = »(Name = uint
me = ur
:FieldDesc

Name = data

:FieldDesc

:Msg :FieldDesc
Name = Time

Package = builtin_interfaces

:BuiltinType
Name = int32
Size=4

:FieldDesc
Name = nanosec

Figure 5.4: ROS message model for sensor_msgs/Image

87

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

ROS1 just needs minor extension to also support the features of ROS2 as shown in Figure 5.3a.
The three changes (default values, bounded strings, and arrays) are highlighted. The complete
support for both versions of ROS addresses Challenge 5.1: Interface Compliance.

Model-to-model transformations are used to obtain the intermediate message model, a generic
representation of the message interface. This model is designed for efficient HDL code
generation: irrelevant and redundant information contained in the ROS models are removed,
and the concepts of this model are aligned with the requirements of VHDL and the AXIS
format. Specifically, it contains - below a root element Vhd1Model one Message, which itself
contains a list of fields, which may contain atomic data types or (variable-length) streams of
messages or data types. All other structural features are mapped to these features; fixed-
length arrays, for example, are simply unrolled to a sequence of fields. Thus, this model
does not depend on details of the ROS message format, creating an extension point for other
message specifications, as proposed in [123]. This contributes to the solution for Challenge
5.1: Adaptivity. An instance of this intermediate model for the sensor_msgs/image message
is shown in Figure 5.5.

The direct purpose of the intermediate message model is not to directly generate HDL code
from but rather to provide input to a template engine that performs the generation. The
decision to rely on a template engine also has several advantages over the direct assembly
of the resulting code. Templates allow a clean separation of syntactic and semantic issues,
which is especially true since, as mentioned previously, the employed engine mustache [124]
is logic-less (templates do not contain computations). Thus, all computations are done before
or during the construction of the template configuration files within FIRM, using its declarative
static analysis capabilities. This results in not only very concise and thus easily maintainable
templates but also maintainable and reviewable template configurations. Another advantage
is that templates can easily be exchanged for different hardware platforms, addressing
Challenge 5.1: Adaptivity. Mustache is used as the template engine since it is a mature tool
fitting the requirements [125].

— :DataTypeField

Name = total_length
- :DataTypeField :DataType
Name = header_stamp_sec [——1»[Name = t_int32
- Bytes =3
: H :DataTypeField
L;fgo_L;dl Name = header_stamp_nanosec
ID=0 - :DataTypeField -DataT
= - | :Datalype
Name = header_frame_id Ly Name = t_uin32
- :DataTypeField Bytes =3
Name = height
:VhdIM =
@_ :DataTypeField
Name = width :DataType
] :DataTypeField —»| Name = t_uints
Name = encoding - Bytes =0
I :DataTypeField
Name = is_bigendian —
- :DataTypeField
Name = step
L :DataTypeField
Name = data —

Figure 5.5: Intermediate message model for sensor_msgs/Image

88

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

So far, the structure of the models has been presented. Next, itis demonstrated how attributes
are used to perform the model transformation and the analysis required for it.

5.2.4 Attributes

The computation of the attributes bitwidth and Startindex (as shown in Figure 3.3) will serve
as examples for the analysis. Listing 5.2 shows the attribute bitwidth, computing the bitwidth
of the individual fields in a message, required during code generation. For example, Line 5
shows the equation to obtain the number of bits for a built-in data-type. In this case, getSize
returns the number of bytes (i.e., 8, 16, 32, 64) and that is multiplied by eight to obtain the
bitwidth (total number of bits). It is a synthesized attribute [116], using information from the
subtree of the nonterminal it is defined for. Since the nonterminal Field is abstract, there are
defining equations for all three non-abstract subtypes rather than for the abstract supertype
itself.

A more complex attribute mentioned in Chapter 3 is Startindex shown in Listing 5.3. It specifies
the position of the first byte of each variable in the AXIS frame. While computing the attribute
value for simple messages can easily be done by summing up the preceding variables' data
type sizes, it gets more complicated in the presence of streams of sub-messages. For sub-
AXIS, the initial field (containing the size) of the stream is copied from the parent stream.
Their index starts again at @ for the following fields in the sub-stream. This is computed by an
inherited attribute obtaining information from its context, i.e., its parents in the abstract syntax
tree [116]. In this case, the required context is the message a field is contained in and its
position within the message. Thus, the attribute is declared for the nonterminal Field, butis
defined for a Field which is the child of a Message at the position pos. The attribute equation
uses other attributes, such as the previously presented bitwidth.

5.2.5 Attribute-Controlled Model Transformation

The attributes shown so far can be used to compute semantic properties of the message
required in the generated VHDL code. In addition to this, attributes can also be used to
perform the model transformation itself using higher-order attributes [120] that compute
entire (sub-)trees. In the JastAdd tool, these attributes are also called Non-Terminal Attributes
(NTAs). Figure 5.6 shows the sequence of two NTAs, computing the intermediate model from
the initial message model and a template configuration model from the intermediate model.
These two attributes constructVhdIModel and constructlpToAxisFrame construct a subtree

// declaration of attribute bitwidth returning an int

1
2 syn int Field.bitwidth();

3

4 // attribute equations

5 eq DataTypeField.bitwidth () = getType().getSize() * 8;
6 eq DataTypeStreamfField. bitwidth () = // ...

7 eq MessageStreamField. bitwidth () = //

Listing 5.2: Declaration and equations for the synthesized attribute bitwidth for
the nonterminal Field

89

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

1 // startindex computes an 'int' for each 'Field’
2 inh int Field.startindex();

3

4 // defining equation on the context (a 'Field’ that
5 // is a child of a '"Message’ at position ’'pos’)
6 eq Message.getField(int pos).startindex () {

7 if (pos == 0) {

8 if (isSubmessage()) // « another attribute

9 // for the first field in a submessage,

10 // use the startindex of the parent

11 return containingField () .startindex();

12 else

13 // for the very first field start with O
14 return 0;

15 } else if (pos == 1 && isSubmessage()) {

16 // for the second field in a submessage,

17 // reset the index to O

18 return 0;

19 } else {

20 // otherwise, the startindex is the one of the
21 // preceding field plus its size (in bytes)
22 return getField (pos—1).startindex ()

23 + getField (pos—1).bitwidth () / 8;

24 }

25 }

Listing 5.3: Declaration and definition of the inherited attribute start/ndex

using the information and available attributes from the non-terminal they are defined on.
Finally, a (synthesized) attribute print is used to obtain a string representation of the template
configuration, which the template engine can use. Listing 5.4 shows (parts of) the result of
this code generation for the image message (Figure 3.3), including values computed using
the presented attributes.

5.2.6 Template-Based Code Generation

The configuration shown in Listing 5.4 (a Yet Another Markup Language (YAML) file) configures
the mustache template engine, which finally expands a set of templates called for this work
Hardware Description Template (HDT). The HDTs are modified VHDL modules, adapted for
template expansion following the conventions dictated by the chosen template engine
(cf. Listing 5.5 and Listing 5.6).

The combination of RAG-based model analysis techniques with a template-based code
generation helps to create efficient, specialized code that remains highly portable.

90

5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool

ROS msg model

intermediate model converter

syn nta VHd1Model RosModel.constructVhdlModel () ;
eq RosModel.getMsgToVhdlModel () {

var m = new VhdlModel ();

// construct the model using the RosModel

// and its attributes...

return m;

}

intermediate message model
VhdiModel

message-dependent template generator (IP to AXI stream frame)

syn nta TemplateConfigModel VhdlModel.constructIpToAxisFrame () {
var config = new TemplateConfigModel();
// construct the config using the VHDL model
// and its attributes...
return document;

}

template config model

TemplateConfigModel

model-to-text

syn String TemplateConfigModel.print () {
StringBuilder sb = new StringBuilder();
// append configuration to sb
/! ...
return sb.toString();

}

|template configuration |

Figure 5.6: Model transformation and code generation attributes

0O ~NOyUl B~ WN =

NN N 2 & 4o 4o
N = O VW0 ~NOYU D~ WN = O O

[P

name: sensor_msgs_Image_to_AXIS
type: publisher

msg:

BYTES: 44

message:

isSubmessage:

fields:

... other fields

false

- simple:

name: height
bitwidth: 32 # see Listing 4.2
datatype: ftrue
type: t_uint32
startindex: 21 # see Listing 4.3
index:
- {N: 21, MSB: 7, LSB: 0}
- {N: 22, MSB: 15, LSB: 8}
- {N: 23, MSB: 23, LSB: 16}
- {N: 24, MSB: 31, LSB: 24}
multi: false

other fields

N is computed with
the startIndex
attribute and

#
#
#
a byte counter

Listing 5.4: Template configuration file

91

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

5.3 Evaluation

The evaluation of the workflow presented in previous sections has been split into three
parts. Section 5.3.1 analyzes the complexity of message specifications supported by FIRM.
Section 5.3.2 shows the evaluation performed based on real message specifications included
in both ROS versions supported and highlights the possibility of the approach also to per-
forming logic validation of the autogenerated components. Lastly, Section 5.3.3 shows two
use cases with different accelerators, as publishers and subscribers, being part of a ROS
system.

5.3.1 Complexity of Specifications

The first step to ensure full support with external components (ROS-based in this case) is to
analyze the characteristics of the middlewares to be interfaced. Based on the characteristics
analyzed in [114], a study of the datatypes supported by ROS1T and ROS2 is performed
and then compared to the features supported by FIRM, presented in previous sections.
The main characteristics concerning datatypes are shown in Table 5.1. It depicts that the
approach presented in this dissertation supports all characteristics of ROS1 and ROS2, and
it is extendable if needed for further characteristics. Even though some of them (9, 18, and
19) are not supported by ROS, they could be easily added to FIRM if needed, following the
same approach as the extension for a new middleware, shown next in Section 5.3.2.

It was chosen not to transmit Null, Constants and Enums (5, 6, and 7) to the hardware acceler-
ators as part of the AXIS frame as those values can be directly stored as LUTs because they
do not change over time. This simplifies the resulting implementations avoiding the extra
logic needed to extract the values from the AXIS frame, which would imply an unnecessary
increment of resource utilization. However, they are identified by FIRM, so they could be part
of the AXIS frame if needed. In that case, they would be similar to characteristics 1 to 4 in
Table 5.1, as they could become a new datatype considering that only their bitwidth needs to
be specified.

Even though Unions are not supported by ROS1 nor ROS2, they could be potentially added
to the proposed workflow by transmitting its width along with the data. Then it is figured out
in the accelerator what it represents. It is a similar case as for Maps, where the key (primitive
type) and the data (which could be an AXIS by itself) are transmitted, similarly to a nested
message.

Once there is an understanding of the supported datatypes in both ROS versions, an analysis
of their combination to form message specifications follows. The elements constituting ROS
messages can be simple fields, fixed or variable-length arrays, and simple or sub-message
arrays. Considering them, four levels of complexity have been identified, as shown in Figure 5.7.
All their possible combinations are what lead to quite complex structures.

The simplest messages are those that contain one or multiple single elements of any of the
built-in types (e.g., uint8, int16, float32). Examples of these are height, width, is_bigendian
and step in Listing 3.1. Then follow the messages in level ExpandingMessages. These can
be built-in types declared as fixed sizes arrays, which are unfolded; inlined elements of
SimpleMessage or a combination of these two as bounded-sized arrays of messages which
are unfolded and inlined. An example of the inlining is header in Listing 3.1, which is an

92

5.3 Evaluation

instantiation of the off-the-shelf std_msgs/Header message. The third level referred to
Arrays groups variable length arrays for built-in types, such as the case of data, which is
converted into an AXIS, as shown in Figure 3.3. Note that strings also form part of this level
because their length is not explicitly defined, so they are treated as variable-length arrays
(only their upper bound might be defined), as is the case of encoding in Listing 3.1. The upper
bound of built-in type arrays is introduced in ROS2, which is also supported by FIRM. The
most complex level is VariableSubmessages. It includes variable-length arrays of messages
which are on their own, a combination of the first three levels, or the particular case of an
array of strings (array of an array). In this case, a sub-instance of AXIS is generated for each
element that belongs to this level of complexity.

Therefore, all these levels of complexity and their combinations need to be covered by FIRM
to provide generic support for generating all sorts of complex message specifications with
the proposed workflow. Specific design rules, shown in Table 5.1 and explained previously,
were followed based on this to cope with the complexity and support all the combinations of
messages shown in Figure 5.7 by FIRM.

Table 5.1: Supported datatypes, v mark supported, X unsupported, and + potentially addable
features.

H
/R/l//

Feature

Signed Integers (8, 16, 32, 64 bits)
Unsigned Integers (8, 16, 32, 64 bits)
Float/Double (32, 64 bits)

ByteBlob Type

Null Type

using #2 and #8)
not transmitted)

Constants

Enums

Variable Length Arrays
Multidimensional Arrays
10 Fixed Length Arrays

not transmitted)
not transmitted)

Ooo~NO|uUuTPdwN =

(rolled out)

11 Maps

12 Optional Fields
13 Default Values

14 Unions

15 Message Nesting™

(new user-defined msg spec.)
(value always transmitted)

16 Data Type Inheritance
17 Namespaces

18 Typedefs

19 Any Type

XX UX[NUXXXxX%[Nx NSNS [xS S| ROs,
RN RN N N S N N N NN N el
I N N N 2 S NS NENE N NN NE NN Y

*In this work, nested messages are fields with another message type as data type rather than an in-place definition of a

message within another message as in [114].

93

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

5.3.2 Full ROS Support

Individual experiments were performed on all messages in the base installations from the
latest three ROS1 distributions (Kinetic, Melodic, and Noetic) and ROS2's LTS? Humble,
to demonstrate FIRM's support for the characteristics listed in Table 5.1. Three groups,
namely amount of elements, amount of different data types, and depth of nested messages,
were evaluated to showcase the diversity of these messages. These three characteristics
encompass all levels of complexity shown in Figure 5.7. The results of the experiments
demonstrated that the generic model-based approach employed by FIRM enables it to
effectively handle arbitrary sizes of ROS messages, including those with multiple data
types and nested structures. Figure 5.8, Figure 5.9, and Figure 5.10 show the histograms
for these three characteristics based on the evaluated ROS messages used in the experiments.
Note that ROS1 and ROS2 provide a base set of packages, including on average 150 message
specifications in each distribution. Similar results were obtained from the experiments
performed with all mentioned ROS versions. Additionally, different extra messages from
the ROS open source community were used to evaluate the robustness of the proposed
approach. All the installable packages of Noetic add up to 3102 distinct message specifications
and 1346 for ROS2 Humble, as shown in Figure 5.11.

Each experiment consisted of an autogenerated project for each ROS message to run the
post-synthesis simulation to validate the logic of the interfaces. These experiments were
performed on all distributions mentioned before, but only the extended versions of Noetic
to evaluate ROST messages and Humble for ROS2 are shown, as these are the two latest
versions of each ROS distribution. Therein, each project included:

1. the hardware interfaces (both directions) for a specific ROS message, considered the
Device Under Tests (DUTSs).

SimpleMessage
dataType variableName

ExpandingMessage
dataType[N] variableName (unfold)
SimpleMessage name (inline)
SimpleMessage[N] name (unfold and inline)

=
Arrays '5
dataType[] variableName =,
string name g
string<=N name O
dataType[<=N] name (ROS2) go
7]
VariableSubmessages 3
SimpleMessage[] name =
string[] name
SimpleMessage[<=N] name (ROS2) |

Figure 5.7. Complexity of ROS messages

2L.ong Term Support

94

5.3 Evaluation

10

Total Messages

1 || 1l IIIIII

o 50 100 150 200 250

(@) Number of contained fields in ROS Noetic (28 messages with more than 250 and up to 1234
contained fields not shown)

10

Total Messages

1 III||IIIIIII||I| II|III L1

o 50 100 150 200 250

(b) Number of contained fields in ROS2 Humble (10 messages with more than 250 and up to 648
contained fields not shown)

Figure 5.8: Histograms of contained fields in ROS Noetic and ROS2 Humble messages

2. the remaining components of the base architecture shown in Figure 3.1.

3. an input stimulus for the simulation.

In this case, one hardware interface acts as a subscriber and the other as a publisher. This
means that the first one receives an AXIS frame (input stimulus), which depends on the ROS
message being tested. This is converted into individual signals for the latter to read and
generate an out AXIS frame. A successful test implies that both AXIS streams are equal. In an
actual application, the accelerators that perform computation would be in between these
two hardware interfaces in a publisher/subscriber combination or as shown in Figure 3.1.

Both DUTs are generated from the combination of template configurations obtained from
the intermediate representation in FIRM and the HDTSs, as depicted in Figure 5.2. Each project
for every ROS message includes the same accelerator-related components (Chapter 3),
to emulate an actual application scenario, as demonstrated in the use cases in Section 5.3.3,
rather than just using the DUTs alone.

The generation of the input stimulus is also done with a combination of a new template
configuration obtained from message models in FIRM and a new set of templates (cf., Figure 5.2,
integration test extension), tailored to ROS code in C++. Hence, a generated native ROS node
populates the fields of the corresponding message being validated and stores it as a series
of bytes for the VHDL testbench to use as the input stimulus. Note that it is advantageous to

95

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

1000

-
o
=]

100

Total Messages
Total Messages

-

o
=
o

1

10 20 30 40 50 60 70 0 10 20 30 40

(a) Distinct types in ROS Noetic (b) Distinct types in ROS2 Humble

Figure 5.9: Histograms of distinct data types in ROS Noetic and ROS2 Humble messages

-

o

=3
=
o
S

Total Messages
Total Messages

-

o
=
o

0 2 4 6 8 10 0 2 4 6 8

(a) Nesting depth in ROS Noetic (b) Nesting depth in ROS2 Humble

Figure 5.10: Histograms of nesting depth in ROS Noetic and ROS2 Humble messages

have already available the intermediate representation of the ROS message to be evaluated.
However, as specific fields in the message may have variable lengths (arrays or strings) or may
be nested messages, this needs to be accounted for in order to generate a meaningful input
stimulus. For these cases, besides considering the data type (e.g., uint8, uint16, string, float64),
a random length for an element that requires it is generated. Consequently, arbitrary
message lengths are evaluated:

1. for cases in which messages do not include fields with variable length, the variety of
different off-the-shelf messages (Figures 5.8 to 5.10) ensures multiple message lengths.

2. for cases in which unconstrained elements (Figure 5.11) or nested messages are in-
cluded (Figure 5.10).

These two points ensure the extensive evaluation of arbitrarily large messages, whether
they are from ROS1T or ROS2. Figure 5.8, Figure 5.9 and Figure 5.10 show a comprehensive
coverage of tested messages composed by multiple distinct variable types, ensuring
the capabilities to also support ROS messages with multiple data types.

It can be seen in the histograms that there are more messages with up to 80 fields for ROS
Noetic and 50 for ROS2 Humble (Figure 5.8), including around mainly 20 distinct types for
both of them (Figure 5.9). Figure 5.10 shows that multi-level nesting is used in both ROS
versions with several levels of depth (up to 11 for Noetic and 9 for Humble), which is supported
as well by FIRM. The differences in the tuples of Figure 5.8, Figure 5.9 and Figure 5.10 are
because there are currently more projects with ROS, but the transition to ROS2 is ongoing,.
These results show that the generic approach proposed in this dissertation is appropriate
to support large or complex messages with many distinct fields or multiple levels of nested
messages, regardless of the ROS version. However, FIRM is not limited only to ROS1 or ROS2,

96

5.3 Evaluation

With nested, but no With nested and

. Without nested m [- -
out nested messages unconstrained messages unconstrained messages

(a) ROS Noetic (b) ROS2 Humble

Figure 5.11: Amount of ROS and ROS2 messages with and without nested message

as the same process to migrate the templates from the first to the second version can be
followed for other types of message specifications.

As an early evaluation phase, a systematic approach was followed during the design process
to manually generate a set of message specifications to cover all of the possibly infinite
numbers of them. This left out cases that were not considered, which is why the presented
evaluation solution relies on all installable ROS packages, which allows to automate the
process of validation of real message specifications deployed in multiple applications. An
open point to explore is how to generate representative datasets for these experiments to
validate the logic design of the generated hardware component based on the information
provided by Table 5.1. The stimulus for each evaluated component is obtained with a stimulus
generator (a native ROS node) for each message that automatically creates a stimulus with
all constraints met. Currently, only one random message is generated as a stimulus, but this
can be extended to generate more stimulus for each message, randomly or systematically,
to extend coverage. This implies the generation of multiple stimulus for each message, which
would increase the total time to run all the experiments.

The first iteration [9] took over 41 hours with one stimulus for every 2295 for ROS Noetic
messages and ROS2 Foxy? with 150 messages. The toolchain and the evaluation process
were improved and optimized, and even though more messages were added to ROS Noetic
(3102 in total) and 1346 for ROS2 Humble, the entire evaluation took 13.8 and 3.6 hours
respectively.

Extension for ROS2 support

The evaluation was performed on both ROS versions (Noetic and Humble), possibly due to
the simplicity of extending support for ROS2 from the existing solution for ROS1. Due to
the model-based design of FIRM, which derives the intermediate message model, and the

3Previous ROS2 LTS version

97

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

ability to design tailored templates, support for ROS2 can be easily achieved. Using .msg
for message specifications brings backward compatibility. Nevertheless, the communication
scheme in ROS2 is the main characteristic of this new version* and the serialization of ROS
messages differs slightly. This leads to a new set of HDTs adapted to take it into account for
ROS2 support.

Listing 5.5 and Listing 5.6 show a snippet of the HDTs for ROS1 vs. ROS2 respectively. It is
possible to see there the specific syntax of the used template engine mustache. Tags (as
called in mustache) are expressed between curly brackets (i.e., line 1 in Listing 5.5). These are
the fields that FIRM generates in the template configuration (Listing 5.4). Comments can be
written by prefixing an exclamation sign to the tag (i.e., line 1 in Listing 5.5), and they will not
be generated in the resulting artifacts. Mustache checks whether the tag is present in the
template configuration when the symbols # or ~ (i.e., line 3 or 6 in Listing 5.6) are present.
They are used conditionally to generate the contained code in a block in the resulting artifact.
The value assigned to a field will be generated when the tag is only expressed in the template,
such as N in line 2 of Listing 5.6.

ROS2 includes extra logic for padding, necessary to meet any desired memory-alignment
requirements. It is relative to the first byte of a variable, and it is determined by computing the
modulo between the total number of currently streamed bytes (s_inputs in this example) and
the bitwidth of each element (size). The differences between Listing 5.5 and Listing 5.6 and
how they can be easily expanded highlight the benefits of our approach and how Challenge
5.1: Adaptivity was tackled. Minor changes to include the field padding in the intermediate
message model and a complementary set of HDTs (extended from the ones for ROS1) were
only needed to provide support also for ROS2.

Table 5.2 shows the difference of Lines of Code (LoC) for both sets of HDTs. Note that each
set of templates is composed of multiple files (called partials) to modularize their design,
improving the maintainability.

As expected from the snippets shown in Listing 5.5 and Listing 5.6, the HDTs for ROS2 have
more lines of code than the ones for ROS1. Not only the message-dependent hardware
components for publishers (message specification to AXIS) and subscribers (AXIS to message
specification) are modified. The template to generate the stimulus is also updated, mainly
due to new built-in types included in ROS2.

5.3.3 Use Cases

Two use cases were developed to prove the feasibility of the workflow presented in previous
sections. The first one is related to image processing, and the second one is an FPGA-

1 {{~isSubmessage}} {{'mustache element}}
2 if(s_counter={{N}}) then

3 s_counter <= s_counter + '1/;

4 end if;

5 {{/isSubmessage}}

Listing 5.5: Snippet of a HDT for ROS1

4http://design.ros2.org/articles/changes.html

98

http://design.ros2.org/articles/changes.html

5.3 Evaluation

1 {{NisSubmessage}}

2 if(s_counter={{N}}) then

3 {{"padding}} {{'same as for ROS1}}
4 s_counter <= s _counter + '17;

5 {{/padding}}

6 {{#padding}} {{!extension for R0S2}}
7 if ((to_integer (unsigned(s_inputs))

8 mod {{size}}) = 0) then

9 s_counter <= s_counter + '1/;
10 end if;

1 {{/padding}}

12 end if;

13 {{/isSubmessage}}

Listing 5.6: Snippet of a HDT for ROS2

Table 5.2: Lines of Code of ROS1 and ROS2 HDT.
Total Lines of Code

HDTs Files
ROS1 ROS2
AXIStomsg 10 292 369
msg to AXIS 9 296 383
Stimulus 2 177 236

based mobile robot. Both of them are part of a ROS architecture with different message
specifications.

Image Processing

The setup for this use case consists of a publisher/subscriber set on the FPGA as well as on
a PC. The sequence interaction of them is shown in Figure 5.12. The latter one publishes a
webcam feed (640x480@30fps) on a topic that the FPGA subscribes to. Then, it processes the
raw image to publish on a different topic for the PC to subscribe to. The hardware accelerator
(Sobel filter) is based on the open source “High-Level Synthesis FPGA Library for Image Pro-
cessing” (HiFlipVX) [14], which offers a large set of different functions that can be combined
in a “building blocks” fashion. The ROS message specification chosen is sensor_msgs/Image
(Listing 3.1), a complex one because it includes different data types, constrained and un-
constrained sized variables. The process begins by writing the Configuration File (Listing 5.1),
which is the input of the workflow. As previously mentioned, specific details of the platform
(lines 2 to 5) are needed. Then, follows the information related to the accelerators to be
interfaced. FIRM takes it as its input, as well as the ROS message specifications listed there to
generate the required interfaces (message-dependent components). Additionally, TCL scripts
for Vivado to build the whole project including the components shown in Figure 3.1 are
generated. The details of these additional artifacts generated are covered in Chapter 6.

99

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

PC FPGA
Pub Sub [Pub] [Sub]
raw_image : :
:raw_image :

| |
filtered_image'!

Figure 5.12: Image processing use case seqguence

|
\
|
|
|
|
l
|
[filtdred_image
|

|

FPGA-Based Mobile Robotic Platform

A skid-steer mobile robot with four DC motors and quadrature encoders is used and con-
trolled with a combination of VHDL and HLS IP cores. They receive velocity commands or
send the robot's current state through ROS messages. The direction of rotation and speed
of each wheel is obtained via VHDL IP cores as well as PWM signals to set their speeds. A
PID (implemented in HLS) controls the speed of the wheels. The ROS message specification
used here is geometry_msgs/Twist as it is composed by linear and angular speeds in three
axes (x,y and z). The presented workflow allows to seamlessly generate a new hardware
architecture by only modifying the configuration file (Listing 5.1), specifying the platform
(Lines 2 to 6) and the name of the ROS message specification in Line 9.

Experiments

Tackling the challenge to have an integrated workflow allows performing experiments on two
FPGA-based SoC (Zyng UltraScale+ and Zyng 7000) with ease. Note that the family is derived
from the part specification, as shown in Line 5 in Listing 5.1. Zyng-7000 or Ultrascale are the
supported ones and are extendable if needed.

Both experiments rely on FreeRTOS (which provides an off-the-shelf TCP/IP stack) running
on one ARM core. A DMA is used to exchange data between PS-PL, imposing a bandwidth
limitation. Its clock frequency is set to 300MHz, and considering the design decision of using 8
bits for data transfers; the maximum achievable throughput is 2.4Gb/s. Despite of this, exper-
iments showed that almost 50fps for 1920x1080 image resolution can be achieved if needed,
as shown in Table 5.3. Therefore, the accelerator-related and message-dependent com-
ponents do not bring significant overhead in terms of execution time for the hardware
accelerators. The execution time is slightly increased with the generated components due
to the latency of a few clock cycles of some of them, for example, the schedulers to make
a decision as to which accelerator to give the grant to. However, this is not because of the
autogeneration of the components but the design of some of them on their own, that they
introduce a few clock cycles latency. The latency would be increased regardless they are
autogenerated or coded manually, as their design is done manually beforehand, and the
autogeneration focuses more on reproducibility and scalability.

If needed, it is possible to achieve a larger bandwidth by increasing tdata's width (up to 256
bits). However, a trade-off between the extra logic needed and the resource utilization would

100

5.3 Evaluation

Table 5.3: Execution time with and without generated components.

‘ . Execution time Frames
Execution time for

Resolution with generated per
the accelerator [ms]
components [ms] second
640 x 480 3,07 3,08 (+0,25 %) 325
800 x 600 4,80 4,81 (+0,20 %) 208
960 x 720 6,91 6,94 (+0,40 %) 144
1024 x 768 7,86 7,88 (+0,19 %) 127
1280 x 720 9,21 9,23 (+0,15 %) 108
1920 x 1080 20,73 20,76 (+0,11 %) 48

have to be evaluated. The overhead introduced by the autogenerated components in terms
of resource utilization and performance is evaluated. Table 5.3 shows the execution time of
the sobel filter by itself and embedded and as part of the process shown in Figure 5.12. It
can be seen the negligible increment in the execution time the accelerator-related and
message-dependent components add.

Resource Utilization

Table 5.4 shows the difference of resource utilization of both use cases. The PS-PL Intercon-
nection will remain unchanged regardless of the application when a software solution is used
for the communication outside the FPGA. Autogenerated Components refer to the Manager
plus the hardware components based on the message specifications (message-dependent)
used for each use case. It can be deduced that they will not introduce significant overhead
to a design in terms of resources. The differences between use cases are because:

1. the message specification for image processing has three unconstrained variables
(converted into AXIS) compared to only constrained ones for the mobile robot. This
increases the logic (hence LUTs) for the former one and latches (FFs) for the latter one.

2. Thereis only one HLS IP core combining the splitting of the RGB channels and computing
a Sobel filter on each of them, so it is optimized. The mobile robot includes multiple
VHDL and HLS IP cores, mostly performing arithmetic operations, which corresponds
to DSPs usage.

Automation

Listing 5.1 shows what the configuration file for the image processing use case looks like. It
takes the targeted platform (FPGA and board), as well as the ROS message specification®.
It can be seen that only a few lines are needed to model the system compared to multiple
extensive VHDL modules (Table 5.5). This also reduces the probability of errors and increases
the consistency of new designs. The time needed to generate a hardware architecture is

5|t can include multiple message specifications, publishers, and subscribers.

101

5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications

Table 5.4: Resource utilization for both use cases

Image Processing (Zyng UltraScale+) LUT FF BRAM DSP
PS-PL Interconnection 6735 7374 2 0
Autogenerated Components 759 321 0 0
Hardware Accelerators 792 973 3 0
Complete Implementation 8286 8668 5 0

FPGA-based Mobile Robot (Zyng 7000) LUT FF BRAM DSP

PS-PL Interconnection 6735 7374 2 0
Autogenerated Components 456 126 0 0
Hardware Accelerators 29671 21539 0 578
Complete Implementation 36862 29039 2 578

reduced to a matter of minutes. As stated previously, only minor configuration file adaptations
are needed to generate new hardware components for different applications automatically.

The benefits of the proposed approach are that even though there is a similar effort (in terms
of lines of code, shown in Table 5.5) between writing VHDL and HDT, the latter one has to
be written only once and can be reused for multiple use cases. VHDL, on the contrary, has
to be manually adapted every time for different ones. A designer would need to invest time
to adapt each of them individually. This could quickly become an issue when something is
unintentionally neglected, or errors are introduced by inconsistently changing existing parts
of the VHDL model.

Lastly, the approach facilitates the generation of test benches tailored for any ROS message
(shown in Section 5.3.2) or any other type of specification, tackling Challenge 5.1: Interface
Compliance. This simplifies a complete hardware architecture validation process with a single
specification as the only input parameter.

Table 5.5: Lines of code written once for all use cases, and additional written/generated code
for each individual use case

i Use cases
File type Written
Once |mage Processing Mobile Robot

Mustache TCL 30 0 0
Static TCL 52 0 0
Mustache VHDL (HDT) 588 0 0
Static VHDL 171 0 0
Config. File n/a 13 13
Generated TCL n/a 64 64
Generated VHDL n/a 432 353

102

5.4 Summary

5.4 Summary

This chapter presented a model-based approach to automatically generate hardware com-
ponents acting as interfaces for FPGAs accelerators handling the compute-intensive tasks for
robotic applications. A simple specification of the expected system is introduced, which is the
only input needed to generate the complete hardware architecture. Hardware components
acting as interfaces for the accelerators are obtained from message specifications, support-
ing arbitrary ROS messages. As demonstrated, the middleware support can be extended, if
required, with minimal effort.

An intermediate message representation is obtained from the input specification, detailing the
type of interface required. In addition to a set of templates derived from a HDL module, this
is used to generate the corresponding hardware components to interface the accelerators
automatically.

All message specifications included in both ROS versions (all latest distributions) were evalu-
ated. Besides, two use cases show the advantages of our approach by integrating an HLS
image processing IP core as well as a combination of customized HLS and VHDL modules for
an FPGA-based mobile platform into a ROS architecture. The first one required only 13 lines
of code for the input specification of the workflow to deploy the entire system. It only took
minor changes to some lines (rather than entire VHDL modules) to generate the second use
case, even on a different FPGA family.

Chapter 6 describes the extension of FIRM and the details involved in data-type and data-flow
analysis for the generation and automatic deployment of the entire architecture, considering
the accelerator-related and message-dependent components.

103

6 Model-based Generation of
Hardware/Software Architectures
for Robotics Systems

Robotic systems compute data from multiple sensors to perform several actions (e.g., path
planning, object detection). FPGA-based architectures for such systems may consist of several
accelerators to process compute-intensive algorithms. Designing and implementing such
complex systems tends to be an arduous task. This chapter extends the workflow presented
in Chapter 5, focusing on the modeling to generate architectures for such applications,
compliant with existing robotics middlewares (e.g., ROS, ROS2). The challenge is to have
a compact yet expressive system description with just enough information to generate
all required components and integrate existing algorithms. This system model must be
generalizable, so it is not application-dependent and must exploit the benefits of FPGAs over
software solutions. Previous work mainly focused on individual accelerators rather than all
components involved in a system and their interactions. The proposed approach exploits
the advantages of MDE and model-based code generation to produce all components, i.e.,
message converters (message-dependent components) acting as middleware interfaces and
wrappers to integrate algorithms. Data type and data flow analysis are performed to derive
the necessary information to generate the components and their connections.

6.1 Challenges and Goals

The range of robotic applications has been increasing lately, from manufacturing [2], col-
laborative robots interacting with humans [3], biomedicine [4], drones [5] as well as mobile
robots [6], to name a few. Due to the wide range of applications, robotic platforms are
becoming more complex as more heterogeneous data from different types of sensors needs
to be processed, preferably concurrently, to meet real-time constraints. An architecture
should facilitate the development of robotic systems by providing helpful constraints on the
design and implementation of the desired application without being overly restrictive [126].
However, designing FPGA-based architectures for such systems tends to be an arduous
process as it requires low-level hardware knowledge and a long and complex design pro-
cess. Even though the proven advantages of FPGAs for robotic applications [127, 128, 129],
porting them from software to embedded hardware platforms or accelerating parts requires
the creation of suitable interfaces. This often means the re-design of several parts of the

105

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

applications. Lastly, the interconnection of multiple components for complex applications
(i.e., multiple accelerators) turns into an error-prone process.

This chapter addresses the modeling approach to generate architectures for robotic appli-
cations in FPGAs. The main research questions to answer are how to generate all required
components for such architectures from a holistic model and how that model should be
defined. These bring some requirements:

+ Requirement 6.1: the description should be compact, concise, but expressive enough
to contain the necessary information to derive the system's components and their
relations.

+ Requirement 6.2: the approach must be generic rather than application-specific.

+ Requirement 6.3: it must exploit the benefits of FPGAs over software solutions.
Three main challenges arise:

+ Challenge 6.1: Obtain the explicit and derive the implicit information from the system
specification.

+ Challenge 6.2: The system specification has to be a compact and meaningful description
so writing it is not as cumbersome as deploying the system manually.

+ Challenge 6.3: There has to be an understanding of the specifications of interfaces to
generate the compliant components and the relations among each other.

To address these challenges, the main goals of this chapter are:

* Model Analysis: A comprehensive analysis of the system specification to derive the
holistic model that includes all the components to generate, their interfaces and how
they all interact among each other.

+ Interfaces: Wrappers for accelerators based on middleware specifications to ease
their integration.

6.2 Code Generation Workflow

A typical robotics system is composed of different types of components. They can be CPUSs,
accelerators, and those that act as interfaces between the first two (message-dependent
components). The concepts shown in this work follow the Zyng' device model with a PS and
a PL sharing data via DMA. However, this is not limited as the CPU support can be extended
(e.g., soft-cores) or removed if not needed, and the toolchain proposed in this chapter takes
this into consideration.

An example of a modeled and later generated FPGA-based robotics system following the
concepts of this dissertation is shown in Figure 6.1. It consists of a subscriber converter
to receive a quaternion, an accelerator to compute the conversion to Euler angles, and a
publisher converter to broadcast the result. Note that even though the aim is to generate
complex systems, including multiple accelerators with their middleware-based interfaces,

TZYNQ is a trademark of Xilinx, Inc

106

6.2 Code Generation Workflow

only one accelerator with its corresponding message-dependend components are shown for
simplicity. AXIS slave (S_AXIS) and master (M_AXIS) connect to DMA through the Manager to
schedule transactions between PS and PL [9]. They exchange data as the middleware (ROS
in this case) runs on the ARM processor, playing the role of the Communication Interface
from Figure 3.1. It is mainly used to register the hardware subscriber and publisher to
ROS master (Figure 2.11) and exchange data with external components. The subscriber
and publisher are the message-dependent components, generated with FIRM, introduced
in Chapter 5. It is then imperative to understand the characteristics of all components and
the interaction among them to generate the corresponding artifacts to build such systems
based on a given specification.

Listing 6.1 shows how to describe such a system for the proposed workflow. The interfaces of
the accelerator (Line 15 and Line 18) include a message type. This is used to generate wrappers
with the desired signals corresponding to that message type for the components doing the
computation. In this case, the accelerator is an HLS component (Line 10), so the equations
for the conversion are defined in a .cpp file (Line 11). VHDL is also supported, and additional
HDLs can be added with templates, as explained previously. A software implementation is
also possible by changing the type to ROS-SW. How to specify all components and how they
interact with each other is shown from Line 21. Similar to the accelerators, the message type
for publishers and subscribers must be defined. Lastly, the output of each component must
be declared as outgoing, defining the destination block. Like so in a compact specification,
the characteristics of accelerators, their interfaces, and how to establish the communication
for incoming and outgoing data have been defined.

Multiple additional components are involved in such architectures besides the converters
and accelerators. They are the ones that depend on the integrity of the system (i.e., Manager,
DMA), depending on how many converters and accelerators are involved. These components
are not part of the system specification as they are not generated, but their configuration is
derived from it, as explained in Section 6.4.4. Additionally, tailored scripts are needed to deploy
the entire architecture. The workflow of the proposed toolchain is shown in Figure 6.2, with
Listing 6.1 as an example of a system specification.

External

|
Processing I
Publisher/Subscriber € : System > Sc.heduler I
I ‘.ll...ll.._.l_l._:_ _ﬁ:.:l:..lll..ﬁ I Legend
|- = e e ROS Node
Progmmabe LA \'..—'.)f Manager ?..'.;' DMA = -~~~ W
= o Mm2s [T VRNGEST O EER oMM |
| o8 - CUTA i - : “Generated
EEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEENR ‘..............................-
: o - 1
. 64 . 7; E| Accelerator
I ;S_AXIS Quaternion _@Quaternlon 64 v MALR A | S
| AREm RN Subscriber 64 7 to Euler | AXI Stream
| Converter 642 | EEEEEEEEN
I [/64w, 7/ ROS Comm
' | &———

. .

Figure 6.1: Quaternion to Euler converter with ROS interfaces

107

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

6.2.1 Model Analysis

The model-based approach proposed here helps to have a complete understanding of
the desired system via model analysis. This is particularly important to generate and deploy
complex systems (e.g., multiple accelerators interconnected among them with full middleware-
based interfaces) as a simple process. The information to generate the different converters,
wrappers for accelerators, and tailored scripts is deduced only from the system specification.
All required information that is not explicitly defined (e.g., total components to manage
transactions between PS and PL) is derived by doing data-type and data-flow analysis of
the message types and connections of the components. All individual connections (at signal
level) among all blocks, based on the specification and their interfaces, are also inferred.

1 project:

2 name: QuaternionToEuler

3 fpgaPartpart: xc7z020clg400-1 # Using the part can be derived
Zyng (XcXXX)

4 # or UltraScale (xczcuXXX)

5 # Accelerators can be:

6 # Provided: sources (need to be exported) or already exported

7 # Generate: Wrappers from msg for HLS or VHDL (or any other template -e
.g., verilog, systemverilog-)

8 accelerators:

9 - name: QuaternionToEuler_type

10 type: HLS # can be HLS, VHDL or ROS—SW

" sources: ./QuaternionToEuler.cpp

12 interface:

13 input:

14 - middleware: ROS

15 message: geometry_msgs/Quaternion

16 output:

17 - middleware: ROS

18 message: geometry_msgs/Point

19

20 # Definition of all components and their relations

21 Dblocks:

22 # Subscriber

23 - name: QuaternionToEuler_sub # converter

24 type: # ROS > accelerator

25 middleware: ROS

26 mode: subscriber

27 message: geometry_msgs/Quaternion

28 outgoing: # can have many destinations

29 - name: QuaternionToEulerConverter

30 # Accelerator

31 - name: QuaternionToEulerConverter # accelerator of the type

32 type: QuaternionToEuler_type # defined in line 8 and it

33 outgoing: # can be used multiple times

34 - name: QuaternionToEuler_pub

35 # Publisher

36 - name: QuaternionToEuler_pub # converter

37 type: # accelerator > ROS

38 middleware: ROS

39 mode: publisher

40 message: geometry_msgs/Point

Listing 6.1: System specification for a Quaternion to Euler system

108

6.2 Code Generation Workflow

All this derived information is expressed in an extended and detailed version of the system
specification, as a template configuration for the template engine to generate the desired artifacts
tailored for the specified system.

6.2.2 Template Engine

The template engine® along with templates are used to generate the intermediate artifacts.
A template is a generic source code that resembles the expected artifact. It is expanded
with given specifications (template configuration) accordingly to the needs (e.g., names, bit
widths). These templates are included in the toolchain. They are coded once and are re-used
for any system specification. There are multiple ones involved, according to the intermediate
artifact to generate. These can be for HLS or VHDL sources (e.g., converters) or tailored
scripts as configurations for vendor dependent tools to generate the expected components.
New templates can be added to the toolchain with ease to extend it for new components,
additional hardware description methods (e.g., Verilog), or scripts for different vendors.

Listing 6.2 shows an example of a template. In this case, it is used to generate shell scripts
to obtain an IP block that can be used in a Vivado's block design to instantiate the different
message-dependent components. Note that Line 12 and Line 23 are used to expand the
templates accordingly to the template configuration derived from the model analysis. nameBD
is the IP block's name that will be used to instantiate the message-dependent component in
any block design (hence BD) and nameMW is the name that the message specification receives
for each middleware (hence MW). It can be the case where the same message-dependent
component is used in the same block design. Data-flow analysis is further relied on to
avoid duplicate names by appending an incremental ID to every new converter that is

System Middleware
specification interface -|
\A/I
- Legend
(Model analysis)
Y . . User input
Template - Templates &

configy e,

Accelerator . Manager p USCLIEE

source C Template engine) . source
‘M» Too

* Accelerator build = * | Accelerator System builder ! Converter Component builder .
1 . . o Intermediate
configuration - : wrapper (e.g., bash, tcl) source (e.g., bash, tcl) artifact
B
\\AVA/ + {‘%
L s, RERERERER SRR e, R EER Vendor
: Accelerator . . System . . Converters . . Manager - ! dependent -
* generator - . generator .« . generator - . generator . : ptool ;
Ty R L = 1= L
Generated

A A /
| Accelerators IP h FPG.A—Based | Converters IP I:l | Manager IP | components
Robotics System

Figure 6.2: Extended toolchain workflow for the generation of HW/SW architectures

’Mustache—Logic-Less Templates, https://mustache.github.io

109

https://mustache.github.io

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

instantiated. This list of IDs for each menssage-dependent component is derived from the
system specification.

6.2.3 Artifacts Generators

They take the intermediate artifacts to build and deploy the entire system. There are two types.
Those that generate components (i.e., accelerators, converters), and the system generator
which does not generate components but uses them. The latter one takes a set of tailored
scripts for each application and the information of a (vendor-dependent) targeted platform. It
deploys all the generated components and the derived ones (e.g., Manager, DMA). Addition-
ally, as their interactions have been derived (each individual signal), it connects all of them
accordingly, as specified in the template configuration. In this work, there are bash scripts that
manage different tcl scripts for Vivado and Vivado HLS tools to import the generated and

#!/bin/bash

sources_converters_path=$1
vivado_prjts_path=$2
ip_repo_path=$3

Create directories

mkdir -p $sources_converters_path
mkdir -p $ip_repo_path
{{#Converters}}

{{#AXIS_to_msg}}

mkdir -p "$ip_repo_path/{{nameBD}}"
{{/AXIS_to_msg}}

{{#msg_to_AXIS}}

mkdir -p "$ip_repo_path/{{nameBD}}"
{{/msg_to_AXIS}}

{{/Converters}}

0 NOoO U~ WN =

o O o4
O 00N UL, WN—= OO

Create message-dependend components with FIRM

Subscribers

{{#Converters}}

{{#AXIS_to_msg}}

java —jar FIRM.jar axis2msg {{mnameMW}} $sources_converters_path
{{/AXIS_to_msg}}

{{/Converters}}

Publishers

{{#Converters}}

{{#msg_to_AXIS}}

java —jar FIRM.jar msg2axis {{nameMW}} $sources_converters_path
{{/msg_to_AXIS}}

{{/Converters}}

W W wwNNNDNDNDNDDNDNNN
WN =00V U~ WwWN-—=O0

Create new vivado project to import all sources and export the IPs

vivado -mode batch -source build_converters.tcl -tclargs "Converters" "
$vivado_prjts_path/Converters" {{#project}}{{#platform}}"{{part}}"{{/
platform}}{{/project}} $sources_converters_path $ip_repo_path

w
~

Listing 6.2: Mustache template to generate script that uses FIRM to generate all message-
dependend components

110

6.3 Code Generation Challenges for HW/SW Architectures

provided sources (i.e., .cpp for the accelerators, .vhd for the converters and manager) and
export them as IPs accordingly to deploy the desired holistic system.

Listing 6.3 shows the resulting shell script obtained with the derived template-configuration
and the template shown in Listing 6.2. As there are two message-dependent component
in the example shown in Figure 6.1, FIRM is called to generate the converters from AXIS to
message and message to AXIS in Line 15 and Line 17. Then, another generated script from a
different template is called in Line 20 that takes the VHDL generated with FIRM to export
them as IP blocks to be instantiated in any block design.

6.3 Code Generation Challenges for HW/SW Architectures

Three main challenges arise when generating the architecture proposed in this dissertation,
which are described below.

6.3.1 Concise Holistic Model

An important aspect is to have a concise but expressive description of the system (CH2), as
shown in Listing 6.1. This means there has to be a mechanism to include or exclude signals
from one component to another. Examples of these are shown in Listing 6.4 (Line 18 and
Line 20). These keywords are analyzed to determine which signals corresponding to a message
specification (Line 15) should be connected to which component. They can be individual

1 #!/bin/bash

2

3 sources_converters_path=$1

4 vivado_prjts_path=$2

5 ip_repo_path=%$3

6

7 # Create directories

8 mkdir -p $sources_converters_path

9 mkdir -p $ip_repo_path

10 mkdir —p "$ip_repo_path/AXIS_to_geometry_msgs_Quaternion”
1 mkdir -p "$ip_repo_path/geometry_msgs_Point_to_AXIS"
12

13 ## Create converters with FIRM

14 # Subscribers

15 java —jar FIRM.jar axis2msg geometry_msgs/Quaternion

$sources_converters_path

16 # Publishers

17 java —jar FIRM.jar msg2axis geometry_msgs/Point
$sources_converters_path

18

19 ## Create new vivado project to import all sources and export the IPs

20 vivado -mode batch -source build_converters.tcl -tclargs "Converters" "
$vivado_prjts_path/Converters" "xc7z020clg400-1"
$sources_converters_path $ip_repo_path

21

Listing 6.3: Resulting shell script to generate IP blocks for message-dependend components

111

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

signals as well as sub-messages. Analyzing the structure of the message definition allows for
filtering and deriving the desired signals from one component to another.

6.3.2 Dynamic Frame Length

Listing 6.4 shows the specification of a system which contains an HLS accelerator of an
image processing application compliant with a sensor_msgs/Image message from ROS. This
message includes a string (i.e., frame_id) which varies with every new frame, and the image
itself could also vary depending on the application (e.g., image upscaling/downscaling). Hence,
the number of bytes for the publisher to transmit (AXIS frame length) can change dynamically.
Figure 6.3 depicts the generated components for such system. It contains the subscriber
and publisher converters (to send/receive the image message from/to the PS over DMA), and
the image processing application itself provided by the user (Line 4). The transmission of
the message through the publisher converter cannot start unless the total number of bytes
(frame length) to transmit is known. Hence, the frame length component computes this at
runtime. Considering the case that the message may not transmit all of its fields, or the ones
containing fields that change their length dynamically (e.g., strings), the total length cannot
be known at compile time. Therefore, a tailored component to compute the frame length
of each publisher dynamically is generated when needed and added as shown in Figure 6.3.

1 accelerators:

2 — name: GrayScale

3 type: HLS

4 sources: ./grayScale.cpp

5 interface:

6 output: # Same for input

7 - middleware: ROS # (simplified due to space)
8 message: sensor_msgs/Image

9 include: ["height", "width", "data"]
10 blocks:

1M - name: ImgFilter_sub # converter

12 type: # ROS > accelerator
13 middleware: ROS

14 mode: subscriber

15 message: sensor_msgs/Image

16 outgoing:

17 - name: ImgFilter_pub

18 exclude: ["height", "width", "data"]

19 - name: GrayScale

20 include: ["height", "width", "data"]

21 - name: GrayScale_acc # accelerator of the type
22 type: GrayScale # defined in line 2
23 outgoing:

24 - name: ScaleDownNearest_acc

25 include: ["height", "width", "data"]

26 - name: ImgFilter_pub # converter

27 type: # accelerator > ROS
28 middleware: ROS

29 mode: publisher

30 message: sensor_msgs/Image

Listing 6.4: Snippet of the connections between accelerator and publisher converter

112

6.3 Code Generation Challenges for HW/SW Architectures

Software implementations have access to large memory blocks, and the entire message is
constantly available. This is not possible on the hardware side as data is streamed, which
makes it necessary to have a mechanism to compute the total bytes in each frame as they
can change dynamically. The fields of a message involved in this computation are derived by
analyzing Listing 6.4. This will provide the individual lengths of dynamically changing fields
needed as /inputs for this new component to compute the publisher's frame length. The
fixed-sized field lengths are computed in the analysis, as these are known at compile time.

The algorithm shown in Listing 6.5 computes the length of a message from its contained fields
using the helper methods FieldLength to compute the length of a field and TypelLength
to compute the length of a type. Fields can be arrays of variable length not known before
receiving a message. Thus, signals connected to AXIS must be used to obtain the length at
runtime using the signal() function. Note that because arrays (and messages) can be nested,
but their contents are not uniform, each information taken from a signal must be obtained
at the right time during the reception of the message. This means the TotallLength can only
be computed once the last size signal of an array within the message has been received.
Because the size signals are evaluated at different times, parts of the message might need to
be buffered [130], which is also inferred at the Model Analysis stage.

Even though the buffer size can vary from message to message or even from different frames
for the same message, the WCET concept can be followed. The transfer time of the accelerators
becomes the WCET. The metrics used for evaluating the proposed schedulers in Section 4.3
can be used not only to determine the best algorithm for each application but also the length
of potentially required buffers, which in this case would be equal to the maximum lateness
for each accelerator. Evidently, a smaller buffer means lower resource consumption, so
obtaining the optimal design in terms of response time and resource consumption comes to
an optimal decision in choosing the most fitting scheduling algorithm for the application.

From the modeling point of view, the WCET can be easily added to the system specification
to be used for the model analysis and also automate the process to determine both the
buffer length and scheduling algorithm.

; N m Fiotaldength ™)
Length

32 header_seq

32 header_stamp

32 header_frame_id_length

S_AXIS Image header frame.idy | | M38€ | 1 Axis
llllllll) Subscrlber IlIIlll%allI.IIlIIIIlIIIIlIIIllllllllllllllll3l2llllll> Publlsher IIIIIIIII)
height,(Message Wrapper height
32 . 32 .
dth dth
Y Image Proc. ™ -
; data_length i data_length
data) pplication data>
EEEEEEEEEEEEEE EEEEEEEEEEEEEEEE
_ _

Generated Comp.| |Provided Accelerator /AX.3tsnitwfaey X" Signal

Figure 6.3: Payload of an image publisher dynamically computed

113

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

1 function Messagelength (Message m)
2 l:=4

3 for each Fieldf in m do

4 | .= | + FieldLength(f)

5 return |
6
7
8

function FieldLength (Fieldf)

l =0
9 if f is no-array then
10 I .= | + TypelLength(f)
1 else if f is fixed-length array then
12 for i in range(array_length(f)) do
13 | == | + Typelength(index(fi))
14 else if f is variable-length array then
15 =1+ 4
16 for i in range(signal(f length)) do
17 | == | + Typelength(index(f i))

18 return |
19
20 function Typelength (Fieldf)

21 | =0

22 if type_of(f) is built-intype then
23 | = size_of(t)

24 else if type_of(f) is message then
25 =1+ 4

26 for each Ffields in f do

27 | = | + FieldLength(s)

28 return |

Listing 6.5: Computation of message length

6.3.3 Scheduling Transactions between Hardware and Software

Dealing with hybrid hardware/software systems means that the way communication is estab-
lished between these two has to be addressed. The supported middleware throughout this
dissertation is ROS (both versions), so the software part is based on it. Its default scheduling
scheme to receive new messages is shown in Figure 6.4a. It consists of a shared callback
queue for all subscribers. Hence, the callback queue must be read three times (retrieving
B) before A can be read in a First In First Out (FIFO) manner. This can cause a message
not to be longer usable for a given subscriber. Therefore, a modification to this scheme is
proposed (Figure 6.4b) by taking advantage of the use of individual callback queues for each
incoming message. This leads to the question of which spinner thread should get a hold of
the DMA to exchange data between PS and PL. The proposed solution here is inspired by the
LRU algorithm, used to manage buffer memories and caches. Unlike a FIFO, the last spinner

. Spinner A
Subscriber queue for A D—>A AlA A AH
Receiver Spinner
H%B AlB|B B4)Thread 8 BB B*)SpinnerB
Callback queue Thread

Subscriber queue for B Queue B Callback queue B

(a) Default ROS callback scheme (b) Proposed LRU-based ROS callback scheme

Figure 6.4: ROS scheduling schemes

114

6.4 FPGA Architectures for Robotics (FAR) Tool

thread that shares data between PS and PL (reading from its callback queue) is pushed to the
end of the priority list (highest priority). This changes dynamically over time, allowing each
individual spinner thread to get a hold of the DMA (with the lowest priority) with a maximum
delay of N-1 in a round, being N the number of subscribers. A similar analysis as the one
shown in Section 4.3 can be followed for the software side. From the software perspective,
experiments showed LRU to be good enough. However, the proposed workflow can also
be extended to include a similar software evaluation to decide, case by case, the optimal
algorithm for both software and hardware counterparts.

The concepts explained until here concerns the transmission from PS to PL. A hardware
counterpart is needed to schedule the transactions from PL to PS, which is the reason why
multiple algorithms are proposed in Chapter 4. As there are no “one fits all” solutions, having
multiple options allows for obtaining the most optimal design for each application. The
model-based approach for code generation allows for exchanging these components with
minimal effort and, ideally, transparently for the end-user.

Even though the evaluation of the schedulers is fully automatized, the criteria to decide
which algorithm will be the most fitted one based on the characteristics specified in the
system specification is not yet realized as an optimization algorithm to be integrated into the
proposed workflow, which is left for future work.

6.4 FPGA Architectures for Robotics (FAR) Tool

After discussing the toolchain in Section 6.2 and three particular challenges in Section 6.3, this
section explains the technical details of the implementation and argues why a model-driven
approach is beneficial. Model-driven engineering [131, 90] offers a systematic and domain-
oriented development approach using domain-specific models, model transformation, and
code generation to create comprehensible and maintainable software. The toolchain shown
in Figure 6.2, called FPGA Architectures for Robotics (FAR), has two essential components:
the model analysis and a set of provided resources and inputs that are used to construct
the system using a template engine. In this case, a logic-less template approach is used with
simple placeholders in the template rather than programmed instructions, simplifying the
templates’ definition for domain experts. Therefore, all analysis and reasoning must happen
within the tool.

FAR uses and extends FIRM [9] introduced in Chapter 5, and thus also uses a grammar-based
modeling approach based on attribute grammars [116]. As opposed to other modeling
approaches, grammars describe trees rather than models comprised of arbitrarily structured
elements. This approach was used to derive all required information to generate the con-
verters for individual messages. For FAR, the middleware-based interfaces generation is also
used, and the approach is extended to the generation of the entire system [25]. Thus, the
analysis must be able to derive all relevant information for the creation from the system
specification (e.g., in Listing 6.1) and the provided static resources. Attribute grammars are
an approach to computing semantic properties of a language (or, in this case, a model) in a
declarative and formalized way. In this case, the concept of higher-order attributes [120] is
used, which additionally allows the computed properties to be entire new artifacts. For this,
relational reference attribute grammars [33, 121] are employed, which allow efficient linking of
tree elements with cross-tree relations.

115

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

The three challenges identified in Section 6.1 are used to illustrate why such a model-based
approach is a necessary and adequate solution to generate hardware/software architec-
tures.

6.4.1 Tailored Information using Intermediate Representations

Since a significant target of the proposed system is to have concise specifications (CH2), most
required information to construct a complete system is only included implicitly. However,
the employed template engine needs all information explicitly specified; thus, an analysis
with computed attributes on the input model is used. However, doing this transformation
in one step is complex and does not allow for reuse (R2) since there are multiple template
configurations to be created. Therefore, multiple intermediate representations are employed,
i.e., models based on reference attribute grammars obtained using model transformation
using higher-order attributes.

One example is an extended system specification model. As suggested in Section 6.3.1, to
keep the input specification concise and the implementation efficient, signals connecting
messages can be filtered using include and exclude hints. This is a shorthand for the
specification of all required signals, which is only possible because the contents and nestings
of message types are analyzed. In the full system specification, the inclusion hints are expanded
to contain a (potentially long) list of all individual fields to be included.

6.4.2 Simplifying Runtime Computation

The computation of the length of the message was already highlighted in Listing 6.5. It
consists of two main functions used in a recursive process following the nested structure of
a message definition. The first benefit of the chosen approach is that the algorithm can be
simplified when considering the intermediate message representation from [9], which no
longer contains fixed-length arrays and fewer nested messages, which have been flattened
whenever possible. This removes the else branch in lines Line 11 to Line 13 of the algorithm
shown in Listing 6.5 and reduces the nesting depth of the function calls. Secondly, since the
signal data required in the algorithm are available at different times, function calls have to be
inlined depending on the message type. So, again, type analysis is required. Finally, the signals
required by the algorithm must be connected, which requires a data flow analysis, which can
be performed using the attribute grammar approach[132]. Additionally, optimization can be
applied if signals are known at compile time, e.g., when signals are not connected.

6.4.3 Benefits of Model Analysis in the Development Lifecycle

In addition to the analysis previously mentioned and optimization steps, using a model-
based, attribute grammar analysis approach allows for further potential analysis improving
performance at development time, compile time, and runtime. During development, the
construction and verification of the system model can be aided by static analysis, aiding
the developer with syntactic and semantic checks, code completion and suggestions, and
refactoring support. During compile time, knowledge of the entire system can help with
the generation of optimized code beyond the abilities of the FPGA compiler toolchain or

116

6.4 FPGA Architectures for Robotics (FAR) Tool

optimizations for better resource utilization. One example of runtime benefits is the use of
WCET analysis to ensure real-time guarantees in combination with Listing 6.5 to adapt the
scheduling scheme dynamically, knowing the time left for the accelerator.

6.4.4 Details of the Model Analysis

The system specification is centered around the user perspective, as it includes characteristics
a non-FPGA expert would use to describe the desired system, such as the accelerators or
middleware-specific desired interfaces. The first thing to present is the grammar used to
represent its structure, shown in Listing 6.6. All the characteristics that can be included as
input are explicitly defined, as well as their relations. All elements followed with an asterisk *
(e.g., Block) represent lists, meaning there can be multiple of them. Its visual representation as
a UML class diagram is shown in Figure 6.53, depicting classes (an object or a set of objects that
share a common structure and behavior) and their relations. This is an abstract representation
of the system specification, and a more specific representation can be obtained by visualizing
the AST that is obtained from a concrete system specification. It depicts an object (model
elements representing instances of a class or of classes) diagram, representing all instances
and their relations. Figure 6.6 depicts the AST for the example shown in Figure 6.1, using
as input Listing 6.1. It can be seen that it has the three instances of block, representing the
accelerator and both message-dependent components with their respective characteristics
(e.g., middleware, type, where it outputs connects to). Having an AST representation like
this is beneficial because it allows one to loop through all the objects, simplifying the code
generation process.

The template configuration, which are the generated artifacts from the model analysis in Fig-
ure 6.2, include all low-level and FPGA-related specifications. All this information has to be
derived from the available information provided by the systems specification. As mentioned
previously, doing this transformation in one step is complex, so a new grammar (Figure 6.5b)
that fits the structure of the template configuration is required. This new structure serves as
the intermediate representation of the extended system's model, containing the required infor-
mation and fields for the different artifacts that will be generated in later steps of the workflow.
The differences between these two grammars can be seen in Figure 6.5, one focusing on the
user's perspective and the other one on the low-level details, which are derived from the for-
mer one. A snippet of the template configuration containing the derived information obtained
with the model analysis for the components generated with FIRM is shown in Listing 6.7.
Here, there is a further string manipulation based on the message specification's name used to
generate the artifact to instantiate these components (TCL script in this case). Three different
aspects can be highlighted for the message-dependend components. The first one concerns
the type of converter, either for subscribers (AXIS to message) or publishers (message to
AXIS). Then is the message type as defined by the middleware (nameMW). These two are the
input parameter needed by FIRM to generate the VHDL artifacts. Lastly, nameBD represents
the identifier used in a block design to instantiate each message-dependent component.

Having the system model represented as an AST is advantageous as it is possible to traverse
it easily to obtain all the information that the template engine needs to generate the desired
artifacts and do further manipulations, as highlighted in the example above. The analysis
performed concerns concretely the transformation from the system specification (Figure 6.5a)
to the template configuration (Figure 6.5b), which is done with attributes.

117

Model-based Generation of Hardware/Software Architectures for Robotics Systems

1 Config ::= Project Accelerator* Block¥;
2 Project ::= <Name> <fpgaPart >;
3 Accelerator ::= <Name> <Sources> <Type> Interface;
4 Interface ::= Input:InterfaceType* Output:interfaceType *;
5 InterfaceType ::= <Middleware> <Message> Include:Signals* Exclude:Signals*;
6 Block ::= <Name> Type <DataType> Outgoing*;
7 Type::= <Middleware> <Mode> <Accelerator> <Source>;
8 Outgoing ::= <Name> Include:Signals* Exclude:Signals*;
9 Signals ::= <Name>;
Listing 6.6: System specification’s grammar
Config
Project
Name
fpgaPart
Publisher \Subscriber
1
Block B':::f:m ConverterType |BlockAcceleratorType| |BlockConverterType|
| Part nameBlockDiagram ggmiePath
Name Zynq nameMessageMiddleware e
Message UltraScale 9
Type
Interfaﬂ Middleware
Middleware Narma | Mode
Message Accelerator
” Source
Include
(a) UML representation of the system (b) UML representation of the derived
specification’s grammar system specification’s grammar
Figure 6.5: UML representations of the system specification ASTs
Project Accelerator(0]
[Project | Accelerator [Block 1 Block | Block |
[Name = QuaternionToEuler | Name = Q i " type Name = QuaternionToEuler sub Name = QuatemionToEuler_pub Name = QuaternionToEulerConverter
Type = HLS DataType = geometry_msgs/Quaternion DataType = geometry_msgs/Point [}
Sources = QuaternionToEuler/QuaternionToEuler.cpp ' g £}
Platform nterface Type \Outgoing(0] iype Tvpe Quigoingl0}
Platform Interface [_ Type 1 [Ou?going] [_ Type] [Ty;‘)e 1 [Ou!géing
E:ratrg jtcr_zggéﬁlg 001 m:;i:e!e:aszeb;mesr Name = QuaternionToEulerConverter m:;‘:?ele::r:nisﬁgf | Mode = Qi _type \ | Name = QuaternionToEuler_pub
e e] S
UltraScale = false

Input{0] Output[0]
T

[InterfaceType

Message = geometry_msgs/Quaternion
Middleware = ROS

InterfaceType

Message = geometry_msgs/Point
Middleware = ROS

Figure 6.6: Quaternion to Euler's AST.

118

6.4 FPGA Architectures for Robotics (FAR) Tool

1 Converters:

2 AXIS_to_msg:

3 - nameBD: AXIS_to_geometry_msgs_Quaternion
4 nameMW: geometry_msgs/Quaternion

5 msg_to_AXIS:

6 - nameBD: geometry_msgs_Point_to_AXIS

7 nameMW: geometry_msgs/Point

Listing 6.7: Derived configuration file (converters part)

An example of a data-flow attribute to obtain the output interfaces of the specified ac-
celerators is shown in Listing 6.8. The getInterfaceOutput() attribute is used for every
accelerator in the AST from the system specification to obtain the information and build the
AST for the template configuration with the derived information. Internally, it loops through all
the different interface types (output in this case). Line 6 and Line 7 in Listing 6.8 show how the
middleware-related information is obtained. The getVhd1Message () attribute (Line 8), taken
from FIRM, is used to retrieve all the low-level signals for the message specification. Lastly,
the signals are filtered with filterIncluded() (Line 12)and filterExcluded() (Line 15)
attributes, based on the include and exclude lists from the system specification. Here it is
also evident the advantages of the use of RAG, allowing to retrieve and manipulate infor-
mation from complex data structures in a straightforward manner by combining multiple
attributes.

Another example of the model analysis is how to derive the connections of all blocks. The
system specification only defines on a high level which variables from the middleware message
specification are to be used from one block to another. However, the low-level signals are

1 syn ListElement Accelerator.getinterfaceOutput() {

2 ListElement outputs = new ListElement();

3

4 for (InterfaceType otype : getinterface().getOutputlist()) {

5 MappingElement out = new MappingElement() ;

6 out.put("middleware", otype.getMiddleware())

7 .put("message", otype.getMessage());

8 VhdIMessage parsed = containingConfig () .getVHDLParsedMsg(otype.
getMessage ()) .getMsgToVhdl () . getVhdIMessage () ;

9 if (otype.getincludelist().getNumcChild() == 0 & otype.
getExcludelist () .getNumChild() == 0) {

10 out.put("include", parsed.getlListMsgfields (parsed).
toListElement());

11 } else if (otype.getincludelist().getNumcChild() > 0) {

12 out.put("include", parsed.getlListMsgfields (parsed).
filterincluded (otype. getincludelist()).toListElement());

13 }

14 if (otype.getExcludelist().getNumcChild() > 0)

15 out.put("include", parsed.getListMsgfields (parsed).
filterExcluded (otype. getExcludelist()).toListElement());

16 outputs.add(out);

17 1

18 return outputs;

19 }

Listing 6.8: Attribute to obtain output interfaces for specified accelerators

119

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

needed for the template configuration and further on the corresponding artifact. Following
a similar approach as the one shown in Listing 6.8, the explicitly defined elements of the
message specification are obtained and with the help of the getVhd1Message () attribute, the
corresponding signals (according to their datatype) are derived. Once that list is generated,
further manipulation has to be performed to format the strings accordingly in the template
configuration. A snippet of this is shown in Listing 6.9. On the one hand, it can be seen (from
Line 2 to Line 9) the expected signal. Note that here it is also included which component is the
source and which one is the destination, as well as its entity's port name. On the other hand,
as the destination block has been defined as HLS, its corresponding signals are deduced,
namely start and done. The clock and reset signals are also included. All these signals are
completely transparent for the user, who might not even be aware of them, simplifying the
use of FPGAs for non-experts.

6.5 Evaluation

The fulfillment of the requirements and how the challenges are solved with the contributions
listed in Section 6.1 are analyzed below, through four different use cases.

6.5.1 Quaternion to Euler

This use case addresses the challenge of obtaining a/l the information (explicit and implicit)
from the system specification (CH1). Listing 6.1 shows that with only 31 lines of code (without
comments and empty spaces for better formatting), the system depicted in Figure 6.1 can be
generated and deployed. It can be seen that the input and output signals of the Quaternion to
Euler Converter have not been individually specified. They have been defined by their message
type (Line 15 and Line 18 in Listing 6.1). This means that all the signals that constitute such
messages are generated (CH3). Even though they have not been explicitly defined, they are
derived by analyzing the message type. The information derived (template configuration) also

1 Connections:

2 - from: QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion/x_out
3 to: QuaternionToEulerConverter/x_in

4 - from: QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion/y_out
5 to: QuaternionToEulerConverter/y_in

6 - from: QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion/z_out
7 to: QuaternionToEulerConverter/z_in

8 - from: QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion/w_out

9 to: QuaternionToEulerConverter/w_in

10 - from: QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion/start
11 to: QuaternionToEulerConverter/ap_start

12 - from: QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion/done
13 to: QuaternionToEulerConverter/ap_done

14 - from: QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion/clk
15 to: processing_system7_0/FCLK_CLKO

16 - from: QuaternionToEuler_sub_AXIS_to_geometry_msgs_Quaternion/rst
17 to: rst_ps7_0_100M/peripheral_aresetn

Listing 6.9: Input configuration file (connections part)

120

6.5 Evaluation

includes the integration of the components shown in Figure 6.1 to the PS via DMA, which
is where native ROS is running to communicate with external nodes. Additionally, a wizard
is provided to avoid manually writing the system specification but generate it interactively.
This further reduces the possibility of making mistakes in such an error-prone process. The
subscriber and publisher take 35 and 28 clock cycles, respectively. The Quaternion to Euler
Converter takes 373 clock cycles. Therefore, the interfaces are not an overhead with respect
to the time it takes to perform the computation (8%, 6%, and 86%, respectively). Table 6.1
shows the speedup obtained with the Quaternion to Euler conversion in hardware with
respect to software running on the PS.

6.5.2 Image Processing

An image processing use case consisting of pipelined functions (i.e., RGB to Grayscale, Down-
scaling, and Integral computation) was generated. Listing 6.4 shows a snippet of the system
specification used, defining the interfaces for the accelerators (CH3), which are targeted to be
in HLS. It also includes which elements of each interface are connected to where. Table 6.1
shows the execution time of each function. They take images with an input resolution of
1920x1080 (full HD) scaled down to 640x480. A speedup of 12.9x, 18.4x, and 10.2x, re-
spectively, was achieved. In this case, the length of the images (and therefore the resulting
AXIS frame) can change. Therefore, the frame length is dynamically computed, as shown
in Figure 6.3. The component to compute it is obtained following the algorithm shown in
Listing 6.5, and it only consumes 48 LUTs, as it is a purely combinational logic. In this case,
the sensor_msgs/Image does not contain nested arrays or messages, so there is no need to
buffer any signals to wait for their sizes signals.

6.5.3 Multi-type Messages

A system consisting of multiple converters for different types of messages was generated. The
different message-specification were chosen to have different lengths and datatypes, namely
sensor_msgs/Image, sensor_msgs/LaserScan and geometry_msgs/TwistStamped which results
in different transfer times (cf., Section 4.3). Moreover, they also have different frequencies.
Each set of converters (one publisher and one subscriber for each type of message) had a
pass-through component in between (considered as the accelerator). This use case aims to
evaluate the use of individual callback queues combined with the scheduling as proposed in
Section 6.3.3. On the software side, three different callback queues were set. They received

Table 6.1: Execution time of hardware accelerated functions.

Function Software*[ms] Hardware™ [ms] Speedup
Quaternion to Euler 0.012884 0.003730 345
Gray Scale Conversion 801.45 62.20 12.9
Scale Down Nearest 381.95 20.73 184
Integral 212.22 20.73 10.2
Robotic Arm Kinematics 0.017 0.008 2.12

*Cortex-A9 running at 666 MHz — "HLS IPs running at 100 MHz

121

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

three types of ROS messages with different lengths at different frequencies. Depending on
the dynamically changing priority list of the LRU scheduler, transactions between PS to PL
occurred. On the hardware side, its counterpart (presented in Chapter 4) was used. This
use case proved the feasibility of having one callback queue per message, which would
correspond to each accelerator. The resource utilization of the hardware implementation
has already been analyzed in Figure 4.5, showing a linear growth with respect to the number
of inputs (requests from publishers).

6.5.4 Robotic Arm Position Estimation

A system to compute the forward kinematics of a 7 Degrees of Freedom (DoF) robotics arm?
was generated. This sort of computation becomes relatively complex and proportional to the
amount of DoF. This is particularly important when performing motion control by generating
a trajectory without colliding with objects. All specifications, inputs, and outputs that describe
the robotics arm are defined in a ROS message specification. The names used for this evaluation
are the ones from that specification. The accelerator is based on the desired and measured
joint state values (q and g_d), and the measured and desired end-effector spatial matrices
(O_T_EE and O_T_EE_d), read from the franka_msgs/FrankaState message. The outputs
are the pose of each joint as fourteen spatial matrices (T1to T7 and T1_d to T7_d, based on q
and g_d), and the medium square error (T_mse) of the calculated spatial matrices concerning
O_T_EE and O_T_EE_d. The reason why the LoC for the Generated Artifacts (Table 6.2) is so
large is due to the extend of the franka_msgs/FrankaState message. However, this is not
a concern when writing the system specification as it only requires including the elements
that contain the joint states as the input interface of the HLS accelerator to compute the
kinematic equations. Table 6.1 shows a speedup of 2x compared to the software execution,
which would be beneficial to perform collision detection by knowing the position of each
joint (spatial matrices) as soon as possible.

6.5.5 Manual Vs. Generated Deployment

Table 6.2 compares the LoC that are manually written (or generated interactively via the
wizard) of the system specification and of all intermediate artifacts for all use cases. Even though
not all the artifacts would have to be manually written, the ratio between the LoC of the
system specification and all the intermediate artifacts exemplifies the effort needed to deploy
each use case manually with respect to the workflow proposed in this work.

The numbers are not an exact representation as they are affected by the message specifi-
cations used by each use case and whether all signals of that message are used. However,
the order of magnitude makes a difference. On the one hand, the first three use cases show
one order of magnitude ratio, as the messages used are not very long. On the other hand,
the robotics arm use case relies on a quite large and complex message specification, which
implies the artifacts for the message-dependent components are pretty extensive. Besides,
not all elements from that message specification are part of the computation done by the
accelerator, but they must be part of the converter because the message is always broad-
casted entirely. However, the system specification for this use case is the second smallest one

Shttps://frankaemika.github.io

122

https://frankaemika.github.io

6.6 Wizard

Table 6.2: Lines of code of input vs. generated artifacts

Input Generated Artifacts Generated
Use Case System Template Acc. Wrappers — Converters System Combined to Input
Specification Configuration ~ and Scripts ~ and Scripts Components Artifacts Ratio
Quaternion to Euler 35 99 22 459 102 682 19.48
Image Processing 83 136 34 692 107 969 11.67
Multi Accelerator System 143 322 34 2320 172 1848 19.91
Robotic Arm 45 1007 22 16540 307 17876 397.24

thanks to the include and exclude options, resulting in two orders of magnitude difference (in
terms of LoC) compared to the total artifacts.

The more complex the project becomes (more accelerators and converters and more complex
message specifications), the higher the effort to write every component manually, which does
not mean an increment in the effort to write the system specification.

6.6 Wizard

The systems specification for an architecture like the one shown in Figure 6.1 can be written
manually as shown in Listing 6.1. The process needs to be meticulous about the special format
and indentation required by the YAML format. However, for larger and more complex systems
with multiple accelerators involved, writing it manually becomes error-prone. Therefore,
an interactive wizard has been included in FAR to aid the user in generating the system
specification. It is based on the grammar shown in Listing 6.6. Hence, interactively, it traverses
it and builds dynamically through the command line a resulting AST. Once all the elements
and characteristics of the desired system have been entered, a YAML file is generated, which
can be used as the input for FAR shown in Figure 6.2. The block diagram in Figure 6.7 shows
an overview of the procedure, which prompts the corresponding elements according to
the different elements to be entered. For example, the type of the accelerator suggests the
three currently supported options, namely VHDL, HLS, or software. One last characteristic of
the wizard is that it not only helps to create a new system specification from scratch, but it is
possible to load an existing one for further work from within the wizard.

Implementing such a command line tool is not complex as it is a matter of traversing the
AST correctly (knowing whether a branch represents a list or not, based on its grammar),
which is quite simple thanks to relying on RAGSs, as shown previously. However, a wizard via
command line might be a familiar tool for a computer scientist, but a graphical approach
might be a more general solution, which is left for future work.

123

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

=

tart |
Show Main Menu
¥
Read Input
¥
View Current 1 Show —
State
-
<__Add new Part >——/ Sty Nexy —
Part Menu
Compute
FPGA Family
B "1” / Read Name and
<P —
Kt FPGA Part
Logend |
Input/Output P heedemion _2> Read Name
and Sources
Process
Type
» !
<__ Decision >
<__VHDL >— Set VHDL
1
<_HLS >—— Set HLS
<_SW _>—>|Set SW
2
st Ot o Diltlillenane
and msg type
i
Set Include or
Exclude Signals
< Block >—/ Read Name —— Set Middleware
Set Outgoing
and msg type
[Exit j«—<_ Save Config —>«——< Import Config - Import Config

Save Config

Figure 6.7: Workflow of interactive tool to create a system specification interactively.
6.7 Adaptability and Extendability

Even though the evaluation in Section 4.3 showed that the proposed architecture (Figure 3.1)
can be scaled up with the Manager thanks to the proposed schedulers in Chapter 4, there
could be cases where other components are a better option. For example, NoCs have been
proposed [133] and studied for large scalable systems [134, 135, 136], so they are a good fit
to replace the Manager. Having a NoC in the system means that the Manager is replaced, and
therefore, there would be no need for the proposed schedulers.

Replacing or adding components requires some changes to adapt mainly FAR (Section 6.4)
to new requirements and extend it to fulfill them by generating these new components and
integrating them into the existing architecture shown before. Considering the case where
a NoC is the chosen component to replace the Manager with, the first thing to modify is
the grammar for the derived system’s specification (Figure 6.5b), which needs to reflect the
new component of the system that is to be generated. This grammar has to be extended to
contain all the derived information via model analysis regarding the characteristics of the
NoC to generate its components (e.g., number of nodes, topology, routing algorithm) that
are most fitted for the specified system. Note that the grammar for the system’s specification
(Figure 6.5a), which is used for FAR's input (written by the user), does not need to be modified

124

6.7 Adaptability and Extendability

as this extension of the system is transparent to the end-user.

Figure 6.8 shows the class diagram of the extended grammar for the system to include a
NoC. The nodes in the resulting AST corresponding to the extended grammar represent
the characteristics of the NoC. The topology is the first thing to define, which will dictate
the routing algorithm for its routers. Each router will have an (X, Y) coordinate to define its
position if a mesh topology is chosen, for example. Besides, connection ports to other routers
and a PE for each are also defined. Lastly, the source of the PE is expected, similarly to the
source of the accelerators as explained previously.

Once the grammar has been extended, the details of the system have to be derived with
model analysis. To do this, some attributes can be re-used. For example, to count how many
accelerators (which for the NoC determines the total number of routers) are specified. Each
accelerator acts as the PE for each router. Then this information will then be the input for a
new attribute to determine the dimension (X, Y) of the NoC. Lastly, new attributes are required
to analyze each accelerator based on potential given characteristics (i.e., WCET) to map them
onto the NoC. This can also lead to specific NoC-based attributes to perform DSE to obtain the
optimal position for each accelerator in the NoC. Once the position of each accelerator in the
given topology has been established, the connections to its router follow. In this case, as the
target of this dissertation is robotics applications, the interfaces will be generated with FIRM,

Config

1

*

Project

Connection

NoC

Topology Name

n Y To
Accelerator %Iisher Subscriber Publishers \Subscribers
*

|BIockAcceIeratorType| |BIockConverterType| Platform |
’ Board

DExisting Nodes
[T]Extended Nodes

ConverterType |

Router

Name

Part
Zynq
UltraScale

nameBlockDiagram

SourcePath nameMessageMiddleware

Target

Algorithm

Name ’

RouterCoordinate

X
Y

Interface

PEInterface [North

InterfaceType

Middleware
Message

Figure 6.8: Adapted grammar including a Network-on-Chip.

125

6 Model-based Generation of Hardware/Software Architectures for Robotics Systems

following the methodology presented earlier in this chapter. However, this is not mandatory,
as the methodology described here can also be used for non-robotics applications or other
middlewares besides ROS. In those cases, FIRM will have to be adapted.

Once the model analysis has been done, all the information to deploy the NoC and the position
of the accelerators have been determined. This information is used to extend the template
configuration. Therefore, new templates are required to use this derived information to build
the component as a hardware IP for the NoC. The advantage of generating a custom NoC is
that the port's entity can be generated in terms of the number of accelerators (and routers)
for each application. Then a similar outcome to the one shown in Listing 6.9 follows, which is
to deploy this new component to replace the Manager. Concerning the automatic deployment,
the instantiation of the Manager has to be replaced to instantiate the autogenerated NoC in
the script that creates the project with all the components defined to constitute a robotics
system. There is one detail to keep in mind. The Manager has been designed to have one
master and one slave AXIS port to connect them to the DMA. In this example case of extending
the system to contain a NoC, the first approach is to use any of its nodes for communicating
with the DMA. Traditionally in a mesh topology, each router has four ports to communicate
with other routers (north, south, east and west). The advantages in this case relying on the
MDE technique is that all edge routers which do not need all communication ports do not
need to leave unconnected signals but rather generate tailored routers depending on their
coordinate (X, Y) dictating which ports they need. It is left for future work to explore how to
improve this, either at the algorithm level for the routers or the mapping part.

6.8 Summary

This chapter focuses on the automatic generation of holistic hardware/software architectures
for FPGA-based robotics systems with the FAR tool. It uses and extends FIRM, presented
in Chapter 5, meaning that robotics middlewares and their specifications are a central part of
the expected outcome. One main challenge is reducing the effort to realize said architectures.
Thus, the input of the proposed workflow used to specify the system must be concise yet
expressive enough that it explicitly contains all characteristics of the desired systems or
implicit in a way that they can be deduced. Consequently, the core of this chapter focuses on
the data-type and data-flow analysis required to obtain all the information to generate the
different artifacts for every architecture.

Following the MDE approach, details about the grammar used for the system specification
as well as for the derived system’s model are given to understand further the advantages
of RAGs for hardware-centric code generation and how the analysis is done via attributes.
An evaluation is performed with heterogeneous use cases to highlight the benefits of the
proposed techniques, showing in terms of LoC the differences in orders of magnitude that
would represent deploying these large and complex systems manually compared to using
FIRM in combination with FAR.

Two points are left for future work. On the one hand, one challenge concerning the data
transmission between PS and PL with ROS involved is addressed. The solution based on
multiple callback queues is proposed, which can be combined with the different schedulers
proposed in Chapter 3. However, the integration of an algorithm to select which scheduling
algorithm is the most fitted one for every system to be generated is left for future work. On

126

6.8 Summary

the other hand, the system specification written in YAML requires following strict rules related
to the language it is written. This is no problem when the system does not include many
message-dependent components or accelerators. However, it becomes pretty error-prone,
which would decrement the benefits gained by generating the rest of the system automatically
if the input of the proposed tool FAR introduces complexity into the process. Even though
a command-line tool is included in FAR, a Graphical User Interface (GUI)-based generation
of system specifications is left for future work to research aspects on the grammar-based
generation of system specifications from a GUI and using the features of attribute grammars
(static analysis) to aid the user in the process.

127

7 Conclusion

The current trend towards increasing heterogeneity in modern robotics platforms and
applications has highlighted the need for computational solutions that can meet the strict
real-time constraints imposed by these systems. The standard embedded CPUs typically used
in robots have limitations in processing the vast amounts of data and complex algorithms
that are increasingly common in these systems. As a result, there is a considerable need to
find alternative solutions for PEs that can fulfill these real-time demands effectively.

On the one hand, GPUs have been widely adopted as a solution for PEs in many applications,
including robotics. However, like any technology, GPUs have both benefits and drawbacks that
must be considered when evaluating their suitability for a particular application. GPUs have a
more straightforward programming model compared to other options, such as FPGAs. This
makes GPUs more accessible for software developers and reduces the time and resources
required to develop and implement solutions. In terms of high performance, GPUs are
designed to perform parallel computations on large amounts of data, making them ideal for
applications that require high-performance computation. In addition, GPUs often have more
memory bandwidth and computing power than traditional CPUs, allowing for more efficient
processing of large amounts of data. Lastly, GPUs are widely used in many applications,
including computer graphics and scientific computing, making them a well-established and
widely supported technology. This provides a large pool of expertise and resources that can
be leveraged to develop and implement solutions. In summary, GPUs have many benefits
that make them a suitable solution for some robotics applications. However, their limitations
and drawbacks must also be considered when evaluating their suitability for a particular
application. GPUs are designed for specific functionalities, making it difficult to adapt to the
unique and constantly evolving requirements of robotics systems. Additionally, they do not
provide the level of customization and adaptability needed in robotics applications. As a result,
GPUs may not be the best solution for processing elements in all robotics application cases,
especially when dealing with complex algorithms and large amounts of data that require
real-time processing. It is essential to carefully consider the application’s requirements and
choose a solution capable of meeting those requirements while balancing the benefits and
drawbacks of the available options.

Onthe other hand, FPGAs are an alternative solution for PEs in robotics and other applications
alike. As with GPUs, FPGAs have their own set of benefits and drawbacks that must be
considered when evaluating their suitability for a particular application. They are highly
versatile, providing almost no limitations in terms of functionality. This makes them ideal for
applications that require advanced capabilities and specialized functions. FPGAs are capable
of computing multiple things (i.e., processing data from sensors, algorithms) concurrently,
making them well-suited for applications that require real-time processing and low latency.

129

7 Conclusion

Lastly, they are highly efficient, with low power consumption, making them well-suited for
applications that are constrained by size and power requirements, such as mobile and
embedded systems. However, FPGAs have limitations in terms of programmability compared
to other options, such as GPUs. This can result in increased development time. Additionally,
special low-level and hardware-related skills knowledge are required to design FPGA-based
systems that might not be in the skill set of all development teams, especially in robotics.
Hence, this makes it more challenging to develop and implement solutions. Lastly, the
debugging and verification of FPGA-based designs can be time-consuming and complex,
requiring specialized tools and techniques. In summary, FPGAs offer a high degree of versatility
and processing capability, making them a suitable solution for many robotics applications.
However, their programmability and specialized skill requirements can make them more
challenging to implement and maintain than other options, such as GPUs. Therefore, it
is important to consider the application’s requirements carefully, as well as the available
resources and expertise within the development team when evaluating the suitability of
FPGAs for a particular application.

Considering this, FPGAs have been proposed as a suitable solution due to their capability to
handle complex algorithms and perform concurrent computing. They are the chosen PEs
in this dissertation. Their use in robotics, however, presents particular technical challenges.
The primary obstacle is the difficulty in programming them, which limits their widespread
adoption by the robotics community. Despite this, using FPGAs can offer significant benefits
in robotics, as long as they do not make the existing robotics workflow even harder. Hence,
this dissertation has undertaken further research to address the challenges associated with
programming FPGAs and explore their potential benefits in robotics applications. Ultimately,
the successful implementation of FPGAs in robotics can significantly advance the state-of-the-
art in this field, enabling the development of more advanced and capable robotic systems.

The development of robotic platforms involves expertise from multiple fields, including hard-
ware, software, and control systems. Integrating diverse computing systems and components
into these platforms further complicates their design and operation. Specialists in each field
must focus on their area of expertise to achieve optimal results while complementing each
other in the development process. However, the challenges in integrating these complex
and heterogeneous systems into a unified platform still remain. It is essential to provide
designers with simple and efficient tools that allow them to concentrate on their areas of
expertise to overcome these challenges.

A component-oriented approach is beneficial in designing FPGA-based systems for robotics
applications because it enables modularity and separation of concerns. This approach allows
different system components to be developed and tested independently, reducing the com-
plexity of the overall system and facilitating debugging and maintenance. The modular design
also enables easy replacement and upgrade of individual components without affecting the
rest of the system. Furthermore, separating concerns fosters specialization, allowing each
component to focus on a specific task, leading to improved performance and increased
reusability. In short, the component-oriented approach leads to more organized, scalable,
and maintainable systems.

Therefore, this dissertation proposes a component-oriented approach to simplify FPGA-based
design in robotics, to make the process accessible and efficient, and preserve the versatility
and real-time processing capabilities of FPGAs. This approach enables easy integration
into a system or architecture by utilizing code-generation based on MDE for obtaining

130

components from simple system specifications to automatically obtain and deploy a full FPGA-
based robotics application. The methodology is application-independent, and generating new
components and systems for further applications is straightforward. Additionally, it closes
the gap in the current state-of-the-art as there have been partial contributions addressing
the use of FPGAs for specific robotics applications. However, a comprehensive examination
of their integration into the field of robotics and holistically considering FPGAs have been
lacking in the literature.

The proposed component-oriented approach aims to simplify the design process of FPGA-
based designs for robotics applications. The components are designed to depend on each
other, as their functionalities are complementary, allowing for a more efficient design process.
An architecture is proposed to serve as the base for all generated systems. It is crucial for
successful Hardware/Software Co-Designs as it includes the essential components needed
to exchange data between software and hardware components seamlessly. To ensure the
end solution is functional, the base architecture must be versatile and able to accommodate
various applications, no matter their complexity. Moreover, the architecture is designed to
be scalable and able to adapt to the growing needs of complex systems without requiring
excessive effort for generation and deployment. This property makes it a solid foundation
for integrating FPGASs into robotics systems, especially considering that these systems often
consist of multiple, potentially complex components. The architecture is designed to be
highly flexible, making it possible to incorporate new components and update existing ones
as needed easily. The modular design also enables the reuse of components across different
designs, further simplifying the design process and reducing the time and effort required
for design implementation. One key component in the base architecture is the scheduler,
which handles data transactions between software and hardware components. Several
algorithms implemented as hardware components are proposed and tested for scalability.
This evaluation also helps to analyze each system specification to asses which of these
schedulers would fit best for each application.

Traditional robotics systems are composed of various software applications that are con-
nected together through a middleware layer. The middleware serves as the intermediary
between the different software components, facilitating the exchange of data between them
by following pre-defined message protocols. The pre-defined specifications for transmitting
data between software and hardware components must be mapped into additional hardware
components to achieve the seamless integration of FPGAs into traditional robotics systems.
The mapping process must ensure that data exchange between hardware and software
components is seamless and effortless. The generation of these components must also
be achieved without affecting the design flow of the systems. The entire process must be
transparent to the designer. Then, these components act as hardware interfaces that are
generated based on the pre-defined (message) specifications from robotics middlewares.
They translate incoming or outgoing messages from/to the accelerators (where the compu-
tation is performed). They are connected to them using either given parts of the message
specification (i.e., a set of signals representing variables) or a standard streaming interface
such as the AXIS for arrays, depending on the needs of the accelerator. Several steps are
required to obtain these components, which are performed by the proposed tool FIRM based
on the MDE technique, in which models are transformed in iterations. In this case, relying
on models benefits the design of hardware components based on message specification.
The specifications can be complex, and manually designing the state machines for the hard-
ware interfaces can be cumbersome, particularly with complex specifications. Additionally,
a complex robotics system comprises several parts with different message specifications,

131

7 Conclusion

which benefits from automatic code generation. An extensive evaluation is performed to
validate the correctness of the generated logic for the components obtained by FIRM, as it
must be able to support and generate hardware components for any off-the-shelf or custom
message specification. The evaluation process ensures this. For this dissertation, the most
popular robotics middleware ROS was used in both current versions, and the evaluation
included all available public message specifications. The MDE approach simplified the process
of extending FIRM when ROS2 was added to the tool. The analysis in terms of the diversity,
complexity, and size of these messages proved to be valid to confirm the extensive support
of ROST and ROS2 by FIRM.

Once all the components are available, they need to be connected all together. In order to
do so, an understanding of the expected system is needed. Besides, the components of the
base architecture are generated depending on the specific needs. For this, data-type and
data-flow analysis is performed on the system specification to derive which are the interface
components that need to be generated with FIRM, which accelerators are present in the
design, and how all of them interact among each other. Hence, FIRM has been incorporated
into the FAR toolchain, which only takes a simple system specification as input. Its purpose
is to automatically deploy the entire system, making the design process more efficient and
straightforward. FAR system automates the deployment of the design, reducing the time
and effort required for manual deployment. It also provides a convenient way to update
and maintain the system, making it easier to keep the design up to date and ensure optimal
performance. Hence, FAR's output is the entire generation and deployment process of an
FPGA-based robotics application from a concise description of the expected system.

In conclusion, the component-oriented approach proposed in this dissertation provides a
practical and scientifically rigorous solution for the design and implementation of FPGA-based
designs for robotics applications. An overview of this dissertation is shown in Figure 7.1. The
modular architecture, the hardware interfaces generator FIRM, and the toolchain FAR provide
a comprehensive design process that enables the development of complex FPGA-based
designs in a more straightforward and efficient manner. The component-oriented approach
has the potential to advance the state-of-the-art in FPGA-based designs significantly for
robotics applications and to promote their wider adoption and use by specialists without
much FPGA knowledge.

Future work

The focus of this dissertation was to investigate the seamless integration of FPGAs into
robotics systems. This integration was achieved by developing the FIRM tool and the FAR
toolchain. The results of the study indicate that a significant advancement has been made in
this direction. However, there are still opportunities for further improvement and open topics
that can be addressed in future work. These directions include: (1) replacing the scheduler
and modeling a NoC as part of the modular architecture, (2) simplifying the design process of
interface templates, and (3) modeling the behavior of accelerators with a tool, also capable
of optimizing resource utilization and of being included as part of FAR. By addressing these
points, future work has the potential to enhance the integration of FPGAs into robotics
systems, resulting in even more efficient and effective solutions.

132

System Specification

\ 4

/ FAR \

FIRM

JastAdd |[Mustache

JastAdd Mustache
y
Accelerators Base Middleware HW/SW
Architecture Interfaces Scheduler

FPGA-based Robotics System

Figure 7.1: Dissertation overview

Analysis and Code Generation for NoCs: Hardware/Software Co-Design was proposed
in this dissertation with a component that integrates a scheduler (with several algorithms
implemented to choose from), which might be replaced with a NoC. The goal is to take
advantage of model analysis to generate the input and output ports of the NoC in a tailored
way for each specific application instead of a generic solution which can include unused
resources when deployed to the FPGA. This can also impact the routing algorithm, which
can be modeled accordingly. The research can explore how the code can be tailored for
each specific router in each coordinate of the NoC and how the links between routers are
affected. Similarly to the schedulers proposed in this dissertation, it can be evaluated which
NoC topology and routing algorithm would fit best for each application.

Model-based Templates Generation from Specifications: The process of designing the
templates for the interface components is time-consuming and arduous and can be improved.
Currently, the templates are created using message examples, which can become difficult to
debug as they grow larger, leading to increased development time. To simplify this process,
future work could focus on generating templates based on message specification rules and
protocols. The research would explore what modeling techniques can be used and how
they can be integrated into the existing tools, FIRM and toolchain FAR. Even though a new
set of templates was created for ROS2 by extending the ones for ROS1, the process was
lengthy due to differences in the rules used for serializing/deserializing the messages to
optimize memory usage. This future work would not only simplify the process of creating
templates but also make it easier to extend the tools to new communication specifications,
like protobuf, which requires a different set of templates due to differences in the rules used
for serializing/deserializing messages.

133

7 Conclusion

Model-base Design of Hardware Accelerators: The current limitation of FAR is the require-
ment of pre-existing accelerators. In their absence, FAR generates placeholder wrappers
derived from data-type and data-flow analysis of the system specification. Future research
may address this limitation by focusing on modeling accelerators from a behavioral perspec-
tive while considering resource utilization restrictions. The ultimate goal is to integrate these
accelerators into the design process of FAR, leading to the optimization of resource utilization
and making it beneficial for low-power applications.

134

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(/]

(8]

(9]

[10]

(11]

Guang-Zhong Yang et al. “The Grand Challenges of Science Robotics”. Science robotics
3.14 (2018), eaar/7650. DOI: 18.1126/scirobotics.aar7650.

Arkadeep Kumar. “Methods and Materials for Smart Manufacturing: Additive Manu-
facturing, Internet of Things, Flexible Sensors and Soft Robotics”. Manufacturing Letters
15 (2018), pages 122-125. DOI: 10.1016/ .mfglet.2017.12.0814.

Ana Correia Simdes, Antdnio Lucas Soares, and Ana Cristina Barros. “Factors Influenc-
ing the Intention of Managers to Adopt Collaborative Robots (Cobots) in Manufacturing
Organizations”. Engineering and Technology Management 57 (2020), page 101574. DOI:
10.1076/j.jengtecman.2020.101574.

Fernando Soto and Robert Chrostowski. “Frontiers of Medical Micro/Nanorobotics: In
Vivo Applications and Commercialization Perspectives Toward Clinical Uses". Frontiers
in Bioengineering and Biotechnology 6 (2018), page 170. DOI: 18.3389/fbioe.2018.
00170.

UM Rao Mogiliand BBVL Deepak. “Review on Application of Drone Systems in Precision
Agriculture”. Procedia Computer Science 133 (2018), pages 502-509. DOI: 18.1016/7 .
procs.2018.07.063.

Mary B Alatise and Gerhard P Hancke. “A Review on Challenges of Autonomous Mobile
Robot and Sensor Fusion Methods”. IEEE Access 8 (2020), pages 39830-39846. DOI:
10.1109/ACCESS.2020.2975643.

Kaveh Azadeh, René De Koster, and Debjit Roy. “Robotized and Automated Ware-
house Systems: Review and Recent Developments”. Transportation Science 53.4 (2019),
pages 917-945. DOI: 10.2139/ssrn.2977779.

Abadi Martin et al. “TensorFlow: A System for Large-Scale Machine Learning”. Sympo-
sium on Operating Systems Design and Implementation (OSDI). 2016, pages 265-283.
DOLI: 10.5281/zenodo .4724125.

Ariel Podlubne, Johannes Mey, René Schdne, Uwe ABmann, and Diana Gohringer.
“Model-Based Approach for Automatic Generation of Hardware Architectures for
Robotics”. IEEE Access 9 (2021), pages 140921-140937. DOI: 10.1109/ACCESS . 2021 .
3119061.

Yasuhiro Nitta, Sou Tamura, and Hideki Takase. “A Study on Introducing FPGA to ROS
Based Autonomous Driving System”. International Conference on Field Programmable
Technology (FPT). 2018. DOI: 18.1109/FPT .2018.00090.

lan Kuon and Jonathan Rose. "Measuring the Gap Between FPGAs and ASICs". Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 26.2 (2007), pages 203-
215. D0l 10.1109/TCAD.2006 .884574.

135

https://doi.org/10.1126/scirobotics.aar7650
https://doi.org/10.1016/j.mfglet.2017.12.014
https://doi.org/10.1016/j.jengtecman.2020.101574
https://doi.org/10.3389/fbioe.2018.00170
https://doi.org/10.3389/fbioe.2018.00170
https://doi.org/10.1016/j.procs.2018.07.063
https://doi.org/10.1016/j.procs.2018.07.063
https://doi.org/10.1109/ACCESS.2020.2975643
https://doi.org/10.2139/ssrn.2977779
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1109/ACCESS.2021.3119061
https://doi.org/10.1109/ACCESS.2021.3119061
https://doi.org/10.1109/FPT.2018.00090
https://doi.org/10.1109/TCAD.2006.884574

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

136

Eriko Nurvitadhi, Jaewoong Sim, David Sheffield, Asit Mishra, Srivatsan Krishnan, and
Debbie Marr. “Accelerating Recurrent Neural Networks in Analytics Servers: Compar-
ison of FPGA, CPU, GPU, and ASIC". International Conference on Field Programmable
Logic and Applications (FPL). 2016. DOI: 10.1109/FPL.2016.7577314.

Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao, Song Han,
Yu Wang, and Huazhong Yang. “Angel-Eye: A Complete Design Flow for Mapping CNN
onto Embedded FPGA". Transactions on Computer-Aided Design of Integrated Circuits
and Systems 37.1 (2017), pages 35-47. DOI: 10.1109/TCAD.2017.27085069.

Lester Kalms, Ariel Podlubne, and Diana Gohringer. “HiFlipVX: An Open Source High-
Level Synthesis FPGA Library for Image Processing”. International Symposium on Applied
Reconfigurable Computing (ARC). 2019. DOI: 10.1087/978-3-08308-17227-5_12.

Jiantao Qiu et al. “Going Deeper with Embedded FPGA Platform for Convolutional
Neural Network”. International Symposium on Field Programmable Gate Arrays (FPGA).
Association for Computing Machinery, 2016, pages 26-35. DOI: 18.1145/2847263 .
2847265.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. “ROS: an Open-Source Robot Operating System”.
International Conference on Robotics and Automation (ICRA) - Workshop on Open Source
Software. Kobe, Japan. 2009, page 5.

Lester Kalms, Ariel Podlubne, and Diana Gohringer. “HiFlipVX: An open source high-
level synthesis fpga library for image processing”. International Symposium on Applied
Reconfigurable Computing (ARC). Springer. 2019, pages 149-164. DOI: 18.1007/978-
3-030-17227-5_12.

Lester Kalms and Diana Gohringer. “Exploration of OpenCL for FPGAs Using SDAccel
and Comparison to GPUs and Multicore CPUS". International Conference on Field
Programmable Logic and Applications (FPL). IEEE, Sept. 2017. DOI: 10.23919 /FPL .
2017 .8056847.

Ariel Podlubne and Diana Gohringer. “Reconfigurable Computing Systems as Compo-
nent Oriented Designs for Robotics”. International Conference on Field Programmable
Logic and Applications (FPL). 2021, pages 1-4. DOIl: 10.1109/FPL53798.2021.00052.

Ariel Podlubne and Diana Gohringer. “Modeling FPGA-based Architectures for Robotics
Systems”. International Conference on Field Programmable Technology (FPT). IEEE, 2022,
pages 1-4. DOI: 10.1109/ICFPT56656.2022 .9974412.

Ariel Podlubne and Diana Gohringer. “FPGA-ROS: Methodology to Augment the Robot
Operating System with FPGA Designs”. International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig). IEEE. 2019, pages 1-5. DOI: 10.1189/ReConFig48160.
2019.8994719.

F.J. Furrer. Future-Proof Software-Systems. Springer, 2019, pages 107-108. DOI: 10.
1007/978-3-658-19938-8_4.

Uwe ABmann et al. Tactile Internet with Human-in-the-Loop. Elsevier, 2021. Chapter U2:
"Human-robot Cohabitation in Industry", pages 41-73. DOI: 10.1016/B978-0-12-
821343-8.00013-7.

Sanjit A. Seshia, Natasha Sharygina, and Stavros Tripakis. “Modeling for Verification”.
Handbook of Model Checking. Edited by Edmund M. Clarke, Thomas A. Henzinger,
Helmut Veith, and Roderick Bloem. Cham: Springer International Publishing, 2018,
pages 7/5-105. DOI: 10.1007/978-3-319-10575-8_3.

https://doi.org/10.1109/FPL.2016.7577314
https://doi.org/10.1109/TCAD.2017.2705069
https://doi.org/10.1007/978-3-030-17227-5_12
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1007/978-3-030-17227-5_12
https://doi.org/10.1007/978-3-030-17227-5_12
https://doi.org/10.23919/FPL.2017.8056847
https://doi.org/10.23919/FPL.2017.8056847
https://doi.org/10.1109/FPL53798.2021.00052
https://doi.org/10.1109/ICFPT56656.2022.9974412
https://doi.org/10.1109/ReConFig48160.2019.8994719
https://doi.org/10.1109/ReConFig48160.2019.8994719
https://doi.org/10.1007/978-3-658-19938-8_4
https://doi.org/10.1007/978-3-658-19938-8_4
https://doi.org/10.1016/B978-0-12-821343-8.00013-7
https://doi.org/10.1016/B978-0-12-821343-8.00013-7
https://doi.org/10.1007/978-3-319-10575-8_3

[25] Ariel Podlubne, Johannes Mey, Sergio Pertuz, Uwe Al3mann, and Diana Gohringer.
“Model-based Generation of Hardware/Software Architectures for Robotics Systems”.
International Conference on Field Programmable Logic and Applications (FPL). IEEE. 2022,
pages 1-7.DOI: 16.1109/FPL57034 .2022 .00034.

[26] Ariel Podlubne, Johannes Mey, Andreas Andreou, Sergio Pertuz, Uwe AlSmann, and
Diana Gohringer. “Model-based Generation of Hardware/Software Architectures with
Hybrid Schedulers for Robotics Systems”. IEEE Transactions on Computers (2023). DOI:
10.1109/TC.2023.3323804.

[27] Ariel Podlubne and Diana Gohringer. “A survey on Adaptive and Parallel Computing in
Robotics: Modelling, Methods and Applications”. /EEE Access 11 (2023), pages 53830~
53849. DOl 10.1109/ACCESS .2023.3281198.

[28] Schmidt.“Model-Driven Engineering”. Computer Society, Computer 39.2 (2006), pages 25-
31.D0I:108.1109/MC.2006 .58.

[29] Felleisen. “On the Expressive Power of Programming Languages”. Science of Computer
Programming 17.1-3 (1991), pages 35-75. DOl 10.1007/3-540-52592-0_60.

[30] Andrea Suardi, Eric C Kerrigan, and George A Constantinides. “Fast FPGA Prototyping
Toolbox for Embedded Optimization”. International Conference on European Control
Conference (ECC). IEEE. 2015, pages 2589-2594. DOI: 10.1189/ECC.2015.7330928.

[31] Alberto Rodrigues da Silva. “Model-Driven Engineering: A Survey Supported by the
Unified Conceptual Model". Computer Languages, Systems and Structures 43 (2015),
pages 139-155. DOI: 18.10816/j.¢1.2015.06.001.

[32] Amelie Flatt, Arne Langner, and Olof Leps. Model-Driven Development of Akoma Ntoso
Application Profiles: A Conceptual Framework for Model-Based Generation of Xml Sub-
schemas. Springer Nature, 2023. DOI: 10.1007/978-3-031-14132-4.

[33] Gorel Hedin. “Reference Attributed Grammars”. Informatica (Slovenia) 24.3 (2000),
pages 301-317.

[34] Sven Karol. "An Introduction to Attribute Grammars”. Department of Computer Science.
Technische Universitat Dresden, Germany (2006).

[35] Gorel Hedin and Eva Magnusson. “JastAdd: an Aspect-Oriented Compiler Construction
System”. Science of Computer Programming 47.1 (2003), pages 37-58. DOI: 10.1016/
S8167-6423(02)00109-0.

[36] Torbjorn Ekman and Gorel Hedin. “The JastAdd Extensible Java Compiler”. International
Conference on Object-Oriented Programming Systems, Languages and Applications. 2007,
pages 1-18. DOI: 10.1145/1297027 .1297029.

[37] Gorel Hedin. “An Introductory Tutorial on JastAdd Attribute Grammars”. International
Summer School on Generative and Transformational Techniques in Software Engineering.
Springer. 2009, pages 166-200.

[38] Zishen Wan, Bo Yu, Thomas Yuang Li, Jie Tang, Yuhao Zhu, Yu Wang, Arijit Raychowd-
hury, and Shaoshan Liu. “A Survey of FPGA-Based Robotic Computing”. Circuits and
Systems Magazine 21.2 (2021), pages 48-74. DOI: 18.1109/MCAS .2021.3071609.

[39] MinxiJin and Tsutomu Maruyama. “Fast and Accurate Stereo Vision System on FPGA”.
Transactions on Reconfigurable Technology and Systems (TRETS) 7.1 (2014), pages 1-24.
DOl 10.1145/2567659.

137

https://doi.org/10.1109/FPL57034.2022.00034
https://doi.org/10.1109/TC.2023.3323804
https://doi.org/10.1109/ACCESS.2023.3281190
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1007/3-540-52592-0_60
https://doi.org/10.1109/ECC.2015.7330928
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1007/978-3-031-14132-4
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1109/MCAS.2021.3071609
https://doi.org/10.1145/2567659

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

138

Wengiang Wang, Jing Yan, Ningyi Xu, Yu Wang, and Feng-Hsiung Hsu. “Real-Time High-
Quality Stereo Vision System in FPGA". Transactions on Circuits and Systems for Video
Technology 25.10 (2015), pages 1696-1708. DOI: 10.1109/TCSVT.2015.2397196.

Oscar Rahnama, Tommaso Cavalleri, Stuart Golodetz, Simon Walker, and Philip Torr.
"R3SGM: Real-Time Raster-Respecting Semi-Global Matching for Power-Constrained
Systems". International Conference on Field Programmable Technology (FPT). IEEE. 2018,
pages 102-109. DOI: 10.1109/FPT.2018.00025.

Michal C Malin et al. “The Mars Science Laboratory (MSL) Mast Cameras and Descent
Imager: Investigation and Instrument Descriptions”. Earth and Space Science 4.8 (2017),
pages 506-539. DOI: 10.1002/2016EA000252.

Quentin Gautier, Alexandria Shearer, Janarbek Matai, Dustin Richmond, Pingfan Meng,
and Ryan Kastner. “Real-Time 3D Reconstruction for FPGAs: A Case Study for Evaluat-
ing the Performance, Area, and Programmability Trade-OFFs of the Altera OpenCL
SDK". International Conference on Field Programmable Technology (FPT). |IEEE. 2014,
pages 326-329. DOI: 10.1109/FPT.2014.7082810.

Mohamed Abouzahir, Abdelhafid Elouardi, Rachid Latif, Samir Bouaziz, and Abde-
louahed Tajer. “Embedding SLAM Algorithms: Has It Come of Age?” Robotics and
Autonomous Systems 100 (2018), pages 14-26. DOI: 10.1016/j .robot.2017.10.019.

Konstantinos Boikos and Christos-Savvas Bouganis. “Semi-Dense SLAM on an FPGA
Soc". International Conference on Field Programmable Logic and Applications (FPL). IEEE.
2016, pages 1-4. DOI: 10.1109/FPL .2016.7577365.

Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and Daniel] Sorin. “The
Microarchitecture of a Real-Time Robot Motion Planning Accelerator”. International
Symposium on Microarchitecture (MICRO). IEEE. 2016, pages 1-12. DOI: 10 . 1109/
MICRO.2016.7783748.

Uday Bondhugula, Ananth Devulapalli, James Dinan, Joseph Fernando, Pete Wyckoff,
Eric Stahlberg, and P Sadayappan. “Hardware/Software Integration for FPGA-Based
All-Pairs Shortest-Paths”. International Symposium on Field Programmable Custom
Computing Machines (FCCM). IEEE. 2006, pages 152-164. DOI: 10.1109/FCCM.2006 .
48.

John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and James C
Phillips. “GPU Computing”. IEEE 96.5 (2008), pages 879-899. DOI: 18.1189/JPROC .
2008 .917757.

Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. “Performance Com-
parison of FPGA, GPU and CPU in Image Processing”. International Conference on
Field Programmable Logic and Applications (FPL). IEEE. 2009, pages 126-131. DOI:
10.1109/FPL.2009.5272532.

David H Jones, Adam Powell, Christos-Sawvas Bouganis, and Peter YK Cheung. “GPU
Versus FPGA for High Productivity Computing”. International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE. 2010, pages 119-124. DOI: 10.11089/
FPL.2010.32.

Sparsh Mittal. “A Survey on Optimized Implementation of Deep Learning Models
on the NVIDIA Jetson Platform”. Systems Architecture 97 (2019), pages 428-442. DOI:
10.1016/j .sysarc.2019.01.011.

https://doi.org/10.1109/TCSVT.2015.2397196
https://doi.org/10.1109/FPT.2018.00025
https://doi.org/10.1002/2016EA000252
https://doi.org/10.1109/FPT.2014.7082810
https://doi.org/10.1016/j.robot.2017.10.019
https://doi.org/10.1109/FPL.2016.7577365
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1109/FCCM.2006.48
https://doi.org/10.1109/FCCM.2006.48
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/FPL.2009.5272532
https://doi.org/10.1109/FPL.2010.32
https://doi.org/10.1109/FPL.2010.32
https://doi.org/10.1016/j.sysarc.2019.01.011

[52]

(53]

(54]

[55]

[56]

(57]

(58]

[59]

(60]

[61]

[62]

[63]

Gopalakrishna Hegde and Nachiket Kapre. “CaffePresso: Accelerating Convolutional
Networks on Embedded SoCs". Transactions on Embedded Computing Systems (TECS)
17.1(2017), pages 1-26. DOI: 10.1145/3105925.

John M Pierre. “Spatio-Temporal Deep Learning for Robotic Visuomotor Control”. Inter-
national Conference on Control, Automation and Robotics (ICCAR). IEEE. 2018, pages 94~
103. DOI: 18.1109/ICCAR.2018.8384651.

Ze Wang, Weigiang Ren, and Qiang Qiu. “Lanenet: Real-Time Lane Detection Networks
for Autonomous Driving". arXiv preprint arXiv:1807.01726 (2018). DOI: 18 . 48550 /
arxXiv.1807.01726.

Nitin J Sanket, Chahat Deep Singh, Kanishka Ganguly, Cornelia Fermuller, and Yiannis
Aloimonos. “Gapflyt: Active Vision Based Minimalist Structure-Less Gap Detection for
Quadrotor Flight”. Robotics and Automation Letters 3.4 (2018), pages 2799-2806. DOI:
10.1109/LRA.2018.2843445.

Ratnesh Madaan, Daniel Maturana, and Sebastian Scherer. “Wire Detection using
Synthetic Data and Dilated Convolutional Networks for Unmanned Aerial Vehicles”. In-
ternational Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pages 3487~
3494. DOI:19.1109/IR0S.2017.8206190.

Nasrin Attaran, Abhilash Puranik, Justin Brooks, and Tinoosh Mohsenin. “Embedded
Low-Power Processor for Personalized Stress Detection”. Transactions on Circuits and
Systems II: Express Briefs 65.12 (2018), pages 2032-2036. DOI: 10.1109/TCSII.2018.
2799821.

Tahmid Abtahi, Colin Shea, Amey Kulkarni, and Tinoosh Mohsenin. “Accelerating
Convolutional Neural Network with FFT on Embedded Hardware”. Transactions on Very
Large Scale Integration (VLSI) Systems 26.9 (2018), pages 1737-1749. DOI: 10.1109/
TVLSI.2018.2825145.

AliJafari, Ashwinkumar Ganesan, Chetan Sai Kumar Thalisetty, Varun Sivasubramanian,
Tim Oates, and Tinoosh Mohsenin. “Sensornet: A Scalable and Low-Power Deep
Convolutional Neural Network for Multimodal Data Classification”. Transactions on
Circuits and Systems I: Regular Papers 66.1 (2018), pages 274-287.DOI: 10.1109/TCSI.
2018.2848647.

S Rallapalli, H Qiu, A Bency, S Karthikeyan, R Govindan, B Manjunath, and R Urgaonkar.
“Are Very Deep Neural Networks Feasible on Mobile Devices". Trans. Circ. Syst. Video
Technol (2016).

Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H Anderson, F
Donelson Smith, Alex Berg, and Shige Wang. “An Evaluation of the NVIDIA TX1 for
Supporting Real-Time Computer-Vision Workloads”. International Real-Time and Em-
bedded Technology and Applications Symposium (RTAS). IEEE. 2017, pages 353-364.
DOI: 10.1109/RTAS.2017.3

Travis Manderson, Juan Camilo Gamboa Higuera, Ran Cheng, and Gregory Dudek.
“Vision-Based Autonomous Underwater Swimming in Dense Coral for Combined
Collision Avoidance and Target Selection”. International Conference on Intelligent Robots
and Systems (IROS). I[EEE. 2018, pages 1885-1891.DOI: 18.1109/IR0S.2018.8594410.

Shenshen Gu, Xinyi Chen, Wei Zeng, and Xin Wang. “A Deep Learning Tennis Ball
Collection Robot and the Implementation on NVIDIA Jetson TX1 Board”. International
Conference on Advanced Intelligent Mechatronics (AIM). IEEE. 2018, pages 170-175. DOI:
10.1109/AIM.2018.8452263

139

https://doi.org/10.1145/3105925
https://doi.org/10.1109/ICCAR.2018.8384651
https://doi.org/10.48550/arXiv.1807.01726
https://doi.org/10.48550/arXiv.1807.01726
https://doi.org/10.1109/LRA.2018.2843445
https://doi.org/10.1109/IROS.2017.8206190
https://doi.org/10.1109/TCSII.2018.2799821
https://doi.org/10.1109/TCSII.2018.2799821
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TCSI.2018.2848647
https://doi.org/10.1109/TCSI.2018.2848647
https://doi.org/10.1109/RTAS.2017.3
https://doi.org/10.1109/IROS.2018.8594410
https://doi.org/10.1109/AIM.2018.8452263

Bibliography

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

140

Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. “Middleware for Robotics: A
Survey”. International Conference on Robotics, Automation and Mechatronics (ICMRA).
IEEE. 2008, pages 736-742. DOI: 186.1109/RAMECH .2008 .4681485.

Herman Bruyninckx. “Open Robot Control Software: The OROCQOS Project”. Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2001, pages 2523-2528.
DOI: 10.1109/R0OBOT.2001.933002.

Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. “YARP: Yet Another Robot Plat-
form”. International Advanced Robotic Systems 3.1 (2006), page 8. DOI: 10.5772/5761.

Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the Performance of
ROS2". International Conference on Embedded Software (EMSOFT). 2016, pages 1-10.
DOl 10.1145/2968478.2968502.

Kento Hasegawa, Kazunari Takasaki, Makoto Nishizawa, Ryota Ishikawa, Kazushi Kawa-
mura, and Nozomu Togawa. “Implementation of a ROS-Based Autonomous Vehicle
on an FPGA Board". International Conference on Field Programmable Technology (FPT).
2019. DOl 18.1109/ICFPT47387.2019.00092.

Yasuhiro Nitta, Sou Tamura, Hidetoshi Yugen, and Hideki Takase. “ZytleBot: FPGA
Integrated Development Platform for ROS Based Autonomous Mobile Robot”. Inter-
national Conference on Field Programmable Technology (FPT). 2019. DOI: 10.1109/FPL .
2019.00077.

J. Pefia Queralta, F. Yuhong, L. Salomaa, L. Qingging, T. N. Gia, Z. Zou, H. Tenhunen,
and T. Westerlund. “FPGA-Based Architecture for a Low-Cost 3D Lidar Design and
Implementation from Multiple Rotating 2D Lidars with ROS". Sensors. IEEE. 2019,
pages 1-4. DOI: 10.1109/SENSORS43011.2019.8956928.

Stefano Aldegheri, Nicola Bombieri, Nicola Dall'Ora, Franco Fummi, Simone Girardi,
and Marco Panato. “A Framework for the Design and Simulation of Embedded Vision
Applications Based on OpenVX and ROS". International Symposium on Circuits and
Systems (ISCAS). 2018. DOI: 10.1109/ISCAS.2018.8351514.

Kazushi Yamashina, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota. “Pro-
posal of ROS-compliant FPGA Component for Low-Power Robotic Systems”. CoRR
abs/1508.07123 (2015). arXiv: 1508.07123.

Dayang NA Jawawi, Rosbi Mamat, and Safaai Deris. “A Component-Oriented Program-
ming for Embedded Mobile Robot Software”. Advanced Robotic Systems 4.3 (2007),
page 40. DOI: 10.5772/5678.

Kazushi Yamashina, Hitomi Kimura, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi
Yokota. “cReComp: Automated Design Tool for ROS-Compliant FPGA Component”.
International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOQ).
IEEE. 2016, pages 138-145. DOI: 186.1109/MCS0C.2016 .47.

Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu Ootsu, and
Takashi Yokota. “Automatic Generation Tool of FPGA Components for Robots". IEICE
Transactions on Information and Systems 102.5 (2019), pages 1012-1019. DOI: 10.
1587/transinf .2018RCPO00A4.

Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu Ootsu, and
Takashi Yokota. “Architecture Exploration of Intelligent Robot System Using ROS-
Compliant FPGA Component”. International Symposium on Rapid System Prototyping
(RSP). IEEE. 2016, pages 1-7. DOI: 16.1145/29960299 .2990312.

https://doi.org/10.1109/RAMECH.2008.4681485
https://doi.org/10.1109/ROBOT.2001.933002
https://doi.org/10.5772/5761
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1109/ICFPT47387.2019.00092
https://doi.org/10.1109/FPL.2019.00077
https://doi.org/10.1109/FPL.2019.00077
https://doi.org/10.1109/SENSORS43011.2019.8956928
https://doi.org/10.1109/ISCAS.2018.8351514
https://arxiv.org/abs/1508.07123
https://doi.org/10.5772/5678
https://doi.org/10.1109/MCSoC.2016.47
https://doi.org/10.1587/transinf.2018RCP0004
https://doi.org/10.1587/transinf.2018RCP0004
https://doi.org/10.1145/2990299.2990312

[77] Takeshi Ohkawa, Kazushi Yamashina, Hitomi Kimura, Kanemitsu Ootsu, and Takashi
Yokota. "FPGA Components for Integrating FPGAs into Robot Systems”. /EICE Trans-
actions on Information and Systems 101.2 (2018), pages 363-375. DOI: 18 . 1587/
transinf.2017RCPOO11.

[78] Yuhei Sugata, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota. “Acceleration
of Publish/Subscribe Messaging in ROS-Compliant FPGA Component”. International
Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART).
2017, pages 1-6. DOl 10.1145/3120895.3120904.

[79] David Sidler, Zsolt Istvan, and Gustavo Alonso. “Low-latency TCP/IP stack for data cen-
ter applications”. International Conference on Field Programmable Logic and Applications
(FPL). 2016, pages 1-4. DOI: 10.1109/FPL.2016.7577319.

[80] Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, and Takeshi Ohkawa. "FPGA
Acceleration of ROS2-Based Reinforcement Learning Agents”. International Symposium
on Computing and Networking Workshops (CANDARW). IEEE. 2020, pages 106-112. DOI:
10.1109/CANDARWS51189.2020.00031.

[81] Marc Eisoldt, Steffen Hinderink, Marco Tassemeier, Marcel Flottmann, Juri Vana,
Thomas Wiemann, Julian Gaal, Marc Rothmann, and Mario Porrmann. “ReconfROS:
Running ROS on Reconfigurable SoCs”". Workshop on Drone Systems Engineering. Drone
Systems Engineering (DroneSE). 2021, pages 16-21. DOI: 10.1145/3444950 .3444959.

[82] Takeshi Ohkawa, Yuhei Sugata, Harumi Watanabe, Nobuhiko Ogura, Kanemitsu Ootsu,
and Takashi Yokota. “High-Level Synthesis of ROS Protocol Interpretation and Com-
munication Circuit for FPGA". International Workshop on Robotics Software Engineering
(ROSE). IEEE. 2019, pages 33-36. DOI: 10.1109/RoSE .2019.00014.

[83] HidekiTakase, Tomoya Mori, Kazuyoshi Takagi, and Naofumi Takagi. “mROS: A Lightweight
Runtime Environment for Robot Software Components onto Embedded Devices”.
International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies
(HEART). 2019, pages 1-6. DOI: 10.1145/3337801.3337815.

[84] Hideki Takase, Tomoya Mori, Kazuyoshi Takagi, and Naofumi Takagi. “mROS: a Lightweight
Runtime Environment of ROS 1 Nodes for Embedded Devices". Information Processing
28 (2020), pages 150-160. DOI: 18.2197/ipsjjip.28.150.

[85] Mohammad Hosseinabady and Jose Luis Nunez-Yanez. “Run-Time Power Gating in
Hybrid ARM-FPGA Devices". International Conference on Field Programmable Logic and
Applications (FPL). IEEE. 2014, pages 1-6. DOI: 18.1109/FPL .2014.6927503.

[86] Christian Lienen, Marco Platzner, and Bernhard Rinner. “ReconROS: Flexible Hardware
Acceleration for ROS2 Applications”. International Conference on Field Programmable
Technology (FPT). IEEE, 2020, pages 268-276.DOI: 18.1109/ICFPT51103.2020 .00046.

[87] Andreas Agne, Markus Happe, Ariane Keller, Enno Lubbers, Bernhard Plattner, Marco
Platzner, and Christian Pless|. “ReconOS: An Operating System Approach for Recon-
figurable Computing”. Micro 34.1 (2014), pages 60-71. DOI: 18.1109/MM.20813.1180.

[88] Christian Lienen and Marco Platzner. "ReconROS Executor: Event-Driven Programming
of FPGA-Accelerated ROS 2 Applications”. CoRR abs/2201.07454 (2022).

[89] EdsondeAraujo Silva, Eduardo Valentin, Jose Reginaldo Hughes Carvalho, and Raimundo
da Silva Barreto. “A Survey of Model-Driven Engineering in Robotics”. Computer Lan-
guages 62 (2021), page 101021. DOI: 10.1016/7 .cola.2020.101021.

141

https://doi.org/10.1587/transinf.2017RCP0011
https://doi.org/10.1587/transinf.2017RCP0011
https://doi.org/10.1145/3120895.3120904
https://doi.org/10.1109/FPL.2016.7577319
https://doi.org/10.1109/CANDARW51189.2020.00031
https://doi.org/10.1145/3444950.3444959
https://doi.org/10.1109/RoSE.2019.00014
https://doi.org/10.1145/3337801.3337815
https://doi.org/10.2197/ipsjjip.28.150
https://doi.org/10.1109/FPL.2014.6927503
https://doi.org/10.1109/ICFPT51103.2020.00046
https://doi.org/10.1109/MM.2013.110
https://doi.org/10.1016/j.cola.2020.101021

Bibliography

[90]

[97]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

142

Thomas Stahl, Markus Volter, and Krzysztof Czarnecki. Model-Driven Software Develop-
ment: Technology, Engineering, Management. Hoboken, NJ, USA: John Wiley and Sons,
Inc., 2006.

Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. “A Survey on Domain-
Specific Languages in Robotics". Simulation, Modeling, and Programming for Autonomous
Robots. Springer International Publishing, 2014, pages 195-206. DOI: 18.1007/978-
3-319-11900-7_17.

Ruediger Willenberg, Zamira Daw, Christian Englert, and Marcus Vetter. “Generation of
Deterministic MCU/FPGA Hybrid Systems from UML Activities". International Conference
on Field Programmable Logic and Applications (FPL). IEEE. 2010, pages 340-345. DOI:
10.1109/FPL.2010.74.

Chiraz Trabelsi, Samy Meftali, and Jean-Luc Dekeyser. “Decentralized Control for
Dynamically Reconfigurable FPGA Systems”. Microprocessors and Microsystems 37.8
(2013), pages 871-884. DOI: 10.1016/7 .micpro.2013.04.012.

Chiraz Trabelsi, Samy Mettali, Rabie ben Atitallah, and Jean-Luc Dekeyser. “Model-
Driven Design Flow for Distributed Control in Reconfigurable FPGA Systems”. Confer-
ence on Design and Architectures for Signal and Image Processing (DASIP). IEEE. 2014,
pages 1-6. DOI: 10.1109/DASIP.2014.7115631.

Chiraz Trabelsi, Samy Meftali, and Jean-Luc Dekeyser. “Distributed Control for Recon-
figurable FPGA Systems: A High-Level Design Approach”. International Workshop on
Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC). IEEE. 2012, pages 1-
8.DOI: 10.1109/ReCoS0C.2012.6322871.

Remigiusz Wisniewski, Grzegorz Bazydto, Luis Gomes, and Aniko Costa. “Dynamic
Partial Reconfiguration of Concurrent Control Systems Implemented in FPGA Devices”.
IEEE Transactions on Industrial Informatics 13.4 (2017), pages 1734-1741. DOI: 10.
1109/TIT1.2017.2702564.

Vladimir Estivill-Castro, René Hexel, and Morgan McColl. “High-Level Executable Mod-
els of Reactive Real-Time Systems with Logic-Labelled Finite-State Machines and
FPGAS". International Conference on ReConFigurable Computing and FPGAs (ReConFig).
IEEE. 2018, pages 1-8. DOI: 16.1109/RECONFIG.2018.86417180.

Vladimir Estivill-Castro and René Hexel. “Arrangements of Finite-State Machines Se-
mantics, Simulation, and Model Checking". International Conference on Model-Driven
Engineering and Software Development. Volume 2. 2013, pages 182-189. DOI: 10.5228/
00043171018201809.

Taylor Riché, Jim Nagle, Joyce Xu, and Don Hubbard. “Converting Executable Floating-
Point Models to Executable and Synthesizable Fixed-Point Models". International
Conference on Model-Driven Engineering Languages and Systems Companion (MODELS-C).
IEEE. 2019, pages 354-361. DOI: 10.1109/MODELS-C.2019.00055.

Mouna Baklouti, Manel Ammar, Philippe Marquet, Mohamed Abid, and Jean-Luc
Dekeyser. “"A Model-Driven Based Framework for Rapid Parallel SoC FPGA Prototyping”.
International Symposium on Rapid System Prototyping (RSP). IEEE. 2011, pages 149-155.
DOl 10.1109/RSP.2011.59299809.

Ciprian Teodorov, Damien Picard, and Loic Lagadec. “FPGA Physical-Design Automa-
tion Using Model-Driven Engineering’. International Workshop on Reconfigurable Com-
munication Centric Systems-on-Chip (ReCoSoC). IEEE. 2011, pages 1-6. DOI: 10.1109/
ReCoSoC.2011.5981495.

https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1109/FPL.2010.74
https://doi.org/10.1016/j.micpro.2013.04.012
https://doi.org/10.1109/DASIP.2014.7115631
https://doi.org/10.1109/ReCoSoC.2012.6322871
https://doi.org/10.1109/TII.2017.2702564
https://doi.org/10.1109/TII.2017.2702564
https://doi.org/10.1109/RECONFIG.2018.8641710
https://doi.org/10.5220/0004317101820189
https://doi.org/10.5220/0004317101820189
https://doi.org/10.1109/MODELS-C.2019.00055
https://doi.org/10.1109/RSP.2011.5929989
https://doi.org/10.1109/ReCoSoC.2011.5981495
https://doi.org/10.1109/ReCoSoC.2011.5981495

[102] Roberto de Medeiros, Marcilyanne M Gois, Drausio L Rossi, and Vanderlei Bonato.
“Designing Embedded Systems with MARTE: A PIM to PSM Converter”. International
Symposium on Industrial Embedded Systems (SIES). IEEE. 2012, pages 303-306. DO
10.1109/SIES.2012.6356602.

[103] Marcela Leite, Cristiano D Vasconcellos, and Marco Aurélio Wehrmeister. “Enhancing
Automatic Generation of VHDL DescrlPtions from UML/MARTE Models”. International
Conference on Industrial Informatics (INDIN). IEEE. 2014, pages 152-157. DOI: 10.11089/
INDIN.2014.6945500.

[104] Marcela Leite and Marco Aurélio Wehrmeister. “Aspect-Oriented Model-Driven En-
gineering for FPGA/VHDL Based Embedded Real-Time Systems”. International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Computing. IEEE.
2014, pages 261-268. DOI: 10.1189/ISORC.2014 .45.

[105] Huafeng Zhang, Yu Jiang, Han Liu, Hehua Zhang, Ming Gu, and Jiaguang Sun. “Model-
Driven Design of Heterogeneous Synchronous Embedded Systems”. International
Conference on Automated Software Engineering (ASE). IEEE. 2016, pages 774-779. DOI:
10.1145/2970276.2970280.

[106] Franz-josef Streit, Martin Letras, Stefan Wildermann, Benjamin Hackenberg, Joachim
Falk, Andreas Becher, and Jurgen Teich. “Model-Based Design Automation of Hard-
ware/software Co-Designs for Xilinx Zyng MPSoC". International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig). IEEE. 2018, pages 1-8. DOI: 18.1109/
RECONFIG.2018.8641736.

[107] Andrea Enrici, Julien Lallet, Renaud Pacalet, Ludovic Apvrille, Karol Desnos, and Imran
Latif. “Model-Based Programming for Multi-Processor Platforms with TTool/DIPLODOCUS
and OMC". International Conference on Model-Driven Engineering and Software Develop-
ment. Springer. 2018, pages 56-81. DOI: 10.1007/978-3-030-11030-7_4.

[108] Jorgiano Vidal, Florent De Lamotte, Guy Gogniat, Jean-Philippe Diguet, and Sebastien
Guillet. “Dynamic Applications on Reconfigurable Systems: from UML Model Design
to FPGAs Implementation”. International Conference on Design, Automation and Test in
Europe (DATE). IEEE. 2011, pages 1-4. DOI: 10.1109/DATE .2011.5763315.

[109] Jorgiano Vidal, Florent De Lamotte, Guy Gogniat, Jean-Philippe Diguet, and Philippe
Soulard. “UML Design for Dynamically Reconfigurable MultlProcessor Embedded
Systems”. International Conference on Design, Automation and Test in Europe (DATE).
IEEE. 2010, pages 1195-1200. DOI: 10.1109/DATE .2010.5456989.

[110] Gilberto Ochoa, El-Bay Bourennane, Hassan Rabah, and Ouassila Labbani. “High-
Level Modelling and Automatic Generation of Dynamicaly Reconfigurable Systems”.
Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE.
2011, pages 1-8. DOIl: 10.1109/DASIP.2011.6136900.

[111] Gilberto Ochoa-Ruiz, Sébastien Guillet, Florent De Lamotte, Eric Rutten, El-Bay Bouren-
nane, Jean-Philippe Diguet, and Guy Gogniat. "An UML Approach for Rapid Prototyping
and Implementation of Dynamic Reconfigurable Systems”. Transactions on Design Au-
tomation of Electronic Systems (TODAES) 21.1 (2015), pages 1-25. DOI: 10 . 1145/
2800784.

[112] Youenn Corre, Jean-Philippe Diguet, Loic Lagadec, Dominique Heller, and Dominique
Blouin. “Fast Template-Based Heterogeneous MPSoC Synthesis on FPGA”. International
Symposium on Applied Reconfigurable Computing (ARC). Springer. 2013, pages 154-166.
DOl 10.1007/978-3-642-36812-7_15.

143

https://doi.org/10.1109/SIES.2012.6356602
https://doi.org/10.1109/INDIN.2014.6945500
https://doi.org/10.1109/INDIN.2014.6945500
https://doi.org/10.1109/ISORC.2014.45
https://doi.org/10.1145/2970276.2970280
https://doi.org/10.1109/RECONFIG.2018.8641736
https://doi.org/10.1109/RECONFIG.2018.8641736
https://doi.org/10.1007/978-3-030-11030-7_4
https://doi.org/10.1109/DATE.2011.5763315
https://doi.org/10.1109/DATE.2010.5456989
https://doi.org/10.1109/DASIP.2011.6136900
https://doi.org/10.1145/2800784
https://doi.org/10.1145/2800784
https://doi.org/10.1007/978-3-642-36812-7_15

Bibliography

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

144

Wolfgang Ecker, Keerthikumara Devarajegowda, Michael Werner, Zhao Han, and
Lorenzo Servadei. "Embedded Systems’ Automation Following Omg's Model-Driven
Architecture Vision". International Conference on Design, Automation and Test in Europe
(DATE). IEEE. 2019, pages 1301-1306. DOI: 10.23919/DATE.2019.8715154.

Johannes Wienke, Arne Nordmann, and Sebastian Wrede. “A Meta-model and Toolchain
for Improved Interoperability of Robotic Frameworks”. Simulation, Modeling, and Pro-
gramming for Autonomous Robots. Springer Berlin Heidelberg, 2012, pages 323-334.
DOl 10.1007/978-3-642-34327-8_30.

Fabio M Costa, Karl A Morris, Fabio Kon, and Peter | Clarke. “Model-Driven Domain-
Specific Middleware”. International Conference on Distributed Computing Systems (ICDCS).
IEEE. 2017, pages 1961-1971. DOI: 16.1109/ICDCS.2017.197.

Donald E Knuth. “Semantics of Context-Free Languages”. Mathematical systems theory
2.2 (1968), pages 127-145. DOI: 10.1007/BF01692511.

R. Farrow. “Generating a Production Compiler from an Attribute Grammar”. English.
Software 1.04 (Oct. 1984), pages 77-93. DOI: 10.1109/MS . 1984 .229467.

Christoff Burger, Sven Karol, and Christian Wende. “Applying Attribute Grammars for
Metamodel Semantics”. International Workshop on Formalization of Modeling Languages.
ACM, 2010, page 1. DOI: 10.1145/1943397.1943398.

Jesper Oqvist. “Extend): Extensible Java compiler”. Conference Companion of the 2nd
International Conference on Art, Science, and Engineering of Programming. Program-
ming'18 Companion. New York, NY, USA: Association for Computing Machinery, Apr.
2018, pages 234-235.DOI: 10.1145/3191697.3213798.

Harald H Vogt, S Doaitse Swierstra, and Matthijs F Kuiper. “Higher Order Attribute
Grammars”. SIGPLAN Notices 24.7 (1989), pages 131-145. DOI: 10.1145/73141 .74830.

Johannes Mey, René Schone, Gorel Hedin, Emma Soderberg, Thomas Kuhn, Niklas
Fors, Jesper Oqyist, and Uwe ARmann. “Relational Reference Attribute Grammars:
Improving Continuous Model Validation”. Computer Languages 57 (2020), page 100940.
DOI:10.1016/7.cola.2019.100940.

Object Management Group (OMG). Interface Definition Language, Version 4.2. OMG
Document Number formal/18-01-05 (https://www.omg.org/spec/IDL/4.2). 2018.

Johannes Mey, Thomas Kuhn, René Schone, and Uwe Assmann. “Reusing Static Anal-
ysis across Different Domain-Specific Languages Using Reference Attribute Gram-
mars”. The Art, Science, and Engineering of Programming 4.3 (Feb. 1, 2020), 15:1-36.
DOI: 10.22152 /programming-journal.org/2020/4/15.

Chris Wanstrath. mustache - Logic-Less Templates. https://mustache . github . io.
Accessed: 2020-07-20. 2020.

Jishnu Saurav Mittapalli and Menaka Pushpa Arthur. “Survey on Template Engines in
Java". en. ITM Web of Conferences 37 (2021). Publisher: EDP Sciences, page 01007. DOI:
10.1051/1itmconf/20213701007.

Eve Coste-Maniere and Reid Simmons. “Architecture, the Backbone of Robotic Sys-
tems”. International Conference on Robotics and Automation (ICRA). Volume 1. IEEE. 2000,
pages 6/-72. DOI: 10.1109/R0OB0OT .2000 .844041.

https://doi.org/10.23919/DATE.2019.8715154
https://doi.org/10.1007/978-3-642-34327-8_30
https://doi.org/10.1109/ICDCS.2017.197
https://doi.org/10.1007/BF01692511
https://doi.org/10.1109/MS.1984.229467
https://doi.org/10.1145/1943397.1943398
https://doi.org/10.1145/3191697.3213798
https://doi.org/10.1145/73141.74830
https://doi.org/10.1016/j.cola.2019.100940
https://www.omg.org/spec/IDL/4.2
https://doi.org/10.22152/programming-journal.org/2020/4/15
https://mustache.github.io
https://doi.org/10.1051/itmconf/20213701007
https://doi.org/10.1109/ROBOT.2000.844041

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zambreno, and Phillip
H Jones. “Comparing Energy Efficiency of CPU, GPU and FPGA Implementations for
Vision Kernels”. International Conference on Embedded Software and Systems (ICESS,).
IEEE. 2019, pages 1-8. DOI: 18.1109/ICESS.2019.8782524.

Onur Ulusel, Christopher Picardo, Christopher B Harris, Sherief Reda, and R Iris Bahar.
“Hardware Acceleration of Feature Detection and Description Algorithms on Low-
Power Embedded Platforms”. International Conference on Field Programmable Logic
and Applications (FPL). IEEE. 2016, pages 1-9. DOI: 10.1109/FPL.20816.7577310.

Stylianos | Venieris and Christos-Savvas Bouganis. “fpgaConvNet: Mapping Regular
and Irregular Convolutional Neural Networks on FPGAS”. Transactions on Neural Net-
works and Learning Systems 30.2 (2018), pages 326-342. DOI: 10.1109/TNNLS.2018.
2844093.

Stephanie Soldavini and Christian Pilato. “A Survey on Domain-Specific Memory Archi-
tectures”. arXiv preprint arXiv:2108.08672 (2021). DOI: 10.29292/jics.v1612.509.

D.C. Schmidt. “Model-Driven Engineering”. Journal Computer 39.2 (2006), pages 25-31.
DOl 10.1109/MC.2006 .58.

Emma Nilsson-Nyman, Gorel Hedin, Eva Magnusson, and Torbjorn Ekman. “Declarative
Intraprocedural Flow Analysis of Java Source Code”. Electronic Notes in Theoretical
Computer Science 238.5 (2009). International Workshop on Language Descriptions,
Tools and Applications (LDTA), pages 155-171. DOI: https://doi.org/10.1816/7.
entcs.2009.09.046.

Luca Benini and Giovanni De Micheli. “Networks on Chip: A New Paradigm for Systems
on Chip Design". International Conference on Design, Automation and Test in Europe
(DATE). IEEE. 2002, pages 418-419. DOI: 10.1109/DATE .2002 .998307.

Tobias Bjerregaard and Shankar Mahadevan. “A Survey of Research and Practices of
Network-On-Chip”. Computing Surveys (CSUR) 38.1 (2006), pages 1-52. DOI: 10.1145/
1132952 .1132953.

Salma Hesham, Jens Rettkowski, Diana Goehringer, and Mohamed A Abd El Ghany.
“Survey on Real-Time Networks-On-Chip”. Transactions on Parallel and Distributed
Systems 28.5 (2016), pages 1500-1517. DOI: 10.1109/TPDS.20816.2623619.

Boris Grot, Joel Hestness, Stephen W Keckler, and Onur Mutlu. “Kilo-NoC: A Het-
erogeneous Network-On-Chip Architecture for Scalability and Service Guarantees”.
International Symposium on on Computer Architecture (ISCA). IEEE. 2011, pages 401-412.
DOl 10.1145/2000064 .2000112.

Habib Khan, Ariel Podlubne, and Diana Gohringer. “Intrusive FPGA-in-the-loop de-
bugging using a rule-based inference system". Microprocessors and Microsystems 64
(2019), pages 185-194. DOI: 16.1016/j .micpro.2018.11.004.

Habib Khan, Gokhan Akgun, Ariel Podlubne, Felix Wegener, Amir Moradi, Diana
Gohringer, et al. “Cycle-Accurate Debugging of Multi-clock Reconfigurable Systems”.
International Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE. 2019,
pages 1-5. DOI: 16.1109/ReConF1g48160.2019.8994806.

Habib Khan, Ariel Podlubne, Gokhan Akglin, Diana Gohringer, et al. “Cycle-Accurate
Debugging of Embedded Designs Using Recurrent Neural Networks”. International
Symposium on Applied Reconfigurable Computing (ARC). Springer. 2020, pages 1-5. DO
10.1007/978-3-030-44534-8_6.

145

https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1109/FPL.2016.7577310
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.29292/jics.v16i2.509
https://doi.org/10.1109/MC.2006.58
https://doi.org/https://doi.org/10.1016/j.entcs.2009.09.046
https://doi.org/https://doi.org/10.1016/j.entcs.2009.09.046
https://doi.org/10.1109/DATE.2002.998307
https://doi.org/10.1145/1132952.1132953
https://doi.org/10.1145/1132952.1132953
https://doi.org/10.1109/TPDS.2016.2623619
https://doi.org/10.1145/2000064.2000112
https://doi.org/10.1016/j.micpro.2018.11.004
https://doi.org/10.1109/ReConFig48160.2019.8994806
https://doi.org/10.1007/978-3-030-44534-8_6

Bibliography

[140]

[141]

[142]

[143]

[144]

[145]

[146]

146

Ronny Seiger et al. “Immersives verteiltes Robotic Co-working". Informatik Spektrum
43.6 (2020), pages 425-435. DOI: 10.1007/s00287-020-01297-w.

Ahmad Sadek, Ananya Muddukrishna, Lester Kalms, Asbjgrn Djupdal, Ariel Podlubne,
Antonio Paolillo, Diana Goehringer, and Magnus Jahre. “Supporting Utilities for Hetero-
geneous Embedded Image Processing Platforms (STHEM): An Overview". International
Symposium on Applied Reconfigurable Computing (ARC). Springer. 2018, pages 737-749.
DOI: 10.1007/978-3-319-78890-6_59

Ariel Podlubne, Julian Haase, Lester Kalms, Gokhan Akgtn, Muhammad Ali, Habib
Ulhasan Khar, Ahmed Kamal, and Diana Gohringer. “Low Power Image Processing
Applications on FPGAs Using Dynamic Voltage Scaling and Partial Reconfiguration”.
International Conference on Design and Architectures for Signal and Image Processing
(DASIP). IEEE. 2018, pages 64-69. DOI: 10.1189/DASIP.2018.8596910.

Safdar Mahmood et al. “Prospects of Robots in Assisted Living Environment”. Electron-
ics 10.17 (2021), page 2062. DOI: 16.3390/electronics10172062

Tina Bobbe, Hans Winger, Ariel Podlubne, Florian Wieczorek, Lisa-Marie Luneburg,
levgen Kharabet, Jens Wagner, and Sergio Pertuz. “Reflections on "Rock, Paper, Scis-
sors": Communicating Science to the Public through a Demonstrator”. International
Conference on Human-Robot Interaction (HRI). IEEE, 2022, pages 1208-1209. DOI:
10.1109/HRI53351.2022.9889613

Johannes Mey, René Schone, Ariel Podlubne, and Uwe Alimann. “Specifying Reactive
Robotic Applications With Reference Attribute Motion Grammars”. International Con-
ference on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE, 2022. DOI.
10.1109/ACS0SC56246.2022 .00035.

Sergio Pertuz, Ariel Podlubne, and Diana Gohringer. “An Efficient Accelerator for
Nonlinear Model Predictive Control”. International Conference on Application-Specific
Systems, Architectures, and Processors (ASAP). IEEE. 2023, pages 1-8. DOI: 10.1109/
ASAP57973.2023 .00038.

https://doi.org/10.1007/s00287-020-01297-w
https://doi.org/10.1007/978-3-319-78890-6_59
https://doi.org/10.1109/DASIP.2018.8596910
https://doi.org/10.3390/electronics10172062
https://doi.org/10.1109/HRI53351.2022.9889613
https://doi.org/10.1109/ACSOSC56246.2022.00035
https://doi.org/10.1109/ASAP57973.2023.00038
https://doi.org/10.1109/ASAP57973.2023.00038

	Title page
	Selbstständigkeitserklärung
	Kurzfassung/Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Structure

	2 Background and State-of-the-Art
	2.1 Zynq and UltraScale FPGA Families
	2.2 AXI Stream Protocol
	2.3 Model-Driven Engineering
	2.4 The Building Blocks of Languages in Computer Science
	2.5 JastAdd: The Meta-Compilation System
	2.6 Template Engines
	2.7 Robotic Applications in Adaptive Computing
	2.7.1 FPGA Applications
	2.7.2 GPU Applications

	2.8 Robotics Middlewares
	2.8.1 The Robot Operating System Enhanced with Field Programmable Gate Arrays
	2.8.2 Operating Systems Support for Reconfigurable Computing
	2.8.3 Roboticists Interests

	2.9 Model-Driven Engineering
	2.9.1 Control and Handling of Events
	2.9.2 Architecture Structures and Viewpoints
	2.9.3 Combined Control and Handling of Events with Architecture Structures and Viewpoints

	3 Modular Hardware Architecture
	3.1 Challenges and Goals
	3.2 Accelerator-Related Components
	3.3 Messages-Dependent Components
	3.4 Components of the Modular Architecture
	3.4.1 Accelerators as Publishers and Subscribers
	3.4.2 Middleware-Based Hardware Interfaces
	3.4.3 Manager
	3.4.4 Communication Interface

	3.5 Evaluation
	3.6 Summary

	4 Hybrid Hardware/Software Schedulers
	4.1 Challenges and Goals
	4.2 Scheduling Algorithms
	4.2.1 Least Recently Utilized (LRU)
	4.2.2 Fixed Priority (FP)
	4.2.3 Earliest Deadline First (EDF)
	4.2.4 Least Slack Time (LST)

	4.3 Evaluation
	4.3.1 Scalability
	4.3.2 Schedulability
	4.3.3 Performance
	4.3.4 Corner Cases
	4.3.5 Combined Schedulers

	4.4 Schedulers Comparison
	4.5 Summary

	5 Generation of Hardware Interfaces Compatible with Robotics based on Specifications
	5.1 Challenges and Goals
	5.2 FPGA Interfaces for Robotics Middlewares (FIRM) Tool
	5.2.1 A Model-Driven Toolchain
	5.2.2 Characteristics of the Model-Driven Toolchain
	5.2.3 The Models
	5.2.4 Attributes
	5.2.5 Attribute-Controlled Model Transformation
	5.2.6 Template-Based Code Generation

	5.3 Evaluation
	5.3.1 Complexity of Specifications
	5.3.2 Full ROS Support
	5.3.3 Use Cases

	5.4 Summary

	6 Model-based Generation of Hardware/Software Architectures for Robotics Systems
	6.1 Challenges and Goals
	6.2 Code Generation Workflow
	6.2.1 Model Analysis
	6.2.2 Template Engine
	6.2.3 Artifacts Generators

	6.3 Code Generation Challenges for HW/SW Architectures
	6.3.1 Concise Holistic Model
	6.3.2 Dynamic Frame Length
	6.3.3 Scheduling Transactions between Hardware and Software

	6.4 FPGA Architectures for Robotics (FAR) Tool
	6.4.1 Tailored Information using Intermediate Representations
	6.4.2 Simplifying Runtime Computation
	6.4.3 Benefits of Model Analysis in the Development Lifecycle
	6.4.4 Details of the Model Analysis

	6.5 Evaluation
	6.5.1 Quaternion to Euler
	6.5.2 Image Processing
	6.5.3 Multi-type Messages
	6.5.4 Robotic Arm Position Estimation
	6.5.5 Manual Vs. Generated Deployment

	6.6 Wizard
	6.7 Adaptability and Extendability
	6.8 Summary

	7 Conclusion
	Bibliography

