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Neuroimaging in population-based cohort studies

Neuroimaging through MRI allows the non-invasive acquisition of high spatial resolution images of the brain. 

This technique has been extensively used in neuroscience research to study the structure, function, and 

connectivity of the brain, enabling significant advances in understanding the neurobiological underpinnings 

of brain aging and pathophysiology. 

Population-based cohorts collect data on a wide range of variables from many individuals, enabling 

the research of the complex interaction between genetics, environmental factors, lifestyle choices, and 

disease development. The use of neuroimaging from large population based cohorts further improves our 

understanding of the different mechanisms that occur in the brain over time or under specific circumstances, 

which is valuable in understanding specific metabolic conditions, such as type 2 diabetes mellitus (T2DM), 

neurodegenerative diseases like Alzheimer’s disease, or psychiatric disorders, such as depression. 

This dissertation uses data from two extensive neuroimaging cohorts, namely The Maastricht Study and the 

United Kingdom (UK) Biobank. These cohorts have played a pivotal role in health research in the last years. For 

instance, contributing to the identification of cardiovascular risk factors by shedding light on the underlying 

aspects that contribute to the physiopathology of the nervous system (Cox et al., 2019; van der Velde et al., 

2020). Moreover, they have been instrumental in the discovery of genetic markers associated with diseases 

and traits, for example enhancing our understanding of the genetic underpinnings of schizophrenia (Warland, 

Kendall, Rees, Kirov, & Caseras, 2020). Additionally, these cohorts have been invaluable in validating biomarkers 

for the early detection and prognostic prediction of numerous diseases, such as retinal indices as biomarkers 

for brain neurodegeneration (van der Heide et al., 2023), or brain biomarkers for Alzheimer’s disease (Du et 

al., 2021), providing crucial insights into potential diagnostic tools. Lastly, these cohorts have contributed to 

our comprehension of the trajectory of diseases, such as depression (Geraets et al., 2021; Geraets, Köhler, 

et al., 2022; Geraets, Schram, et al., 2022; Sarris et al., 2020), or cardiovascular disease (Shang et al., 2022), 

enabling the investigation of the natural progression and factors influencing these conditions over time.

The Maastricht Study

Chapters 2, 3, and 4 use data from The Maastricht Study. The Maastricht Study is an ongoing observational 

prospective population-based cohort study (Schram et al., 2014). The study aims to investigate the etiology, 

pathophysiology, complications, and comorbidities of T2DM, including depression and cognitive decline. The 

eligible participants were individuals residing in the southern part of the Netherlands, aged between 40 and 

75 years. To ensure a diverse sample, multiple recruitment strategies were employed, including mass media 

campaigns, outreach through municipal registries, and direct contact via mailings to the regional Diabetes 

Patient Registry. To enhance efficiency, recruitment was stratified based on known T2DM status, with a 
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deliberate oversampling of individuals with T2DM. This approach allows for a comprehensive investigation 

of the factors associated with T2DM and its’ comorbid chronic conditions, ensuring robust findings and 

maximizing the research’s overall impact.

The Maastricht Study is characterized by an extensive phenotyping approach, and data from various 

domains is used in this thesis. An oral glucose tolerance test was used to assess glucose metabolism 

status. This allowed to evaluate the brain associations with multiple continuous markers of hyperglycemia, 

and further categorize T2DM according to the World Health Organization 2006 criteria (World Health 

Organization, 2006). In addition, The Maastricht Study includes an assessment of depressive symptoms 

over time, an annual follow-up providing unique insight in the associations of brain structure with both 

incidence and course of depressive symptoms. Further, the extensive phenotyping approach made it 

possible to adjust for potential demographic, cardiovascular, and lifestyle confounders, and perform 

a range of sensitivity analyses. Research under The Maastricht Study has been approved by the 

institutional medical ethical committee (NL31329.068.10) and the Dutch Ministry of Health, Welfare, 

and Sports (permit 131088 105234-PG). For this dissertation, data from the first n=7,689 individuals who 

had completed the baseline survey between November 2010 and January 2018 was used. Among them, 

5,204 had also ultra‐high field 3T MRI brain images, which were further segmented and parcellated for 

the measurement of specific brain volumes. 

UK Biobank

Chapter 5 of this thesis uses data obtained from the UK Biobank, a comprehensive biomedical database that 

contains medical and genetic information from half a million volunteers. The primary goal of UK Biobank is to 

enhance the understanding, prevention, and treatment of a wide range of serious illnesses. The recruitment 

for the database was conducted between 2006 and 2010, and individuals aged between 40 and 69 years from 

the UK were eligible to participate (Palmer, 2007). UK Biobank provides comprehensive information on both 

the phenotype and genotype of its participants, covering a diverse range of health-related outcomes. The 

data was collected using various methods, including questionnaires, physical measurements, sample assays, 

accelerometry, genome-wide genotyping, and multimodal imaging (Allen et al., 2012; Palmer, 2007; Sudlow 

et al., 2015). Notably, approximately 100,000 participants underwent an MRI scan at baseline, and 3,000 of 

these participants received a follow-up brain MRI scan within two years. Moreover, there are plans to conduct 

repeat imaging on 60,000 participants (UK Biobank, 2023). UK Biobank has approval from the North West 

Multi-centre Research Ethics Committee (MREC) as a Research Tissue Bank (RTB) approval. This thesis uses 

brain MRI images and genetic data from n=30,699 participants. 
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Brain MRI segmentation and segmentation quality
As previously introduced, chapters 2, 3, and 4 utilize neuroimaging data from The Maastricht Study, obtained 

through advanced imaging techniques. Data acquisition took place at the Scannexus facilities in Maastricht, the 

Netherlands, utilizing a Siemens Prisma 3T MRI machine equipped with a 64-channel head coil. The imaging 

protocol employed a diverse range of sequences, including a T1 weighted sequence and a fluid-attenuated 

inversion recovery (FLAIR) sequence, among others. Chapter 5 relies on data sourced from the UK Biobank. 

The imaging data for this chapter was collected at the UK Biobank imaging centers situated in Manchester, 

Newcastle, and Reading, using a Siemens Skyra 3T MRI machine along with a 32-channel head coil. The 

comprehensive acquisition protocol included various sequences, including a T1 weighted and FLAIR images.

In order to analyze structural MRI images in relation to clinical parameters, it is necessary to transform the 

brain images into quantitative measurements, such as volume or thickness, through a process called brain 

segmentation. Brain segmentation involves dividing the brain into distinct regions or structures based on 

their anatomical or functional characteristics. The objective is to identify and outline various structures within 

the brain, including the cerebral cortex, white matter, gray matter, and subcortical structures such as the 

thalamus, basal ganglia, and hippocampus. This intricate process entails the application of image processing 

procedures to the data, enabling the differentiation and identification of different regions based on their 

intensity, texture, shape, and location. Brain segmentation is a complex procedure that requires sophisticated 

image processing algorithms and expertise in neuroanatomy. There are several software tools available to 

automate the brain segmentation process. In this thesis, the brain segmentation and parcellation of different 

structures was performed using FreeSurfer v.6.0 (Fischl, 2012). FreeSurfer is a freely accessible MRI analysis 

software that can automatically detect the morphological boundaries between cortical and subcortical brain 

structures. By utilizing automation, FreeSurfer offers an efficient and reproducible segmentation solution 

suitable for large cohorts.

The segmentation and parcellation of brain images was performed using T1 weighted images in FreeSurfer. 

When available, FLAIR images were also utilized to enhance the quality of segmentation. The segmentation 

and parcellation process involved several essential steps. Among them, a motion correction was applied to 

the images to minimize any distortions caused by subject movement; image intensity normalization was 

conducted to address any inconsistencies arising from scanner fluctuations and coil variations. Subsequently, 

a skull strip technique was employed to remove non-brain tissues, followed by volumetric registration to align 

the images spatially. The segmentation process included the identification and delineation of both cortical 

and subcortical structures within the brain. Further, smooth and inflate, mapping, and registration steps were 

performed. Finally, cortical parcellation was completed, resulting in the partitioning of the cortical regions into 

distinct areas. This comprehensive process generated a segmented and parcellated brain image (see Figure 

1.1) along with corresponding tabulated data, providing a detailed representation and measurement of the 

brain structures’ characteristics.
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Figure 1.1| Cortical parcellation and subcortical segmentation of the brain. The image presents a coronal section displa-
ying the segmentation and parcellation results from a volunteer participating in The Maastricht Study. To enhance visual 
clarity, non-brain structures including the dura mater, skull, and other soft tissues have been removed. The outermost red 
line represents the pial surface, demarcating the outer boundary of the cortical gray matter. Adjacent to the gray matter, 
the blue line corresponds to the border between the white matter and the cortical gray matter. These delineations enable 
the quantification of various measures such as cortical thickness, cortical volume, and cortical surface area. In addition to 
cortical parcellation, the subcortical segmentation identifies and delineates specific structures within the brain. For instance, 
the hippocampus is depicted in yellow, the putamen and globus pallidus are displayed in pink and blue, respectively, and the 
thalamus is represented by the color green.

The automated segmentation and parcellation of the brain may encounter challenges and potential inaccuracies, 

particularly when dealing with low-quality images or images affected by artifacts. The reliability of research 

outcomes is directly impacted by the quality of the data employed. Hence, implementing quality control 

measures for brain MRI segmentations becomes crucial to ensure the trustworthiness of the obtained results. 

Quality control refers to the process of verifying that the data meet predetermined standards of accuracy, 

reliability, and validity. Several strategies can be employed to perform quality control on brain segmentation 

and parcellation. Currently, the gold standard method involves visual inspection and manual editing of 

brain surfaces. Trained researchers individually review and edit the output images generated by FreeSurfer, 

addressing any segmentation inaccuracies. Figure 1.2 provides an example showcasing a segmentation error 

and its subsequent correction through manual intervention. However, when dealing with large neuroimaging 

datasets, visually inspecting every acquired image for segmentation quality becomes impractical. In such cases, 
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automated quality control strategies emerge as attractive alternatives. These approaches aim to automate 

the quality control process using various computational techniques, allowing for efficient and systematic 

assessment of segmentation quality. The UK Biobank has a very well established quality control pipeline, 

which incorporates the utilization of Qoala-T (Klapwijk, Van De Kamp, Van Der Meulen, Peters, & Wierenga, 

2019), a machine learning-based tool designed to detect potential issues in segmentations. Following this 

initial automated quality control step, a visual inspection is conducted on all flagged segmentations to 

ensure their accuracy. Chapter 2 explores various automated quality control methods and compares them 

to visual inspection and manual correction, the current gold standard. The objective is to identify a reliable, 

reproducible, and time-efficient solution suitable for large-scale neuroimaging datasets. The findings were 

subsequently applied to the full sample in order to ensure the data quality of a large number of brain MRI 

segmentations within The Maastricht Study.

Figure 1.2 | Impact of manual edition on brain surfaces. The zoomed-in view focuses on the left temporal pole of a coronal 
section from a participant in The Maastricht Study. In Figure 1.2A, an inaccuracy is evident in the lateral region of the left 
temporal pole. The red line fails to accurately trace the surface of the gray matter, while the blue line does not accurately 
delineate the boundary between gray and white matter. However, in Figure 1.2B, after manual correction, the surfaces ex-
hibit notable improvements. The lines faithfully follow the actual anatomical boundaries of the structure, providing a more 
accurate representation of the brain’s architecture, and therefore more reliable morphological estimates. 
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Neuroimaging & hyperglycemia
T2DM develops when the body becomes resistant to insulin and fails to regulate blood glucose effectively, 

resulting in chronic hyperglycemia. Prediabetes represents an intermediate stage where blood glucose 

levels are higher than normal but not yet at the threshold for diagnosing T2DM (See Figure 1.3; American 

Diabetes Association, 2019). 

Prolonged hyperglycemia is associated with an increased risk of vascular complications, which can include 

cardiovascular diseases such as stroke, myocardial infarctions, and microvascular disease, including 

nephropathy, retinopathy, or peripheral neuropathy (Grimaldi & Heurtier, 1999; Schalkwijk & Stehouwer, 2005). 

T2DM has also been associated with higher risk of depression (Darwish, Beroncal, Sison, & Swardfager, 2018) 

and dementia (Hsu, Wahlqvist, Lee, & Tsai, 2011). The prevalence of both T2DM and prediabetes is rapidly 

increasing on a global scale (Zhou et al., 2016), and the World Health Organization estimates that the number 

of individuals with diabetes will exceed 350 million by 2030 (World Health Organization, 2003). The recent 3% 

rise in the age-standardized mortality rate attributed to T2DM underlines the growing importance of improved 

prevention and treatment of T2DM for public health. Even more alarming is the staggering 13% increase in 

mortality rates in lower-middle income countries specifically affected by T2DM (World Health Organization, 

2023). This growth of prevalence and mortality of T2DM emphasizes the urgent need for effective prevention 

and management strategies to mitigate the impact of T2DM and reduce the burden of associated vascular 

complications.

Brain damage can be considered as a (late) complication of T2DM. Research conducted as part of The Maastricht 

Study demonstrates that both prediabetes and T2DM are associated with structural volumetrics (van Agtmaal 

et al., 2018), microstructural connectivity (Vergoossen et al., 2020), and functional brain abnormalities (van 

Bussel et al., 2016). Moreover, a recent meta-analysis shows that T2DM is associated with reduced volumes 

in the entire brain and specifically in the hippocampus. (T. Zhang, Shaw, & Cherbuin, 2022). T2DM might 

differently affect specific hippocampal subfields because each subfield has a unique cellular composition and 

neurophysiology (Fanselow & Dong, 2010). Previous studies have yielded conflicting findings on hippocampal 

volumes (Blom et al., 2020; C. Li et al., 2020; M. Li et al., 2020; W. Zhang et al., 2021), emphasizing the need 

for further research adopting a comprehensive approach, incorporating deep phenotyping, and utilizing large 

sample sizes to gain a clearer understanding of the topic.
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Figure 1.3|  World Health Organization diagnostic criteria for diabetes and intermediate hyperglycemia. The values are 
referenced according to the WHO 2006 criteria (World Health Organization, 2006) as fasting plasma glucose (in green) and 
plasma glucose 2 hours after the ingestion of 75g of glucose (yellow).

Neuroimaging & Depression
A depressive episode is a mood disorder characterized by persistent feelings of sadness, hopelessness, and 

lack of interest in daily activities. With more than 300 million people affected by depression worldwide, it 

is the fourth leading cause of disability (Üstün, Ayuso-Mateos, Chatterji, Mathers, & Murray, 2004), and its 

prevalence has been increasing over the last decades (Moreno-Agostino et al., 2021). This is of special interest 

not only due to the morbidity, disability, and increased mortality associated with the disease itself (Evans et 

al., 2005) but also because of the related comorbidities, which include anxiety, eating disorders, and substance 

abuse (Richards, 2011).

The etiology of depression is currently explained as a combination of genetic and environmental factors. 

Stress, inflammation, and alterations in monoaminergic systems are suggested as underlying mechanisms 

(Saveanu & Nemeroff, 2012). From a neuroscience perspective, this involves several brain regions 

and associated pathways. Neuroimaging studies show that both depressive symptoms and peripheral 

inflammatory markers are associated with lower volumes in the hippocampus (Videbech & Ravnkilde, 2004), 

putamen, and caudate nucleus, as well as smaller cortical volumes in frontal regions (Han & Ham, 2021; 

Koolschijn, van Haren, Lensvelt‐Mulders, Hulshoff Pol, & Kahn, 2009; van Tol et al., 2010). Furthermore, 

increasing evidence suggests an association between depression and neurodegeneration, which has led to 
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new efforts to understand the relationship between both diseases. According to two systematic reviews, 

participants with depression show a higher prevalence of neurodegenerative diseases such as Alzheimer’s 

disease when compared to those without depression (Green et al., 2003; Ownby, Crocco, Acevedo, John, 

& Loewenstein, 2006). Moreover, participants with neurodegenerative diseases show a higher prevalence 

of depression when compared to the general population (Chi et al., 2015; Fischer, Simamyi, & Danielczyk, 

1990; Vilalta-Franch et al., 2006). 

This association could be explained by two constructs. On one hand, depression could be an early sign of 

neurodegenerative diseases, in other words, a prodromal state of the disease (Brommelhoff et al., 2009; Sun 

et al., 2008). On the other hand, depression could be a risk factor for developing neurodegenerative diseases 

(Andersen, Lolk, Kragh-Sørensen, Petersen, & Green, 2005; Green et al., 2003; Modrego & Ferrández, 2004; 

Ownby et al., 2006). The link between chronic depression and significant changes in brain structure and 

function, particularly affecting the hippocampus, provides a potential explanation for the cognitive decline 

often observed in depression. Evidence indicates that the persistent inflammation sometimes associated with 

chronic depression has the potential to contribute to brain cell damage and the abnormal accumulation of 

proteins, which are characteristic features of neurodegenerative diseases. However, the association between 

depression and neurodegeneration is still an area of ongoing research. Therefore, it is crucial to recognize 

the importance of studying depression not only as an isolated event in time but also with a comprehensive 

longitudinal approach. This approach would enable differentiation between chronic and transient depression, 

potentially facilitating the characterization of specific depressive conditions. By examining depression over an 

extended period, researchers can gather valuable insights and develop a deeper understanding of its complex 

relationship with neurodegenerative processes.

In this thesis, two different definitions of depression were employed. First, Chapter 4 uses a widely accepted 

and validated tool to assess depressive symptoms, the Dutch version of the 9-item Patient Health Questionnaire 

(PHQ-9; Kroenke, Spitzer, & Williams, 2001). The PHQ-9 is a self-administered questionnaire that evaluates the 

presence of the nine symptoms for the DSM-IV criteria for major depressive disorder. A cut-off of ≥10 was used 

to define “clinically relevant depressive symptoms”, which has shown good sensitivity (88%) and specificity 

(78%)(Pettersson, Boström, Gustavsson, & Ekselius, 2015). Further, the data on depression was assessed on an 

annual basis over the course of 7 years, providing valuable longitudinal data on depression. Second, Chapter 

5 uses cross-sectional data, and adopts a definition of depression described by Howard et al. (2018) as ‘broad 

depression’. Participants who were classified as having depression met one of the following criteria: They 

answered positively to the question “Have you seen a general practitioner or a psychiatrist for nerves, anxiety, 

tension, or depression?”; or they had a hospital record diagnosis of depression. A GWAS on this definition of 

depression has shown to be highly genetically correlated with a GWAS using a strict clinical definition of major 

depressive disorder (rg=0.85) (Howard et al., 2018)
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Neuroimaging & Alzheimer’s disease
Alzheimer’s disease is a neurodegenerative disease characterized by a gradual loss of memory and other 

cognitive functions, which affects the ability to perform daily activities. It is the most common form of dementia 

in people over 65 years old (Cummings & Cole, 2002). Due to changes in lifestyle and environmental factors, as 

well as an increase in life expectancy, its prevalence is expected to rise over time. Current estimates indicate 

that, by 2050, 132 million people will suffer from Alzheimer’s disease (Prince et al., 2015).

Alzheimer’s disease has become an important health problem due to its impact on the quality of life of 

both patients and caregivers and its associated mortality (Markowitz, Gutterman, Sadik, & Papadopoulos, 

2003; Schölzel-Dorenbos, Draskovic, Vernooij-Dassen, & Rikkert, 2009; Shin, Carter, Masterman, Fairbanks, & 

Cummings, 2005). Despite intensive research in recent years, the exact biological underpinnings of Alzheimer’s 

disease are not yet completely understood. It is well established that Alzheimer’s disease is the result of a 

combination of genetic, lifestyle, and environmental factors. However, the exact contribution of each factor 

is not yet clear (Gatz et al., 2006). Mutations in the APP, PSEN1 and PSEN2 genes have been associated with 

familial Alzheimer’s disease (Piaceri, Nacmias, & Sorbi, 2013). However, over 95% of Alzheimer’s disease 

cases are sporadic, suggesting that other factors beyond genetic variants affecting the amyloid cascade play 

an important role in its development (Barykin, Mitkevich, Kozin, & Makarov, 2017). The presence of the 

apolipoprotein ∊4 (APOE ∊4) allele is the most potent identified risk factor for the sporadic form of Alzheimer’s 

disease (Cummings & Cole, 2002). 

Alzheimer’s disease is associated with changes in brain structure and function. Neuroimaging studies can 

detect brain degeneration, which has been correlated with an abnormal accumulation of tau protein in the 

brain and neuropsychological deficits (Bronge, Bogdanovic, & Wahlund, 2002; Frisoni, Fox, Jack Jr, Scheltens, & 

Thompson, 2010). Patients with Alzheimer’s disease suffer from neuron and synaptic connection loss, especially 

in brain areas important for memory and other cognitive functions, such as the hippocampus and prefrontal 

cortex (Frisoni et al., 2010; Raji, Lopez, Kuller, Carmichael, & Becker, 2009; Teipel et al., 2013). Alzheimer’s 

disease is associated with a long list of comorbidities, such as depression, anxiety, and cardiovascular disease 

(Santiago & Potashkin, 2021). The presence of such comorbidities has been associated with a specific course 

of the disease and the quality of life of patients suffering from it. For example, patients with Alzheimer’s 

disease and comorbid depression show increased Alzheimer’s disease-related brain pathology, suggesting an 

interaction between both diseases (Rapp et al., 2008). 

Identifying individuals at risk of Alzheimer’s disease poses a significant challenge within population-

based cohorts. The pathophysiological changes associated with Alzheimer’s disease can initiate many 

years before the onset of recognizable Alzheimer’s disease-related symptoms (Jack et al., 2010; Sperling 

et al., 2011). Recognizing this preclinical phase of the disease is essential for the mitigation of the impact 

of Alzheimer’s disease. During this prodromal stage, subtle alterations occur in the brain, including the 

accumulation of beta-amyloid plaques and the development of neurofibrillary tangles, which are hallmark 
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pathological features of Alzheimer’s disease. However, these changes may not immediately manifest as 

noticeable symptoms or impairments in cognitive function. The analysis of cerebrospinal fluid allows the 

identification of individuals with preclinical Alzheimer’s disease based on the presence of biomarkers 

before they exhibit noticeable cognitive impairment. However, this is not a feasible solution in large 

population-based cohorts. As a result, identifying individuals who are at risk of developing Alzheimer’s 

disease becomes a complex task. Population-based cohorts that follow participants over extended periods 

offer a valuable opportunity to track the progression of Alzheimer’s disease-related changes and identify 

potential biomarkers or risk factors associated with the disease. However, when longitudinal data is not 

yet available, the use of familial information might suppose a feasible solution. Chapter 5 uses a measure 

of Alzheimer’s by proxy. This measure was described by Jansen et al. (2019) and has been shown to be 

highly genetically correlated to Alzheimer’s disease status (rg = 0.81) (Jansen et al., 2019). By utilizing 

hospital records of both the individuals and their parents, this measure enables to, not only include 

individuals with diagnosed Alzheimer’s disease, but also those at a high risk of developing the disease. 

The advantage of identifying participants before the onset of any symptoms improves in our ability to 

study the very early stages of Alzheimer’s disease, including the morphological changes associated with 

this disease, and the pathophysiology of disease progression.

Outline of this thesis
The objectives of this thesis are twofold: to identify and implement a time-efficient and reproducible quality 

control strategy for large neuroimaging cohorts, and to utilize the resulting high-quality neuroimaging data to 

examine brain structure under various pathological conditions.

In Chapter 2, a range of commonly employed quality control methods are evaluated and compared. Recognizing 

the challenges of manual quality control in large cohorts, the focus is on establishing an automated quality 

control approach that is both efficient and reliable for The Maastricht Study dataset. A subsample of The 

Maastricht Study dataset undergoes visual inspection and manual editing, and the impact of this intervention 

on brain morphological estimates is documented. Additionally, both manual quality control and multiple 

automated quality control strategies are applied to the same sample. A regression model is employed to 

assess the changes in unexplained variance resulting from each quality control strategy, enabling a comparison 

of their effectiveness. The chapter concludes by identifying the most suitable quality control strategies for 

several scenarios.

In Chapter 3, high-quality cross-sectional data on glucose metabolism status and hippocampal subfield 

volumes is utilized. The aim is to investigate the associations of prediabetes, T2DM, and continuous measures 

of hyperglycemia, with the volumes of hippocampal subfields.
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Chapter 4 shifts the focus to longitudinal data on depression and hippocampal subfield volumes. The objective 

is to examine the relationships between the volumes of hippocampal subfields and the prevalence, course, 

and incidence of depression.

Chapter 5 draws on data from the UK Biobank to explore the genetic overlap between depression and 

Alzheimer’s disease, and its relationship to brain structure.

Overall, this thesis aims to enhance our understanding of brain structure under various pathological conditions 

by implementing an efficient quality control strategy and utilizing high-quality neuroimaging data.
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Abstract
Quality control (QC) of brain segmentation is a fundamental step to ensure data quality. Manual quality control 

strategies are the current gold standard, although these may be unfeasible for large neuroimaging samples. 

Several options for automated quality control have been proposed, providing potential time efficient and 

reproducible alternatives. However, those have never been compared side to side, which prevents consensus 

in the appropriate QC strategy to use. This study aimed to elucidate the changes manual editing of brain 

segmentations produce in morphological estimates, and to analyze and compare the effects of different 

quality control strategies on the reduction of the measurement error.

Structural MR images from 259 participants of The Maastricht Study were used. Morphological estimates were 

automatically extracted using FreeSurfer 6.0. Segmentations with inaccuracies were manually edited, and 

morphological estimates were compared before and after editing. In parallel, 12 quality control strategies were 

applied to the full sample. Those included: two manual strategies, in which images were visually inspected and 

either excluded or manually edited; five automated strategies, where outliers were excluded based on the tools 

“MRIQC” and “Qoala-T”, and the metrics “morphological global measures”, “Euler numbers” and “Contrast-

to-Noise ratio”; and five semi-automated strategies, where the outliers detected through the mentioned tools 

and metrics were not excluded, but visually inspected and manually edited. In order to quantify the effects of 

each QC strategy, the proportion of unexplained variance relative to the total variance was extracted after the 

application of each QC strategy, and the resulting differences compared. 

Manually editing brain surfaces produced particularly large changes in subcortical brain volumes and moderate 

changes in cortical surface area, thickness and hippocampal volumes. The performance of the quality control 

strategies depended on the morphological measure of interest. Manual quality control strategies yielded the 

largest reduction in relative unexplained variance. The best performing automated alternatives were those 

based on Euler numbers and MRIQC scores. The exclusion of outliers based on global morphological measures 

produced an increase of relative unexplained variance.

Manual quality control strategies are the most reliable solution for quality control of brain segmentation and 

parcellation. However, measures must be taken to prevent the subjectivity associated with these strategies. 

The detection of inaccurate segmentations based on Euler numbers and MRIQC provide a time efficient and 

reproducible alternative. The exclusion of outliers based on global morphological estimates must be avoided. 
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Introduction 
Quality control (QC) of brain MRI segmentation and parcellation, i.e. the detection and correction or exclusion 

of inaccuracies in segmented brain images, is a fundamental step to ensure measurement reliability. The 

concept of brain segmentation QC has recently gained interest, with many tools, metrics, and protocols being 

proposed (Lea L Backhausen et al., 2016; Esteban et al., 2017; Keshavan et al., 2018; Klapwijk, Van De Kamp, 

Van Der Meulen, Peters, & Wierenga, 2019; Raamana et al., 2020; Rosen et al., 2018; Waters, Mace, Sawyer, & 

Gansler, 2019). Manual QC strategies, consisting of visual inspection (with or without surface editing), despite 

their component of subjectivity, are considered the gold standard. However, neuroimaging research is shifting 

towards big data paradigms, with studies including thousands of brain images, such as the UK Biobank (Miller 

et al., 2016), or The Maastricht Study (Schram et al., 2014). Manual QC strategies have therefore become 

unfeasible, given the time and resources required. Thus there is a need to validate and agree on a reproducible 

and time efficient QC solution for large cohort studies. 

Poor quality segmentation is characterized by the presence of inaccuracies. Inaccuracies occur when the 

boundaries that define the morphological divisions or regions of interest (ROIs) do not correspond to the 

anatomical boundaries, which may lead to morphological measurement errors. A commonly used tool to 

segment structural brain MRI is FreeSurfer (Fischl, 2012), a software for MRI analysis that provides automated 

subcortical segmentation and cortical parcellation of the brain. Errors in FreeSurfer’s output may happen 

(amongst others) when sufficiently abnormal brain structure or low-quality image is provided as input. Further, 

image artifacts have been related to worse segmentation estimates for both cortical thickness (Reuter et al., 

2015) and volumes (Savalia et al., 2017). Errors in the segmentation may result in regression attenuation 

(Hutcheon, Chiolero, & Hanley, 2010) as well as reduction of statistical power (Phillips & Jiang, 2016) in 

regression analysis of phenotypic measures with MR features. Large sample sizes can compensate for these 

downsides. However, when the measurement errors are systematic, recurrent, and in the same direction, a 

bias can be introduced, making segmentation quality a potential confounder. This type of bias has previously 

been shown in clinical populations compared to healthy controls (Pardoe, Hiess, & Kuzniecky, 2016), children 

compared to adults (Blumenthal, Zijdenbos, Molloy, & Giedd, 2002) and older adults compared to younger 

adults (Madan, 2018; Savalia et al., 2017; Wenger et al., 2014). 

Manual QC strategies are currently the most accepted approach to ensure reliable segmentation estimates and, 

in absence of a better solution, they are considered the gold standard for QC. The manual QC process involves 

the visual inspection of each segmentation, ideally by several independent operators with knowledge of 

neuroimaging normal anatomy, with the possibility to manual edit the segmentations identified as inaccurate. 

This process is time consuming (the time required to visually inspect and edit each segmentation can range 

between 10 and 45 minutes) and subjective, requiring a trained operator. Moderate interrater reliability has 

been previously reported, with Cohen’s Kappa indices that range between 0.30 (Esteban et al., 2017) and 0.48 

(Savalia et al., 2017).
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Studies investigating alterations in morphological estimates due to manual editing have shown mixed results, 

with some studies reporting significant changes (Beelen, Phan, Wouters, Ghesquière, & Vandermosten, 

2020; Waters et al., 2019), while others showed no differences (McCarthy et al., 2015). Despite the potential 

changes in morphological estimates, manual editing does not show important effects on the sensitivity to 

detect differences between groups using volumetric morphological estimates (Waters et al., 2019), although 

it may have more impact on the sensitivity to detect differences using cortical morphological estimates such 

as surface area and thickness (Beelen et al., 2020).

Rather than applying manual QC strategies, one can also use automatic exclusion of cases based on quantitative 

parameters, such as quality metrics or morphological information that are readily available from FreeSurfer or 

other software, making the QC process more time‑efficient. Among the most commonly used quality metrics 

are contrast‑to‑noise ratio (CNR) (Welvaert & Rosseel, 2013) and Euler numbers (EN) (Dale, Fischl, & Sereno, 

1999). CNR has been used as an objective measure of image quality over many years, but it correlates weakly 

with human quality classifications (Yao, Lin, Ong, & Lu, 2005). EN is a measure of reconstructed brain surface 

complexity calculated by FreeSurfer, and has been found to correlate with movement artifacts (Rosen et 

al., 2018). Another option for automated QC is the exclusion of cases according to outliers based on global 

morphological estimates such as mean cortical thickness, total surface area or estimated total intracranial 

volume, a technique commonly used in neuroimaging studies, e.g. (Boedhoe et al., 2018; Guadalupe et al., 

2014; Shinn et al., 2017). 

Additionally, several tools for a more extensive QC are currently available. Two promising tools are MRIQC 

(Esteban et al., 2017) and Qoala‑T (Klapwijk et al., 2019). Both tools use machine learning to provide a rating 

for quality. While MRIQC uses the T1 or T2 images as input to provide several quality metrics and a binary 

classification of image quality, Qoala‑T uses FreeSurfer’s segmentation and parcellation output together with 

FreeSurfer’s output quality metrics to provide a score of segmentation quality. 

To our knowledge, no previous study compared the performance between several available QC strategies. 

The aims of this study were: 1) to determine the effect that manual editing of FreeSurfer’s output has on the 

resulting morphological estimates, and 2) to identify which QC approach is best in terms of reduction of noise 

and measurement error.

To this end, we manually edited a sample of inaccurate segmentations and analyzed its changes. In addition, we 

applied 12 different QC strategies to a sample and analyzed their effects. As a test case, we used a regression 

of morphological brain measures against age, which allowed us to quantify the effects of the different QC 

strategies through the proportion of unexplained relative to total variance each strategy generated. 

The time investment of each QC strategy was taken into consideration, and we provide recommendations for 

the optimal QC approach in diverse scenarios. 
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Material and Methods
Study design and participants

We used data from The Maastricht Study, an observational prospective population‑based cohort study 

(Schram et al., 2014) . In brief, the study focuses on the etiology, pathophysiology, complications, 

and comorbidities of type 2 diabetes and is characterized by an extensive phenotyping approach. All 

individuals aged between 40 and 75 years living in the southern part of the Netherlands were eligible for 

participation. Participants were recruited through mass media campaigns, from the municipal registries 

and the regional Diabetes Patient Registry via mailings. Recruitment was stratified according to known 

type 2 diabetes status, with an oversampling of individuals with type 2 diabetes. The study has been 

approved by the institutional medical ethical committee (NL31329.068.10) and the Dutch Ministry of 

Health, Welfare, and Sports of the Netherlands (permit 131088‑105234-PG). All participants gave written 

informed consent.

The present report uses cross-sectional data from the first 3451 participants who completed the baseline 

survey (although not necessarily brain MRI) between November 2010 and September 2013. From among 

the 3451 participants, 200 participants with mild cognitive impairment (MCI) were randomly selected 

without oversampling for type 2 diabetes. We then added 200 non-MCI participants matched on age, sex, 

and educational level, in order to introduce some heterogeneity in the sample. MCI diagnosis was based 

on: Mini‑Mental State Examination (Folstein, Robins, & Helzer, 1983) scores below 24 points; more than two 

cognitive tests not executed; delayed recall and word learning test (Walton, 1958), or Stroop-III (Stroop, 

1935) 1.5 SD below the population-mean. Of the selected 400 participants, 260 had brain MRI data available. 

Data processing and extraction failed in one participant, specifically in the MRIQC tool processing, and was 

removed. Hence, the current manuscript includes 259 participants. See participant inclusion flowchart in 

Figure 2.1. 
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Figure 2.1 | Sample selection and data extraction. Among the included participants in dataset 2 of The Maastricht Study 
(DMS), a sample of mild cognitive impairment (MCI) participants and matched non-MCI were selected. Among the selected 
400, 260 participants had available brain MRI data. There was one missing case because the MRIQC tool was unable to run 
in one of the participants. The case with missing data was removed and the present report includes 259 subjects. 
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MRI acquisition

Brain images were acquired on a 3T clinical magnetic resonance scanner (MAGNETOM Prismafit, Siemens 

Healthineers GmbH) located at a dedicated scanning facility (Scannexus, Maastricht, The Netherlands) using 

a head/neck coil with 64 elements for parallel imaging. The MRI protocol included a three-dimensional 

(3D) T1-weighted (T1w) magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence 

(repetition time/inversion time/echo time (TR/TI/TE) 2,300/900/2.98ms, 176 slices, 256 × 240 matrix size, 

1.0 mm cubic reconstructed voxel size); and a fluid-attenuated inversion recovery (FLAIR) sequence (TR/TI/TE 

5,000/1,800/394 ms, 176 slices, 512 × 512 matrix size, 0.49 × 0.49 × 1.0 mm reconstructed voxel size).

Brain segmentation

Brain segmentation and cortical parcellation was performed on the 259 participants with FreeSurfer v6.0 

(Fischl, 2012) using T1w and FLAIR images as input. The optional arguments “‑FLAIRpial” and “‑3T” were 

used to optimize segmentation and parcellation quality. In addition, hippocampal subfields (Iglesias et al., 

2015) were extracted. FreeSurfer output yielded cortical area (68 ROIs) and cortical thickness estimates (68 

ROIs) in accordance with the Desikan‑Killiany atlas (Desikan et al., 2006), as well as subcortical volumes (38 

ROIs), and hippocampal subfields (24 ROIs). Hence, a total of 198 morphological estimates were obtained 

per individual brain. With no further manipulation, tabulated data was extracted. This original dataset will 

be referred from now on as “Non‑QC dataset” (see Figure 2.2A) and used as reference for comparison with 

the QC datasets. 

Quality control strategies

Twelve QC strategies were applied to the original sample, generating 12 new QC datasets covering all 

morphological estimates for cortical thickness, cortical area, subcortical volumes and hippocampal volumes. 

Each QC strategy resulted in different brains to edit, include and exclude. Hence, all the 12 new QC datasets 

(and the non-QC dataset) contain 198 morphological estimates, but differ with respect to participant inclusion 

and which brains underwent manual editing.

These strategies can be divided into three categories: 1) manual QC: Visual inspection of brain segmentations 

with either exclusion or manual editing of inaccurate cases; 2) automated QC by exclusion of outliers based 

on: MRIQC, Qoala‑T, Morphological, EN or CNR measures; 3) semi‑automated QC by visual inspection and 

manual editing of outliers based on: MRIQC, Qoala‑T, Morphological, EN or CNR measures. In the next sections 

we describe the QC strategies in detail.
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Manual quality control: visual inspection with exclusion or editing of segmentations

The first category, manual QC includes two QC strategies: Visual inspection with exclusion (Visual-excl) of 

inaccurate segmentations, and visual inspection with manual editing (Visual-edit), where the inaccurate 

segmentations are manually edited. Figure 2.2B shows the process of the manual strategies. The visual 

inspection was executed by two researchers who independently rated brain segmentations according to their 

quality, followed by manual editing or exclusion of segmentations identified as inaccurate. 

A standard operating procedure (SOP) for visual inspection and manual editing was used. The SOP was 

derived from FreeSurfer’s QC guidelines (AnastasiaYendiki, 2020), and tailored to the specific setting of the 

DMS. In short, aseg, wm, brain mask and T1 volumes, together with bilateral pial and white surfaces were 

loaded into FreeView. A researcher with three years of experience in hands‑on QC of large MRI cohorts 

(J.M.) performed visual inspection of the 259 brain segmentations twice with a 6‑month period gap, 

without and with the help of the SOP respectively. A second researcher (M.B.), without prior experience in 

QC, independently reviewed the same set of segmentations once, after training by rater 1, and following 

the same SOP. Both researchers inspected the segmentations from posterior to anterior three times: one 

fast screening for large inaccuracies and two detailed inspections, once for each hemisphere. The quality 

of the segmentations was scored from 0 to 3, where 0 referred to segmentations with perfect quality, 1 to 

segmentations with sufficient quality, 2 to segmentations that needed intervention, and 3 to segmentations 

that should be excluded due to unfixable inaccuracies. Segmentations that needed intervention included 

those with large and medium fixable errors, and those with frequent (more than 10 slices) small errors. 

Unfixable inaccuracies were defined as those where the full morphology of the brain was not visible 

anymore, due to large image artifacts or incidental findings.

Finally, both researchers met to review and discuss each discordant case (n-141) and reached consensus, 

creating a robust final agreed‑upon score called from now on “Accorded rating”. The segmentations with 

accorded ratings of 0 or 1 were accepted, and those rated with a 3 were removed from the dataset. 

Subsequently, manual editing was performed on those brains with inaccurate segmentations, scored as 2 

by the accorded rating. The editing was performed by changing the brain surfaces where inaccuracies were 

detected. This process was done through addition or removal of voxels in the white matter mask, removal of 

voxels in the brain mask, and addition of control points in the brain mask. 

The edited subjects subsequently underwent a new segmentation pipeline. This process ‑visual inspection, 

manual editing, and production of a new segmentation‑ was repeated a maximum of two times when 

necessary, after which, the reconstructed images were visually inspected one last time. These were then 

accepted as accurate (scores 0 or 1) or rejected as unfixable (score of 3).
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Tabulated data from only the segmentations accepted in the first visual inspection (initial scores of 0 or 1) was 

extracted creating the dataset “Visual-excl dataset”. Tabulated data of segmentations accepted after manual 

editing, together with those accepted in the first visual inspection (and hence not edited) was extracted 

creating the dataset “Visual-edit dataset”. 

In order to study changes produced by manual editing in brain estimates, morphological estimates were 

additionally extracted before and after manual editing for only the edited segmentations (n=39). These 39 

subjects were used to investigate the alterations due to manual editing on morphological FreeSurfer estimates. 

Automatic quality control: exclusion of cases

Figure 2.2C shows the automatic QC process. MR images were either accepted or excluded based on the 

assessment by the following tools: MRIQC (Esteban et al., 2017), and Qoala‑T (“alternative B”) (Klapwijk et al., 

2019); and the following metrics: FreeSurfer’s global morphological measures, EN (Dale et al., 1999), and CNR 

(Welvaert & Rosseel, 2013).

Among other features, the tools MRIQC and Qoala-T use supervised machine learning to assign quality scores. 

We used the default setting in MRIQC, which is trained in a sample with ages ranging between 7 and 64 years 

old (mean age = 20.23). However, Qoala-T’s default setting is trained in a pediatric sample, and in order to 

increase the accuracy of the outcome, we used the “alternative B” which allowed us to train the algorithm with 

10% of our own sample. Both tools provided a binary quality score (“good” or “poor”). Segmentations with a 

quality score of “poor” were excluded. Tabulated data was then extracted, creating the datasets “Auto‑MRIQC 

dataset” and “Auto‑Qoala dataset” respectively.

Despite the fact that many studies define outliers based on standard deviation, it is a measure highly dependent 

on distribution, as it assumes a normal distribution, and hence not a robust method to detect outliers (Leys, 

Ley, Klein, Bernard, & Licata, 2013). For this reason, in this study outliers were defined as 1.5 interquartile 

range (IQR) below the first quartile (Q1), and 1.5 IQR above the third quartile (Q3), following the classical 

method proposed by Tukey (1977). Hence, the lower inner fence was defined as Q1‑1.5*IQR, while the upper 

inner fence was Q3+1.5*IQR.

The identification of morphological outliers was specific for each type of measure, and based on the 

next FreeSurfer’s global estimates: “left/right hemisphere mean thickness”, for estimates of cortical 

thickness; “left/right hemisphere white surface area” for cortical area; “estimated total intracranial 

volume” and “mask volume” for subcortical volumes; and “left/right hemisphere whole hippocampus 

volume” for hippocampal subfields. Outliers were excluded below the lower and above the upper 

inner fences. Tabulated data was extracted for each type of morphological estimate separately (cortical 

thickness, cortical area, subcortical volumes and hippocampal volumes), and joined, creating the dataset 

“Auto‑morphological dataset”.
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Outliers based on EN and CNR metrics were excluded only when below the lower inner fence, because high 

values in EN and CNR indicate a positive relation with quality. Tabulated data was extracted, creating the 

datasets “Auto‑EN dataset” and “Auto‑CNR dataset” respectively. 

Semi‑automated quality control: automatic detection with visual inspection and editing

Figure 2.2D shows the semi‑automated QC process. Based on the same principle as for the automatic QC 

strategies, potentially inaccurate cases and outliers were identified with MRIQC, Qoala‑T, global morphological 

estimates, EN, and CNR. Rather than being excluded, the potentially inaccurate cases went through visual 

inspection and manual editing when necessary, in an identical scheme as the one described in section “2.1.4.1 

Manual quality control: visual inspection with editing or exclusion of cases”.

For each approach, tabulated data was then extracted creating the QC datasets: “Semi‑MRIQC dataset”, 

“Semi‑Qoala dataset”, “Semi‑Morphological dataset”, “Semi‑EN dataset”, and “Semi‑CNR dataset”.
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Figure 2.2 | Creation of QC datasets. A) No QC: The extraction of the morphological estimates is done directly from Free-
Surfer’s output (recon-all) with no quality control (QC). B) Manual QC: Segmented images undergo visual inspection. Only 
images with a direct score of “Pass” (with no manual editing) are included in both the visual-excl and visual-edit datasets. 
When manual editing is necessary, it is performed a maximum of two times. All images classified as “pass” in the last 
round (after manual editing) are added to the visual-edit dataset. In parallel, data is independently extracted (box in gray) 
only for those images requiring manual editing (n=39). This is done before and after undergoing manual editing. C) Au-
tomatic QC: Segmentations are classified according to their quality by either an automated software (MRIQC or Qoala-T) 
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or outliers based on several metrics (Morphological (Morph), Euler numbers (EN), or Contrast-to-noise ratio (CNR)). Only 
those classified as “good” are included in the dataset. D) Semi-automatic QC: A “combination” between automatic and 
Visual-edit QC. Instead of being excluded, images classified as “poor” by the automated steps, undergo visual inspection 
(and manual editing when necessary). For details on the number of edited and excluded cases, sample size and time cost 
of each QC strategy please see Supplementary Table S2.1. 

Statistical analysis

Sample characteristics

Wilcoxon signed‑rank tests and Chi‑squared (χ2) tests, for continuous and categorical variables respectively, 

were performed to assess significant differences between the MCI and non‑MCI groups.

Agreement and overlap of manual ratings

Weighted Cohen’s  Kappa (К) (Cohen, 1968) and percentage of agreement 

were implemented to assess inter‑ and intra‑rater reliability among the initial visual inspection’s ratings.

Manual editing effects

To assess our first aim, the percentage of change on brain morphological estimates  

after manually editing was extracted for each of the 198 brain morphological estimates separately. Wilcoxon 

signed‑rank test, and effect size (r) (Rosenthal, Cooper, & Hedges, 1994) defined as r=Z/√N, where Z is the 

Z‑score and N is the sample size, were used to test significance of changes before and after manual editing for 

each paired morphological estimate. False discovery rate (FDR) was used for multiple comparisons correction 

providing q‑values. In addition, we extracted the average within‑subject coefficient of variation (CoV) for each 

of the 198 morphological estimates as:  Where n is the sample size, s the 

within‑subject variance as  , m the within‑subject mean as  , and 

x is a specific brain morphological estimate. 

Comparison of QC strategies

To assess our second aim, we focused on how QC strategies change the proportion of unexplained variance 

relative to its total variance. The background concept is based on the measurement error contained in a linear 

regression  model’s stochastic component, the error term. Purely measuring 

the changes in unexplained variance is insufficient, as any QC strategy that would reduce the total variance of 

a sample will collaterally reduce the unexplained variance, but potentially also the explained one. Therefore, 

we here used the inverse proportion of unexplained‑to‑total variance. The coefficient of determination 

(R2) captures this proportion . It can be robustly 
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extracted from a linear regression model, and in practical terms it is not affected by sample size (Hayes, 2017). 

A small part of the unexplained variance in this proportion is due to noise or measurement error. The QC 

strategies will target this small part and potentially change it. Therefore, the measuring the small changes in 

the unexplained variance proportion before and after a QC strategy is applied, allows for the quantification of 

changes in the quality of a sample.

In order to extract R2 for each morphological measure in each dataset, we created a test case regression model 

with one morphological measure as dependent variable, and age and sex as independent variables. We ran 

this model separately for each of the 198 morphological measures in the non-QC dataset and in each of the 

12 newly created datasets, obtaining 198 R2 for each of QC datasets (i.e. a total of 2574 R2 values). The reason 

to use a model with age and sex is to ensure a wide range of R2 values in each dataset. Age related brain 

atrophy has been widely studied (Gur et al., 1991; Kakimoto et al., 2016; Murphy, DeCarli, Schapiro, Rapoport, 

& Horwitz, 1992; Tang, Whitman, Lopez, & Baloh, 2001; Yoshii et al., 1988), and most brain regions are to 

some extent affected by age. Please note that purpose of the linear regression with age was to obtain a metric 

related to the unexplained‑to‑total variance, not to assess what morphological estimate has the strongest 

relationship with age. Using non‑QC as baseline, we then individually subtracted the R2 values obtained in 

the non‑QC sample from their paired R2 values obtained in each of the 12 QC datasets, obtaining 198 delta R2 

(DR2) for each of the 12 QC strategies , where x is the specific morphological 

estimate, and i corresponds to 1 of the 12 QC datasets, not including the baseline: Non‑QC).

An increase in  will then indicate a reduction of unexplained‑to‑total variance ratio for a specific brain 

morphological estimate, and hence a beneficial increase of relative explained variance. Differences in  

were assessed qualitatively.

To assess the overlap between QC strategies, we report the number and Dice similarity coefficient (Dsc) (Dice, 

1945), of the flagged (detected as inaccurate) cases by each QC metric or tool (i.e. Visual inspection, MRIQC, 

Qoala-T, Global morphological measures, EN and CNR).

In addition, and to explore the robustness of the results, the distribution of ∆R2 obtained by the original linear 

regression (brain ~ age + sex) was compared to the distribution obtained when adding BMI as a covariate 

(brain ~ age + sex + BMI).

All statistical analysis were performed in R 4.0.2 (2020‑06‑22) (Team, 2013). Graphs were created through 

ggplot2 (Wickham, 2016), and brain maps through ggseg (Mowinckel & Vidal-Piñeiro, 2020). Scripts are 

available at https://github.com/JenniferMosa/QCstrategies.

https://github.com/JenniferMosa/QCstrategies
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Results
Sample characteristics

259 participants completed FreeSurfer’s recon‑all and underwent all QC strategies. Supplementary Table S2.2 

summarizes the characteristics of the study sample stratified for MCI and non‑MCI participants. The MCI and 

non‑MCI groups were matched for age, sex and educational level. A significantly higher BMI in MCI (p=0.017) 

was found, but there were no other differences on demographic parameters between participants.

Brain segmentation & creation of datasets

A total of 12 QC strategies were applied to the original sample (non-QC dataset). Each strategy differed in the 

amount of segmentations that were visually inspected, edited or excluded, as well as the time investment 

of performing each QC strategy. The sample sizes of the newly created QC datasets ranged from n=205 to 

n=259. The time investment to perform QC ranged from 15 minutes for the auto‑QC strategies to 126 hours 

(approximately 30 minutes per subject) when applying the Visual-edit QC strategy. Supplementary Table S2.1 

summarizes the number of segmentations visually inspected, edited and excluded, the total sample sizes of 

the new datasets, and the time investment of applying each QC strategy. 

Visual inspection

The intra‑rater agreement was 54.7%. The inter‑rater agreement was 40.7% when only one rater used SOP, and 

47.0% when both raters followed the SOP. Table 2.1 summarizes inter/intra-rater reliability through weighted 

Cohen’s Kappa values (К), which takes into consideration the scores as ordered values, and confidence intervals 

(CI). The inter‑rater reliability increases with the use of a SOP, reaching a К=0.25, similar to the intra‑rater 

reliability, with К=0.24. 

The accorded rating, agreed‑upon by both raters, classified 17.8% of the segmentations as inaccurate, either 

by requiring manual editing or exclusion. Figure 2.3 shows the distribution of the scores given by each rater, 

as well as the final accorded rating. 

Kappa (Confidence Interval) Rater 1 TP1, no SOP Rater 1 TP2, SOP Rater 2, SOP

Rater 1 TP1, no SOP 1 0.24 (‑0.45, 0.94) 0.16 (‑0.41, 0.73)

Rater 1 TP2, SOP - 1 0.25 (‑0.09, 0.60)

Rater 2, SOP - - 1

Table 2.1 | Inter and intra-rater reliability. Cohen’s kappa scores (K) and confidence intervals (CI) are reported for each 
rating. TP: time point; SOP: Standard operating procedure.
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Figure 2.3 | Distribution of given scores in each visual inspection, and final accorded rating. Abbreviation: SOP: Standard 
operating procedure.

Manual editing of brain surfaces: changes in brain estimates 

Segmentations of 39 out of 259 brains had an accorded rating of “2” and thus were manually edited. Manual 

editing resulted in changes in all morphological measures out of the 39 edited brains. The largest difference 

after editing, with a mean increase of 25% of its volume, was found in bilateral fimbria, followed by differences 

that ranged from +9 to +12% in bilateral vessel and cerebellar white matter. The largest reduction was found 

in the fourth ventricle, with a mean volume reduction of 7%. Figure 2.4A shows the average difference in 

percentage across subjects after editing. 

Wilcoxon signed‑rank test showed significant differences (q‑value < 0.05) in 53 out of the 198 analyzed 

morphological measures. See Supplementary Figure S2.1 for q‑values’ brain maps. The effect sizes (r) ranged 

from 0 to 0.87, with the largest effect sizes (r>0.8) found in bilateral fimbria, brainstem, 4th ventricle, left 

cerebellum white matter, left lateral ventricle, and bilateral ventral DC. Figure 2.4B shows the effect size 

distribution for several cortical and subcortical morphological measures. A brain map legend is provided in 

Supplementary Figure S2.2. 

The median CoV for all brain regions was 2.4%, with a standard deviation (SD) of 3.0%. The largest CoV was 

found within subcortical structures (CoV=4.5%, SD=4.6%), followed by hippocampal subfields (CoV=2.9%, 

SD=4.2%), cortical thickness (CoV=2.2%, SD=1.0%), and the smaller in cortical areas (CoV=1.7%, SD=1.6%). 



Quality control strategies for brain MRI segmentation and parcellation

43

Figure 2.4 | Brain maps. A) Average change in percentage of each morphological measure after manual editing. Yellow 
indicates an increase in volume, area or thickness, while blue indicates a decrease. Color intensity shows the magnitu-
de of the changes. Notice the percentage of change found in subcortical volumes is larger than those found in cortical 
areas and thickness, as reflected in its legend. B) Effect size (r) of these changes. Larger effect sizes are closer to 1 and 
represented in pink, while lower effect sizes are closer to 0 and represented in white. A brain map legend for cortical and 
subcortical structures can be found in Supplementary Figure S2.2. Note: The brain maps do not represent all the analyzed 
morphological measures, for a list of percentage of change, effect sizes, and q-values of all brain regions see Supplemen-
tary Table S2.3.
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Quality control Strategies: consequences in a regression analysis

R2 was extracted for 198 morphological measure over 13 datasets (1 non-QC and 12 QC datasets). The 

distribution of the R2 values obtained by each dataset in each brain region can be found in Supplementary 

Table S2.4.

The overlap of cases detected as inaccurate by the different QC strategies was relatively low, and no cases were 

simultaneously identified by all the strategies. The use of global morphological metrics for the identification 

of inaccurate cases (used in Auto-Morpho and Semi-Morpho QC strategies) detected 52 segmentations (30 

of them were unique, i.e. only flagged by this specific metric); CNR detected 2 (none of them unique); EN 

detected 26 (3 unique); MRIQC detected 29 (10 unique); Qoala-T detected 54 (27 unique); and visual inspection 

detected 46 (21 unique). Supplementary Table S2.5 shows the overlap between the flagged segmentations by 

each tool and metric. The highest overlap was found between EN and MRIQC (n=11, Dsc=0.40,), followed by 

EN and Visual inspection (n=10, Dsc=0.36).

Across all brain morphological estimates, the exclusion of cases based on visual inspection (Visual-excl) yields 

the largest decrease of unexplained variance relative to total variance, as shown by the largest increase in R2 

(∆R2 =.011), followed by the exclusion of cases based on EN (Auto-EN) (∆R2 =.005). Auto‑Morphological yields 

the largest decrease in R2 (∆R2 =‑.021). Figure 2.5.A shows the mean ∆ R2 and confidence intervals (CI) across 

all morphological estimates for each QC strategy. 

Figure 2.5.B shows the specific mean DR2 and CI per type of measure obtained by each QC strategy. The 

QC strategies that resulted in the highest increase in explained‑to‑total variance ratio as measured by larger 

positive ∆R2 for cortical thickness are: Visual-edit (mean ∆R2=.009) and visual-excl (∆R2 =.009); for cortical area 

Auto‑Qoala (mean ∆R2 =.012), Visual-excl (mean ∆R2 =.009) and Auto‑EN (mean ∆R2 =.008); for subcortical 

volumes Visual-excl (mean ∆R2 =.018), auto‑MRIQC (mean ∆R2 =.012), Auto‑EN (mean ∆R2 =.010), and 

Auto‑Qoala (mean ∆R2 =.006); and for hippocampal subfields Auto‑EN (mean ∆R2 =.013), Visual-excl (mean 

∆R2 =.013), Auto‑MRIQC (mean ∆R2=.007) and Auto‑Qoala (mean ∆R2 =.006). The exclusion of cases based 

on morphological estimates (Auto‑Morphological) produced a relatively large reduction in R2 for any type 

of measure (mean ∆R2 = ‑.034 for area, mean ∆R2 = ‑.022 for hippocampal subfields, mean ∆R2 = ‑.017 for 

subcortical volumes and mean ∆R2 = ‑.011 for cortical thickness), as well as Auto‑Qoala, which reduced R2 in 

cortical thickness by ‑.021 relative to the non‑QC strategy.

The distribution pattern of ∆R2 obtained in each QC dataset is preserved when adding an additional covariate 

(BMI) to the regression model (See Supplementary Figure S2.3).
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Figure 2.5 | QC strategies performance. Mean ∆R2 obtained by each QC strategy is indicated with a square. Whiskers show 
the 95% confidence interval for the mean. Green and orange indicate an increase and decrease in R2 respectively. Red dotted 
line shows the mean ∆𝑅2 of the non-QC strategy, i.e. zero. A) Average ∆𝑅2 across all brain regions for each QC strategy. B) 
Average ∆𝑅2 across all brain regions of a specific type (Cortical thickness, area, subcortical and hippocampal subfields volu-
mes). Abbreviations: QC: Quality control; EN: Euler numbers; CNR: Contrast-to-noise ratio; Qoala: Qoala-T.
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Discussion
In this study we investigated the influence of manual editing of brain surfaces on resulting morphological 

FreeSurfer estimates. We also compared the performance of different QC strategies by assessing how these 

alter the relative proportion of unexplained variance in a neuroimaging sample. 

Manual editing brain surfaces 

Manual editing of brain segmentations produces significant changes in several brain morphological estimates 

across thickness, surface area and volumetric measures, with large effect sizes especially found in subcortical 

structures. Similar studies showed mixed results: Waters et al. (2019) showed significant differences in cortical 

but not subcortical volume following editing. Beelen et al. (2020) found a significant increase in cortical 

area, and a decrease in cortical thickness after manual editing. Conversely, McCarthy et al. (2015) found no 

significant differences in cortical area, thickness, and subcortical volumes. The discrepancy in results could be 

explained by the use of different editing techniques: While Waters et al. (2019) only edited voxels in the brain 

mask, Beelen et al. (2020) also edited the white matter mask, and used control points; McCarthy et al. (2015) 

exclusively used control points and white matter modification; and we edited the brain mask, white matter 

mask and used control points. 

The within‑subject CoV that we obtained after manual editing was similar to what was found in repeatability 

studies for subcortical structures (Maclaren, Han, Vos, Fischbein, & Bammer, 2014; Velasco‐Annis, Akhondi‐

Asl, Stamm, & Warfield, 2018). Further, similar CoV were found in FreeSurfer’s reproducibility studies between 

operating systems in measures of volume and thickness (Gronenschild et al., 2012).

Our results indicate that manual editing of brain surfaces through removal and addition of voxels and control 

points, produces changes in all types of morphological estimates. It is important to realize that, in practice, 

finding a change in the morphological measures after manual intervention (or the usage of a new operating 

system to run FreeSurfer) is not sufficient to conclude the segmentation quality has decreased or increased, 

i.e. a change in a morphological estimate does not indicate a change in the quality of the data. Visual inspection 

of the newly generated segmentations is essential to ensure the manual intervention produced the desired 

effect. 

Comparison between QC strategies 

We created a regression model and extracted the ∆R2 for each morphological estimate when comparing each 

QC strategy to non‑QC. To our knowledge, this is the first study using the proportion of unexplained‑to‑total 

variance as a measure of quality. 
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Two previous studies have assessed the importance of manual QC by testing whether it increases the sensitivity 

to detect differences between clinical groups. Both studies used paired t‑tests to compare the effect sizes 

obtained with and without manual editing, with no significant results (Beelen et al., 2020). With a different 

methodology, Waters et al. (2019) assessed if the correlation coefficients for brain‑behavior relationships 

differed between edited and unedited segmentations, finding non‑significant differences. Relating the quality 

of the data to the capacity to find significant results can be misleading, as non-randomized noise, for example 

caused by biases in the data (Blumenthal et al., 2002; Madan, 2018; Pardoe et al., 2016; Savalia et al., 2017; 

Wenger et al., 2014) can lead to more significant differences between groups. Similarly, some studies have 

used the variance of brain volumes before and after manual editing (McCarthy et al., 2015) or when applying 

a specific QC strategy (L. L. Backhausen et al., 2016) to test its adequacy. While the reduction of the total 

variance of a sample implies a potential reduction on unexplained variance, it can also entail a potential 

reduction of explained variance driven by actual morpho-physiological information. Finally, other studies 

assess the viability of a QC strategy by comparing it to manual ratings (Klapwijk et al., 2019; Rosen et al., 2018; 

Yao et al., 2005), which assumes that manual QC improves the quality of a sample. Using the proportion of 

unexplained-to-total variance, allowed us to capture the measurement error caused by both noise and biases 

for each QC strategy, without assuming a specific gold standard. 

Manual quality control strategies remain the gold standard

Visual inspection with exclusion (Visual-excl) and editing (Visual-edit) of inaccurate cases, produced the largest 

increases in R2 overall, and were beneficial for all types of brain measures.

Despite the good results as indicated by the increase in R2, the low agreement between raters obtained 

during the visual inspection highlights the subjectivity component of the manual strategies. Enough training 

and experience, and the use of formal guidelines, are important to lessen the subjectivity of this process. 

Ultimately, the reassessment and discussion of the discordant cases between raters, may help overcome an 

initial low inter-rater reliability score. 

Well-established formal guidelines for visual inspection of both brain MRI and FreeSurfer’s output are publicly 

available. Notable examples are the workflow for QC of structural brain images proposed by (Lea L Backhausen 

et al., 2016) and the ENIGMA QC protocols (Toro, 2010) with focus on cortical parcellation. Further, recently 

developed tools for visual inspection of brain segmentations (Keshavan et al., 2018) and cortical parcellations 

(Raamana et al., 2020) may provide a solid support to increase reproducibility and reduce time cost, optimizing 

the visual inspection process. 

Therefore, where the sample size, time requirements, and resources allow it, and if efforts are being made to 

ensure a reliable and reproducible score and manual intervention, manual strategies are highly recommended. 
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Auto‑EN provides, on average, the greatest reduction in noise among 
automated strategies

Auto‑EN is a pragmatic strategy that, on average, produces the second best reduction of unexplained variance, 

consistently good for three out of four types of brain measures, namely subcortical volumes, hippocampal 

subfields and cortical area. EN is a measure of reconstructed surface complexity and has been found to highly 

correlate with visual inspection scores and image artifacts in several samples (Rosen et al., 2018). It is perhaps 

counterintuitive that this QC strategy performs poorly for measures of cortical thickness. However, EN relates 

to the frequency, and not the size, of bridges and holes in the brain segmentation. Cortical thickness estimates 

may be more influenced by large errors (possibly more related to skull stripping) than from frequent small 

ones, which may be more related to underlying image quality. Hence, auto‑EN is an effective and time‑efficient 

QC strategy appropriate for large sample sizes.

The optimal QC strategy depends on the type of morphological estimate of 
interest and sample size

Our results show that cortical thickness benefits the most from the manual strategies (Visual-excl and Visual-

edit); cortical area benefits most from Auto-Qoala and Visual-excl; and subcortical and hippocampal subfields 

volumes from Visual-excl, Auto-EN, and Auto-MRIQC. Interestingly, Visual-edit performs worse than Visual-

excl in all types of morphological estimates except cortical thickness.

The different effects of the QC strategies on the type of morphological estimate can be explained by the 

particular mechanisms of each QC strategy. Manual strategies visually inspect the upper and lower boundaries 

of the cortical gray matter (pial and white matter surfaces respectively), which are tightly related to the cortical 

gray matter thickness. Manual editing changes the distance between these boundaries, directly changing 

the cortical thickness estimates. However, manual editing does not change the boundaries between specific 

ROIs, and hence morphological estimates of surface area are not substantially affected. Distinct from cortical 

parcellation, subcortical segmentation is defined based on image intensities and probabilistic information 

of ROIs positions (Fischl et al., 2002), and thus, correcting errors in surface boundaries and adding control 

points to correct normalization errors changes the subcortical estimations only indirectly. The QC strategies 

based on image quality metrics -such as CNR and especially MRIQC- may provide a time efficient indication of 

segmentation quality based on the fact that good image quality ‑for example high contrast, with no movement 

or artifacts‑ might facilitate a good segmentation performance. 

The better performance of excluding (Visual-excl), rather than editing (Visual-edit) segmentations, may indicate 

that while visual inspection accurately targets segmentations with inaccuracies affecting all types of measures 

(thickness, area and volumes), manual editing these segmentations has a limited effect in the areas and 

volumes, preserving part of the unexplained variance of these cases. Nonetheless, small and medium samples 
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may benefit from the use of manual intervention. Editing, instead of excluding inaccurate segmentations, 

would lead to less missing cases, which is very valuable when the sample size is small. In addition, worse image 

quality is more often found in certain population or clinical groups (Blumenthal et al., 2002; Madan, 2018; 

Pardoe et al., 2016; Savalia et al., 2017; Wenger et al., 2014), which can lead to poorer segmentations. Manual 

editing may lessen the otherwise excluded cases among this population groups, preventing an imbalance in 

the dataset, and the potentially associated bias. 

QC strategies based on global morphological estimates are not a suitable QC 
solution

Notably, for all types of measures, the ∆R2 decreased by the commonly used strategy of excluding or visually 

inspecting and editing subjects based on global morphological estimates (Auto‑ and Semi‑Morphological 

QC strategies). Excluding outliers based on morphological estimates naturally reduces the total variance of 

a sample, but our results indicate that a large part of this reduced variance is not unexplained variance but 

potentially relevant morpho‑physiological information. In addition, a previous study found that approximately 

40% of the segmentation errors are not identified by the use of morphological outliers (Waters et al., 2019). 

Taken together, this strongly indicates that the exclusion of subjects based on global morphological estimates 

is not a suitable QC strategy. 

Limitations

The design of this study does not allow drawing firm conclusions beyond models using age as an independent 

variable. However, results are robust when adding a new covariate, BMI. And given a large proportion of 

published studies include age as a covariate or independent variable, information about the optimal QC 

procedure for such scenario is relevant for the neuroimaging community. 

In addition, many QC strategies seem to overlap in performance with each other, and due to the violation 

of the assumption of independence, no regression or correlation tests can be performed in the resulting R2. 

Therefore, the changes produced by these strategies can only be compared qualitatively, and the significance 

of this differences cannot be assessed.

Further, the data acquisition and segmentation pipeline from DMS was carefully designed to provide the 

best data quality. This led to a sample with high quality of segmentations (82% rated as accurate by visual 

inspection), which might not be representative of other cohorts. Different (more severely affected) clinical 

samples, studies with different population types, hardware or reconstruction parameters, could lead to a 

different pattern of segmentation inaccuracies. Further research needs to be performed to investigate these 

scenarios. 
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Finally, this study does not cover all the possible QC strategies that are available for neuroimaging. A selection 

was made from commonly applied, and user friendly, options. There is room for improvement in finding a time 

efficient and reliable option, and future studies should explore different strategies.

Conclusion 

Manual editing of brain surfaces significantly alters FreeSurfer’s brain morphological estimates. 

The selection of a QC strategy should be determined by the type of morphological measures of interest in a 

study, while taking in consideration the available resources: Manual strategies (Visual-edit and Visual-excl) 

provide the largest decrease in unexplained variance across brain measures. Therefore, the visual inspection 

of FreeSurfer’s output, with or without manual editing, is highly encouraged whenever possible. However, 

when manual options are not feasible, the exclusion of outliers based on EN (Auto-EN) is a time efficient 

alternative, especially for studies focused on subcortical measures, hippocampal subfields or cortical area. 

Auto-EN produces on average an increase in explained‑to‑total variance similar to the one achieved by manual 

strategies. Yet, when cortical thickness measures are of particular relevance for a study, and manual strategies 

(Visual-excl or Visual-edit) are not feasible, the visual inspection and editing of outliers based on EN (Semi-EN) 

provides an alternative that is, despite lower in average, consistently beneficial for all types of brain measures. 

It is recommended, particularly for those studies using fully automatic strategies, to report the results both, 

with, and without the excluded cases.

Finally, we discourage the exclusion of outliers based on global morphological estimates (Auto-morpho) as it 

reduces a larger proportion of explained variance.
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Supplementary Table S2.1

Category QC strategy
Visual  
inspection (n)

Manual 
editing (n)

Exclusion
(n)

Sample 
size (n)

Cumulative time  
investment
(hours)

A. No QC Non‑QC 0 0 0 259 0.0

B. Manual QC
Visual-edit 259 39 7 252 126.0
Visual-excl 259 0 46 213 107

C. Automatic QC

Auto‑MRIQC 0 0 29 230 0.1
Auto‑Qoala 0 0 54 205 0.1
Auto‑morphological: 0 0 0.1
Cortical thickness 0 0 15 244
Cortical area 0 0 24 235
Subcortical volumes 0 0 23 236
Hippocampal subfields 0 0 38 221
Auto‑EN 0 0 26 233 0.1
Auto‑CNR 0 0 2 257 0.1

D. Semi‑ 
automatic QC

Semi‑MRIQC 29 8 2 257 16.2
Semi‑Qoala 54 10 1 258 27.5
Semi‑morphological: 67 7 31.3
Cortical thickness 49 2 0 259
Cortical area 38 3 1 258
Subcortical volumes 31 3 1 258
Hippocampal subfields 58 3 2 257
Semi‑EN 26 10 3 256 16.0
Semi‑CNR 2 0 1 258 1.0

Supplementary Table S2.1 | Number of segmentations visually inspected, manually edited or excluded for each QC strategy, 
sample sizes and time investment are reported. The Auto and Semi‑morphological QC strategies (see morphological estima-
te’s types in italic) differ in sample size, as the including, excluding, and editing criteria is based in different global estimates (see 
section “Automatic quality control: exclusion of cases” for details). The time investment includes only the human time: time for 
visual inspection (with two independent raters), for discussion to reach the accorded rating, and the time investment of manual 
editing. The time investment does not include the preparation time (install the software, or prepare a pipeline, for example) nor 
the software running time. Abbreviations: QC: Quality control; EN: Euler numbers; CNR: Contrast‑to‑noise ratio.

Supplementary Table S2.2

Non-MCI MCI
Wilcox/χ2
p-value

N (count) 127 132
Age (mean (SD)) 59.45 (8.80) 59.20 (8.61) 0.768
BMI (mean (SD)) 25.50 (3.69) 26.47 (4.14) 0.013
MMSE (mean (SD)) 28.86 (1.31) 28.46 (1.66) 0.074
Sex (% females) 45.5 48.5 0.428
Level of education
(n low/medium/high)

46/34/47 49/34/49 0.980

T2DM (% yes) 5.5 10.6 0.113

Supplementary Table S2.2 | Characteristics of the study sample (n=259) stratified by MCI and non-MCI. Wilcoxon Signed 
Rank Test and Chi-Square test were used to assess differences between groups. Abbreviations: MCI: Mild cognitive impairment; 
SD: standard deviation; BMI: Body mass index; MMSE: Mini Mental Score Examination; T2DM: Type 2 diabetes mellitus.
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Supplementary Figure S2.1

Supplementary Figure S2.1 | Brain maps show, in color, the morphological estimates that significantly changed after 
manual editing. False discovery rate for multiple comparisons is applied.



Supplementary material

59

Supplementary Figure S2.2

Supplementary Figure S2.2 | Color coded brain maps legend with all the represented regions.
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Supplementary Table S2.3

Area Thickness

ROI
Percentage of 
change (%)

q-value
Effect size 
(r)

Percentage of 
change (%)

q-value
Effect size 
(r)

LH_bankssts 0,394 0,879 0,016 -0,488 0,530 0,102

LH_caudalanteriorcingulate 1,854 0,399 0,136 0,655 0,157 0,230

LH_caudalmiddlefrontal 0,097 0,796 0,042 -0,207 0,176 0,218

LH_cuneus 0,346 0,517 0,104 0,333 0,361 0,148

LH_entorhinal 0,442 0,640 0,076 1,289 0,498 0,110

LH_frontalpole -0,152 0,298 0,168 -0,253 0,856 0,031

LH_fusiform -0,055 0,704 0,063 0,205 0,586 0,088

LH_inferiorparietal 0,062 0,911 0,019 0,795 0,029 0,350

LH_inferiortemporal 0,394 0,430 0,127 -0,072 0,615 0,082

LH_insula 1,560 0,312 0,163 -1,075 0,157 0,228

LH_isthmuscingulate -0,437 0,406 0,134 0,491 0,586 0,088

LH_lateraloccipital -0,649 0,233 0,192 0,624 0,005 0,451

LH_lateralorbitofrontal 0,436 0,120 0,250 0,285 0,209 0,202

LH_lingual -0,765 0,596 0,086 0,630 0,083 0,273

LH_medialorbitofrontal -0,004 0,967 0,008 0,676 0,387 0,140

LH_middletemporal 0,808 0,295 0,169 0,434 0,507 0,107

LH_paracentral -0,200 0,562 0,095 -0,162 0,325 0,159

LH_parahippocampal -0,009 0,660 0,072 0,261 0,701 0,060

LH_parsopercularis -0,038 0,879 0,022 0,178 0,533 0,099

LH_parsorbitalis 0,199 0,332 0,156 0,024 0,994 0,011

LH_parstriangularis -0,121 0,477 0,115 -0,526 0,238 0,190

LH_pericalcarine 0,685 0,255 0,183 0,874 0,050 0,326

LH_postcentral 0,411 0,972 0,007 0,356 0,039 0,332

LH_posteriorcingulate 0,283 0,643 0,077 0,000 0,556 0,099

LH_precentral 0,264 0,701 0,063 0,173 0,214 0,200

LH_precuneus 0,089 0,738 0,055 0,413 0,087 0,272

LH_rostralanteriorcingulate 0,356 0,972 0,007 0,794 0,759 0,050

LH_rostralmiddlefrontal 0,321 0,498 0,110 0,727 0,016 0,388

LH_superiorfrontal 0,310 0,494 0,111 0,098 0,490 0,112

LH_superiorparietal 0,153 0,989 0,003 0,582 0,001 0,544

LH_superiortemporal 0,182 0,754 0,051 0,102 0,823 0,037

LH_supramarginal 0,458 0,230 0,193 -0,155 0,586 0,088

LH_temporalpole 2,111 0,066 0,295 -0,938 0,519 0,103

LH_transversetemporal 1,116 0,145 0,235 -0,015 0,670 0,069

RH_bankssts -0,213 0,851 0,031 0,041 0,917 0,018

RH_caudalanteriorcingulate -0,002 0,464 0,118 -0,361 0,507 0,107

RH_caudalmiddlefrontal -0,460 0,459 0,120 1,133 0,010 0,411

RH_cuneus -0,042 0,353 0,153 0,074 0,691 0,065

RH_entorhinal 0,523 0,209 0,203 -1,068 0,277 0,175
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Area Thickness

ROI
Percentage of 
change (%)

q-value
Effect size 
(r)

Percentage of 
change (%)

q-value
Effect size 
(r)

RH_frontalpole -1,598 0,002 0,487 0,539 0,950 0,011

RH_fusiform -0,343 0,928 0,016 -0,044 0,839 0,035

RH_inferiorparietal -0,470 0,430 0,127 0,259 0,283 0,169

RH_inferiortemporal -0,181 0,691 0,065 -0,149 0,759 0,050

RH_insula 0,680 0,222 0,197 -0,720 0,161 0,226

RH_isthmuscingulate 0,286 0,630 0,078 -1,111 0,051 0,314

RH_lateraloccipital -1,449 0,001 0,549 0,844 0,002 0,508

RH_lateralorbitofrontal -0,172 0,764 0,049 0,349 0,895 0,022

RH_lingual -1,699 0,008 0,423 0,835 0,026 0,356

RH_medialorbitofrontal -0,225 0,954 0,008 -0,068 0,917 0,018

RH_middletemporal -0,160 0,607 0,087 0,652 0,017 0,384

RH_paracentral -0,725 0,135 0,240 0,391 0,567 0,093

RH_parahippocampal -0,308 0,368 0,145 0,067 0,994 0,009

RH_parsopercularis -0,640 0,023 0,364 0,618 0,060 0,306

RH_parsorbitalis -0,091 0,701 0,063 0,161 1,000 0,000

RH_parstriangularis -0,940 0,005 0,455 0,360 0,630 0,078

RH_pericalcarine -0,799 0,121 0,249 1,049 0,060 0,302

RH_postcentral -0,851 0,267 0,194 0,690 0,001 0,515

RH_posteriorcingulate -0,453 0,895 0,022 -0,603 0,258 0,184

RH_precentral -0,898 0,090 0,274 -0,021 0,950 0,011

RH_precuneus -0,479 0,325 0,159 0,163 0,582 0,088

RH_rostralanteriorcingulate -0,724 0,422 0,130 -0,135 0,829 0,036

RH_rostralmiddlefrontal -0,681 0,013 0,399 0,868 0,002 0,489

RH_superiorfrontal -0,317 0,516 0,105 0,341 0,018 0,379

RH_superiorparietal -0,625 0,315 0,162 0,383 0,008 0,424

RH_superiortemporal -0,346 0,913 0,009 0,515 0,003 0,474

RH_supramarginal -0,530 0,308 0,164 0,437 0,103 0,268

RH_temporalpole -0,436 0,863 0,029 0,729 0,336 0,155

RH_transversetemporal -0,464 0,738 0,055 0,506 0,593 0,077

Supplementary Table S2.3.A | Cortical morphological estimates. Percentage of change, q-value and effect size of the chan-
ges after manual editing. 
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Supplementary Table S2.3.B

ROI Percentage of change (%) q-value Effect size (r)

BrainStem -3,106 0,000 0,863

CCAnterior 0,027 0,000 0,588

CCCentral 0,337 0,029 0,351

CCMidAnterior 4,390 0,000 0,697

CCMidPosterior 7,007 0,000 0,641

CCPosterior 1,993 0,000 0,556

CSF 1,870 0,096 0,268

LH_Accumbens 3,422 0,066 0,295

LH_Amygdala 0,907 0,199 0,208

LH_Caudate -2,168 0,000 0,632

LH_CerebellumCortex -2,189 0,000 0,749

LH_CerebellumWhiteMatter 11,036 0,000 0,838

LH_Hippocampus 0,170 0,694 0,065

LH_InfLatVent 0,484 0,929 0,016

LH_LateralVentricle -1,164 0,000 0,827

LH_Pallidus -0,439 0,503 0,109

LH_Putamen -1,766 0,000 0,589

LH_ThalamusProper -0,985 0,009 0,416

LH_VentralDC 4,168 0,000 0,778

LH_choroidplexus 4,809 0,005 0,451

LH_vessel 12,239 0,043 0,324

OpticChiasm 0,976 0,829 0,036

RH_Accumbens 3,375 0,008 0,423

RH_Amygdala 1,938 0,085 0,277

RH_Caudate -1,848 0,000 0,539

RH_CerebellumCortex -1,924 0,000 0,670

RH_CerebellumWhiteMatter 8,980 0,000 0,675

RH_Hippocampus -0,038 0,885 0,025

RH_InfLatVent 3,953 0,003 0,474

RH_LateralVentricle -0,839 0,000 0,568

RH_Pallidus 0,226 0,625 0,079

RH_Putamen -1,482 0,031 0,344

RH_ThalamusProper -2,145 0,000 0,592

RH_VentralDC 5,416 0,000 0,816

RH_choroidplexus 3,298 0,075 0,286

RH_vessel 9,065 0,265 0,181

3rdVentricle -0,303 0,410 0,133

4thVentricle -7,212 0,000 0,863

Supplementary Table S2.3.B | Brain volumes. Percentage of change, q-value and effect size of the changes after manual 
editing. 
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Supplementary Table S2.3.C

ROI Percentage of change (%) q-value Effect size (r)

LH_CA1 -0,305 0,994 0,002

LH_CA3 1,088 0,142 0,237

LH_CA4 0,261 0,372 0,145

LH_GCMLDG 0,307 0,343 0,154

LH_HATA 1,199 0,194 0,210

LH_Hippocampaltail -2,195 0,001 0,534

LH_fimbria 24,506 0,000 0,869

LH_hippocampalfissure -0,477 0,194 0,210

LH_molecularlayerHP 1,494 0,010 0,409

LH_parasubiculum -0,309 0,204 0,206

LH_presubiculum -1,074 0,051 0,313

LH_subiculum -0,242 0,435 0,127

RH_CA1 -0,595 0,070 0,290

RH_CA3 1,974 0,001 0,505

RH_CA4 0,672 0,209 0,203

RH_GCMLDG 0,628 0,225 0,197

RH_HATA 1,774 0,704 0,063

RH_Hippocampaltail -3,424 0,000 0,740

RH_fimbria 24,013 0,000 0,871

RH_hippocampalfissure 1,047 0,539 0,101

RH_molecularlayerHP 0,522 0,644 0,076

RH_parasubiculum -0,145 0,983 0,004

RH_presubiculum -2,000 0,000 0,592

RH_subiculum -0,457 0,180 0,217

Supplementary Table S2.3.C | Hippocampal subfields. Percentage of change, q-value and effect size of the changes after 
manual editing. 
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Supplementary Figure S2.3

Supplementary Figure S2.3 | Distribution of ∆R^2obtained by each QC strategy using the original regression model (brain 
~ age + sex) plotted vs. the distribution of ∆R^2 obtained by each QC strategy when adding BMI as a covariate (brain ~ 
age + sex). Dot colors differentiate between quality control strategies. Adding BMI as a covariate, despite small variations, 
preserves the overall pattern.



Supplementary material

65

Supplementary Table S2.4

Re
gi

on

N
on

-Q
C

V
is

ua
l-e

di
t

A
ut

o-
CN

R

A
ut

o-
EN

A
ut

o-
M

or
ph

o

A
ut

o-
M

RI
Q

C

A
ut

o-
Q

oa
la

Se
m

i-C
N

R

Se
m

i-E
N

Se
m

i-M
or

ph
o

Se
m

i-M
RI

Q
C

Se
m

i-Q
oa

la

V
is

ua
l-e

xc
l

Area

LH_bankssts 0,11 0,12 0,12 0,12 0,09 0,11 0,12 0,12 0,11 0,11 0,12 0,11 0,12

LH_caudalanteriorcingulate 0,02 0,02 0,02 0,02 0,01 0,02 0,02 0,03 0,03 0,02 0,03 0,02 0,03

LH_caudalmiddlefrontal 0,13 0,14 0,14 0,14 0,10 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,18

LH_cuneus 0,14 0,15 0,15 0,17 0,11 0,15 0,14 0,15 0,16 0,14 0,16 0,14 0,19

LH_entorhinal 0,02 0,01 0,02 0,01 0,01 0,01 0,03 0,02 0,01 0,01 0,01 0,02 0,02

LH_fusiform 0,22 0,23 0,22 0,22 0,16 0,22 0,22 0,22 0,22 0,21 0,22 0,22 0,23

LH_inferiorparietal 0,10 0,11 0,11 0,11 0,06 0,10 0,10 0,11 0,11 0,10 0,11 0,10 0,11

LH_inferiortemporal 0,14 0,14 0,14 0,16 0,11 0,13 0,16 0,15 0,15 0,14 0,15 0,14 0,18

LH_isthmuscingulate 0,18 0,19 0,19 0,19 0,15 0,19 0,21 0,19 0,20 0,18 0,19 0,19 0,20

LH_lateraloccipital 0,23 0,24 0,24 0,27 0,20 0,25 0,23 0,24 0,24 0,23 0,24 0,23 0,25

LH_lateralorbitofrontal 0,19 0,19 0,20 0,22 0,16 0,19 0,22 0,20 0,20 0,19 0,19 0,20 0,20

LH_lingual 0,14 0,15 0,15 0,16 0,11 0,15 0,16 0,16 0,16 0,14 0,16 0,13 0,17

LH_medialorbitofrontal 0,16 0,16 0,16 0,16 0,12 0,15 0,18 0,16 0,16 0,16 0,16 0,16 0,15

LH_middletemporal 0,19 0,19 0,20 0,21 0,15 0,18 0,21 0,20 0,20 0,19 0,20 0,19 0,21

LH_parahippocampal 0,05 0,06 0,06 0,06 0,01 0,05 0,06 0,06 0,06 0,04 0,06 0,05 0,05

LH_paracentral 0,11 0,10 0,11 0,11 0,09 0,12 0,11 0,11 0,11 0,11 0,11 0,11 0,11

LH_parsopercularis 0,04 0,05 0,05 0,05 0,05 0,04 0,05 0,05 0,05 0,05 0,05 0,04 0,06

LH_parsorbitalis 0,15 0,15 0,14 0,15 0,11 0,14 0,18 0,15 0,15 0,14 0,15 0,15 0,13

LH_parstriangularis 0,11 0,11 0,11 0,11 0,10 0,11 0,15 0,11 0,11 0,11 0,11 0,11 0,10

LH_pericalcarine 0,08 0,09 0,09 0,10 0,05 0,09 0,08 0,09 0,09 0,08 0,09 0,08 0,10

LH_postcentral 0,26 0,25 0,26 0,25 0,22 0,26 0,27 0,26 0,26 0,26 0,26 0,26 0,28

LH_posteriorcingulate 0,14 0,14 0,14 0,14 0,10 0,14 0,15 0,14 0,14 0,14 0,14 0,15 0,16

LH_precentral 0,23 0,23 0,23 0,23 0,19 0,24 0,22 0,23 0,23 0,22 0,23 0,23 0,28

LH_precuneus 0,13 0,13 0,13 0,15 0,08 0,12 0,13 0,13 0,13 0,12 0,13 0,13 0,14

LH_rostralanteriorcingulate 0,12 0,12 0,12 0,13 0,07 0,11 0,13 0,13 0,13 0,12 0,13 0,13 0,13

LH_rostralmiddlefrontal 0,24 0,23 0,24 0,24 0,19 0,24 0,27 0,24 0,24 0,23 0,24 0,24 0,24

LH_superiorfrontal 0,25 0,25 0,25 0,27 0,20 0,25 0,26 0,25 0,25 0,25 0,25 0,25 0,26

LH_superiorparietal 0,06 0,06 0,06 0,06 0,03 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,07

LH_superiortemporal 0,20 0,21 0,20 0,21 0,16 0,21 0,21 0,20 0,20 0,20 0,20 0,20 0,20

LH_supramarginal 0,18 0,18 0,18 0,18 0,15 0,16 0,18 0,18 0,18 0,18 0,18 0,18 0,18

LH_frontalpole 0,17 0,15 0,17 0,16 0,13 0,17 0,19 0,17 0,16 0,16 0,16 0,16 0,14

LH_temporalpole 0,13 0,11 0,12 0,12 0,10 0,11 0,15 0,12 0,11 0,12 0,12 0,13 0,10

LH_transversetemporal 0,10 0,10 0,10 0,10 0,11 0,11 0,11 0,10 0,10 0,10 0,10 0,10 0,12

LH_insula 0,18 0,17 0,18 0,19 0,14 0,18 0,18 0,18 0,18 0,17 0,18 0,18 0,19
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RH_bankssts 0,06 0,06 0,06 0,06 0,03 0,05 0,08 0,06 0,06 0,05 0,05 0,06 0,06

RH_caudalanteriorcingulate 0,11 0,11 0,11 0,12 0,06 0,12 0,12 0,11 0,11 0,11 0,11 0,11 0,13

RH_caudalmiddlefrontal 0,11 0,12 0,11 0,11 0,08 0,11 0,12 0,11 0,11 0,11 0,11 0,12 0,12

RH_cuneus 0,15 0,14 0,15 0,15 0,12 0,15 0,14 0,15 0,15 0,14 0,15 0,15 0,15

RH_entorhinal 0,06 0,06 0,05 0,07 0,05 0,05 0,09 0,06 0,06 0,05 0,06 0,06 0,08

RH_fusiform 0,22 0,23 0,22 0,23 0,18 0,23 0,22 0,22 0,22 0,22 0,22 0,23 0,23

RH_inferiorparietal 0,21 0,22 0,22 0,22 0,18 0,20 0,22 0,22 0,22 0,21 0,22 0,21 0,23

RH_inferiortemporal 0,20 0,20 0,20 0,21 0,16 0,19 0,21 0,20 0,20 0,20 0,20 0,20 0,21

RH_isthmuscingulate 0,15 0,15 0,15 0,15 0,13 0,14 0,15 0,15 0,15 0,15 0,15 0,16 0,16

RH_lateraloccipital 0,21 0,21 0,21 0,22 0,18 0,21 0,22 0,21 0,21 0,21 0,21 0,22 0,22

RH_lateralorbitofrontal 0,16 0,16 0,17 0,19 0,12 0,18 0,18 0,17 0,18 0,16 0,17 0,16 0,16

RH_lingual 0,13 0,12 0,13 0,13 0,09 0,11 0,14 0,13 0,13 0,13 0,13 0,13 0,13

RH_medialorbitofrontal 0,19 0,19 0,19 0,21 0,15 0,19 0,22 0,19 0,20 0,19 0,20 0,20 0,21

RH_middletemporal 0,19 0,20 0,19 0,20 0,14 0,18 0,19 0,19 0,19 0,18 0,19 0,19 0,20

RH_parahippocampal 0,09 0,08 0,08 0,09 0,05 0,09 0,11 0,09 0,09 0,08 0,09 0,09 0,09

RH_paracentral 0,13 0,12 0,13 0,13 0,11 0,13 0,14 0,13 0,13 0,12 0,13 0,12 0,11

RH_parsopercularis 0,08 0,09 0,08 0,09 0,06 0,09 0,09 0,08 0,08 0,09 0,08 0,08 0,09

RH_parsorbitalis 0,15 0,15 0,15 0,17 0,12 0,15 0,19 0,15 0,16 0,15 0,15 0,15 0,14

RH_parstriangularis 0,15 0,15 0,15 0,15 0,13 0,16 0,17 0,15 0,15 0,15 0,15 0,15 0,14

RH_pericalcarine 0,07 0,07 0,07 0,07 0,05 0,07 0,08 0,07 0,07 0,07 0,07 0,07 0,06

RH_postcentral 0,17 0,17 0,18 0,17 0,13 0,16 0,15 0,18 0,18 0,17 0,18 0,17 0,19

RH_posteriorcingulate 0,17 0,17 0,17 0,18 0,13 0,16 0,17 0,17 0,17 0,17 0,17 0,17 0,18

RH_precentral 0,21 0,20 0,20 0,21 0,17 0,20 0,21 0,21 0,20 0,21 0,20 0,21 0,25

RH_precuneus 0,14 0,13 0,14 0,15 0,08 0,14 0,15 0,14 0,14 0,14 0,14 0,14 0,15

RH_rostralanteriorcingulate 0,09 0,09 0,09 0,09 0,05 0,09 0,09 0,09 0,09 0,09 0,08 0,09 0,08

RH_rostralmiddlefrontal 0,22 0,21 0,21 0,22 0,16 0,21 0,24 0,21 0,22 0,21 0,21 0,22 0,21

RH_superiorfrontal 0,22 0,21 0,22 0,23 0,17 0,23 0,24 0,22 0,22 0,22 0,22 0,22 0,22

RH_superiorparietal 0,10 0,10 0,11 0,13 0,07 0,10 0,12 0,11 0,11 0,10 0,11 0,10 0,13

RH_superiortemporal 0,17 0,17 0,17 0,19 0,14 0,19 0,20 0,17 0,17 0,17 0,17 0,17 0,19

RH_supramarginal 0,11 0,12 0,12 0,12 0,07 0,12 0,13 0,12 0,12 0,10 0,12 0,11 0,12

RH_frontalpole 0,15 0,12 0,15 0,15 0,10 0,14 0,16 0,15 0,14 0,14 0,14 0,14 0,14

RH_temporalpole 0,11 0,12 0,11 0,11 0,08 0,09 0,11 0,11 0,11 0,10 0,11 0,11 0,11

RH_transversetemporal 0,14 0,15 0,14 0,15 0,13 0,17 0,17 0,14 0,14 0,15 0,14 0,15 0,14

RH_insula 0,18 0,19 0,18 0,19 0,14 0,18 0,20 0,18 0,17 0,18 0,17 0,19 0,20
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Thickness

LH_bankssts 0,09 0,10 0,09 0,07 0,07 0,09 0,04 0,09 0,09 0,09 0,09 0,09 0,09

LH_caudalanteriorcingulate 0,06 0,06 0,05 0,06 0,06 0,05 0,04 0,05 0,06 0,05 0,06 0,06 0,05

LH_caudalmiddlefrontal 0,10 0,11 0,10 0,09 0,07 0,08 0,04 0,10 0,10 0,10 0,10 0,10 0,12

LH_cuneus 0,03 0,04 0,03 0,03 0,02 0,02 0,03 0,03 0,03 0,03 0,03 0,03 0,03

LH_entorhinal 0,02 0,03 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02

LH_fusiform 0,05 0,06 0,05 0,03 0,02 0,06 0,01 0,05 0,05 0,05 0,06 0,05 0,04

LH_inferiorparietal 0,12 0,13 0,12 0,11 0,10 0,12 0,06 0,12 0,12 0,12 0,12 0,12 0,14

LH_inferiortemporal 0,05 0,06 0,05 0,06 0,05 0,06 0,05 0,05 0,05 0,05 0,05 0,05 0,05

LH_isthmuscingulate 0,02 0,03 0,02 0,04 0,02 0,03 0,01 0,02 0,03 0,02 0,03 0,03 0,03

LH_lateraloccipital 0,02 0,04 0,02 0,02 0,01 0,03 0,03 0,02 0,03 0,02 0,02 0,02 0,02

LH_lateralorbitofrontal 0,03 0,04 0,03 0,04 0,02 0,03 0,02 0,03 0,03 0,03 0,03 0,03 0,03

LH_lingual 0,03 0,05 0,03 0,04 0,02 0,04 0,03 0,03 0,04 0,03 0,04 0,03 0,04

LH_medialorbitofrontal 0,02 0,03 0,02 0,03 0,01 0,02 0,03 0,02 0,02 0,01 0,02 0,02 0,02

LH_middletemporal 0,08 0,11 0,08 0,10 0,07 0,10 0,07 0,08 0,09 0,08 0,09 0,08 0,11

LH_parahippocampal 0,08 0,09 0,08 0,05 0,07 0,07 0,03 0,08 0,08 0,08 0,08 0,08 0,09

LH_paracentral 0,08 0,09 0,08 0,06 0,07 0,07 0,03 0,08 0,08 0,08 0,08 0,08 0,09

LH_parsopercularis 0,12 0,13 0,12 0,13 0,12 0,14 0,09 0,12 0,12 0,12 0,12 0,12 0,12

LH_parsorbitalis 0,03 0,03 0,03 0,03 0,02 0,03 0,01 0,03 0,03 0,03 0,03 0,03 0,04

LH_parstriangularis 0,11 0,12 0,11 0,11 0,11 0,12 0,08 0,11 0,12 0,11 0,11 0,12 0,15

LH_pericalcarine 0,02 0,01 0,01 0,01 0,02 0,02 0,03 0,01 0,01 0,02 0,01 0,01 0,02

LH_postcentral 0,09 0,11 0,09 0,08 0,07 0,09 0,04 0,09 0,09 0,09 0,09 0,09 0,10

LH_posteriorcingulate 0,03 0,03 0,03 0,02 0,02 0,02 0,01 0,03 0,03 0,03 0,03 0,03 0,03

LH_precentral 0,11 0,12 0,11 0,09 0,09 0,10 0,06 0,11 0,11 0,11 0,11 0,11 0,12

LH_precuneus 0,10 0,12 0,11 0,09 0,07 0,11 0,06 0,11 0,11 0,10 0,11 0,10 0,12

LH_rostralanteriorcingulate 0,07 0,08 0,07 0,08 0,07 0,06 0,02 0,07 0,07 0,07 0,07 0,08 0,10

LH_rostralmiddlefrontal 0,06 0,07 0,06 0,08 0,05 0,07 0,04 0,06 0,06 0,06 0,06 0,06 0,08

LH_superiorfrontal 0,12 0,13 0,12 0,11 0,11 0,12 0,05 0,12 0,12 0,12 0,12 0,12 0,13

LH_superiorparietal 0,10 0,11 0,10 0,09 0,07 0,09 0,07 0,10 0,10 0,10 0,10 0,10 0,12

LH_superiortemporal 0,14 0,16 0,14 0,13 0,11 0,14 0,09 0,14 0,14 0,14 0,14 0,13 0,16

LH_supramarginal 0,18 0,20 0,18 0,15 0,16 0,17 0,12 0,18 0,18 0,18 0,18 0,18 0,18

LH_frontalpole 0,00 0,00 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,01

LH_temporalpole 0,03 0,03 0,03 0,02 0,02 0,03 0,00 0,03 0,02 0,03 0,03 0,03 0,03

LH_transversetemporal 0,02 0,04 0,02 0,01 0,01 0,02 0,00 0,02 0,03 0,02 0,03 0,02 0,03

LH_insula 0,02 0,03 0,02 0,02 0,01 0,02 0,01 0,02 0,02 0,02 0,02 0,02 0,02

RH_bankssts 0,11 0,12 0,11 0,09 0,09 0,12 0,07 0,11 0,11 0,11 0,11 0,11 0,11



CHAPTER 2

68

Re
gi

on

N
on

-Q
C

V
is

ua
l-e

di
t

A
ut

o-
CN

R

A
ut

o-
EN

A
ut

o-
M

or
ph

o

A
ut

o-
M

RI
Q

C

A
ut

o-
Q

oa
la

Se
m

i-C
N

R

Se
m

i-E
N

Se
m

i-M
or

ph
o

Se
m

i-M
RI

Q
C

Se
m

i-Q
oa

la

V
is

ua
l-e

xc
l

RH_caudalanteriorcingulate 0,03 0,04 0,03 0,03 0,03 0,03 0,01 0,03 0,03 0,03 0,03 0,03 0,02

RH_caudalmiddlefrontal 0,11 0,11 0,11 0,10 0,09 0,11 0,07 0,11 0,11 0,10 0,11 0,11 0,14

RH_cuneus 0,03 0,04 0,04 0,04 0,03 0,04 0,05 0,04 0,04 0,03 0,04 0,03 0,04

RH_entorhinal 0,02 0,02 0,02 0,01 0,02 0,02 0,01 0,02 0,02 0,02 0,03 0,02 0,01

RH_fusiform 0,07 0,08 0,07 0,05 0,05 0,06 0,03 0,07 0,08 0,07 0,08 0,07 0,07

RH_inferiorparietal 0,18 0,20 0,19 0,18 0,16 0,20 0,17 0,19 0,19 0,18 0,19 0,19 0,20

RH_inferiortemporal 0,05 0,06 0,05 0,05 0,04 0,04 0,05 0,05 0,06 0,05 0,05 0,05 0,04

RH_isthmuscingulate 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,03

RH_lateraloccipital 0,04 0,06 0,04 0,04 0,02 0,04 0,06 0,04 0,05 0,04 0,04 0,04 0,05

RH_lateralorbitofrontal 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,01

RH_lingual 0,02 0,03 0,02 0,03 0,01 0,01 0,03 0,02 0,02 0,02 0,02 0,02 0,02

RH_medialorbitofrontal 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,00 0,00

RH_middletemporal 0,11 0,14 0,12 0,13 0,09 0,12 0,10 0,12 0,12 0,11 0,12 0,11 0,15

RH_parahippocampal 0,07 0,08 0,08 0,07 0,07 0,07 0,04 0,07 0,08 0,07 0,08 0,07 0,08

RH_paracentral 0,07 0,08 0,07 0,06 0,06 0,07 0,03 0,07 0,07 0,07 0,08 0,07 0,09

RH_parsopercularis 0,09 0,10 0,09 0,10 0,07 0,09 0,09 0,10 0,10 0,09 0,10 0,10 0,10

RH_parsorbitalis 0,02 0,01 0,02 0,02 0,01 0,01 0,00 0,02 0,02 0,02 0,01 0,01 0,04

RH_parstriangularis 0,11 0,12 0,11 0,11 0,09 0,11 0,08 0,11 0,11 0,11 0,11 0,11 0,12

RH_pericalcarine 0,04 0,03 0,05 0,05 0,06 0,05 0,07 0,05 0,04 0,04 0,04 0,04 0,03

RH_postcentral 0,09 0,10 0,09 0,08 0,07 0,08 0,06 0,09 0,09 0,09 0,10 0,10 0,12

RH_posteriorcingulate 0,04 0,05 0,04 0,04 0,03 0,03 0,01 0,04 0,04 0,04 0,04 0,04 0,05

RH_precentral 0,10 0,11 0,11 0,09 0,09 0,10 0,07 0,11 0,11 0,10 0,11 0,10 0,13

RH_precuneus 0,15 0,16 0,15 0,14 0,13 0,14 0,14 0,15 0,16 0,15 0,15 0,15 0,14

RH_rostralanteriorcingulate 0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,01 0,01 0,01 0,01 0,01 0,01

RH_rostralmiddlefrontal 0,02 0,03 0,02 0,04 0,02 0,02 0,01 0,02 0,02 0,02 0,02 0,02 0,04

RH_superiorfrontal 0,08 0,08 0,08 0,07 0,06 0,06 0,04 0,08 0,08 0,08 0,08 0,07 0,09

RH_superiorparietal 0,14 0,14 0,14 0,12 0,12 0,13 0,13 0,14 0,14 0,14 0,14 0,14 0,15

RH_superiortemporal 0,20 0,21 0,20 0,19 0,16 0,19 0,13 0,20 0,20 0,20 0,20 0,20 0,22

RH_supramarginal 0,16 0,17 0,16 0,14 0,14 0,15 0,13 0,16 0,16 0,16 0,16 0,16 0,16

RH_frontalpole 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00

RH_temporalpole 0,05 0,06 0,05 0,04 0,04 0,04 0,02 0,05 0,05 0,05 0,06 0,05 0,05

RH_transversetemporal 0,03 0,03 0,02 0,02 0,01 0,02 0,01 0,03 0,03 0,02 0,03 0,03 0,04

RH_insula 0,05 0,06 0,05 0,04 0,04 0,04 0,04 0,05 0,05 0,05 0,06 0,05 0,04
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Subcortical volumes

LH_LateralVentricle 0,22 0,23 0,22 0,22 0,22 0,21 0,17 0,22 0,23 0,23 0,22 0,23 0,23

LH_InfLatVent 0,23 0,24 0,23 0,22 0,23 0,20 0,21 0,23 0,23 0,24 0,24 0,24 0,21

LH_CerebellumWhiteMatter 0,14 0,13 0,14 0,15 0,11 0,17 0,16 0,14 0,13 0,14 0,14 0,13 0,18

LH_CerebellumCortex 0,25 0,25 0,25 0,27 0,22 0,26 0,29 0,25 0,26 0,25 0,25 0,26 0,26

LH_ThalamusProper 0,29 0,29 0,30 0,32 0,26 0,34 0,30 0,30 0,30 0,29 0,29 0,29 0,33

LH_Caudate 0,05 0,05 0,05 0,06 0,03 0,05 0,06 0,05 0,05 0,04 0,05 0,05 0,05

LH_Putamen 0,24 0,24 0,24 0,28 0,22 0,26 0,29 0,24 0,24 0,24 0,24 0,24 0,32

LH_Pallidum 0,12 0,12 0,12 0,13 0,09 0,16 0,15 0,12 0,13 0,12 0,12 0,12 0,12

3rdVentricle 0,32 0,32 0,32 0,32 0,33 0,29 0,28 0,32 0,32 0,32 0,32 0,33 0,32

4thVentricle 0,09 0,08 0,09 0,09 0,08 0,09 0,10 0,09 0,08 0,09 0,08 0,09 0,08

BrainStem 0,23 0,22 0,23 0,25 0,19 0,27 0,26 0,23 0,24 0,23 0,23 0,23 0,27

LH_Hippocampus 0,15 0,18 0,16 0,17 0,12 0,18 0,16 0,16 0,16 0,15 0,17 0,15 0,19

LH_Amygdala 0,20 0,19 0,20 0,22 0,19 0,19 0,24 0,20 0,19 0,19 0,20 0,19 0,23

CSF 0,19 0,19 0,19 0,17 0,17 0,17 0,15 0,19 0,19 0,20 0,19 0,20 0,20

LH_Accumbens 0,24 0,26 0,25 0,25 0,21 0,27 0,24 0,24 0,24 0,24 0,25 0,24 0,28

LH_VentralDC 0,26 0,27 0,27 0,30 0,21 0,30 0,30 0,27 0,27 0,26 0,27 0,27 0,31

LH_vessel 0,01 0,01 0,01 0,01 0,01 0,01 0,00 0,01 0,01 0,01 0,01 0,01 0,01

LH_choroidplexus 0,28 0,30 0,28 0,27 0,29 0,28 0,27 0,28 0,29 0,28 0,29 0,29 0,27

RH_LateralVentricle 0,19 0,21 0,19 0,20 0,19 0,19 0,15 0,19 0,20 0,20 0,20 0,20 0,20

RH_InfLatVent 0,19 0,19 0,18 0,17 0,18 0,15 0,19 0,18 0,18 0,19 0,18 0,19 0,16

RH_
CerebellumWhiteMatter 0,13 0,12 0,13 0,14 0,10 0,15 0,15 0,13 0,12 0,13 0,13 0,13 0,16

RH_CerebellumCortex 0,27 0,26 0,27 0,29 0,24 0,27 0,30 0,27 0,28 0,26 0,26 0,27 0,29

RH_ThalamusProper 0,25 0,24 0,25 0,27 0,21 0,30 0,26 0,25 0,26 0,25 0,24 0,25 0,29

RH_Caudate 0,04 0,05 0,04 0,05 0,03 0,05 0,05 0,04 0,04 0,04 0,04 0,04 0,04

RH_Putamen 0,24 0,23 0,24 0,26 0,21 0,28 0,27 0,23 0,24 0,23 0,23 0,24 0,31

RH_Pallidum 0,11 0,10 0,11 0,11 0,08 0,14 0,13 0,11 0,11 0,10 0,10 0,11 0,11

RH_Hippocampus 0,17 0,18 0,18 0,21 0,17 0,18 0,17 0,17 0,18 0,17 0,18 0,17 0,19

RH_Amygdala 0,19 0,19 0,19 0,21 0,18 0,19 0,21 0,19 0,19 0,19 0,19 0,19 0,21

RH_Accumbens 0,23 0,22 0,24 0,25 0,22 0,25 0,21 0,23 0,23 0,23 0,23 0,23 0,25

RH_VentralDC 0,27 0,29 0,28 0,30 0,23 0,33 0,30 0,27 0,28 0,27 0,29 0,28 0,32

RH_vessel 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00

RH_choroidplexus 0,32 0,33 0,32 0,29 0,33 0,29 0,28 0,32 0,32 0,32 0,33 0,32 0,30

OpticChiasm 0,03 0,03 0,03 0,05 0,03 0,04 0,05 0,03 0,03 0,03 0,03 0,03 0,04

CCPosterior 0,00 0,00 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,01
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CCMidPosterior 0,04 0,03 0,04 0,04 0,03 0,05 0,04 0,04 0,03 0,04 0,04 0,03 0,06

CCCentral 0,06 0,07 0,06 0,06 0,05 0,07 0,06 0,06 0,06 0,06 0,06 0,06 0,09

CCMidAnterior 0,07 0,07 0,07 0,08 0,06 0,10 0,09 0,07 0,07 0,07 0,07 0,07 0,10

CCAnterior 0,06 0,06 0,06 0,06 0,04 0,09 0,07 0,06 0,06 0,06 0,06 0,06 0,08

Hippocampal subfields

LH_Hippocampaltail 0,12 0,16 0,15 0,15 0,13 0,17 0,11 0,15 0,16 0,15 0,16 0,12 0,17

RH_Hippocampaltail 0,14 0,15 0,14 0,15 0,11 0,16 0,15 0,14 0,15 0,14 0,15 0,15 0,16

LH_subiculum 0,10 0,11 0,11 0,12 0,07 0,12 0,11 0,11 0,11 0,10 0,11 0,11 0,11

LH_presubiculum 0,10 0,11 0,10 0,11 0,07 0,11 0,11 0,10 0,11 0,10 0,10 0,10 0,10

LH_parasubiculum 0,07 0,07 0,07 0,07 0,04 0,08 0,09 0,07 0,07 0,07 0,07 0,07 0,08

RH_subiculum 0,09 0,09 0,09 0,09 0,06 0,09 0,08 0,09 0,09 0,08 0,09 0,09 0,08

RH_presubiculum 0,11 0,11 0,11 0,11 0,10 0,11 0,13 0,11 0,11 0,11 0,11 0,11 0,10

RH_parasubiculum 0,11 0,12 0,11 0,11 0,09 0,12 0,13 0,10 0,10 0,10 0,11 0,11 0,11

LH_hippocampalfissure 0,13 0,12 0,13 0,11 0,12 0,10 0,20 0,13 0,13 0,13 0,13 0,13 0,09

RH_hippocampalfissure 0,10 0,10 0,10 0,08 0,10 0,06 0,12 0,10 0,10 0,10 0,09 0,10 0,09

LH_molecularlayerHP 0,13 0,12 0,12 0,11 0,11 0,12 0,15 0,13 0,12 0,12 0,13 0,13 0,11

RH_molecularlayerHP 0,09 0,08 0,08 0,09 0,04 0,08 0,09 0,09 0,09 0,08 0,08 0,09 0,09

LH_CA1 0,14 0,15 0,14 0,18 0,10 0,16 0,15 0,14 0,14 0,14 0,14 0,14 0,18

LH_CA3 0,14 0,15 0,14 0,13 0,13 0,14 0,12 0,14 0,14 0,14 0,14 0,14 0,15

LH_CA4 0,13 0,14 0,13 0,14 0,09 0,14 0,13 0,13 0,13 0,13 0,13 0,13 0,16

RH_CA1 0,11 0,12 0,12 0,16 0,07 0,13 0,11 0,12 0,12 0,12 0,12 0,11 0,15

RH_CA3 0,13 0,14 0,14 0,16 0,13 0,14 0,11 0,14 0,14 0,14 0,14 0,13 0,17

RH_CA4 0,12 0,12 0,12 0,15 0,08 0,13 0,11 0,12 0,12 0,11 0,12 0,12 0,14

LH_GCMLDG 0,17 0,18 0,18 0,19 0,15 0,18 0,16 0,18 0,18 0,17 0,18 0,17 0,20

RH_GCMLDG 0,14 0,15 0,14 0,18 0,13 0,16 0,13 0,14 0,15 0,14 0,15 0,14 0,16

LH_HATA 0,10 0,11 0,11 0,11 0,08 0,11 0,12 0,11 0,11 0,10 0,11 0,10 0,11

RH_HATA 0,10 0,10 0,10 0,11 0,06 0,11 0,10 0,10 0,10 0,09 0,10 0,10 0,09

LH_fimbria 0,20 0,18 0,21 0,25 0,19 0,23 0,20 0,20 0,19 0,20 0,21 0,19 0,25

RH_fimbria 0,15 0,13 0,15 0,16 0,12 0,16 0,12 0,15 0,13 0,15 0,14 0,14 0,15

Supplementary Table S2.4 | R2 obtained by each QC strategy in each brain morphological estimate. Higher color intensity 
illustrates larger R2 values. 
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Supplementary Table S2.5

        Dsc
n

Morpho CNR EN MRIQC Qoala-T Visual

Morpho
           1

52
0,04 0,21 0,10 0,25 0,12

CNR
1

           1
2

0,14 0,13 0,00 0,04

EN
8 2

           1
26

0,40 0,28 0,36

MRIQC
4 2 11

           1
29

0,22 0,27

Qoala-T
13 0 11 9

           1
54

0,22

Visual
6 1 13 10 11

           1
46

Supplementary Table S2.5 | Overlapping cases detected as inaccurate by the different tools and metrics composing the 
QC strategies. Visual inspection (Visual), MRIQC, Qoala-T, Global morphological measures (Morpho), Euler numbers (EN) 
and Contrast-to-noise ratio (CNR). Lower triangle (in blue) shows the number (n) of overlapping segmentations, while the 
upper triangle (in green) shows the Dice similarity coefficient (Dsc) for each overlap. 
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Abstract
We investigated whether prediabetes, type 2 diabetes, and continuous measures of hyperglycemia are 

associated with tissue volume differences in specific subfields of the hippocampus. 

We used cross-sectional data from 4,724 participants (58.7±8.5 years, 51.5% women) of The Maastricht 

Study, a population-based prospective cohort. Glucose metabolism status was assessed with an oral glucose 

tolerance test, and defined as type 2 diabetes (n=869), prediabetes (n=671), or normal glucose metabolism 

(n=3184). We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1w 

and FLAIR 3T MRI images. We used multiple linear regression and linear trend analysis, and adjusted for total 

intracranial volume, demographic, lifestyle, and cardiovascular risk factors. 

Type 2 diabetes was significantly associated with smaller volumes in the hippocampal subfield fimbria 

(standardized beta coefficient ± standard error (β±SE) =-0.195±0.04, p-value<0.001), the hippocampus proper, 

i.e. Cornu Ammonis (CA) 1, CA2/3, CA4, dentate gyrus, subiculum and presubiculum (β±SE<-0.105±0.04, 

p-value<0.006); as well as the hippocampal tail (β±SE=-0.162±0.04, p-value<0.001). Prediabetes showed 

no significant associations. However, linear trend analysis indicated a dose-response relation from normal 

glucose metabolism, to prediabetes, to type 2 diabetes. Multiple continuous measures of hyperglycemia were 

associated with smaller volumes of the subfields fimbria (β±SE<-0.010±0.011, p-value<0.001), dentate gyrus 

(β±SE<-0.013±0.010, p-value<0.002), CA3 (β±SE<-0.014±0.011, p-value<0.001), and tail (β±SE<-0.006±0.012, 

p-value<0.003).

Type 2 diabetes and measures of hyperglycemia are associated with hippocampal subfield atrophy, 

independently of lifestyle and cardiovascular risk factors. We found evidence for a dose-response relationship 

from normal glucose metabolism, to prediabetes, to type 2 diabetes. Prediabetes stages could give a window 

of opportunity for the early prevention of brain disease.
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Introduction
There is extensive evidence that type 2 diabetes is associated with an increased risk of both degenerative and 

vascular brain damage (Brundel, Kappelle, & Biessels, 2014; Zheng, Ley, & Hu, 2018), as well as with memory 

impairment (Callisaya et al., 2019; Sadanand, Balachandar, & Bharath, 2016). Given the involvement of the 

hippocampus in memory processing, the relation between type 2 diabetes and hippocampal atrophy has 

been widely studied. Most brain MRI studies have indeed detected an association between type 2 diabetes 

and smaller bilateral hippocampal volume (Cui et al., 2019; Gold et al., 2007; Hempel, Onopa, & Convit, 

2012; Moran et al., 2013). Although there are exceptions (Wisse et al., 2014), a later meta-analysis based on 

1,364 cases and 3,433 controls confirmed the association between type 2 diabetes and smaller hippocampal 

volumes (Moulton, Costafreda, Horton, Ismail, & Fu, 2015). 

The hippocampus is a heterogeneous structure, composed of multiple subfields, each of which is characterized 

by specific cellular composition and distinctive neurophysiology (Fanselow & Dong, 2010). Therefore, type 2 

diabetes pathophysiology may be differently associated with specific hippocampal subfields. Yet, there is little 

theoretical agreement on the hippocampal subfields that might be affected in type 2 diabetes, and previous 

studies found smaller volumes in different subfields (Blom et al., 2020; C. Li et al., 2020; M. Li et al., 2020; 

Zhang et al., 2021).

Another very relevant question to the disease course of type 2 diabetes is whether prediabetes (i.e., the 

intermediate hyperglycemic condition in the transition from normal glucose metabolism to type 2 diabetes) 

is also associated with smaller hippocampal volumes. Previous literature found no evidence of an association 

between prediabetes and total hippocampal volume (THV) (Marseglia et al., 2019; Schneider et al., 2017). 

However, whether there is an association between prediabetes and specific hippocampal subfields is still 

unknown. 

The aim of the current study is to investigate whether prediabetes, type 2 diabetes, and continuous measures 

of hyperglycemia are associated with lower hippocampal subfield volumes. In addition, we aim to investigate 

whether potential associations are independent of demographic, lifestyle, and cardiovascular risk factors. 

To our knowledge, no previous study addressed the association between prediabetes, type 2 diabetes, and 

hippocampus subfield volumes in a population-based cohort, and taking into account potential confounders.
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Material and methods
Study population and design

We used data from The Maastricht Study, an observational population-based cohort study. The rationale 

and methodology have been described previously (Schram et al., 2014). In brief, the study focuses on the 

etiology, pathophysiology, complications and comorbidities of type 2 diabetes, and is characterized by an 

extensive phenotyping approach. Eligible for participation were all individuals aged between 40 and 75 

years and living in the southern part of the Netherlands. Participants were recruited through mass media 

campaigns, the municipal registries, and the regional Diabetes Patient Registry via mailings. Recruitment 

was stratified according to known type 2 diabetes status, with an oversampling of individuals with type 2 

diabetes, for reasons of efficiency. The present report includes cross-sectional data from 7,689 participants, 

who completed the baseline survey between November 2010 and December 2017. The examinations 

of each participant were performed within a time window of three months. MRI measurements were 

implemented from December 2013 onwards until February 2017 and were available in 5,204 out of 7,689 

participants. Additionally, 451 MRI scans had insufficient segmentation quality (Monereo-Sánchez et al., 

2021). Participants with type 1 diabetes or other types of diabetes (n=29) were excluded from the analysis. 

In the remaining 4,724 participants, complete data on covariates was available in 4,636 participants (Figure 

3.1). The study has been approved by the institutional medical ethical committee (NL31329.068.10) and 

the Minister of Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG). All participants 

gave written informed consent. 
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Figure 3.1 | Flowchart of the study population.

Glucose metabolism status

To determine glucose metabolism status, all participants, except those who used insulin, underwent a 

standardized 2h 75g oral glucose tolerance test (OGTT) after an overnight fast. For safety reasons, participants 

with a fasting plasma glucose level above 11.0 mmol/l, as determined by a finger prick, did not undergo the 

OGTT (n=50). For these individuals, fasting plasma glucose level and information about diabetes medication 

use were used to determine glucose metabolism status. Glucose metabolism status was defined according 

to the World Health Organization 2006 criteria as normal glucose metabolism (fasting plasma glucose < 6.1 

mmol/l), prediabetes (fasting plasma glucose ≥ 6.1 and < 7.0 mmol/l) or type 2 diabetes (fasting plasma glucose 

≥7.0mmol/l, or the use of diabetes medication) (Schram et al., 2014). 
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Brain imaging

Brain images were acquired on a 3T magnetic resonance scanner (MAGNETOM Prismafit, Siemens Healthineers 

GmbH) located at a dedicated scanning facility (Scannexus, Maastricht, The Netherlands) using a head/neck 

coil with 64 elements for parallel imaging. The MRI protocol included a three-dimensional (3D) T1-weighted 

(T1w) magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence (repetition time/inversion 

time/echo time (TR/TI/TE) 2,300/900/2.98ms, 176 slices, 256 × 240 matrix size, 1.0 mm cubic reconstructed 

voxel size); and a fluid-attenuated inversion recovery (FLAIR) sequence (TR/TI/TE 5,000/1,800/394 ms, 176 

slices, 512 × 512 matrix size, 0.49 × 0.49 × 1.0 mm reconstructed voxel size).

Brain segmentation was performed with FreeSurfer v6.0 (Fischl, 2012) using T1w and FLAIR images as input. 

The optional arguments “FLAIRpial” and “3T” were used to optimize segmentation quality. Brain segmentations 

with insufficient quality, i.e. Euler numbers below 1.5 quartile (-80 for left hemisphere and -68 for right 

hemisphere) were excluded (Monereo-Sánchez et al., 2021). Hippocampal subfields were segmented (J. E. 

Iglesias et al., 2015), yielding a THV and 12 regions of interest per hemisphere. Subfields name and description 

can be found in Supplementary Table S3.1. Hippocampal subfields volumes were averaged between the left 

and right hemisphere of each participant. Supplementary Table S3.1 shows the mean volume and standard 

deviation of each subfield across the reference sample (n=4724), which were used for z-transformation prior 

to statistical analysis. Results are depicted in hippocampal subfield maps, a legend for these maps can be 

found in Supplementary Figure S3.1.

General characteristics and covariates

As described elsewhere (Schram et al., 2014), educational level (low, intermediate, high), alcohol intake, 

smoking status (never, current, former) and history of cardiovascular disease were assessed by questionnaires. 

Medication use was assessed in a medication interview where generic name, dose, and frequency were 

registered. We measured weight, height, body mass index, waist circumference, office and ambulatory 24h 

blood pressure, plasma glucose levels, serum creatinine, 24h urinary albumin excretion (twice), hemoglobin 

A1c (HbA1c), and plasma lipid profile as described elsewhere (Schram et al., 2014). Estimated glomerular 

filtration rate (in ml/min/1.73 m2) was calculated with the Chronic Kidney Disease Epidemiology Collaboration 

equation based on both serum creatinine and serum cystatin C (Inker et al., 2012).

Statistical analysis

All statistical analyses were performed by use of R 4.0.2 statistical software (2020‑06‑22). General characteristics 

of the study population were presented as mean with standard deviation, or as percentages, and were 

evaluated by T-tests or χ2 tests.
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We used multiple linear regression analysis to investigate the association of prediabetes, type 2 diabetes, 

HbA1c, fasting plasma glucose, and 2h post-load glucose levels with THV and hippocampal subfield volumes. 

Analyses were performed for THV and each hippocampal subfield (n=13 brain volume estimates). Analyses 

were adjusted for age, sex, total intracranial volume and the time between the baseline and MRI measurement, 

waist circumference, smoking status, alcohol intake, total‐to‐HDL cholesterol ratio, lipid-modifying medication, 

eGFR, albuminuria, hypertension, and educational level. Given THV and 12 subfields were analyzed, and to 

maintain a type I error rate of 5%, Matrix Spectral Decomposition (Nyholt, 2004) was used to determine the 

effective number of independent variables. Based on the resulting eigenvalues, the obtained effective number 

was n=7, therefore alpha threshold for significance was set at 0.05/7= 0.0071. 

In post-hoc analysis, we tested for a linear trend using the ordinal variable of glucose metabolism status (normal 

glucose metabolism=1, prediabetes=2, and type 2 diabetes=3). This analysis was justified after checking the 

model fit with the main model (glucose metabolism status as a categorical measure). Comparison of the log 

likelihood ratio’s showed a better fit with the ordinal variable, which indicates a dose-response relationship 

between glucose metabolism status and the hippocampal subfield volumes.

Several additional analyses were performed to check for robustness. To study whether the associations found 

in continuous measures of hyperglycemia (i.e. HbA1c, fasting plasma glucose, or 2h post-load glucose levels) 

were driven by the oversampling of individuals with diagnosed type 2 diabetes, we additionally excluded 

participants with type 2 diabetes from the analyses. To address whether the hippocampal volume differences 

are independent from general brain atrophy, we replaced total intracranial volume with total brain volume. 

We also replaced waist circumference with BMI, and total-to-HDL cholesterol ratio for LDL cholesterol level. 

Additionally, we report the results without the exclusion of cases with insufficient quality segmentation based 

on Euler numbers. Finally, an interaction term was incorporated to test for interaction among prediabetes, 

type 2 diabetes, and continuous measures of hyperglycemia and sex, on hippocampal subfield volumes.

Results
General characteristics of the study population

General characteristics of the study population, stratified by glucose metabolism status, are shown in Table 

3.1. The study population consisted of 4724 participants; 3184 participants had normal glucose metabolism, 

671 had prediabetes, and 869 had type 2 diabetes. The mean age was 58.7 ± 8.5 years, and 51.5% were female. 

Participants with prediabetes and type 2 diabetes were older, less often female, had a worse cardiovascular 

risk profile, were more often current smokers, and more often had a low educational level (Table 3.1). Mean 

subfields volumes can be found in Supplementary Table S3.1. Individuals who underwent MRI were younger, 

were less likely to have type 2 diabetes, were less often current smokers and less often had a low educational 

level, as compared to the study population which did not undergo MRI (Supplementary Table S3.2). 
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Characteristic
Normal gluco‑
se metabolism 
(n=3184)

Prediabetes 
(n=671)

Type 2 diabetes 
(n=869)

P-value

Demographics
 Age (years) 57.3 ± 8.5 61.3 ± 7.9 61.6 ± 7.9 <0.001
 Sex (% female) 56.8 46.1  36.0 <0.001
 Education level, low/medium/high (%) 26.6/28.5/44.9 36.4/27.7/35.8 41.2/28.9/29.9 <0.001

Glucose metabolism
 Fasting glucose (mmol/l) 5.1 ± 0.4 5.8 ± 0.6 7.7 ± 1.8 <0.001
 2h post‐load glucose (mmol/l) 5.3 ± 1.1 8.2 ± 1.7 14.2 ± 4.0 <0.001
 HbA1c (mmol/mol) 35.1 ± 3.9 37.8 ± 4.4 50.0 ± 10.9 <0.001

Cardiovascular risk factors
 Waist circumference (cm) 89.7 ± 11.0 96.9 ± 12.0 103.0 ± 12.5 <0.001
 Office systolic blood pressure (mmHg) 129.2 ± 16.2 135.4 ± 16.5 140.1 ± 16.9 <0.001
 Office diastolic blood pressure (mmHg) 74.7 ± 9.7 76.6 ± 9.6 77.2 ± 9.4 <0.001
 Hypertension (%) 36.8 59.6 77.8 <0.001
 LDL (mmol/l) 3.3 ± 0.9 3.3 ± 1.0 2.5 ± 0.9 <0.001
 Total‐to‐HDL cholesterol 3.5 ± 1.1 3.9 ± 1.3 3.7 ± 1.2 <0.001
 eGFR (ml/min/1.73m2) 77.5 ± 12.9 77.1 ± 14.1 81.2 ± 18.8 <0.001
 History of CVD (%) 9.5 12.7 17.5 0.654
 Albuminuria, micro/macroalbuminuria (%) 3.9/0.3 5.4/0.3 15.5/1.2 <0.001

Medication use
 Antihypertensive medication (%) 19.6 39.8 64.3 <0.001
 Lipid‐modifying medication (%) 13.4 28.2 67.5 <0.001

Life style factors
 Smoking, never/former/current (%) 42.5/45.8/11.7 34.9/53.4/11.7 35.2/50.8/14.00 0.0106
 Alcohol intake, none/low/high (%) 14.5/60.2/25.3 17.0/56.7/26.3 26.0/56.0/17.9 <0.001

Brain MRI characteristics

 Estimated total intracranial volume (mm3)
1472257.1 ± 
148293.9

1455241.6 ± 
138958.9

1455750.8 ± 
138233.5

<0.001

 Brain volume (mm3)
1191747.4 ± 
116151.6

1171788.1 ± 
113658.1

1160039.5 ± 
111192.3

<0.001

 MRI lag time (years) 1.2 ± 1.3 1.3 ± 1.3 1.3 ± 1.3 <0.001

Table 3.1 | General characteristics of the study population. Data are presented as mean ± standard deviation or percenta-
ge, and stratified for glucose metabolism status, i.e. normal glucose metabolism, prediabetes and type 2 diabetes. HbA1c 
indicates hemoglobin A1c; LDL: low-density lipoprotein; HDL, high‐density lipoprotein; eGFR, estimated glomerular filtration 
rate; CVD, cardiovascular disease.

Associations of prediabetes and type 2 diabetes with hippocampal volume

Figure 3.2 shows the resulting associations of THV and hippocampal subfields with prediabetes and type 2 

diabetes. Detailed results can be found at Supplementary Table S3.3. We found no direct significant associations 

between prediabetes and hippocampal subfield volumes after correction for multiple comparison. 
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Figure 3.2 | Schematic hippocampal representation displaying the associations of A) Prediabetes and B) Type 2 diabetes 
with hippocampal subfield volumes. Yellow color represents a negative association, i.e. Type 2 diabetes is associated with 
smaller subfields volume. Associations that did not survive multiple comparison correction but have P<.05 are represented 
with a stipe pattern and are written in parenthesis. Non-significant associations are represented in gray. See Supplementary 
Figure S3.2 for a legend of the hippocampal map. Abbreviations: CA: Cornu Ammonis; DG: Dentate gyrus; HATA: Hippocam-
pal-amygdalar transition area. 

After full adjustment, type 2 diabetes was significantly associated with smaller volumes in THV (β±SE = 

-0.151±0.04, p-value <0.001) as compared to normal glucose metabolism. In addition, type 2 diabetes was 

significantly associated with smaller volumes in the hippocampal fimbria (β±SE= -0.195±0.04, p-value <0.001), 

hippocampus proper, i.e. dentate gyrus, CA1, CA2/3, CA4, subiculum and presubiculum (β±SE< -0.105±0.04, 

p-value <0.006); as well as subfield tail (β±SE= -0.162±0.04, p-value <0.001). Further, type 2 diabetes was 

associated also with the hippocampal-amygdala transition area (HATA, β±SE= -0.098 ± 0.04, p-value= 0.015), 

although this was no longer significant after correction for multiple comparison. 

In linear trend analysis there was a significant association between glucose metabolism status and smaller 

THV, fimbria, Cornu Ammonis (CA) 2/3, CA4, dentate gyrus, subiculum, presubiculum, and tail volumes 

(standardized beta coefficient ± standard error (β±SE) < -0.054 ± 0.02, p-for-trend < 0.003, Supplementary 

Table S3.4). These results indicate a dose-response relation from normal glucose metabolism, to prediabetes, 

to type 2 diabetes with lower hippocampal subfield volumes. 

Associations of continuous measures of hyperglycemia with hippocampal volume

HbA1c, fasting plasma glucose, and 2h post-load glucose levels were associated with smaller volumes of the 

total hippocampus (β±SE< -0.005±0.01, p-value <0.002), fimbria (β±SE< -0.010±0.011, p-value <0.001), and tail 

(β±SE< -0.006±0.012, p-value <0.003) after full adjustment. Fasting plasma glucose, and 2h post-load glucose 

levels were additionally associated with lower volumes of dentate gyrus (β±SE< -0.013±0.010, p-value <0.002), 
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and CA3 (β±SE< -0.014±0.011, p-value <0.001). 2h Post-load glucose level was associated with lower volumes 

of the subiculum (β±SE= -0.011±0.004, p-value=0.005). Results are depicted in Figure 3.3. Detailed results can 

be found in Supplementary Table S3.5.

Figure 3.3 | Schematic hippocampal representation displaying the significant subfields’ associations with continuous 
measures of hyperglycemia: A) Fasting glucose (mmol/l), B) 2h post‐load glucose (mmol/l) and C) HbA1c (mmol/mol). 
Yellow color represents a negative association; i.e. higher values of hyperglycemia are associated with smaller hippocampal 
volumes. Only those structures significant after multiple comparison correction are depicted. Hippocampal subfields with no 
significant associations are represented in gray. See Supplementary Figure S3.2 for a hippocampal map legend. Abbrevia-
tions: CA: Cornu Ammonis; DG: Dentate gyrus. 
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Additional analyses

When we limited the analysis to participants with normal glucose metabolism and prediabetes (i.e., when 

we excluded participants with type 2 diabetes), the significant associations between continuous measures 

of hyperglycemia and hippocampal subfields previously found showed numerically similar trends for the 

estimates, although most associations became not significant. Yet, the association between 2h/post load 

glucose and smaller volumes in fimbria remained significant (Supplementary Table S3.6). 

When we replaced estimated intracranial volume with total brain volume, the associations between type 2 

diabetes and hippocampal subfields showed similar estimates, although they became not significant, with the 

exception of fimbria (Supplementary Table S3.7). 

When we replaced body mass index with waist circumference the results remained consistent (Supplementary 

Table S3.8). 

When we replaced total-to-HDL cholesterol ratio with LDL cholesterol level, the associations between type 

2 diabetes and hippocampal subfields showed similar estimates. Although some estimates attenuated, the 

associations remained statistically significant (Supplementary Table S3.9).

The associations between prediabetes and type 2 diabetes and hippocampal subfield volumes when including 

the cases with low segmentation accuracy based on Euler numbers, remained consistent, and became even 

slightly stronger (Supplementary Table S3.10).

Discussion
In this study we evaluated the association of prediabetes and type 2 diabetes, as well as continuous measures 

of hyperglycemia, with hippocampal subfields volumes after adjustment for demographics, lifestyle, and 

cardiovascular risk factors. Through this large population-based study we confirmed that type 2 diabetes is 

associated with smaller THV, and smaller volumes in the subfields fimbria, dentate gyrus, CA1 to CA4, subiculum, 

presubiculum, and tail. We found no significant associations of prediabetes with THV or hippocampal subfield 

volumes. However, the results for continuous measures of hyperglycemia and the analysis for trend on glucose 

metabolism status suggest there is a dose-response association between glucose metabolism and lower 

hippocampal subfield volumes. 

Consistent with previous literature, our results show that type 2 diabetes is associated with smaller volumes 

in dentate gyrus CA1, CA4, and subiculum (Blom et al., 2020; M. Li et al., 2020; Zhang et al., 2021). To our 

knowledge, we are the first to additionally find an association of type 2 diabetes with smaller volumes in 

fimbria, CA2/3, and tail volumes. The standardized effect sizes of this associations ranged between -0.105 in 
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CA1, and -0.195 in fimbria. In volume, this translates into CA1 being in average 4.22 mm3 smaller, and fimbria 

being 8.98mm3 smaller in participants with type 2 diabetes when compared to those with normal glucose 

metabolism status. Taking into consideration the mean volume of this structures, CA1 was 1.22% smaller, and 

fimbria were 5.3% smaller in participants with type 2 diabetes when compared to those with normal glucose 

metabolism. We also found a significant association between type 2 diabetes and smaller THV, which is in 

line with a meta-analysis by Moulton et.al. in 2015 (Moulton et al., 2015). Type 2 diabetes status was most 

strongly associated with fimbria volume, which also remained associated after correction for general atrophy 

of the brain. The fimbria forms a white matter bundle structure that connects the hippocampus with the 

rest of the brain. Smaller volumes in this specific structure could be due a loss in myelin, since white matter 

microstructural abnormalities (Reijmer et al., 2013) and demyelination (Li et al., 2021) has been commonly 

found in participants with type 2 diabetes. 

In line with previous studies (Marseglia et al., 2019; Schneider et al., 2017), prediabetes showed no significant 

associations with hippocampal subfield volumes. However, the analysis for trend demonstrated a dose-

response relationship between glucose metabolism status and lower volumes of most hippocampal subfields. 

This suggest there is a graded association from normal glucose metabolism to prediabetes to type 2 diabetes. 

Further evidence for a linear association is provided by the continuous measures of hyperglycemia, i.e., 

fasting plasma glucose, 2 hours post-load glucose, and HbA1c levels. Specifically, continuous measures of 

hyperglycemia were associated with smaller volumes in THV, fimbria, dentate gyrus, CA2/3, and tail. HbA1c 

shows the least strong associations among the three measures, likely because it is a treatment target in type 

2 diabetes. A study by Dong et.al. (2019) showed associations of HbA1c with smaller volumes in dentate gyrus 

subiculum, and tail (Dong et al., 2019), while another study found associations with the CA1 to CA4 (Zhang et 

al., 2021), and dentate gyrus (Dong et al., 2019; Zhang et al., 2021). Yet, those studies observed an association 

of HbA1c with the molecular layer that was not detected in our study. It is important to notice that these 

studies used selected study populations and small sample sizes (Dong et al., 2019) (Zhang et al., 2021). 

To assess robustness of the observed associations we performed a range of sensitivity analyses. First, to 

ensure that the observed associations would not be driven by participants with type 2 diabetes, we repeated 

the analysis after excluding participants with type 2 diabetes. Results were consistent with the main analysis, 

although regression coefficients were generally attenuated due to reduced sample size (from n= 4724 to n=3855). 

However, two hours post-load glucose remained significantly associated with fimbria volume, indicating that 

fimbria could be one of the most sensitive subfields to hyperglycemia, and therefore bringing evidence towards 

subfields specificity. Second, we corrected for total brain volume instead of total intracranial volume. With this 

analysis we found that type 2 diabetes is associated with a smaller volume of the subfield fimbria, independent 

of generalized atrophy of the brain. This indicates that this subfield is affected by hyperglycemia on a higher 

degree than the rest of the parenchyma. Quality control of the hippocampal segmentation was provided by 

the exclusion of cases with outliers based on Euler numbers following guidelines(Monereo-Sánchez et al., 

2021). We performed a sensitivity analysis without the exclusion of these cases. Including cases with low 

segmentation quality to the sample resulted in decreased p-values. This could be explained by the increase in 
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sample size, but it might also be due to the fact that least healthy participants tend to have worse scans and 

poorer segmentations, with missing parenchyma in the segmentations and therefore smaller volumes. 

Our results may show some specificity for subfields, as some associations with type 2 diabetes were stronger 

than others. In addition, several analyses using both continuous and categorical definitions of glycaemia, 

as well as all the sensitivity analysis allow us to detect some subfields that might have a more severe or 

earlier vulnerability to hyperglycemia. Both continuous measures of glycaemia as well as type 2 diabetes 

are consistently associated with fimbria, dentate gyrus, CA2/3, subiculum, and tail subfield volumes. These 

exact subfields also show increased regional vulnerability to age (Pereira et al., 2014), which agrees with the 

hypothesis that type 2 diabetes can be considered accelerated aging. 

Strengths of this study include the large sample size and population-based design with an oversampling of 

type 2 diabetes; the use of oral glucose tolerance tests to accurately characterize glucose metabolism status; 

and the extensive phenotyping which allowed us to adjust for major cardiovascular risk factors reducing the 

change of residual cofounding. 

This study has some limitations. The hippocampus is a small structure, and the segmentation of the hippocampal 

subfields is challenging and can be subject to inaccuracies. Yet, the hippocampal volumes were extracted using 

FreeSurfer v6.0, which shows a good manual segmentation agreement and test-retest reliability (Tae, Kim, 

Lee, Nam, & Kim, 2008). We additionally improved the segmentation accuracy by adding FLAIR images for 

Multispectral segmentation (J. Iglesias, 2020) improving segmentation reliability (J. E. Iglesias et al., 2015; 

Seiger et al., 2021); finally we performed quality control by the exclusion of outliers based on Euler numbers 

following current recommendations (Monereo-Sánchez et al., 2021). In addition, due to the population-

based nature of our cohort, our results may be subject to some selection bias because participants of cohort 

studies are in general more health conscious. Previous research show that this can result in over- or under-

estimations of the associations under investigation (Szklo & Nieto, 2014). Further, it is important to notice 

that the cross-sectional design of our study does not allow to claim any causality. Yet, longitudinal studies 

have previously shown increased rates of brain atrophy (Kooistra et al., 2013; Samaras et al., 2014) and brain 

function impairment (Thambisetty et al., 2013) over time in participants with impaired glucose metabolism. 

This suggest that glucose metabolism might affect hippocampal volumes, but future research on longitudinal 

data is needed to specifically address this question. 

In conclusion, type 2 diabetes was associated with generalized hippocampal atrophy, which was independent 

of demographics, cardiovascular, and lifestyle risk factors. The fimbria is the subfield that shows the strongest 

association with type 2 diabetes. Continuous measures of hyperglycemia, and analysis for trend indicate that 

the association between hyperglycemia and hippocampal subfields volumes is linear, and follows a dose-

response curve, although we could not demonstrate significant associations of prediabetes with hippocampal 

subfield volumes. The latter could mean prediabetes stages represent a window of action for the early 

prevention of brain disease.
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Supplementary Table S3.1

Abbreviation Description
Volume mm3

(mean ± SD)

THV Total Hippocampal Volume 3422.75 ± 349.78

HATA Hippocampus-amygdala-transition-area 61.73 ± 9.60

Fimbria Fimbria 75.30 ± 21.64

Fissure Hippocampal fissure 81.42 ± 14.73

Molecular layer Molecular layer of the hippocampus 361.43 ± 45.95

Dentate gyrus Granule cell and molecular cell layer of the dentate gyrus 333.67 ± 38.98

CA4 Cornu Ammonis 4 275.04 ± 30.15

CA2/3 Cornu Ammonis 2 and 3 240.05 ± 36.75

CA1 Cornu Ammonis 1 724.29 ± 85.54

Subiculum Subiculum 469.41 ± 50.82

Presubiculum Presubiculum 298.92 ± 36.79

Parasubiculum Parasubiculum 61.40 ± 11.17

Tail Hippocampal tail 521.53 ± 67.50

Supplementary Table S3.1 | List of hippocampal subfields. Table shows the abbreviation and complete name for total 
hippocampal volume and each hippocampal subfield provided as output by FreeSurfer v.6.0, as well as the mean volume 
(mm3) ± standard deviation (SD) of the used sample (n=4724). 
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Supplementary Figure S3.1

 

Supplementary Figure S3.1 | Hippocampal subfields map. Figure shows a schematic representation of the right hippocampus 
in a coronal section. Hippocampal subfields are represented in different colors. Abbreviations: HATA, Hippocampus-amygda-
la-transition-area; Dentate gyrus, Granule cell and molecular cell layer of the dentate gyrus; CA, Cornu Ammonis. Notice that 
the subfield HATA is transposed from an anterior coronal section, while the tail is transposed from a posterior coronal section.
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Supplementary Table S3.2 

Characteristic
Excluded
(n=3053)

Included
(n=4636)

P value

Demographics

 Age (years) 61.6 ± 8.6 58.7 ± 8.5 <0.001

 Sex (% female) 46.7 51.5 <0.001

 Education level, low/medium/high (%) 41.3/26.2/32.5 30.7/28.5/40.9 0.594

Glucose metabolism

 Status, NGM/prediabetes/T2D (%) 48.7/16.1/35.1 67.4/14.2/18.4 0.003

 Fasting glucose (mmol/l) 6.3 ± 2 5.7 ± 1.3 <0.001

 2h post‐load glucose (mmol/l) 8.5 ± 4.4 7.1 ± 3.7 <0.001

 HbA1c (mmol/mol) 42.3 ± 11.3 38.3 ± 8.2 <0.001

Cardiovascular risk factors

 Waist circumference (cm) 98.8 ± 14.7 93.2 ± 12.6 <0.001

 Office systolic blood pressure (mmHg) 136.5 ± 19.1 132 ± 16.9 <0.001

 Office diastolic blood pressure (mmHg) 75.8 ± 10 75.4 ± 9.7 0.128

 Hypertension (%) 65.4 47.6 0.128

 Total‐to‐HDL cholesterol 3.7 ± 1.2 3.6 ± 1.2 0.015

 eGFR (ml/min/1.73m2) 77.9 ± 17.6 78.1 ± 14.4 0.594

 History of CVD (%) 26.2 11.5 0.594

 Albuminuria, micro/macroalbuminuria (%) 10.3/1.2 6.2/0.4 0.594

Medication use

 Antihypertensive medication (%) 50.2 30.7 0.594

 Lipid‐modifying medication (%) 44 25.4 0.594

Life style factors

 Smoking, never/former/current (%) 32.5/51.8/15.6 40.1/47.8/12.1 0.594

 Alcohol intake, none/low/high (%) 21.1/56.8/22.2 17/59/24.1 0.594

Brain MRI characteristics

 Estimated total intracranial volume (mm3) 1484492.6 ± 175461.1 1466803.8 ± 145372.4 0.033

 Brain volume (mm3) 1165349.8 ± 120357.3 1183079.6 ± 115600.2 0.002

 MRI lag time (years) 1.4 ± 1.4 1.2 ± 1.3 0.003

Supplementary Table S3.2 | General characteristics of the participants stratified for study inclusion. Data are presented 
as means ± standard deviation or percentage, and stratified for availability of MRI data. Abbreviations: NGM, normal glu-
cose metabolism; T2D, type 2 diabetes; HbA1c, Hemoglobin A1c; HDL, high‐density lipoprotein; eGFR, estimated glomerular 
filtration rate; CVD, cardiovascular disease.
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Supplementary Table S3.3

Prediabetes Type 2 diabetes
Structure β±SE p value β±SE p value
THV -0.036 ± 0.034 0.291 -0.151 ± 0.036 <0.001

HATA -0.041 ± 0.038 0.279 -0.098 ± 0.040 0.015
Fimbria -0.085 ± 0.037 0.024 -0.195 ± 0.040 <0.001
Fissure -0.004 ± 0.040 0.923 0.026 ± 0.043 0.546
Molecular layer 0.024 ± 0.038 0.533 -0.040 ± 0.040 0.316
Dentate gyrus -0.046 ± 0.034 0.179 -0.145 ± 0.037 <0.001
CA4 -0.039 ± 0.035 0.266 -0.113 ± 0.037 0.002
CA2/3 -0.058 ± 0.039 0.135 -0.155 ± 0.041 <0.001
CA1 0.004 ± 0.036 0.916 -0.105 ± 0.038 0.006
Subiculum -0.021 ± 0.038 0.579 -0.134 ± 0.041 0.001
Presubiculum -0.048 ± 0.038 0.209 -0.118 ± 0.041 0.004
Parasubiculum 0.051 ± 0.040 0.204 -0.005 ± 0.043 0.909
Tail -0.064 ± 0.040 0.109 -0.162 ± 0.042 <0.001

Supplementary Table S3.3 | Associations of prediabetes and type 2 diabetes with hippocampal subfields. Results are 
presented as standardized beta coefficients (β) ± standard error (SE), and p-values. Bold shows multiple comparison correc-
tion significant (p<0.0071). Normal glucose metabolism is used as reference group. Abbreviations: THV, Total hippocampal 
volume; HATA, Hippocampus-amygdala-transition-area; CA, Cornu Ammonis.

Supplementary Table S3.4

Structure β±SE p for trend
THV -0.070 ± 0.017 <0.001

HATA -0.048 ± 0.019 0.014
Fimbria -0.096 ± 0.019 <0.001
Fissure 0.011 ± 0.021 0.605
Molecular layer -0.014 ± 0.019 0.459
Dentate gyrus -0.069 ± 0.018 <0.001
CA4 -0.054 ± 0.018 0.002
CA2/3 -0.075 ± 0.020 <0.001
CA1 -0.045 ± 0.018 0.014
Subiculum -0.061 ± 0.020 0.002
Presubiculum -0.058 ± 0.020 0.003
Parasubiculum 0.005 ± 0.021 0.826
Tail -0.079 ± 0.020 <0.001

Supplementary Table S3.4 | Linear associations of glucose metabolism status as a continuum with hippocampal subfield 
volumes. Results are presented as standardized beta coefficients (β) ± standard error (SE), and p-values. Bold shows multiple 
comparison correction significant (p<0.0071). Abbreviations: THV, Total hippocampal volume; HATA, Hippocampus-amygda-
la-transition-area; CA, Cornu Ammonis.
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Supplementary Table S3.5 

Fasting plasma glucose 2 hour post load glucose HbA1c mmol/mol
Structure β±SE p value β±SE p value β±SE p value
THV -0.033 ± 0.010 0.001 -0.014 ± 0.004 <0.001 -0.005 ± 0.002 0.002

HATA -0.013 ± 0.011 0.259 -0.006 ± 0.004 0.141 -0.003 ± 0.002 0.160
Fimbria -0.050 ± 0.011 <0.001 -0.022 ± 0.004 <0.001 -0.010 ± 0.002 <0.001
Fissure -0.003 ± 0.012 0.820 0.003 ± 0.004 0.557 0.002 ± 0.002 0.328
Molecular layer -0.011 ± 0.011 0.331 -0.004 ± 0.004 0.361 -0.002 ± 0.002 0.342
Dentate gyrus -0.032 ± 0.010 0.002 -0.013 ± 0.004 <0.001 -0.004 ± 0.002 0.007
CA4 -0.027 ± 0.010 0.010 -0.010 ± 0.004 0.009 -0.003 ± 0.002 0.053
CA2/3 -0.039 ± 0.011 <0.001 -0.014 ± 0.004 <0.001 -0.004 ± 0.002 0.020
CA1 -0.025 ± 0.011 0.019 -0.009 ± 0.004 0.014 -0.003 ± 0.002 0.090
Subiculum -0.020 ± 0.011 0.088 -0.011 ± 0.004 0.005 -0.004 ± 0.002 0.043
Presubiculum -0.019 ± 0.011 0.097 -0.010 ± 0.004 0.017 -0.004 ± 0.002 0.027
Parasubiculum 0.001 ± 0.012 0.957 0.003 ± 0.004 0.430 -0.001 ± 0.002 0.449
Tail -0.036 ± 0.012 0.003 -0.016 ± 0.004 <0.001 -0.006 ± 0.002 <0.001

Supplementary Table S3.5 | Associations of continuous measures of hyperglycemia with hippocampal subfield volumes. 
Results are presented as standardized beta coefficients (β) ± standard error (SE), and p-values. Bold shows multiple com-
parison correction significant (p<0.0071). Abbreviations: HbA1c, Hemoglobin A1c; THV, Total hippocampal volume; HATA, 
Hippocampus-amygdala-transition-area; CA, Cornu Ammonis.

Supplementary Table S3.6

Fasting glucose t0 Glucose t120 HbA1c mmol/mol
Structure β±SE p value β±SE p value β±SE p value
THV -0.008 ± 0.026 0.755 -0.008 ± 0.008 0.320 0.001 ± 0.003 0.786

HATA -0.033 ± 0.029 0.258 -0.011 ± 0.009 0.224 -0.002 ± 0.004 0.615
Fimbria -0.033 ± 0.029 0.261 -0.031 ± 0.009 <0.001 -0.004 ± 0.004 0.244
Fissure 0.034 ± 0.031 0.270 0.005 ± 0.010 0.589 0.005 ± 0.004 0.185
Molecular layer 0.036 ± 0.029 0.214 0.010 ± 0.009 0.282 0.001 ± 0.004 0.765
Dentate gyrus -0.018 ± 0.027 0.505 -0.008 ± 0.008 0.314 0.002 ± 0.003 0.622
CA4 -0.019 ± 0.027 0.491 -0.005 ± 0.008 0.559 0.003 ± 0.003 0.363
CA2/3 -0.029 ± 0.030 0.334 -0.016 ± 0.009 0.074 0.005 ± 0.004 0.220
CA1 0.011 ± 0.028 0.705 0.003 ± 0.009 0.761 0.006 ± 0.004 0.078
Subiculum 0.020 ± 0.030 0.498 0.000 ± 0.009 0.986 0.001 ± 0.004 0.736
Presubiculum -0.023 ± 0.030 0.432 -0.008 ± 0.009 0.372 -0.008 ± 0.004 0.031
Parasubiculum -0.007 ± 0.031 0.824 0.010 ± 0.010 0.277 -0.008 ± 0.004 0.050
Tail -0.033 ± 0.031 0.291 -0.022 ± 0.009 0.022 -0.002 ± 0.004 0.530

Supplementary Table S3.6 | Associations of continuous measures of hyperglycemia with hippocampal subfield volumes, 
after the exclusion of participants with type 2 diabetes. Results are presented as standardized beta coefficients (β) ± stan-
dard error (SE), and p-values. Bold shows multiple comparison correction significant (p<0.0071). Abbreviations: HbA1c, 
Hemoglobin A1c; THV, Total hippocampal volume; HATA, Hippocampus-amygdala-transition-area; CA, Cornu Ammonis.
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Supplementary Table S3.7

Prediabetes Type 2 diabetes
Structure β±SE p value β±SE p value
THV -0.005 ± 0.031 0.864 -0.052 ± 0.033 0.117

HATA -0.020 ± 0.036 0.590 -0.024 ± 0.039 0.531
Fimbria -0.064 ± 0.036 0.081 -0.133 ± 0.039 <0.001
Fissure 0.004 ± 0.040 0.912 0.062 ± 0.043 0.149
Molecular layer 0.040 ± 0.037 0.272 0.028 ± 0.039 0.482
Dentate gyrus -0.020 ± 0.032 0.531 -0.054 ± 0.034 0.114
CA4 -0.013 ± 0.032 0.697 -0.021 ± 0.035 0.540
CA2/3 -0.032 ± 0.037 0.381 -0.078 ± 0.039 0.047
CA1 0.031 ± 0.034 0.364 -0.017 ± 0.036 0.636
Subiculum 0.005 ± 0.037 0.893 -0.049 ± 0.039 0.204
Presubiculum -0.023 ± 0.037 0.525 -0.039 ± 0.039 0.322
Parasubiculum 0.068 ± 0.039 0.084 0.057 ± 0.042 0.176
Tail -0.038 ± 0.038 0.322 -0.086 ± 0.041 0.034

Supplementary Table S3.7 | Associations of glucose metabolism status with hippocampal subfield volumes, after repla-
cing intracranial volume for total brain volume. Results are presented as standardized beta coefficients (β) ± standard error 
(SE), and p-values. Bold shows multiple comparison correction significant (p<0.0071). Abbreviations: THV, Total hippocampal 
volume; HATA, Hippocampus-amygdala-transition-area; CA, Cornu Ammonis.

Supplementary Table S3.8

Prediabetes Type 2 diabetes
Structure β±SE p value β±SE p value
THV -0.035 ± 0.034 0.307 -0.147 ± 0.036 <0.001

HATA -0.037 ± 0.038 0.321 -0.090 ± 0.040 0.024
Fimbria -0.084 ± 0.037 0.024 -0.192 ± 0.039 <0.001
Fissure 0.001 ± 0.040 0.975 0.038 ± 0.043 0.371
Molecular layer 0.026 ± 0.038 0.489 -0.032 ± 0.040 0.424
Dentate gyrus -0.044 ± 0.034 0.197 -0.140 ± 0.036 <0.001
CA4 -0.037 ± 0.035 0.286 -0.108 ± 0.037 0.003
CA2/3 -0.060 ± 0.039 0.120 -0.158 ± 0.041 <0.001
CA1 0.007 ± 0.036 0.855 -0.098 ± 0.038 0.009
Subiculum -0.022 ± 0.038 0.571 -0.134 ± 0.040 <0.001
Presubiculum -0.048 ± 0.038 0.207 -0.117 ± 0.040 0.004
Parasubiculum 0.055 ± 0.040 0.170 0.003 ± 0.042 0.939
Tail -0.065 ± 0.040 0.104 -0.162 ± 0.042 <0.001

Supplementary Table S3.8 | Associations of glucose metabolism status with hippocampal subfield volumes, after chan-
ging waist for BMI. Results are presented as standardized beta coefficients (β) ± standard error (SE), and p-values. Bold 
shows multiple comparison correction significant (p<0.0071). Abbreviations: THV, Total hippocampal volume; HATA, Hippo-
campus-amygdala-transition-area; CA, Cornu Ammonis.
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Supplementary Table S3.9

Prediabetes Type 2 diabetes
Structure β±SE p value β±SE p value
THV -0.028 ± 0.034 0.400 -0.136 ± 0.036 <0.001

HATA -0.039 ± 0.038 0.296 -0.092 ± 0.040 0.023
Fimbria -0.076 ± 0.037 0.043 -0.175 ± 0.040 <0.001
Fissure -0.002 ± 0.040 0.970 0.035 ± 0.043 0.419
Molecular layer 0.028 ± 0.038 0.465 -0.039 ± 0.040 0.336
Dentate gyrus -0.040 ± 0.034 0.240 -0.133 ± 0.037 <0.001
CA4 -0.034 ± 0.035 0.332 -0.104 ± 0.037 0.005
CA2/3 -0.051 ± 0.038 0.181 -0.141 ± 0.041 <0.001
CA1 0.011 ± 0.036 0.750 -0.089 ± 0.038 0.020
Subiculum -0.014 ± 0.038 0.711 -0.120 ± 0.041 0.003
Presubiculum -0.043 ± 0.038 0.260 -0.107 ± 0.041 0.009
Parasubiculum 0.053 ± 0.040 0.185 -0.010 ± 0.043 0.825
Tail -0.059 ± 0.040 0.137 -0.148 ± 0.043 <0.001

Supplementary Table S3.9 | Associations of type 2 diabetes with hippocampal subfield volumes, after changing total-to-
HDL cholesterol ratio for LDL cholesterol level. Results are presented as standardized beta coefficients (β) ± standard error 
(SE), and p-values. Bold shows multiple comparison correction significant (p<0.0071). Abbreviations: THV, Total hippocampal 
volume; HATA, Hippocampus-amygdala-transition-area; CA, Cornu Ammonis.

Supplementary Table S3.10

Prediabetes Type 2 diabetes
Structure β±SE p value β±SE p value
THV -0.030 ± 0.033 0.356 -0.172 ± 0.034 <0.001

HATA -0.040 ± 0.036 0.267 -0.128 ± 0.038 <0.001
Fimbria -0.056 ± 0.035 0.114 -0.224 ± 0.037 <0.001
Fissure -0.017 ± 0.038 0.651 0.021 ± 0.040 0.595
Molecular layer 0.006 ± 0.036 0.868 -0.017 ± 0.038 0.656
Dentate gyrus -0.035 ± 0.033 0.291 -0.171 ± 0.035 <0.001
CA4 -0.031 ± 0.033 0.361 -0.139 ± 0.035 <0.001
CA2/3 -0.056 ± 0.037 0.124 -0.184 ± 0.038 <0.001
CA1 0.010 ± 0.034 0.769 -0.125 ± 0.036 <0.001
Subiculum -0.012 ± 0.037 0.735 -0.158 ± 0.038 <0.001
Presubiculum -0.039 ± 0.036 0.288 -0.141 ± 0.038 <0.001
Parasubiculum 0.023 ± 0.039 0.545 -0.000 ± 0.040 0.997
Tail -0.058 ± 0.038 0.127 -0.171 ± 0.039 <0.001

Supplementary Table S3.10 | Associations of glucose metabolism status with hippocampal subfield volumes, with no 
exclusion of cases based on segmentation accuracy (additional cases n=451). Results are presented as standardized beta 
coefficients (β) ± standard error (SE), and p-values. Bold shows multiple comparison correction significant (p<0.0071). Abbre-
viations: THV, Total hippocampal volume; HATA, Hippocampus-amygdala-transition-area; CA, Cornu Ammonis.
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Abstract
Late-life depression has been associated with volume changes of the hippocampus. However, little is known 

about its association with specific hippocampal subfields over time. We investigated whether hippocampal 

subfield volumes were associated with prevalence, course and incidence of depressive symptoms. 

We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1w and FLAIR 3T 

MRI images. Depressive symptoms were assessed at baseline and annually over 7 years of follow-up (PHQ-9). 

We used negative binominal, logistic, and Cox regression analyses, corrected for multiple comparisons, and 

adjusted for demographic, cardiovascular, and lifestyle factors.

A total of n=4,174 participants were included (mean age 60.0±8.6 years, 51.8% female). Larger right 

hippocampal fissure volume was associated with prevalent depressive symptoms (OR[95%CI]; 1.26[1.08;1.48]). 

Larger bilateral hippocampal fissure (OR[CI]= 1.37-1.40[1.14;1.71], larger right molecular layer (OR[CI]= 

1.51[1.14;2.00]), and smaller right cornu ammonis (CA)2/3 volumes (OR[CI]= 0.61[0.48;0.79]) were associated 

with prevalent depressive symptoms with a chronic course. No associations of hippocampal subfield volumes 

with incident depressive symptoms were found. Yet, lower left hippocampal amygdala transition area (HATA) 

volume was associated with incident depressive symptoms with chronic course (HR[CI]= 0.70[0.55;0.89]).

Differences in hippocampal fissure, molecular layer and CA volumes might co-occur or follow the onset of 

depressive symptoms, in particular with a chronic course. Smaller HATA was associated with an increased 

risk of incident (chronic) depression. Our results could capture a biological foundation for the development 

of chronic depressive symptoms and stress the need to discriminate subtypes of depression to unravel its 

biological underpinnings.
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Introduction
Background

The contribution of structural brain changes to the prevalence, course, and incidence of late-life depression 

is a key topic of psychiatric neuroscience. Neuroanatomical substrates of depression could play a major role 

in diagnosis, prognosis, stratification of depression subtypes, and treatment monitoring. Although some 

robust associations have been identified previously, the field has not yet yielded information that is clinically 

applicable, and contributions to pathophysiological understanding have been limited. The most replicated 

finding among older adults has been an association between smaller hippocampus volume with depression 

(Hickie et al., 2005; Kempton et al., 2011; Sexton et al., 2012; Zhang, Peng, Sweeney, Jia, & Gong, 2018). This 

association may be especially noticeable in a longer depression duration or a larger number of depressive 

episodes (Campbell, Marriott, Nahmias, & MacQueen, 2004; Geerlings & Gerritsen, 2017; Kronmüller et al., 

2008; Roddy et al., 2019; Treadway et al., 2015). Little is known about the temporality of this association. 

Yet one study suggested that longer duration and severity of depression lead to faster development of 

hippocampal atrophy (Taylor et al., 2014). Conversely, there is insufficient longitudinal data available to assess 

whether hippocampal atrophy may precede incident depression (den Heijer et al., 2011). Further, given that 

the hippocampus is a heterogeneous structure, composed of several subfields, each of which is characterized 

by specific cellular composition and characteristic neurophysiology (Fanselow & Dong, 2010), one may expect 

that different hippocampal subfields might be differentially associated with depression pathophysiology. 

Whereas this has been explored previously (Ballmaier et al., 2008; Lim et al., 2012; Roddy et al., 2019; 

Treadway et al., 2015), conflicting results have been presented, likely due to limited sample sizes and a lack of 

longitudinal data.

Aims

The aim of the present study was to investigate the associations of hippocampal subfield volumes with 

prevalence, course and incidence of depressive symptoms using a large neuroimaging sample. Specifically, 

we investigated the cross-sectional associations of hippocampal subfield volumes and depressive symptoms 

at baseline, and the longitudinal associations of hippocampal subfields volumes and depressive symptoms at 

follow up. In both cases we further subdivided the analysis according to the course of depression, i.e. chronic 

or transient, and corrected the analysis for demographic, cardiovascular, and lifestyle risk factors.



Association of hippocampal subfield volumes with prevalence, course and incidence of depressive symptoms

103

Method
Study population and design

We used data from The Maastricht Study, an observational prospective population-based cohort study. The 

rationale and methodology have been described previously (Schram et al., 2014). In brief, the study focuses 

on the etiology, pathophysiology, complications, and comorbidities of type 2 diabetes mellitus (T2DM) heart 

disease, and other chronic conditions, and is characterized by an extensive phenotyping approach. Eligible 

for participation were all individuals aged between 40 and 75 years and living in the southern part of the 

Netherlands. Participants were recruited through mass media campaigns, the municipal registries, and the 

regional Diabetes Patient Registry via mailings. Recruitment was stratified according to known T2DM status, 

with an oversampling of individuals with T2DM, for reasons of efficiency. Baseline data were collected between 

November 2010 and January 2018. Lag time between MRI and depression assessment at baseline was 102±120 

days. The study has been approved by the institutional Medical Ethical Committee (NL31329.068.10) and the 

Minister of Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG). All participants gave 

written informed consent. 

For the current analysis complete data was available from 4653 for cross sectional and 4154 participants for 

longitudinal analysis. Supplementary Figure S4.1 shows the flowchart of the study population. 

Brain MRI

Brain images were acquired on a 3T clinical magnetic resonance scanner (MAGNETOM Prismafit, Siemens 

Healthineers GmbH) located at a dedicated scanning facility (Scannexus, Maastricht, The Netherlands) using 

a head/neck coil with 64 elements for parallel imaging. The MRI protocol included a three-dimensional 

(3D) T1-weighted (T1w) magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence 

(repetition time/inversion time/echo time (TR/TI/TE) 2,300/900/2.98ms, 176 slices, 256 × 240 matrix size, 

1.0 mm cubic reconstructed voxel size); and a fluid-attenuated inversion recovery (FLAIR) sequence (TR/TI/TE 

5,000/1,800/394 ms, 176 slices, 512 × 512 matrix size, 0.49 × 0.49 × 1.0 mm reconstructed voxel size).

Brain segmentation was performed with FreeSurfer v6.0 (Fischl, 2012) using both T1w and FLAIR images as 

input. The arguments “‑FLAIRpial” and “‑3T” were used to optimize segmentation quality. Brain segmentations 

with insufficient quality, i.e. Euler numbers below 1.5 quartile (-80 for left hemisphere and -68 for right 

hemisphere) were excluded (Monereo-Sánchez et al., 2021). Hippocampal subfields (J. E. Iglesias et al., 2015) 

were segmented using multispectral segmentation, yielding hippocampus total volume and 12 hippocampal 

subfields per hemisphere (Supplementary Table S4.1). All extracted volumes were z-transformed prior to 

statistical analysis with respect to the distribution in the complete sample (n=4,643). Results will be depicted 

in hippocampal subfields maps, a legend for these maps can be found in Supplementary Figure S4.2.
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Depression
Depressive symptoms were assessed by a validated Dutch version of the 9-item Patient Health Questionnaire (PHQ-

9) (Kroenke, Spitzer, & Williams) both at baseline and follow-up. Follow-up data was collected annually over a period 

of seven years. The PHQ-9 (Kroenke et al.) is a self-administered questionnaire that assesses the presence of the 

nine symptoms for the DSM-IV criteria for a major depressive disorder on a 4-point Likert-scale ranging from 0 

“not at all” to 4 “nearly every day” (American Psychiatric Association, 1994). When one or two items were missing, 

the total score was calculated as 9 × (total points/9−number of missing items) and rounded to the nearest integer. 

When more items were missing, the total score was scored as missing. A cut-off score of ≥10 is most often used as a 

dichotomous scoring system for defining clinically relevant depressive symptoms, with a good sensitivity (88%) and 

specificity (78%)(Pettersson, Boström, Gustavsson, & Ekselius, 2015). The internal consistency of the PHQ-9 in The 

Maastricht Study was good (Cronbach’s alpha = 0.82 without T2DM, and 0.87 with T2DM) (Janssen et al., 2016). 

There was a time lag between the baseline data collection and the date of the MRI scan. Therefore, the PHQ-9 score 

obtained closest to the date of the MRI scan, regardless of whether the assessment was before or after the scan, 

was chosen as the baseline score for each individual. Subsequent assessments were labelled as follow-up 1, follow-

up 2, and so forth, based on the order in which they occurred after the baseline assessment.

Here, we use the term prevalent depressive symptoms to indicate the use of PHQ-9 scores as a continuum at 

baseline. We use the term prevalent depression to indicate clinically relevant depressive symptoms (PHQ-9 

≥10) at baseline. We subdivided prevalent depression according to its course as 1) Prevalent depression with 

a chronic course i.e., clinically relevant depressive symptoms (PHQ-9 ≥10) at baseline and clinically relevant 

depressive symptoms (PHQ-9 ≥10) on at least one follow-up moment; and 2) Prevalent depression with a 

transient course i.e. clinically relevant depressive symptoms (PHQ-9 ≥10) at baseline and no clinically relevant 

depressive symptoms (PHQ-9 <10) during follow-up.

We use the term incident depression to indicate no clinically relevant depressive symptoms (PHQ-9 <10) 

at baseline and presence of clinically relevant depressive symptoms (PHQ-9 ≥10) on at least one follow-up 

moment. We subdivided incident depression according to its course as 1) Incident depression with a chronic 

course i.e. no clinically relevant depressive symptoms (PHQ-9 <10) at baseline and clinically relevant depressive 

symptoms (PHQ-9 ≥10) on two or more follow-up moments; or (2) incident depression with a transient course, 

i.e. no clinically relevant depressive symptoms (PHQ-9 <10) at baseline and clinically relevant depressive 

symptoms (PHQ-9 ≥10) on one follow-up. 

We used the term, no depressive symptoms as comparison group, and include those participants with no 

clinically relevant depressive symptoms (PHQ-9 <10) at baseline and no clinically relevant depressive symptoms 

(PHQ-9 <10) at follow-up. 

General characteristics and covariates
General characteristics and covariates were measured at baseline. Educational level (low, intermediate, 

high), history of cardiovascular diseases (CVD) (Rose, 1962), smoking status (never, current, former), alcohol 
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consumption (none, low, high) were assessed by questionnaires. We measured, height, weight, waist 

circumference, office blood pressure, plasma lipid profile, and 24h urinary albumin excretion (twice) as 

described elsewhere (Schram et al., 2014). To determine T2DM status, all participants (except those who 

used insulin) underwent a standardized 7-point oral glucose tolerance test (OGTT) after an overnight fast. 

Glucose metabolism status was defined according to the World Health Organization 2006 criteria (World 

Health Organization, 2006) . Participants were considered to have T2DM if they had a fasting blood glucose 

≥7.0 mmol/L or a 2-h post load blood glucose ≥11.1 mmol/L or used oral glucose-lowering medication or 

insulin. Medication use was assessed in a medication interview where generic name, dose, and frequency 

were registered.

Statistical analyses

General characteristics of the study population were evaluated using independent T-tests, or χ2 tests when 

appropriate. 

We investigated the association between both hippocampus total volume and hippocampal subfields volumes 

and 1) prevalent depressive symptoms (negative binomial regression analysis); 2) prevalent depression 

(logistic regression analysis); 3) prevalent depression subdivided by its course, i.e. chronic or transient, using 

no depressive symptoms as comparison group (multinomial logistic regression analysis); 4) incident depression 

(Cox proportional hazards regression with time to event on the time-axis); and 5) incident depression 

subdivided by its course, i.e. chronic or transient (Cox proportional hazards regression with time to event on 

the time-axis).

We studied left and right hemispheres separately, thus analyzed 1 total hippocampal volume, and 12 

hippocampal subfields for each hemisphere. Associations were adjusted for potential confounders: Model 1, 

adjusted for total or left/right brain volume, MRI lag time, age and sex; and Model 2, additionally adjusted for 

T2DM status, education level, waist circumference, history of cardiovascular disease, total-to-HDL cholesterol 

ratio, use of alcohol, and smoking status. 

Correction for multiple comparisons was done in accordance to Matrix Spectral Decomposition (Nyholt, 2004). 

Based on the resulting eigenvalues, alpha was set at 0.05/13= 0.0039. 

Several sensitivity analyses were performed based on Model 2: First, we excluded individuals with T2DM 

to assess whether they drive the observed associations. Second, we adjusted for antidepressant medication 

use. Third, we excluded participants who used antidepressant medication. Fourth, to restrict analyses to ‘de 

novo’ depression, we excluded participants who had a history of major depressive disorder diagnosis before 

baseline. Fifth, we tested whether these associations differed according to sex, and T2DM status, by use of 

interaction analyses. All statistical analyses were performed in R 4.0.2 (2020‑06‑22) (Team, 2013). 
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Results
General characteristics of the study population

The cross-sectional study population (N=4,643) had a mean age of 60.0±8.6 years, and 51.8% were women, 

229 participants had prevalent depression (PHQ-9 ≥ 10). 

Table 4.1 shows the general characteristics of the study population for longitudinal analysis (n=4,174) 

stratified for depressive status. A total of 190 participants showed prevalent depression, 141 of them had a 

chronic course during follow-up, and 49 had a transient course. Out of 3984 participants free of depression 

at baseline, 376 developed incident depression. Participants with no depressive symptoms were more often 

men, and had a better cardiovascular profile than those with prevalent or incident depression. Demographics 

of participants not included in this study due to missing data or bad segmentation quality can be seen in 

Supplementary Table S4.2. 

Characteristic
No depressive 
symptoms
n=3608

Prevalent  
depression
n=190

Pvalα

Incident 
depression
n=376

Pvalα

Age 60.4 ± 8.4 57.3 ± 8.2 p<0.001 59.1 ± 8.7 0.005
Sex (% women) 51.0 61.1 0.007 57.2 0.022
BMI (kg/m2) 26.1 ± 3.9 27.8 ± 5.0 p<0.001 27.3 ± 4.7 p<0.001
Waist (cm) 92.5 ± 12.1 95.7 ± 14.0 0.002 95.3 ± 14.3 p<0.001
Educational level
(% Low, Medium, High )

28.8, 28.4, 42.9 38.1, 33.3, 28.6 p<0.001 34.7, 29.5, 35.8 0.017

Alcohol consumption
(% None, Low, High )

14.9, 59.4, 25.7 28.0 54.5 17.5 p<0.001 23.4, 54.0, 22.6 p<0.001

Smoking status
(% Never, Former, Current )

40.7, 49.3, 10.1 40.2 40.7, 19.0 p<0.001 37.5, 46.1, 16.4 p<0.001

Partner (% yes) 86.6 77.4 p<0.001 78.7 p<0.001
T2DM (% yes) β 16.0 26.8 p<0.001 25.3 p<0.001
CVD (% yes) 11.2 16.5 0.026 10.8 0.846
Hypertension (% yes) 46.9 52.1 0.157 51.3 0.098
Cholesterol ratio 3.6 ± 1.1 3.7 ± 1.3 0.066 3.7 ± 1.2 0.049
Cholesterol medication (% yes) 24.9 27.4 0.447 27.4 0.292
Antidepressants (% yes) 4.6 27.9 p<0.001 15.2 p<0.001
History of depression (% yes) 24.7 79.1 p<0.001 51.8 p<0.001

Table 4.1| General characteristics of the study population (n=4,174) stratified for depressive status. Data is presented as 
mean ± SD or percentage as appropriate. Abbreviations: No depressive symptoms, no clinically relevant depressive symp-
toms at baseline nor at follow up; Prevalent depression, clinically relevant depressive symptoms at baseline (PHQ-9 ≥ 10); 
Incident depression, no clinically relevant depressive symptoms at baseline and clinically relevant depressive symptoms at 
follow up; Pval, p-value; PHQ-9, patient health questionnaire; BMI, Body Mass Index; T2DM, Type 2 diabetes mellitus; CVD, 
cardiovascular disease. Bold indicates p<0.05.
α Compared to no clinically relevant depressive symptoms at baseline and follow-up. 
β The study is oversampled with individuals with type 2 diabetes by design.
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Hippocampal subfields and prevalent depression 

We found no associations between total hippocampus volume and prevalent depressive symptoms (PHQ-

9 score as a continuum; Supplementary Table S4.3). Larger volumes in bilateral molecular layer (left 

RR[CI]=1.11[1.05;1.17] / right RR[CI]=1.14[1.08;1.20]) and right hippocampal fissure (RR[CI]=1.06[1.02;1.11]), 

and smaller volumes in right dentate gyrus (RR[CI]=0.89[0.83;0.96]) and right Cornu Ammonis (CA) 2/3 

(RR[CI]=0.91[0.87;0.96]) and CA4 (RR[CI]=0.89[0.83;0.96]) were significantly associated with depressive 

symptoms in Model 1. The association between smaller volumes in CA4 and depressive symptoms remained 

significant (RR[CI]=0.89[0.83;0.96]) after full adjustment. Hippocampal subfields associations in Model 2 are 

depicted in Supplementary Figure S4.3. 

No association of total hippocampus volume with prevalent depression (PHQ-9≥10) was found (Supplementary 

Table S4.4). A larger right molecular layer (OR[CI]= 1.46[1.18;1.81]) and hippocampal fissure (OR[CI]= 

1.32[1.13;1.53]), and smaller CA-2/3 (OR[CI]= 0.72[0.59;0.87]) were associated with prevalent depression in 

Model 1. The association with right hippocampal fissure remained significant (OR[CI]= 1.26[1.08;1.48]) after 

full adjustment (Model 2). Results are depicted in Figure 4.1. 

Figure 4.1| Hippocampal map showing the associations between hippocampal subfield volumes and prevalent depres-
sion (PHQ-9≥10). Diagram displaying the subfields’ associations with prevalent depression, after full adjustment (Model 2). 
Blue color represents a positive association: a higher volume is associated with higher odd ratio (OR) for prevalent depres-
sion, while yellow represent a negative association. Dots show the hippocampal subfields with associations of p<0.05; stars 
show the subfields that are significant after multiple comparison correction (p<0.0039). See Supplementary figure S4.2 for a 
hippocampal map legend. Abbreviations: Prevalent depression, clinically relevant depressive symptoms at baseline (PHQ-9 
≥ 10); CA, Cornu Ammonis; DG, Dentate gyrus; ML, Molecular layer. 
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Hippocampal subfields volumes and course of prevalent depression 

A significant association between lower volumes in the right hippocampus total volume and chronic course 

of prevalent depression (OR[CI]= 0.68[0.52;0.87]) was found after full adjustment (Model 2). Larger bilateral 

hippocampal fissure (left OR[CI]= 1.42[1.18;1.70]/ right OR[CI]= 1.46[1.21;1.77]) and molecular layer (left OR[CI]= 

1.45[1.13;1.85]/right OR[CI]= 1.66[1.27;2.19]), as well as smaller left parasubiculum (OR[CI]= 0.73[0.59;0.90]) 

and right CA2/3 (OR[CI]= 0.60[0.47;0.77]) were associated with a higher risk ratio of chronic course of prevalent 

depression in Model 1. After full adjustment (Model 2), higher volumes in bilateral hippocampal fissure (left 

OR[CI]= 1.37[1.14;1.64]/ right OR[CI]= 1.40[1.15;1.71]), and right molecular layer (OR[CI]= 1.51[1.14;2.00]), as 

well as smaller volumes in right CA2/3 (OR[CI]= 0.61[0.48;0.79]) remained significantly associated with chronic 

course of prevalent depression. Results are depicted in Figure 4.2, and details can be found in Supplementary 

Table S4.5. No significant associations were found for transient course of prevalent depression.

 Figure 4.2| The hippocampal map shows the associations between hippocampal subfield volumes and (A) transient or 
(B) chronic course of prevalent depression. Diagram displaying the subfields’ associations with A) Transient course of pre-
valent depression, and B) Chronic course of prevalent depression in Model 2. Blue color represents a positive association: 
a higher volume is associated with higher odds ratio (OR) for depression, while yellow represents a negative association. 
Dots show the subfields with associations of p<0.05, stars show the subfields that are significant after multiple comparison 
correction (p<0.0039). See Supplementary figure S4.2 for a hippocampal map legend. Abbreviations: Prevalent depression, 
clinically relevant depressive symptoms at baseline; CA, Cornu Ammonis; DG, Dentate gyrus; ML, Molecular layer. 
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Hippocampal subfields and incident depression

No significant associations were found between hippocampal volumes and incident depression (Supplementary 

Table S4.6). 

Hippocampal subfields and course of incident depression

A statistically significant association between lower volume in left HATA and chronic course of incident 

depression was found (HR[CI]= 0.70[0.55;0.89]), while we found no associations with transient course of 

incident depression (Table S4.7). 

Sensitivity analysis

Sensitivity analysis show results with preserved direction of effect and higher p-values when A) excluding 

participants with T2DM, B) adjusting for antidepressant medication, C) excluding participants using 

antidepressant medication, and D) excluding participants with a lifetime of major depressive disorder 

diagnosis. Results are detailed for prevalent depressive symptoms (Table S4.8), prevalent depression (Table 

S4.9), and prevalent depression with a chronic course (Table S4.10). No interactions with sex or T2DM were 

found in the associations of depression and hippocampal volumes (data not shown).

Discussion
In this middle-to-older-aged population, we studied the associations between hippocampal subfield volumes 

and prevalence, course, and incidence of depressive symptoms. We show that specific hippocampal subfields 

are associated with prevalent depression, especially with a chronic course. One subfield was also associated 

with incident depression, yet only when the course was chronic. To our knowledge, this is the first study 

that investigated the association of specific hippocampal subfield volumes with depressive symptoms in a 

population-based sample. 

Larger right hippocampal fissure and bilateral molecular layer, as well as smaller right dentate gyrus, and 

CA2-4, were associated with prevalent depressive symptoms (PHQ-9 score as a continuum). Larger right 

fissure and molecular layer, as well as smaller right CA2/3 were associated with prevalent depression (PHQ-

9 ≥ 10), independently of age, sex, and total hippocampal volume. The associations between hippocampal 

subfields and depression severity have been previously explored among major depressive disorder (MDD) 

patients in small clinical samples (n=41 to 163). In line with our results, Hu et.al. (2019) (Hu et al., 2019) 

found that lower CA2/3 and CA4/DG volumes were associated with more severe depressive symptoms, 
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with a similar trend also found by Brown et.al. (2019)(S. Brown et al., 2019). We could not replicate their 

findings on a significant association with lower volumes in subiculum. In addition, our results are in line 

with previous studies in clinical samples that compared patients with MDD to controls (Ballmaier et al., 

2008; Han, Won, Sim, & Tae, 2016; Roddy et al., 2019), whom found smaller volumes in CA structures, 

subiculum and tail associated with MDD. A main difference is, though, that we find these associations 

more often in the right hemisphere, while the previous studies reported differences in both hemispheres. 

These differences may be explained by the differences in study samples (clinical vs population-based), 

and difference in instruments to assess depression (MDD diagnosis vs depressive symptoms). Although 

our definition of depression status is a reliable approach for MDD screening (Janssen et al., 2016; Muñoz-

Navarro et al., 2017), our study sample likely includes less severely affected individuals. This might mean 

that CA1, subiculum, and tail have more subtle or later roles in depression pathophysiology, being only 

detectable in more severe depression, in line with results by Roddy et.al.(Roddy et al., 2019). Further, 

we found an association with the hippocampal fissure volume, which has not been reported before. The 

hippocampal fissure is not a tissue structure per se, but a CSF filled cavity, defined as a space between 

the dentate gyrus and the molecular layer (J. E. Iglesias et al., 2015). A larger volume could be driven by 

the general atrophy of the hippocampus. However, given the larger volume we find in the molecular layer 

(probably due to swelling), we hypothesize that the observed larger hippocampal fissure volume may be the 

result of reshaping of the hippocampus, which might create a larger relative distance between the dentate 

gyrus and the molecular layer, increasing the volume of the hippocampal fissure. We corrected for total 

hippocampal volume which allowed us to detect subtle subfield-specific changes of the hippocampus, and 

may explain why this finding has not been reported previously. 

We further studied the association of hippocampal subfields with the course of prevalent depression. We found 

some hippocampal subfields were associated with a chronic course, while none was associated with a transient 

course. Specifically, larger bilateral fissure and molecular layer, and smaller volumes of left parasubiculum, right 

CA2/3 and right total hippocampal volume were associated with a chronic course. Previous studies found an 

association between depression recurrence and total hippocampal atrophy (Campbell et al., 2004; Kronmüller 

et al., 2008; Roddy et al., 2019), yet only one study explored this association on hippocampal subfields, finding 

smaller volumes in dentate gyrus (Treadway et al., 2015). The different patterns of hippocampal morphology 

in patients with transient or chronic depression may suggest that hippocampus atrophy is of importance in the 

pathophysiology of chronic depression, while is not in transient depression. Some studies also explored the 

utility of hippocampal subfields in the measurement of treatment response, with promising results finding an 

increase in hippocampal volumes after some treatments, and remission of depression (Cao et al., 2018; Hu et 

al., 2019; Kraus et al., 2019). Overall, our results suggest that the different subfields of the hippocampus might 

have a different sensitivity to depression. Cytology studies suggest that a deficiency in neurotrophic support 

might be the cause (Stockmeier et al., 2004), and that the compensation of neurotrophic factors through 

pharmacological therapy could reverse the pathological process of depression (Nestler et al., 2002). 
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We found no significant associations between hippocampal subfield volumes and risk of incident depression, 

in line with a previous smaller population-based study (den Heijer et al., 2011). Yet, when we subdivided 

this analysis according to the course, we found lower volumes in left HATA to be associated with incident 

depression with a chronic course. This might indicate that there is a different etiology in incident depression 

with a chronic course versus a transient course. Replication of our findings is needed, and future studies 

should clarify whether changes in hippocampal volumes are specific for subtypes of depression.

Strengths of this study include the large sample size and population-based design, the extensive assessment 

of potential confounders which reduces the chance of residual confounding and the annual assessment of 

depressive symptoms over a 7-year period. To assess robustness of observed associations we performed 

a range of sensitivity analyses. Results remained similar after additionally adjusting for antidepressant 

medication or limiting the sample to de-novo depression. Potential selection and/or attrition bias, which is 

inherent to prospective population-based studies, may have resulted in underestimation of the observed 

associations. In addition, depression was measured with PHQ-9 questionnaire, which is a reliable and valid 

tool for the measurement of depressive symptoms, but is not equal to a clinical diagnosis of MDD. (Kroenke et 

al.; Martin, Rief, Klaiberg, & Braehler, 2006; Negeri et al., 2021). Finally, hippocampal volumes were extracted 

using FreeSurfer v6.0 automated tool. FreeSurfer v6.0 has proven to be a reliable method for hippocampal 

subfields volume’s measurement, showing a good agreement with manual segmentation (Tae, Kim, Lee, Nam, 

& Kim, 2008). It also shows a good test-retest reliability, especially in the tail, subiculum, presubiculum, CA1-

4, dentate Gyrus, and molecular layer (E. M. Brown et al., 2020; Marizzoni et al., 2015; Quattrini et al., 2020; 

Worker et al., 2018). Moreover, its use has previously proved useful to provide insight into the neurobiological 

underpinnings of several brain related traits and disorders (Sämann et al., 2018). In this study, the hippocampal 

segmentation was implemented with the additional use of a FLAIR image (Multispectral segmentation)(J. 

Iglesias, 2020) which has shown to additionally improve the subfields segmentation reliability (J. E. Iglesias et 

al., 2015; Seiger et al., 2021). Further, all FreeSurfer output used in The Maastricht Study undergoes quality 

control through the exclusion of outliers based on Euler numbers, technique that shows similar quality control 

benefits than visual inspection for hippocampal subfields segmentation (Monereo-Sánchez et al., 2021), 

reinforcing the solidity of the data.

In conclusion, differences in hippocampal volumes of specific subfields, indicating hippocampal atrophy, were 

associated with prevalent depression, in particular with a chronic course. In longitudinal analyses we found 

some evidence that smaller volume in left HATA was associated with a risk of incident depression with a 

chronic course. Our results indicate that changes in hippocampus subfield volumes may co-occur or follow 

the onset of depressive symptoms, rather than precede it. We found limited evidence to support that specific 

volume changes could precede the onset of (chronic) depressive symptoms. Therefore, our results could be 

capturing a biological foundation for the development of chronic depression, and further stresses the need to 

discriminate between subtypes of depression to unravel its biological underpinnings.
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Supplementary Figure S4.1

Supplementary Figure S4.1 | Flowchart of the study population
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Additional material and methods

From the initial 7,685 participants, baseline magnetic resonance imaging (MRI) data were available from 

n=5,204 participants. Quality control was then applied to the MRI data through the exclusion of outliers based 

on Euler Numbers, following guidelines (Monereo-Sánchez et al., 2021). Further, we excluded individuals with 

missing PHQ-9 data at baseline, resulting in a cross sectional study population of n=4,643. With this sample 

we answered the research questions (RQ) 1 and 2 We then excluded participants with missing follow up data, 

resulting in a longitudinal sample of n=4,174 participants. This sample is then divided by clinically relevant 

depressive symptoms at baseline and follow up to answer RQ3 and 4. Chronic depression contains those 

with depression at baseline and follow up, transient depression contains those with depression at baseline 

but not at follow up. Incident depression contains participants with no depression at baseline but at least 

one episode during follow up. The reference group contains participants with no depression at baseline nor 

at follow up. Subsequently, missing data among the covariates was excluded. Hence, Model 2 uses 76 less 

cases than Model 1 due to missing data in: education level (n=47), history of cardiovascular diseases (n=42), 

smoking and alcohol intake (n=25), cholesterol ratio (n=3), and waist circumference (n=2). Overall, during 

18,328 person-years of follow-up, 517 (2.8%) participants developed clinically relevant depressive symptoms 

(PHQ-9 ≥ 10) during follow-up. Data was available among 88.0% (year 1), 79.6% (year 2), 74.0% (year 3), 65.4% 

(year 4), 57.9% (year 5), 35.8% (year 6), and 19.1% (year 7) of the participants. It is important to note that the 

lower percentages after the fifth year are a result of the ongoing annual follow-up from year 6 onwards.

Monereo-Sánchez, J., de Jong, J. J., Drenthen, G. S., Beran, M., Backes, W. H., Stehouwer, C. D., . . . Jansen, J. 

F. (2021). Quality control strategies for brain MRI segmentation and parcellation: Practical approaches 

and recommendations-insights from the Maastricht study. Neuroimage, 237, 118174. 
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Supplementary Table S4.1 

In text name Description (FreeSurfer name)
Left volume mm3
(mean ± SD)

Right volume mm3
(mean ± SD)

Hippocampus 
total volume

Total Hippocampal Volume (Whole_hippocampus) 3414.18 ± 354.78 3436.48 ± 356.99

Tail Hippocampal tail (Hippocampal_tail) 533.86 ± 73.08 509.64 ± 68.47
Subiculum Subiculum (Subiculum) 470.50 ± 53.94 468.95 ± 52.34
CA1 Cornu Ammonis 1 (CA1) 709.24 ± 86.80 740.29 ± 91.22
Fissure Hippocampal fissure (Hippocampal-fissure) 77.85 ± 15.44 84.93 ± 17.22
Presubiculum Presubiculum (Presubiculum) 307.61 ± 40.18 290.93 ± 38.54
Parasubiculum Parasubiculum (Parasubiculum) 61.63 ± 13.12 61.19 ± 12.51

Molecular layer
Molecular layer of the hippocampus  
(Molecular_layer_HP)

351.56 ± 49.56 371.96 ± 49.80

Dentate gyrus
Granule cell and molecular cell layer of the dentate 
gyrus (GC_ML_DG)

333.98 ± 40.38 333.96 ± 40.84

CA2/3 Cornu Ammonis 2 and 3 (CA2/3) 231.63 ± 39.10 248.77 ± 39.84
CA4 Cornu Ammonis 4 (CA4) 273.66 ± 30.90 276.85 ± 32.03
Fimbria Fimbria (Fimbria) 79.63 ± 23.69 71.12 ± 23.18
HATA Hippocampus-amygdala-transition-area (HATA) 60.87 ± 10.88 62.83 ± 10.42

Supplementary Table S4.1 | Hippocampal subfields description. Table shows the abbreviation and complete name, as well 
as the mean volume (mm3) ± standard deviation (SD) for total hippocampal volume and each hippocampal subfield of the 
cross sectional sample. 

Supplementary Figure S4.2

Supplementary Figure S4.2 | Hippocampal subfields map legend. Figure shows a schematic representation of the right hi-
ppocampus in a coronal section. Hippocampal subfields are represented in different colors. Notice than the subfield HATA is 
transposed from an anterior coronal section, while Tail is transposed from a posterior coronal section. Abbreviations: HATA, 
Hippocampus-amygdala-transition-area; CA, Cornu Ammonis. 
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Supplementary Table S4.2 

Characteristic
Excluded
n=3,046

Included
n=4,643

p value

Age 66 ± 8 60 ± 8.6 p<0.001
Sex (% female) 46.4 51.8 p<0.001
BMI (Km/cm3) 28 ± 5 26.4 ± 4.1 p<0.001
Waist (cm) 98.8 ± 14.6 93 ± 12.6 p<0.001
Education (% Low, Medium, High) 41.3, 26.1, 32.6 30.4, 28.6, 40.9 p<0.001
Alcohol consumption (% None, Low, High) 21.2, 56.8, 22 16.8, 59, 24.3 p<0.001
Smoking status (% Never, Former, Current) 32.9, 51.4, 15.7 40, 48.1, 12 p<0.001
Partner (% yes) 80.6 85 p<0.001
T2DM (% yes)α 34.6 18.1 p<0.001
Cardiovascular disease (% yes) 26.1 11.2 p<0.001
Hypertension (% yes) 64.4 47 p<0.001
Cholesterol ratio 3.7 ± 1.2 3.6 ± 1.2 p<0.001
Cholesterol medication (% yes) 43.4 25.5 p<0.001
Antidepressants (% yes) 8.1 6.6 p=0,015
History of depression (% yes) 33.5 30.1 p=0,0018

Supplementary Table S4.2 | Characteristics of excluded vs. included participants. Table shows the demographics and 
group comparison results between included and excluded participants. Data is presented as mean ± SD or percentage as 
appropriate. Participants not included in this study due to unavailable MRI (n=2,485), low quality MRI (n=451), or missing 
baseline PHQ-9 data (n=110) were statistically significantly older, more often men, had a higher waist circumference, had 
lower education level, had a higher cardiovascular risk profile, and were more prone to take antidepressants than partici-
pants included in the analyses. Abbreviations: PHQ-9, patient health questionnaire; BMI, Body Mass Index; T2DM, Type 2 
diabetes mellitus; CVD, cardiovascular disease. Bold shows p<0.05. 
α Study design is oversampled with individuals with type 2 diabetes for reasons of efficiency.
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Supplementary Table S4.3

MODEL 1 MODEL 2

Structure RR(95%CI) p value RR(95%CI) p value

Left hemisphere
Total Hippocampus volume 0.98(0.93;1.03) 0.427 0.98(0.94;1.03) 0.477
Subfields
Tail 1.03(0.98;1.08) 0.288 1.02(0.97;1.07) 0.441
Subiculum 1.03(0.97;1.10) 0.305 1.03(0.97;1.10) 0.279
Cornu Ammonis 1 (CA1) 0.99(0.92;1.08) 0.901 1.01(0.93;1.09) 0.779
Fissure 1.05(1.01;1.09) 0.013 1.04(1.00;1.08) 0.054
Presubiculum 0.98(0.93;1.02) 0.309 0.98(0.94;1.03) 0.526
Parasubiculum 0.97(0.94;1.01) 0.175 0.98(0.94;1.02) 0.287
Molecular layer 1.11(1.05;1.17) p<0.001 * 1.06(1.01;1.12) 0.029
Dentate gyrus 0.92(0.85;0.99) 0.021 0.93(0.86;1.00) 0.040
Cornu Ammonis 2/3 (CA2/3) 0.94(0.90;0.98) 0.009 0.96(0.91;1.00) 0.062
Cornu Ammonis 4 (CA4) 0.95(0.88;1.03) 0.221 0.96(0.88;1.04) 0.261
Fimbria 0.98(0.94;1.02) 0.390 0.98(0.94;1.03) 0.436
HATA 0.99(0.95;1.04) 0.756 1.00(0.96;1.05) 0.917

Right hemisphere
Total Hippocampus volume 0.97(0.92;1.02) 0.214 0.97(0.92;1.01) 0.170
Subfields
Tail 0.99(0.94;1.04) 0.649 0.99(0.94;1.05) 0.847
subiculum 1.03(0.97;1.10) 0.304 1.05(0.99;1.12) 0.133
Cornu Ammonis 1 (CA1) 1.09(1.01;1.19) 0.040 1.07(0.98;1.16) 0.120
Fissure 1.06(1.02;1.11) 0.002 * 1.04(1.00;1.08) 0.040
Presubiculum 0.99(0.95;1.04) 0.744 1.00(0.96;1.05) 0.899
Parasubiculum 1.00(0.96;1.04) 0.955 1.00(0.96;1.04) 0.976
Molecular layer 1.14(1.08;1.20) p<0.001 * 1.08(1.02;1.14) 0.006
Dentate gyrus 0.89(0.83;0.96) 0.002 * 0.90(0.84;0.97) 0.005
Cornu Ammonis 2/3 (CA2/3) 0.91(0.87;0.96) p<0.001 * 0.94(0.89;0.98) 0.007
Cornu Ammonis 4 (CA4) 0.89(0.83;0.96) 0.002 * 0.89(0.83;0.96) 0.002 *
Fimbria 0.99(0.95;1.04) 0.799 1.00(0.96;1.04) 0.898
HATA 0.99(0.95;1.04) 0.821 1.00(0.95;1.04) 0.939

Supplementary Table S4.3 | Results, prevalent depressive symptoms (PHQ-9 score). Table shows the results for negative 
binomial regression on depressive symptoms load. Results are presented in rate ratio (RR) and confidence intervals (CI). Bold 
shows nominally significant (p<0.05); Star (*) indicate a significant result after multiple comparison correction (p<0.0039). 
Abbreviations; HATA, Hippocampus-amygdala-transition-area. Model 1 was, adjusted for brain total volume when analyzing 
hippocampal total volumes, or adjusted for left/right hippocampus total volume, when analyzing hippocampal subfields, 
MRI lag time, age and sex; Model 2 was additionally adjusted for potential confounders: T2DM status, education level, waist 
circumference, history of cardiovascular disease, cholesterol ratio, use of alcohol and smoking status. 
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Supplementary Figure S4.3

Supplementary Figure S4.3 | Hippocampal map: Prevalent depressive symptoms (PHQ-9 score). The hippocampal map 
shows the associations between hippocampal subfield volumes and prevalent depressive symptoms on a continuous scale 
after full adjustment (Model 2). Blue color represents a positive association: a higher volume is associated with higher rate 
ratio (RR) for depression, while yellow represent a negative association. Dots show the hippocampal subfields with associa-
tions of p<0.05, stars show the subfields that are significant after multiple comparison correction (p<0.0039). See Supple-
mentary figure S4.2 for a hippocampal map legend. Abbreviations: CA, Cornu Ammonis; DG, Dentate gyrus; ML, Molecular 
layer. 
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Supplementary Table S4.4

MODEL 1 MODEL 2

Structure OR(95%CI) p value OR(95%CI) p value

Left hemisphere
Total Hippocampus volume 0.97(0.79;1.17) 0.723 0.96(0.78;1.17) 0.659
Subfields
Tail 1.25(1.02;1.53) 0.032 1.22(0.99;1.50) 0.063
Subiculum 1.16(0.91;1.47) 0.236 1.18(0.92;1.52) 0.187
Cornu Ammonis 1 (CA1) 0.92(0.67;1.28) 0.624 0.94(0.67;1.31) 0.704
Fissure 1.23(1.06;1.42) 0.006 1.20(1.03;1.39) 0.017
Presubiculum 0.90(0.74;1.09) 0.290 0.92(0.75;1.11) 0.376
Parasubiculum 0.82(0.70;0.96) 0.012 0.82(0.70;0.96) 0.014
Molecular layer 1.27(1.04;1.55) 0.018 1.17(0.95;1.44) 0.146
Dentate gyrus 0.71(0.53;0.96) 0.025 0.74(0.54;1.00) 0.048
Cornu Ammonis 2/3 (CA2/3) 0.86(0.71;1.03) 0.107 0.89(0.73;1.09) 0.262
Cornu Ammonis 4 (CA4) 0.85(0.61;1.17) 0.321 0.87(0.63;1.22) 0.425
Fimbria 0.90(0.76;1.07) 0.221 0.91(0.76;1.09) 0.323
HATA 0.85(0.71;1.01) 0.068 0.86(0.72;1.03) 0.110

Right hemisphere
Total Hippocampus volume 0.93(0.76;1.13) 0.455 0.90(0.74;1.10) 0.318
Subfields
Tail 1.05(0.85;1.30) 0.646 1.04(0.83;1.29) 0.751
subiculum 1.30(1.01;1.67) 0.039 1.38(1.07;1.78) 0.014
Cornu Ammonis 1 (CA1) 1.31(0.93;1.85) 0.125 1.29(0.91;1.83) 0.154
Fissure 1.32(1.13;1.53) p<0.001 * 1.26(1.08;1.48) 0.003 *
Presubiculum 0.91(0.76;1.10) 0.342 0.94(0.78;1.14) 0.518
Parasubiculum 0.93(0.80;1.08) 0.353 0.93(0.79;1.09) 0.357
Molecular layer 1.46(1.18;1.81) p<0.001 * 1.31(1.05;1.64) 0.015
Dentate gyrus 0.69(0.51;0.92) 0.012 0.69(0.51;0.93) 0.014
Cornu Ammonis 2/3 (CA2/3) 0.72(0.59;0.87) p<0.001 * 0.75(0.62;0.92) 0.006
Cornu Ammonis 4 (CA4) 0.70(0.52;0.94) 0.019 0.68(0.50;0.92) 0.013
Fimbria 0.93(0.79;1.10) 0.394 0.95(0.80;1.13) 0.583
HATA 0.91(0.77;1.09) 0.321 0.91(0.75;1.09) 0.287

Supplementary Table S4.4 | Results, prevalent depression (PHQ-9≥10). Table shows the results for logistic regression on 
prevalent depression. Results are presented in odds ratio (OR) and confidence intervals (CI). Bold shows nominally significant 
(p<0.05); Star (*) shows multiple comparison correction significant (p<0.0039). Abbreviations; HATA, Hippocampus-amyg-
dala-transition-area. Model 1 was, adjusted for brain total volume when analyzing hippocampal total volumes, or adjusted 
for left/right hippocampus total volume, when analyzing hippocampal subfields, MRI lag time, age and sex; Model 2 was 
additionally adjusted for potential confounders: T2DM status, education level, waist circumference, history of cardiovascular 
disease, cholesterol ratio, use of alcohol and smoking status. 
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Supplementary Table S4.5

A. TRANSIENT COURSE B. CHRONIC COURSE 
Model 1 Model 2 Model 1 Model 2

Structure OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value

Left hemisphere
Total Hippocampus volume 1.45(0.97;2.16) 0.068 1.46(0.96;2.21) 0.073 0.73(0.56;0.94) 0.013 0.70(0.54;0.91) 0.009 
Subfields
Tail 1.11(0.74;1.69) 0.608 1.09(0.71;1.66) 0.698 1.29(0.99;1.68) 0.060 1.24(0.95;1.63) 0.114 
Subiculum 0.95(0.58;1.56) 0.849 0.92(0.55;1.55) 0.759 1.10(0.80;1.51) 0.562 1.17(0.84;1.61) 0.354 
Cornu Ammonis 1 (CA1) 1.27(0.65;2.46) 0.481 1.22(0.62;2.40) 0.569 0.99(0.65;1.50) 0.948 1.04(0.68;1.60) 0.849 
Fissure 0.95(0.68;1.33) 0.753 0.95(0.67;1.34) 0.758 1.42(1.18;1.70) p<0.001 * 1.37(1.14;1.64) p<0.001 *
Presubiculum 0.88(0.59;1.30) 0.512 0.81(0.54;1.22) 0.320 0.85(0.66;1.09) 0.208 0.86(0.67;1.11) 0.258 
Parasubiculum 0.94(0.68;1.28) 0.680 0.90(0.65;1.25) 0.518 0.73(0.59;0.90) 0.003 * 0.74(0.60;0.91) 0.005 
Molecular layer 0.83(0.53;1.31) 0.429 0.76(0.47;1.23) 0.271 1.45(1.13;1.85) 0.003 * 1.34(1.04;1.74) 0.026 
Dentate gyrus 0.86(0.47;1.56) 0.612 0.91(0.49;1.70) 0.774 0.74(0.50;1.08) 0.120 0.75(0.51;1.12) 0.159 
Cornu Ammonis 2/3 (CA2/3) 1.05(0.72;1.53) 0.804 1.25(0.84;1.86) 0.281 0.83(0.65;1.06) 0.131 0.83(0.65;1.07) 0.158 
Cornu Ammonis 4 (CA4) 0.89(0.47;1.72) 0.735 0.97(0.49;1.89) 0.921 0.99(0.65;1.50) 0.953 1.02(0.67;1.58) 0.914 
Fimbria 1.15(0.81;1.62) 0.439 1.22(0.86;1.74) 0.270 0.77(0.62;0.97) 0.025 0.78(0.61;0.98) 0.032 
HATA 0.91(0.64;1.30) 0.605 0.90(0.62;1.30) 0.560 0.81(0.64;1.02) 0.071 0.81(0.64;1.04) 0.093 

Right hemisphere
Total Hippocampus volume 1.26(0.85;1.88) 0.242 1.30(0.87;1.94) 0.206 0.70(0.54;0.90) 0.006 0.68(0.52;0.87) 0.003 *
Subfields
Tail 0.97(0.62;1.50) 0.877 0.98(0.63;1.53) 0.918 1.16(0.88;1.52) 0.296 1.14(0.86;1.50) 0.375 
Subiculum 1.04(0.63;1.72) 0.888 1.02(0.60;1.72) 0.953 1.29(0.94;1.79) 0.118 1.37(0.99;1.91) 0.059 
Cornu Ammonis 1 (CA1) 1.08(0.54;2.15) 0.824 1.12(0.55;2.26) 0.755 1.29(0.83;2.00) 0.260 1.30(0.83;2.03) 0.252 
Fissure 1.18(0.86;1.61) 0.318 1.14(0.82;1.58) 0.447 1.46(1.21;1.77) p<0.001 * 1.40(1.15;1.71) p<0.001 *
Presubiculum 0.77(0.52;1.13) 0.181 0.75(0.50;1.11) 0.152 1.01(0.79;1.28) 0.953 1.01(0.79;1.29) 0.938 
Parasubiculum 1.11(0.82;1.51) 0.492 1.10(0.81;1.51) 0.534 0.87(0.71;1.07) 0.181 0.87(0.71;1.07) 0.179 
Molecular layer 1.29(0.83;2.00) 0.258 1.18(0.75;1.86) 0.477 1.66(1.27;2.19) p<0.001 * 1.51(1.14;2.00) 0.004 *
Dentate gyrus 0.99(0.56;1.75) 0.971 1.00(0.56;1.81) 0.989 0.62(0.43;0.90) 0.012 0.63(0.43;0.93) 0.019 
Cornu Ammonis 2/3 (CA2/3) 0.98(0.66;1.46) 0.940 1.08(0.72;1.64) 0.698 0.60(0.47;0.77) p<0.001 * 0.61(0.48;0.79) p<0.001 *
Cornu Ammonis 4 (CA4) 1.09(0.61;1.94) 0.776 1.10(0.61;2.00) 0.749 0.61(0.42;0.89) 0.010 0.60(0.40;0.88) 0.010 
Fimbria 0.83(0.59;1.17) 0.276 0.83(0.58;1.18) 0.299 0.97(0.78;1.20) 0.772 1.00(0.80;1.24) 0.973 
HATA 1.25(0.88;1.79) 0.217 1.20(0.83;1.73) 0.340 0.76(0.61;0.96) 0.020 0.74(0.59;0.94) 0.014 

Supplementary Table S4.5 | Results, course of prevalent depression (chronic or transient). Table shows the results for 
multinomial logistic regression analysis on prevalent depression when it presents A) a transient course or B) a chronic 
course. Reference group: No depression at baseline nor at follow up (n=3,608). Results are presented in odds ratios (OR) 
and confidence intervals (CI). Bold shows nominally significant (p<0.05); Star (*) shows multiple comparison correction 
significant (p<0.0039). Abbreviations: LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; HATA, Hippo-
campus-amygdala-transition-area.
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Supplementary Table S4.5

A. TRANSIENT COURSE B. CHRONIC COURSE 
Model 1 Model 2 Model 1 Model 2

Structure OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value

Left hemisphere
Total Hippocampus volume 1.45(0.97;2.16) 0.068 1.46(0.96;2.21) 0.073 0.73(0.56;0.94) 0.013 0.70(0.54;0.91) 0.009 
Subfields
Tail 1.11(0.74;1.69) 0.608 1.09(0.71;1.66) 0.698 1.29(0.99;1.68) 0.060 1.24(0.95;1.63) 0.114 
Subiculum 0.95(0.58;1.56) 0.849 0.92(0.55;1.55) 0.759 1.10(0.80;1.51) 0.562 1.17(0.84;1.61) 0.354 
Cornu Ammonis 1 (CA1) 1.27(0.65;2.46) 0.481 1.22(0.62;2.40) 0.569 0.99(0.65;1.50) 0.948 1.04(0.68;1.60) 0.849 
Fissure 0.95(0.68;1.33) 0.753 0.95(0.67;1.34) 0.758 1.42(1.18;1.70) p<0.001 * 1.37(1.14;1.64) p<0.001 *
Presubiculum 0.88(0.59;1.30) 0.512 0.81(0.54;1.22) 0.320 0.85(0.66;1.09) 0.208 0.86(0.67;1.11) 0.258 
Parasubiculum 0.94(0.68;1.28) 0.680 0.90(0.65;1.25) 0.518 0.73(0.59;0.90) 0.003 * 0.74(0.60;0.91) 0.005 
Molecular layer 0.83(0.53;1.31) 0.429 0.76(0.47;1.23) 0.271 1.45(1.13;1.85) 0.003 * 1.34(1.04;1.74) 0.026 
Dentate gyrus 0.86(0.47;1.56) 0.612 0.91(0.49;1.70) 0.774 0.74(0.50;1.08) 0.120 0.75(0.51;1.12) 0.159 
Cornu Ammonis 2/3 (CA2/3) 1.05(0.72;1.53) 0.804 1.25(0.84;1.86) 0.281 0.83(0.65;1.06) 0.131 0.83(0.65;1.07) 0.158 
Cornu Ammonis 4 (CA4) 0.89(0.47;1.72) 0.735 0.97(0.49;1.89) 0.921 0.99(0.65;1.50) 0.953 1.02(0.67;1.58) 0.914 
Fimbria 1.15(0.81;1.62) 0.439 1.22(0.86;1.74) 0.270 0.77(0.62;0.97) 0.025 0.78(0.61;0.98) 0.032 
HATA 0.91(0.64;1.30) 0.605 0.90(0.62;1.30) 0.560 0.81(0.64;1.02) 0.071 0.81(0.64;1.04) 0.093 

Right hemisphere
Total Hippocampus volume 1.26(0.85;1.88) 0.242 1.30(0.87;1.94) 0.206 0.70(0.54;0.90) 0.006 0.68(0.52;0.87) 0.003 *
Subfields
Tail 0.97(0.62;1.50) 0.877 0.98(0.63;1.53) 0.918 1.16(0.88;1.52) 0.296 1.14(0.86;1.50) 0.375 
Subiculum 1.04(0.63;1.72) 0.888 1.02(0.60;1.72) 0.953 1.29(0.94;1.79) 0.118 1.37(0.99;1.91) 0.059 
Cornu Ammonis 1 (CA1) 1.08(0.54;2.15) 0.824 1.12(0.55;2.26) 0.755 1.29(0.83;2.00) 0.260 1.30(0.83;2.03) 0.252 
Fissure 1.18(0.86;1.61) 0.318 1.14(0.82;1.58) 0.447 1.46(1.21;1.77) p<0.001 * 1.40(1.15;1.71) p<0.001 *
Presubiculum 0.77(0.52;1.13) 0.181 0.75(0.50;1.11) 0.152 1.01(0.79;1.28) 0.953 1.01(0.79;1.29) 0.938 
Parasubiculum 1.11(0.82;1.51) 0.492 1.10(0.81;1.51) 0.534 0.87(0.71;1.07) 0.181 0.87(0.71;1.07) 0.179 
Molecular layer 1.29(0.83;2.00) 0.258 1.18(0.75;1.86) 0.477 1.66(1.27;2.19) p<0.001 * 1.51(1.14;2.00) 0.004 *
Dentate gyrus 0.99(0.56;1.75) 0.971 1.00(0.56;1.81) 0.989 0.62(0.43;0.90) 0.012 0.63(0.43;0.93) 0.019 
Cornu Ammonis 2/3 (CA2/3) 0.98(0.66;1.46) 0.940 1.08(0.72;1.64) 0.698 0.60(0.47;0.77) p<0.001 * 0.61(0.48;0.79) p<0.001 *
Cornu Ammonis 4 (CA4) 1.09(0.61;1.94) 0.776 1.10(0.61;2.00) 0.749 0.61(0.42;0.89) 0.010 0.60(0.40;0.88) 0.010 
Fimbria 0.83(0.59;1.17) 0.276 0.83(0.58;1.18) 0.299 0.97(0.78;1.20) 0.772 1.00(0.80;1.24) 0.973 
HATA 1.25(0.88;1.79) 0.217 1.20(0.83;1.73) 0.340 0.76(0.61;0.96) 0.020 0.74(0.59;0.94) 0.014 

Supplementary Table S4.5 | Results, course of prevalent depression (chronic or transient). Table shows the results for 
multinomial logistic regression analysis on prevalent depression when it presents A) a transient course or B) a chronic 
course. Reference group: No depression at baseline nor at follow up (n=3,608). Results are presented in odds ratios (OR) 
and confidence intervals (CI). Bold shows nominally significant (p<0.05); Star (*) shows multiple comparison correction 
significant (p<0.0039). Abbreviations: LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; HATA, Hippo-
campus-amygdala-transition-area.
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Supplementary Table S4.6

Model 1 Model 2

Structure HR(95%CI) P value HR(95%CI) P value

LH Total HC 0.96(0.83;1.12) 0.612 0.96(0.83;1.12) 0.644
Tail 1.15(0.99;1.35) 0.066 1.15(0.99;1.35) 0.074
Subiculum 0.83(0.69;1.00) 0.047 0.83(0.69;1.01) 0.057
CA1 1.14(0.89;1.45) 0.305 1.09(0.85;1.39) 0.483
Fissure 1.10(0.98;1.23) 0.118 1.05(0.94;1.18) 0.396
Presubiculum 0.88(0.76;1.01) 0.070 0.88(0.76;1.02) 0.082
Parasubiculum 1.03(0.92;1.15) 0.649 1.04(0.92;1.17) 0.536
Molecular layer 1.15(0.99;1.33) 0.067 1.09(0.94;1.27) 0.264
Dentate gyrus 0.78(0.62;0.97) 0.028 0.82(0.66;1.03) 0.092
CA2/3 1.06(0.92;1.22) 0.398 1.10(0.95;1.27) 0.216
CA4 0.99(0.77;1.26) 0.913 1.04(0.81;1.33) 0.771
Fimbria 0.85(0.75;0.97) 0.015 0.86(0.75;0.98) 0.026
HATA 0.88(0.77;1.01) 0.060 0.88(0.77;1.01) 0.074

RH Total HC 1.05(0.91;1.22) 0.493 1.06(0.91;1.22) 0.467
Tail 1.03(0.87;1.21) 0.754 1.03(0.88;1.22) 0.703
Subiculum 0.84(0.69;1.01) 0.063 0.84(0.69;1.02) 0.071
CA1 1.18(0.91;1.52) 0.213 1.18(0.91;1.53) 0.202
Fissure 1.08(0.96;1.22) 0.194 1.05(0.93;1.18) 0.456
Presubiculum 0.94(0.81;1.08) 0.365 0.94(0.82;1.09) 0.407
Parasubiculum 0.99(0.88;1.11) 0.878 1.00(0.89;1.12) 0.992
Molecular layer 1.22(1.04;1.42) 0.015 1.16(0.99;1.36) 0.073
Dentate gyrus 0.92(0.74;1.13) 0.415 0.94(0.76;1.16) 0.567
CA2/3 0.92(0.80;1.06) 0.264 0.94(0.81;1.09) 0.403
CA4 0.99(0.80;1.22) 0.895 0.99(0.79;1.23) 0.897
Fimbria 1.00(0.88;1.13) 0.993 0.99(0.87;1.12) 0.838
HATA 0.97(0.85;1.11) 0.651 0.97(0.85;1.11) 0.689

Supplementary Table S4.6 | Results, incident depression (PHQ-9 ≥ 10). Table shows the results of Cox regression analyses 
predicting risk of incident clinical depression. Results are presented in hazard ratios (HR) and confidence intervals (CI). Bold 
shows nominally significant (p<0.05); Star (*) shows multiple comparison correction significant (p<0.0039). Abbreviations: 
LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; Dentate gyrus, HATA, Hippocampus-amygdala-tran-
sition-area.
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Supplementary Table S4.7

MAIN A) ONE INCIDENT EVENT B) ONE OR MORE INCIDENT EVENTS

Structure HR(95%CI) P value HR(95%CI) P value HR(95%CI) P value

LH Total HC 0.96(0.83;1.12) 0.644 0.87(0.72;1.04) 0.127 1.22(0.93;1.60) 0.161
Tail 1.15(0.99;1.35) 0.074 1.10(0.91;1.33) 0.324 1.29(0.98;1.69) 0.069
Subiculum 0.83(0.69;1.01) 0.057 0.95(0.75;1.19) 0.631 0.62(0.44;0.87) 0.005
CA1 1.09(0.85;1.39) 0.483 0.99(0.74;1.33) 0.955 1.36(0.89;2.10) 0.159
Fissure 1.05(0.94;1.18) 0.396 1.00(0.87;1.16) 0.967 1.17(0.96;1.43) 0.122
Presubiculum 0.88(0.76;1.02) 0.082 0.95(0.80;1.13) 0.573 0.75(0.58;0.96) 0.024
Parasubiculum 1.04(0.92;1.17) 0.536 1.01(0.88;1.16) 0.895 1.10(0.89;1.35) 0.366
Molecular layer 1.09(0.94;1.27) 0.264 1.08(0.90;1.31) 0.402 1.12(0.85;1.48) 0.418
Dentate gyrus 0.82(0.66;1.03) 0.092 0.80(0.61;1.06) 0.119 0.83(0.56;1.24) 0.366
CA2/3 1.10(0.95;1.27) 0.216 1.04(0.87;1.24) 0.660 1.22(0.95;1.57) 0.127
CA4 1.04(0.81;1.33) 0.771 0.95(0.70;1.28) 0.726 1.21(0.79;1.87) 0.381
Fimbria 0.86(0.75;0.98) 0.026 0.91(0.77;1.06) 0.230 0.76(0.61;0.97) 0.024
HATA 0.88(0.77;1.01) 0.074 0.99(0.84;1.17) 0.938 0.70(0.55;0.89) 0.003 *

RH Total HC 1.06(0.91;1.22) 0.467 1.00(0.84;1.20) 0.986 1.19(0.92;1.54) 0.187
Tail 1.03(0.88;1.22) 0.703 1.01(0.83;1.23) 0.930 1.09(0.82;1.45) 0.563
Subiculum 0.84(0.69;1.02) 0.071 0.89(0.71;1.13) 0.344 0.72(0.52;1.01) 0.057
CA1 1.18(0.91;1.53) 0.202 1.04(0.76;1.42) 0.817 1.60(1.02;2.52) 0.041
Fissure 1.05(0.93;1.18) 0.456 1.00(0.86;1.16) 0.989 1.17(0.95;1.44) 0.137
Presubiculum 0.94(0.82;1.09) 0.407 0.98(0.82;1.16) 0.800 0.87(0.68;1.11) 0.249
Parasubiculum 1.00(0.89;1.12) 0.992 0.95(0.83;1.09) 0.466 1.11(0.91;1.34) 0.306
Molecular layer 1.16(0.99;1.36) 0.073 1.18(0.98;1.44) 0.087 1.12(0.84;1.49) 0.432
Dentate gyrus 0.94(0.76;1.16) 0.567 0.96(0.74;1.25) 0.760 0.87(0.60;1.28) 0.488
CA2/3 0.94(0.81;1.09) 0.403 0.95(0.79;1.13) 0.538 0.93(0.71;1.21) 0.592
CA4 0.99(0.79;1.23) 0.897 1.03(0.79;1.34) 0.847 0.90(0.61;1.32) 0.581
Fimbria 0.99(0.87;1.12) 0.838 1.01(0.86;1.17) 0.937 0.94(0.75;1.17) 0.573
HATA 0.97(0.85;1.11) 0.689 0.96(0.81;1.13) 0.620 1.00(0.79;1.26) 0.986

Supplementary Table S4.7 | Results, course of incident depression (chronic or transient). Table shows the results of Cox 
regression analyses predicting risk of incident clinical depression stratified by number of incident events as A) transient 
(only one incident event), and B) chronic (more than one incident events) clinically relevant depressive symptoms. Results 
are presented in hazard ratios (HR) and confidence intervals (CI). Bold shows nominally significant (p<0.05); Star (*) shows 
multiple comparison correction significant (p<0.0039). Abbreviations: LH/RH, Left/right hemisphere; HC, Hippocampus; CA, 
Cornu Ammonis; Dentate gyrus, HATA, Hippocampus-amygdala-transition-area.
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Supplementary Table S4.8

MAIN A. EXCLUSION T2DM
B. ADJUSTING FOR 

ANTIDEPRESSANT MEDICATION
C. EXCLUSION ANTIDEPRESSANT 

MEDICATION
D. EXCLUSION PAST DEPRESSION

Structure RR(95%CI) p value RR(95%CI) p value RR(95%CI) p value RR(95%CI) p value RR(95%CI) p value

LH Total HC 0.98(0.94;1.03) 0.477 0.99(0.94;1.04) 0.676 0.99(0.95;1.04) 0.751 1.00(0.95;1.05) 0.974 0.98(0.92;1.04) 0.492

Tail 1.02(0.97;1.07) 0.441 1.02(0.97;1.08) 0.463 1.02(0.97;1.07) 0.469 1.01(0.96;1.06) 0.714 1.00(0.94;1.06) 0.916

Subiculum 1.03(0.97;1.10) 0.279 1.02(0.95;1.09) 0.577 1.03(0.97;1.09) 0.404 1.03(0.96;1.09) 0.441 1.05(0.97;1.13) 0.216

CA1 1.01(0.93;1.09) 0.779 1.03(0.94;1.12) 0.575 1.02(0.94;1.10) 0.638 1.02(0.94;1.11) 0.569 1.06(0.96;1.17) 0.274

Fissure 1.04(1.00;1.08) 0.054 1.03(0.98;1.07) 0.237 1.03(1.00;1.07) 0.082 1.03(0.99;1.07) 0.143 1.06(1.01;1.11) 0.023

Presubiculum 0.98(0.94;1.03) 0.526 0.98(0.93;1.03) 0.426 0.98(0.94;1.03) 0.439 0.99(0.94;1.03) 0.564 0.99(0.93;1.05) 0.691

Parasubiculum 0.98(0.94;1.02) 0.287 0.97(0.93;1.01) 0.181 0.98(0.94;1.02) 0.288 0.98(0.94;1.02) 0.367 0.99(0.95;1.04) 0.686

Molecular layer 1.06(1.01;1.12) 0.029 1.06(1.00;1.12) 0.050 1.05(1.00;1.11) 0.053 1.04(0.99;1.10) 0.112 1.05(0.98;1.11) 0.153

Dentate gyrus 0.93(0.86;1.00) 0.040 0.92(0.85;1.00) 0.055 0.93(0.86;1.00) 0.044 0.94(0.87;1.01) 0.111 0.94(0.85;1.03) 0.147

CA2/3 0.96(0.91;1.00) 0.062 0.97(0.92;1.02) 0.178 0.97(0.92;1.01) 0.136 0.97(0.92;1.02) 0.166 0.95(0.90;1.01) 0.075

CA4 0.96(0.88;1.04) 0.261 0.96(0.87;1.04) 0.308 0.96(0.88;1.04) 0.268 0.96(0.88;1.05) 0.354 0.97(0.88;1.07) 0.501

Fimbria 0.98(0.94;1.03) 0.436 0.99(0.94;1.03) 0.564 0.99(0.95;1.03) 0.528 0.99(0.95;1.03) 0.656 0.97(0.92;1.02) 0.236

HATA 1.00(0.96;1.05) 0.917 1.01(0.96;1.06) 0.780 1.00(0.96;1.05) 0.948 1.01(0.96;1.05) 0.823 1.01(0.96;1.07) 0.678

RH Total HC 0.97(0.92;1.01) 0.170 0.97(0.92;1.02) 0.227 0.98(0.93;1.03) 0.391 0.99(0.94;1.04) 0.574 0.97(0.91;1.03) 0.276

Tail 0.99(0.94;1.05) 0.847 1.00(0.94;1.06) 0.980 0.99(0.94;1.04) 0.743 0.98(0.93;1.04) 0.569 1.02(0.95;1.09) 0.574

Subiculum 1.05(0.99;1.12) 0.133 1.04(0.97;1.11) 0.233 1.04(0.98;1.10) 0.217 1.04(0.97;1.10) 0.277 1.05(0.98;1.14) 0.185

CA1 1.07(0.98;1.16) 0.120 1.06(0.97;1.16) 0.223 1.05(0.97;1.14) 0.226 1.05(0.96;1.14) 0.316 1.04(0.94;1.15) 0.443

Fissure 1.04(1.00;1.08) 0.040 1.05(1.00;1.09) 0.052 1.04(1.00;1.08) 0.054 1.04(0.99;1.08) 0.099 1.05(1.00;1.11) 0.037

Presubiculum 1.00(0.96;1.05) 0.899 0.99(0.94;1.04) 0.726 1.01(0.96;1.05) 0.828 1.01(0.96;1.06) 0.669 1.03(0.97;1.09) 0.278

Parasubiculum 1.00(0.96;1.04) 0.976 1.00(0.96;1.04) 0.945 1.00(0.96;1.03) 0.863 0.99(0.95;1.03) 0.744 1.03(0.98;1.08) 0.221

Molecular layer 1.08(1.02;1.14) 0.006 1.08(1.01;1.15) 0.016 1.07(1.01;1.13) 0.020 1.06(1.00;1.12) 0.064 1.05(0.98;1.13) 0.137

Dentate gyrus 0.90(0.84;0.97) 0.005 0.92(0.85;0.99) 0.026 0.92(0.86;0.99) 0.019 0.94(0.87;1.01) 0.090 0.88(0.81;0.96) 0.005

CA2/3 0.94(0.89;0.98) 0.007 0.95(0.90;1.01) 0.080 0.95(0.90;0.99) 0.023 0.95(0.91;1.00) 0.057 0.93(0.88;0.99) 0.018

CA4 0.89(0.83;0.96) 0.002 * 0.92(0.85;1.00) 0.048 0.91(0.85;0.98) 0.009 0.93(0.86;1.00) 0.045 0.89(0.81;0.96) 0.006

Fimbria 1.00(0.96;1.04) 0.898 0.98(0.94;1.03) 0.476 1.01(0.97;1.05) 0.751 1.01(0.96;1.05) 0.753 0.99(0.94;1.04) 0.633

HATA 1.00(0.95;1.04) 0.939 0.98(0.93;1.03) 0.445 1.00(0.96;1.05) 0.876 1.01(0.96;1.06) 0.763 0.98(0.93;1.04) 0.559

Supplementary Table S4.8 | Sensitivity analysis, prevalent depressive symptoms (PHQ-9 score). Sensitivity analyses are 
performed over Model 2. First column shows main results of Model 2. Panel A) shows the results after the exclusion of 
participants with T2DM (in this case, there is no adjustment for T2DM; panel B) After additionally adjusting Model 2 for 
antidepressant medication; panel C) after excluding participants using antidepressant medication; and panel D) after ex-
cluding participants with a lifetime of major depressive disorder diagnosis. Results are presented in rate ratio (RR) and 
confidence intervals (CI). Bold shows nominally significant (p<0.05); Star (*) shows multiple comparison correction signifi-
cant (p<0.0039). Abbreviations: LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; HATA, Hippocam-
pus-amygdala-transition-area.
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Supplementary Table S4.8

MAIN A. EXCLUSION T2DM
B. ADJUSTING FOR 

ANTIDEPRESSANT MEDICATION
C. EXCLUSION ANTIDEPRESSANT 

MEDICATION
D. EXCLUSION PAST DEPRESSION

Structure RR(95%CI) p value RR(95%CI) p value RR(95%CI) p value RR(95%CI) p value RR(95%CI) p value

LH Total HC 0.98(0.94;1.03) 0.477 0.99(0.94;1.04) 0.676 0.99(0.95;1.04) 0.751 1.00(0.95;1.05) 0.974 0.98(0.92;1.04) 0.492

Tail 1.02(0.97;1.07) 0.441 1.02(0.97;1.08) 0.463 1.02(0.97;1.07) 0.469 1.01(0.96;1.06) 0.714 1.00(0.94;1.06) 0.916

Subiculum 1.03(0.97;1.10) 0.279 1.02(0.95;1.09) 0.577 1.03(0.97;1.09) 0.404 1.03(0.96;1.09) 0.441 1.05(0.97;1.13) 0.216

CA1 1.01(0.93;1.09) 0.779 1.03(0.94;1.12) 0.575 1.02(0.94;1.10) 0.638 1.02(0.94;1.11) 0.569 1.06(0.96;1.17) 0.274

Fissure 1.04(1.00;1.08) 0.054 1.03(0.98;1.07) 0.237 1.03(1.00;1.07) 0.082 1.03(0.99;1.07) 0.143 1.06(1.01;1.11) 0.023

Presubiculum 0.98(0.94;1.03) 0.526 0.98(0.93;1.03) 0.426 0.98(0.94;1.03) 0.439 0.99(0.94;1.03) 0.564 0.99(0.93;1.05) 0.691

Parasubiculum 0.98(0.94;1.02) 0.287 0.97(0.93;1.01) 0.181 0.98(0.94;1.02) 0.288 0.98(0.94;1.02) 0.367 0.99(0.95;1.04) 0.686

Molecular layer 1.06(1.01;1.12) 0.029 1.06(1.00;1.12) 0.050 1.05(1.00;1.11) 0.053 1.04(0.99;1.10) 0.112 1.05(0.98;1.11) 0.153

Dentate gyrus 0.93(0.86;1.00) 0.040 0.92(0.85;1.00) 0.055 0.93(0.86;1.00) 0.044 0.94(0.87;1.01) 0.111 0.94(0.85;1.03) 0.147

CA2/3 0.96(0.91;1.00) 0.062 0.97(0.92;1.02) 0.178 0.97(0.92;1.01) 0.136 0.97(0.92;1.02) 0.166 0.95(0.90;1.01) 0.075

CA4 0.96(0.88;1.04) 0.261 0.96(0.87;1.04) 0.308 0.96(0.88;1.04) 0.268 0.96(0.88;1.05) 0.354 0.97(0.88;1.07) 0.501

Fimbria 0.98(0.94;1.03) 0.436 0.99(0.94;1.03) 0.564 0.99(0.95;1.03) 0.528 0.99(0.95;1.03) 0.656 0.97(0.92;1.02) 0.236

HATA 1.00(0.96;1.05) 0.917 1.01(0.96;1.06) 0.780 1.00(0.96;1.05) 0.948 1.01(0.96;1.05) 0.823 1.01(0.96;1.07) 0.678

RH Total HC 0.97(0.92;1.01) 0.170 0.97(0.92;1.02) 0.227 0.98(0.93;1.03) 0.391 0.99(0.94;1.04) 0.574 0.97(0.91;1.03) 0.276

Tail 0.99(0.94;1.05) 0.847 1.00(0.94;1.06) 0.980 0.99(0.94;1.04) 0.743 0.98(0.93;1.04) 0.569 1.02(0.95;1.09) 0.574

Subiculum 1.05(0.99;1.12) 0.133 1.04(0.97;1.11) 0.233 1.04(0.98;1.10) 0.217 1.04(0.97;1.10) 0.277 1.05(0.98;1.14) 0.185

CA1 1.07(0.98;1.16) 0.120 1.06(0.97;1.16) 0.223 1.05(0.97;1.14) 0.226 1.05(0.96;1.14) 0.316 1.04(0.94;1.15) 0.443

Fissure 1.04(1.00;1.08) 0.040 1.05(1.00;1.09) 0.052 1.04(1.00;1.08) 0.054 1.04(0.99;1.08) 0.099 1.05(1.00;1.11) 0.037

Presubiculum 1.00(0.96;1.05) 0.899 0.99(0.94;1.04) 0.726 1.01(0.96;1.05) 0.828 1.01(0.96;1.06) 0.669 1.03(0.97;1.09) 0.278

Parasubiculum 1.00(0.96;1.04) 0.976 1.00(0.96;1.04) 0.945 1.00(0.96;1.03) 0.863 0.99(0.95;1.03) 0.744 1.03(0.98;1.08) 0.221

Molecular layer 1.08(1.02;1.14) 0.006 1.08(1.01;1.15) 0.016 1.07(1.01;1.13) 0.020 1.06(1.00;1.12) 0.064 1.05(0.98;1.13) 0.137

Dentate gyrus 0.90(0.84;0.97) 0.005 0.92(0.85;0.99) 0.026 0.92(0.86;0.99) 0.019 0.94(0.87;1.01) 0.090 0.88(0.81;0.96) 0.005

CA2/3 0.94(0.89;0.98) 0.007 0.95(0.90;1.01) 0.080 0.95(0.90;0.99) 0.023 0.95(0.91;1.00) 0.057 0.93(0.88;0.99) 0.018

CA4 0.89(0.83;0.96) 0.002 * 0.92(0.85;1.00) 0.048 0.91(0.85;0.98) 0.009 0.93(0.86;1.00) 0.045 0.89(0.81;0.96) 0.006

Fimbria 1.00(0.96;1.04) 0.898 0.98(0.94;1.03) 0.476 1.01(0.97;1.05) 0.751 1.01(0.96;1.05) 0.753 0.99(0.94;1.04) 0.633

HATA 1.00(0.95;1.04) 0.939 0.98(0.93;1.03) 0.445 1.00(0.96;1.05) 0.876 1.01(0.96;1.06) 0.763 0.98(0.93;1.04) 0.559

Supplementary Table S4.8 | Sensitivity analysis, prevalent depressive symptoms (PHQ-9 score). Sensitivity analyses are 
performed over Model 2. First column shows main results of Model 2. Panel A) shows the results after the exclusion of 
participants with T2DM (in this case, there is no adjustment for T2DM; panel B) After additionally adjusting Model 2 for 
antidepressant medication; panel C) after excluding participants using antidepressant medication; and panel D) after ex-
cluding participants with a lifetime of major depressive disorder diagnosis. Results are presented in rate ratio (RR) and 
confidence intervals (CI). Bold shows nominally significant (p<0.05); Star (*) shows multiple comparison correction signifi-
cant (p<0.0039). Abbreviations: LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; HATA, Hippocam-
pus-amygdala-transition-area.
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Supplementary Table S4.9

MAIN A. EXCLUSION T2DM
B. ADJUSTING FOR  

ANTIDEPRESSANT MEDICATION
C. EXCLUSION ANTIDEPRESSANT 

MEDICATION
D. EXCLUSION PAST DEPRESSION

Structure OR(95%CI) p value OR(95%CI) p value OR(95%CI) p value OR(95%CI) p value OR(95%CI) p value

LH Total HC 0.96(0.78;1.17) 0.659 1.01(0.80;1.28) 0.930 0.97(0.79;1.19) 0.787 1.07(0.85;1.35) 0.568 1.11(0.75;1.62) 0.606

Tail 1.22(0.99;1.50) 0.063 1.19(0.93;1.51) 0.161 1.23(1.00;1.52) 0.052 1.18(0.93;1.49) 0.183 0.92(0.62;1.36) 0.680

Subiculum 1.18(0.92;1.52) 0.187 1.13(0.85;1.51) 0.408 1.16(0.90;1.50) 0.244 1.17(0.88;1.55) 0.281 1.53(0.97;2.40) 0.068

CA1 0.94(0.67;1.31) 0.704 0.98(0.66;1.45) 0.920 0.97(0.69;1.36) 0.857 0.96(0.66;1.41) 0.848 1.06(0.56;2.01) 0.865

Fissure 1.20(1.03;1.39) 0.017 1.14(0.95;1.37) 0.169 1.19(1.02;1.39) 0.023 1.20(1.01;1.42) 0.039 1.30(1.00;1.68) 0.049

Presubiculum 0.92(0.75;1.11) 0.376 0.88(0.70;1.11) 0.295 0.89(0.73;1.09) 0.272 0.95(0.76;1.19) 0.666 0.91(0.63;1.32) 0.609

Parasubiculum 0.82(0.70;0.96) 0.014 0.79(0.65;0.95) 0.013 0.81(0.69;0.95) 0.011 0.78(0.65;0.94) 0.008 0.79(0.58;1.06) 0.114

Molecular layer 1.17(0.95;1.44) 0.146 1.19(0.94;1.51) 0.157 1.16(0.94;1.44) 0.175 1.09(0.86;1.38) 0.488 1.12(0.76;1.65) 0.565

Dentate gyrus 0.74(0.54;1.00) 0.048 0.79(0.55;1.12) 0.179 0.72(0.53;0.98) 0.037 0.77(0.54;1.09) 0.142 0.96(0.53;1.72) 0.879

CA2/3 0.89(0.73;1.09) 0.262 0.92(0.73;1.15) 0.443 0.92(0.75;1.12) 0.383 0.96(0.77;1.20) 0.702 0.86(0.60;1.24) 0.427

CA4 0.87(0.63;1.22) 0.425 0.93(0.64;1.37) 0.732 0.87(0.62;1.21) 0.398 0.92(0.63;1.34) 0.654 1.11(0.59;2.08) 0.741

Fimbria 0.91(0.76;1.09) 0.323 0.89(0.73;1.10) 0.292 0.91(0.76;1.10) 0.329 0.92(0.75;1.13) 0.409 0.96(0.68;1.34) 0.800

HATA 0.86(0.72;1.03) 0.110 0.93(0.75;1.15) 0.499 0.85(0.71;1.03) 0.094 0.87(0.70;1.07) 0.186 0.99(0.70;1.42) 0.977

RH Total HC 0.90(0.74;1.10) 0.318 0.93(0.74;1.18) 0.568 0.93(0.76;1.14) 0.465 1.02(0.81;1.28) 0.881 1.09(0.75;1.57) 0.661

Tail 1.04(0.83;1.29) 0.751 1.01(0.79;1.30) 0.937 1.05(0.84;1.31) 0.684 0.96(0.75;1.23) 0.760 1.19(0.77;1.82) 0.432

Subiculum 1.38(1.07;1.78) 0.014 1.27(0.95;1.71) 0.113 1.34(1.04;1.74) 0.026 1.37(1.03;1.83) 0.033 1.48(0.92;2.38) 0.108

CA1 1.29(0.91;1.83) 0.154 1.41(0.93;2.14) 0.104 1.24(0.87;1.77) 0.233 1.28(0.86;1.91) 0.228 1.18(0.62;2.25) 0.619

Fissure 1.26(1.08;1.48) 0.003 * 1.28(1.06;1.54) 0.011 1.26(1.07;1.48) 0.005 1.25(1.04;1.49) 0.015 1.38(1.04;1.83) 0.026

Presubiculum 0.94(0.78;1.14) 0.518 0.84(0.67;1.05) 0.126 0.93(0.77;1.13) 0.468 0.96(0.77;1.19) 0.710 0.96(0.67;1.38) 0.845

Parasubiculum 0.93(0.79;1.09) 0.357 0.91(0.75;1.09) 0.294 0.93(0.79;1.09) 0.363 0.88(0.74;1.05) 0.166 1.09(0.81;1.45) 0.573

Molecular layer 1.31(1.05;1.64) 0.015 1.38(1.06;1.79) 0.016 1.28(1.02;1.60) 0.036 1.17(0.91;1.51) 0.230 1.28(0.85;1.92) 0.238

Dentate gyrus 0.69(0.51;0.93) 0.014 0.78(0.56;1.11) 0.167 0.71(0.52;0.96) 0.025 0.80(0.57;1.13) 0.206 0.53(0.30;0.94) 0.029

CA2/3 0.75(0.62;0.92) 0.006 0.79(0.63;1.00) 0.053 0.78(0.63;0.95) 0.015 0.83(0.66;1.04) 0.111 0.73(0.50;1.06) 0.094

CA4 0.68(0.50;0.92) 0.013 0.79(0.56;1.13) 0.196 0.70(0.52;0.95) 0.024 0.79(0.56;1.11) 0.178 0.56(0.32;0.99) 0.048

Fimbria 0.95(0.80;1.13) 0.583 0.92(0.75;1.13) 0.427 0.98(0.82;1.17) 0.817 0.95(0.78;1.15) 0.597 0.90(0.65;1.26) 0.546

HATA 0.91(0.75;1.09) 0.287 0.89(0.72;1.09) 0.261 0.92(0.77;1.11) 0.386 0.96(0.78;1.19) 0.725 0.90(0.63;1.27) 0.542

Supplementary Table S4.9 | Sensitivity analysis, prevalent depression (PHQ-9≥10). Sensitivity analyses are performed over 
Model 2. First column shows main results of Model 2. Panel A) shows the results after the exclusion of participants with 
T2DM (in this case, there is no adjustment for T2DM; panel B) After additionally adjusting Model 2 for antidepressant medi-
cation; panel C) after excluding participants using antidepressant medication; and panel D) after excluding participants with 
a lifetime of major depressive disorder diagnosis. Results are presented in odds ratio (OR) and confidence intervals (CI). Bold 
shows nominally significant (p<0.05); Star (*) shows multiple comparison correction significant (p<0.0039). Abbreviations: 
LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; HATA, Hippocampus-amygdala-transition-area.
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Supplementary Table S4.9

MAIN A. EXCLUSION T2DM
B. ADJUSTING FOR  

ANTIDEPRESSANT MEDICATION
C. EXCLUSION ANTIDEPRESSANT 

MEDICATION
D. EXCLUSION PAST DEPRESSION

Structure OR(95%CI) p value OR(95%CI) p value OR(95%CI) p value OR(95%CI) p value OR(95%CI) p value

LH Total HC 0.96(0.78;1.17) 0.659 1.01(0.80;1.28) 0.930 0.97(0.79;1.19) 0.787 1.07(0.85;1.35) 0.568 1.11(0.75;1.62) 0.606

Tail 1.22(0.99;1.50) 0.063 1.19(0.93;1.51) 0.161 1.23(1.00;1.52) 0.052 1.18(0.93;1.49) 0.183 0.92(0.62;1.36) 0.680

Subiculum 1.18(0.92;1.52) 0.187 1.13(0.85;1.51) 0.408 1.16(0.90;1.50) 0.244 1.17(0.88;1.55) 0.281 1.53(0.97;2.40) 0.068

CA1 0.94(0.67;1.31) 0.704 0.98(0.66;1.45) 0.920 0.97(0.69;1.36) 0.857 0.96(0.66;1.41) 0.848 1.06(0.56;2.01) 0.865

Fissure 1.20(1.03;1.39) 0.017 1.14(0.95;1.37) 0.169 1.19(1.02;1.39) 0.023 1.20(1.01;1.42) 0.039 1.30(1.00;1.68) 0.049

Presubiculum 0.92(0.75;1.11) 0.376 0.88(0.70;1.11) 0.295 0.89(0.73;1.09) 0.272 0.95(0.76;1.19) 0.666 0.91(0.63;1.32) 0.609

Parasubiculum 0.82(0.70;0.96) 0.014 0.79(0.65;0.95) 0.013 0.81(0.69;0.95) 0.011 0.78(0.65;0.94) 0.008 0.79(0.58;1.06) 0.114

Molecular layer 1.17(0.95;1.44) 0.146 1.19(0.94;1.51) 0.157 1.16(0.94;1.44) 0.175 1.09(0.86;1.38) 0.488 1.12(0.76;1.65) 0.565

Dentate gyrus 0.74(0.54;1.00) 0.048 0.79(0.55;1.12) 0.179 0.72(0.53;0.98) 0.037 0.77(0.54;1.09) 0.142 0.96(0.53;1.72) 0.879

CA2/3 0.89(0.73;1.09) 0.262 0.92(0.73;1.15) 0.443 0.92(0.75;1.12) 0.383 0.96(0.77;1.20) 0.702 0.86(0.60;1.24) 0.427

CA4 0.87(0.63;1.22) 0.425 0.93(0.64;1.37) 0.732 0.87(0.62;1.21) 0.398 0.92(0.63;1.34) 0.654 1.11(0.59;2.08) 0.741

Fimbria 0.91(0.76;1.09) 0.323 0.89(0.73;1.10) 0.292 0.91(0.76;1.10) 0.329 0.92(0.75;1.13) 0.409 0.96(0.68;1.34) 0.800

HATA 0.86(0.72;1.03) 0.110 0.93(0.75;1.15) 0.499 0.85(0.71;1.03) 0.094 0.87(0.70;1.07) 0.186 0.99(0.70;1.42) 0.977

RH Total HC 0.90(0.74;1.10) 0.318 0.93(0.74;1.18) 0.568 0.93(0.76;1.14) 0.465 1.02(0.81;1.28) 0.881 1.09(0.75;1.57) 0.661

Tail 1.04(0.83;1.29) 0.751 1.01(0.79;1.30) 0.937 1.05(0.84;1.31) 0.684 0.96(0.75;1.23) 0.760 1.19(0.77;1.82) 0.432

Subiculum 1.38(1.07;1.78) 0.014 1.27(0.95;1.71) 0.113 1.34(1.04;1.74) 0.026 1.37(1.03;1.83) 0.033 1.48(0.92;2.38) 0.108

CA1 1.29(0.91;1.83) 0.154 1.41(0.93;2.14) 0.104 1.24(0.87;1.77) 0.233 1.28(0.86;1.91) 0.228 1.18(0.62;2.25) 0.619

Fissure 1.26(1.08;1.48) 0.003 * 1.28(1.06;1.54) 0.011 1.26(1.07;1.48) 0.005 1.25(1.04;1.49) 0.015 1.38(1.04;1.83) 0.026

Presubiculum 0.94(0.78;1.14) 0.518 0.84(0.67;1.05) 0.126 0.93(0.77;1.13) 0.468 0.96(0.77;1.19) 0.710 0.96(0.67;1.38) 0.845

Parasubiculum 0.93(0.79;1.09) 0.357 0.91(0.75;1.09) 0.294 0.93(0.79;1.09) 0.363 0.88(0.74;1.05) 0.166 1.09(0.81;1.45) 0.573

Molecular layer 1.31(1.05;1.64) 0.015 1.38(1.06;1.79) 0.016 1.28(1.02;1.60) 0.036 1.17(0.91;1.51) 0.230 1.28(0.85;1.92) 0.238

Dentate gyrus 0.69(0.51;0.93) 0.014 0.78(0.56;1.11) 0.167 0.71(0.52;0.96) 0.025 0.80(0.57;1.13) 0.206 0.53(0.30;0.94) 0.029

CA2/3 0.75(0.62;0.92) 0.006 0.79(0.63;1.00) 0.053 0.78(0.63;0.95) 0.015 0.83(0.66;1.04) 0.111 0.73(0.50;1.06) 0.094

CA4 0.68(0.50;0.92) 0.013 0.79(0.56;1.13) 0.196 0.70(0.52;0.95) 0.024 0.79(0.56;1.11) 0.178 0.56(0.32;0.99) 0.048

Fimbria 0.95(0.80;1.13) 0.583 0.92(0.75;1.13) 0.427 0.98(0.82;1.17) 0.817 0.95(0.78;1.15) 0.597 0.90(0.65;1.26) 0.546

HATA 0.91(0.75;1.09) 0.287 0.89(0.72;1.09) 0.261 0.92(0.77;1.11) 0.386 0.96(0.78;1.19) 0.725 0.90(0.63;1.27) 0.542

Supplementary Table S4.9 | Sensitivity analysis, prevalent depression (PHQ-9≥10). Sensitivity analyses are performed over 
Model 2. First column shows main results of Model 2. Panel A) shows the results after the exclusion of participants with 
T2DM (in this case, there is no adjustment for T2DM; panel B) After additionally adjusting Model 2 for antidepressant medi-
cation; panel C) after excluding participants using antidepressant medication; and panel D) after excluding participants with 
a lifetime of major depressive disorder diagnosis. Results are presented in odds ratio (OR) and confidence intervals (CI). Bold 
shows nominally significant (p<0.05); Star (*) shows multiple comparison correction significant (p<0.0039). Abbreviations: 
LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; HATA, Hippocampus-amygdala-transition-area.
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Supplementary Table S4.10

MAIN A. EXCLUSION T2DM
B. ADJUSTING FOR  

ANTIDEPRESSANT MEDICATION
C. EXCLUSION ANTIDEPRESSANT 

MEDICATION
D. EXCLUSION PAST DEPRESSION

Structure OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value

LH Total HC 0.70(0.54;0.91) 0.009 0.75(0.56;1.02) 0.063 0.71(0.54;0.93) 0.012 0.76(0.56;1.03) 0.079 0.74(0.43;1.26) 0.266 

Tail 1.24(0.95;1.63) 0.114 1.19(0.87;1.62) 0.282 1.27(0.97;1.67) 0.088 1.19(0.86;1.65) 0.282 1.13(0.64;2.00) 0.684 

Subiculum 1.17(0.84;1.61) 0.354 1.22(0.84;1.77) 0.293 1.13(0.81;1.57) 0.471 1.08(0.73;1.58) 0.704 1.95(1.01;3.76) 0.047 

CA1 1.04(0.68;1.60) 0.849 1.03(0.62;1.71) 0.907 1.10(0.71;1.71) 0.671 1.07(0.64;1.78) 0.798 1.14(0.45;2.87) 0.778 

Fissure 1.37(1.14;1.64) p<0.001 * 1.25(1.00;1.58) 0.055 1.38(1.14;1.66) p<0.001 * 1.39(1.13;1.71) 0.002 * 1.49(1.07;2.08) 0.018 

Presubiculum 0.86(0.67;1.11) 0.258 0.85(0.63;1.14) 0.287 0.84(0.65;1.09) 0.189 0.92(0.68;1.24) 0.580 0.77(0.45;1.32) 0.350 

Parasubiculum 0.74(0.60;0.91) 0.005 0.74(0.58;0.95) 0.017 0.72(0.58;0.90) 0.004 * 0.68(0.53;0.87) 0.003 * 0.66(0.43;1.01) 0.058 

Molecular layer 1.34(1.04;1.74) 0.026 1.36(1.01;1.82) 0.042 1.35(1.03;1.77) 0.029 1.34(1.00;1.80) 0.053 1.59(0.99;2.54) 0.054 

Dentate gyrus 0.75(0.51;1.12) 0.159 0.81(0.51;1.27) 0.350 0.73(0.49;1.09) 0.122 0.74(0.46;1.18) 0.200 0.69(0.29;1.63) 0.398 

CA2/3 0.83(0.65;1.07) 0.158 0.81(0.60;1.08) 0.151 0.85(0.66;1.10) 0.220 0.85(0.63;1.15) 0.295 0.65(0.38;1.10) 0.106 

CA4 1.02(0.67;1.58) 0.914 1.03(0.63;1.70) 0.894 1.02(0.66;1.58) 0.933 1.02(0.61;1.69) 0.951 1.18(0.47;2.96) 0.728 

Fimbria 0.78(0.61;0.98) 0.032 0.79(0.60;1.03) 0.082 0.77(0.61;0.97) 0.027 0.82(0.62;1.08) 0.151 0.57(0.34;0.94) 0.029 

HATA 0.81(0.64;1.04) 0.093 0.89(0.68;1.17) 0.410 0.80(0.63;1.02) 0.074 0.90(0.68;1.20) 0.487 0.91(0.55;1.53) 0.731 
RH Total HC 0.68(0.52;0.87) 0.003 * 0.67(0.50;0.91) 0.010 0.69(0.53;0.90) 0.007 0.74(0.55;1.01) 0.056 0.80(0.47;1.36) 0.417 

Tail 1.14(0.86;1.50) 0.375 1.14(0.82;1.57) 0.431 1.15(0.87;1.54) 0.329 1.05(0.76;1.46) 0.764 1.38(0.76;2.51) 0.290 

Subiculum 1.37(0.99;1.91) 0.059 1.32(0.90;1.93) 0.157 1.34(0.95;1.88) 0.096 1.27(0.86;1.88) 0.222 2.08(1.05;4.13) 0.036 

CA1 1.30(0.83;2.03) 0.252 1.36(0.80;2.33) 0.255 1.25(0.79;1.97) 0.333 1.32(0.77;2.24) 0.309 1.57(0.63;3.87) 0.331 

Fissure 1.40(1.15;1.71) p<0.001 * 1.37(1.08;1.74) 0.009 1.42(1.16;1.75) p<0.001 * 1.45(1.15;1.82) 0.002 * 1.73(1.18;2.53) 0.005 

Presubiculum 1.01(0.79;1.29) 0.938 0.89(0.67;1.19) 0.436 1.01(0.79;1.29) 0.939 1.01(0.76;1.35) 0.930 1.02(0.61;1.71) 0.929 

Parasubiculum 0.87(0.71;1.07) 0.179 0.85(0.67;1.07) 0.168 0.87(0.71;1.07) 0.176 0.80(0.63;1.02) 0.066 1.17(0.77;1.77) 0.459 

Molecular layer 1.51(1.14;2.00) 0.004 * 1.61(1.16;2.23) 0.005 1.47(1.10;1.97) 0.009 1.40(1.01;1.94) 0.046 1.66(0.95;2.91) 0.074 

Dentate gyrus 0.63(0.43;0.93) 0.019 0.70(0.45;1.10) 0.120 0.64(0.44;0.95) 0.027 0.72(0.46;1.14) 0.164 0.33(0.15;0.76) 0.009 

CA2/3 0.61(0.48;0.79) p<0.001 * 0.65(0.48;0.87) 0.004 0.63(0.49;0.82) p<0.001 * 0.68(0.51;0.92) 0.013 0.49(0.29;0.82) 0.007 

CA4 0.60(0.40;0.88) 0.010 0.68(0.43;1.07) 0.093 0.61(0.41;0.91) 0.015 0.68(0.43;1.08) 0.099 0.40(0.18;0.90) 0.027 

Fimbria 1.00(0.80;1.24) 0.973 0.94(0.73;1.22) 0.648 1.03(0.82;1.29) 0.814 1.04(0.80;1.35) 0.775 0.65(0.41;1.05) 0.076 

HATA 0.74(0.59;0.94) 0.014 0.73(0.55;0.96) 0.022 0.77(0.61;0.98) 0.036 0.80(0.60;1.06) 0.119 0.70(0.43;1.16) 0.168 

Supplementary Table S4.10 | Sensitivity analysis, chronic depressive symptoms. Sensitivity analyses are performed over 
Model 2. First column shows main results of Model 2. Panel A) shows the results after the exclusion of participants with 
T2DM (in this case, there is no adjustment for T2DM; panel B) After additionally adjusting Model 2 for antidepressant medi-
cation; panel C) after excluding participants using antidepressant medication; and panel D) after excluding participants with 
a lifetime of major depressive disorder diagnosis. Results are presented in odds ratio (OR) and confidence intervals (CI). Bold 
shows nominally significant (p<0.05); Star (*) shows multiple comparison correction significant (p<0.0039). Abbreviations: 
LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; HATA, Hippocampus-amygdala-transition-area.
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Supplementary Table S4.10

MAIN A. EXCLUSION T2DM
B. ADJUSTING FOR  

ANTIDEPRESSANT MEDICATION
C. EXCLUSION ANTIDEPRESSANT 

MEDICATION
D. EXCLUSION PAST DEPRESSION

Structure OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value

LH Total HC 0.70(0.54;0.91) 0.009 0.75(0.56;1.02) 0.063 0.71(0.54;0.93) 0.012 0.76(0.56;1.03) 0.079 0.74(0.43;1.26) 0.266 

Tail 1.24(0.95;1.63) 0.114 1.19(0.87;1.62) 0.282 1.27(0.97;1.67) 0.088 1.19(0.86;1.65) 0.282 1.13(0.64;2.00) 0.684 

Subiculum 1.17(0.84;1.61) 0.354 1.22(0.84;1.77) 0.293 1.13(0.81;1.57) 0.471 1.08(0.73;1.58) 0.704 1.95(1.01;3.76) 0.047 

CA1 1.04(0.68;1.60) 0.849 1.03(0.62;1.71) 0.907 1.10(0.71;1.71) 0.671 1.07(0.64;1.78) 0.798 1.14(0.45;2.87) 0.778 

Fissure 1.37(1.14;1.64) p<0.001 * 1.25(1.00;1.58) 0.055 1.38(1.14;1.66) p<0.001 * 1.39(1.13;1.71) 0.002 * 1.49(1.07;2.08) 0.018 

Presubiculum 0.86(0.67;1.11) 0.258 0.85(0.63;1.14) 0.287 0.84(0.65;1.09) 0.189 0.92(0.68;1.24) 0.580 0.77(0.45;1.32) 0.350 

Parasubiculum 0.74(0.60;0.91) 0.005 0.74(0.58;0.95) 0.017 0.72(0.58;0.90) 0.004 * 0.68(0.53;0.87) 0.003 * 0.66(0.43;1.01) 0.058 

Molecular layer 1.34(1.04;1.74) 0.026 1.36(1.01;1.82) 0.042 1.35(1.03;1.77) 0.029 1.34(1.00;1.80) 0.053 1.59(0.99;2.54) 0.054 

Dentate gyrus 0.75(0.51;1.12) 0.159 0.81(0.51;1.27) 0.350 0.73(0.49;1.09) 0.122 0.74(0.46;1.18) 0.200 0.69(0.29;1.63) 0.398 

CA2/3 0.83(0.65;1.07) 0.158 0.81(0.60;1.08) 0.151 0.85(0.66;1.10) 0.220 0.85(0.63;1.15) 0.295 0.65(0.38;1.10) 0.106 

CA4 1.02(0.67;1.58) 0.914 1.03(0.63;1.70) 0.894 1.02(0.66;1.58) 0.933 1.02(0.61;1.69) 0.951 1.18(0.47;2.96) 0.728 

Fimbria 0.78(0.61;0.98) 0.032 0.79(0.60;1.03) 0.082 0.77(0.61;0.97) 0.027 0.82(0.62;1.08) 0.151 0.57(0.34;0.94) 0.029 

HATA 0.81(0.64;1.04) 0.093 0.89(0.68;1.17) 0.410 0.80(0.63;1.02) 0.074 0.90(0.68;1.20) 0.487 0.91(0.55;1.53) 0.731 
RH Total HC 0.68(0.52;0.87) 0.003 * 0.67(0.50;0.91) 0.010 0.69(0.53;0.90) 0.007 0.74(0.55;1.01) 0.056 0.80(0.47;1.36) 0.417 

Tail 1.14(0.86;1.50) 0.375 1.14(0.82;1.57) 0.431 1.15(0.87;1.54) 0.329 1.05(0.76;1.46) 0.764 1.38(0.76;2.51) 0.290 

Subiculum 1.37(0.99;1.91) 0.059 1.32(0.90;1.93) 0.157 1.34(0.95;1.88) 0.096 1.27(0.86;1.88) 0.222 2.08(1.05;4.13) 0.036 

CA1 1.30(0.83;2.03) 0.252 1.36(0.80;2.33) 0.255 1.25(0.79;1.97) 0.333 1.32(0.77;2.24) 0.309 1.57(0.63;3.87) 0.331 

Fissure 1.40(1.15;1.71) p<0.001 * 1.37(1.08;1.74) 0.009 1.42(1.16;1.75) p<0.001 * 1.45(1.15;1.82) 0.002 * 1.73(1.18;2.53) 0.005 

Presubiculum 1.01(0.79;1.29) 0.938 0.89(0.67;1.19) 0.436 1.01(0.79;1.29) 0.939 1.01(0.76;1.35) 0.930 1.02(0.61;1.71) 0.929 

Parasubiculum 0.87(0.71;1.07) 0.179 0.85(0.67;1.07) 0.168 0.87(0.71;1.07) 0.176 0.80(0.63;1.02) 0.066 1.17(0.77;1.77) 0.459 

Molecular layer 1.51(1.14;2.00) 0.004 * 1.61(1.16;2.23) 0.005 1.47(1.10;1.97) 0.009 1.40(1.01;1.94) 0.046 1.66(0.95;2.91) 0.074 

Dentate gyrus 0.63(0.43;0.93) 0.019 0.70(0.45;1.10) 0.120 0.64(0.44;0.95) 0.027 0.72(0.46;1.14) 0.164 0.33(0.15;0.76) 0.009 

CA2/3 0.61(0.48;0.79) p<0.001 * 0.65(0.48;0.87) 0.004 0.63(0.49;0.82) p<0.001 * 0.68(0.51;0.92) 0.013 0.49(0.29;0.82) 0.007 

CA4 0.60(0.40;0.88) 0.010 0.68(0.43;1.07) 0.093 0.61(0.41;0.91) 0.015 0.68(0.43;1.08) 0.099 0.40(0.18;0.90) 0.027 

Fimbria 1.00(0.80;1.24) 0.973 0.94(0.73;1.22) 0.648 1.03(0.82;1.29) 0.814 1.04(0.80;1.35) 0.775 0.65(0.41;1.05) 0.076 

HATA 0.74(0.59;0.94) 0.014 0.73(0.55;0.96) 0.022 0.77(0.61;0.98) 0.036 0.80(0.60;1.06) 0.119 0.70(0.43;1.16) 0.168 

Supplementary Table S4.10 | Sensitivity analysis, chronic depressive symptoms. Sensitivity analyses are performed over 
Model 2. First column shows main results of Model 2. Panel A) shows the results after the exclusion of participants with 
T2DM (in this case, there is no adjustment for T2DM; panel B) After additionally adjusting Model 2 for antidepressant medi-
cation; panel C) after excluding participants using antidepressant medication; and panel D) after excluding participants with 
a lifetime of major depressive disorder diagnosis. Results are presented in odds ratio (OR) and confidence intervals (CI). Bold 
shows nominally significant (p<0.05); Star (*) shows multiple comparison correction significant (p<0.0039). Abbreviations: 
LH/RH, Left/right hemisphere; HC, Hippocampus; CA, Cornu Ammonis; HATA, Hippocampus-amygdala-transition-area.
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Abstract 
Alzheimer’s disease (AD) and depression are debilitating brain disorders that are often comorbid. Shared brain 

mechanisms have been implicated, yet findings are inconsistent, reflecting the complexity of the underlying 

pathophysiology. As both disorders are (partly) heritable, characterizing their genetic overlap may provide 

etiological clues. While previous studies have indicated negligible genetic correlations, this study aims to 

expose the genetic overlap that may remain hidden due to mixed directions of effects. 

We applied Gaussian mixture modelling, through MiXeR, and conjunctional false discovery rate (cFDR) 

analysis, through pleioFDR, to genome-wide association study (GWAS) summary statistics of AD (n = 79,145) 

and depression (n = 450,619). The effects of identified overlapping loci on AD and depression were tested 

in 403,029 participants of the UK Biobank (UKB) (mean age 57.21, 52.0% female), and mapped onto brain 

morphology in 30,699 individuals with brain MRI data. 

MiXer estimated 98 causal genetic variants overlapping between the 2 disorders, with 0.44 concordant 

directions of effects. Through pleioFDR, we identified a SNP in the TMEM106B gene, which was significantly 

associated with AD (B = -0.002, p = 9.1 x 10-4) and depression (B = 0.007, p = 3.2 x 10-9) in the UKB. This SNP 

was also associated with several regions of the corpus callosum volume anterior (B > 0.024, p < 8.6 x 10-4), 

third ventricle volume ventricle (B = -0.025, p = 5.0 x 10-6), and inferior temporal gyrus surface area (B = 0.017, 

p = 5.3 x 10-4). 

Our results indicate there is substantial genetic overlap, with mixed directions of effects, between AD and 

depression. These findings illustrate the value of biostatistical tools that capture such overlap, providing 

insight into the genetic architectures of these disorders.
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Introduction 
Alzheimer’s disease (AD) is a highly disabling neurodegenerative disease characterized by memory loss and a 

gradual cognitive, functional, and behavioral decline (Reitz & Mayeux, 2014). Its prevalence increases rapidly 

with age, affecting 13% of the population at age 80, and 37% of the population at age 90 (von Strauss, Viitanen, 

De Ronchi, Winblad, & Fratiglioni, 1999). Individuals with AD often have comorbid major depressive disorder 

(MDD), present in 22– 59% of cases (Starkstein, Jorge, Mizrahi, & Robinson, 2005; Zubenko et al., 2003), while 

MDD has an estimated lifetime prevalence of 11–15% in the general population (Bromet et al., 2011). MDD 

is a heterogeneous disorder; in addition to the core symptoms of low mood, anhedonia, and loss of energy, it 

comprises behavioral, physiological, and psychological signs and symptoms that include changes in appetite, 

sleeping, and psychomotor patterns, fatigue, lack of concentration, feelings of worthlessness or guilt, and 

suicidal ideation (American Psychiatric Association, 2013). 

It has been long discussed whether a history of depressive symptoms is a risk factor for later development of 

AD, or rather an early prodromal manifestation of AD (Chen, Ganguli, Mulsant, & DeKosky, 1999; Devanand et 

al., 1996). While bidirectional effects between the two disorders is likely, there is more evidence that midlife 

onset depressive symptoms and/or MDD are a risk factor for AD than vice versa (Barnes et al., 2012; Gracia-

García et al., 2015; Green et al., 2003; Jorm, 2001; Ownby, Crocco, Acevedo, John, & Loewenstein, 2006; R. S. 

Wilson et al., 2002). Furthermore, AD patients with depressive symptoms show accelerated cognitive decline 

and neurodegeneration, with significantly more plaques and tangles in the hippocampus than non-depressed 

individuals with AD (Rapp et al., 2006), while AD symptom count (Verkaik, Nuyen, Schellevis, & Francke, 2007) 

or tau pathology (Kramberger et al., 2012) does not appear to contribute to the incidence or severity of 

depressive disorders. 

Neuroimaging studies have provided scattered evidence that AD and depressive disorders share neurobiological 

pathways. Early stage AD is associated with atrophy of the hippocampus, para-hippocampal regions (Jack et al., 

1999), and temporo-parietal cortex (Acharya et al., 2019), with atrophy becoming generalized in later stages of the 

disease, including cortical thinning in primary motor and sensory regions (Fox et al., 2001; Sabuncu et al., 2011). 

Similarly, MDD and recurrent major depression (MD) are related to smaller hippocampal volumes(Bremner et al., 

2000; Mervaala et al., 2000; Sheline, Sanghavi, Mintun, & Gado, 1999), amygdala, and parahippocampal areas 

(Andreescu et al., 2008) as well as lower cortical thickness in medial orbitofrontal cortex, fusiform gyrus, insula, 

rostral, and caudal anterior and posterior cingulate cortex, temporal lobe in MDD (Schmaal et al., 2020), many of 

these changes correlating positively with the duration of the disease (Andreescu et al., 2008). In AD patients with 

comorbid symptoms of depression, MRI studies have shown specifically thinner cortex in temporal and parietal 

areas when compared to non-depressed AD patients (Lebedeva et al., 2014). Conjunction analysis on the brain 

morphological changes that overlap between AD and late-life onset depression has shown that, in addition to 

the previously mentioned structures, both conditions are associated with hippocampal atrophy(Boccia, Acierno, 

& Piccardi, 2015). Yet, the risk of developing AD in MDD does not seem to be mediated by hippocampal or 

amygdala volumes (Geerlings, den Heijer, Koudstaal, Hofman, & Breteler, 2008).
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Both AD and depressive disorders are heritable, with twin studies indicating 37% broad heritability for MDD 

(Sullivan, Neale, & Kendler, 2000) and 74% for AD (Gatz et al., 1997). Molecular genetics studies show that both 

disorders have complex genetic architectures. AD has recently been characterized as oligogenic, with estimates 

indicating the involvement of relatively few genetic variants, in addition to the well-known, strong APOE-e4 

risk variant (Holland et al., 2020; Zhang et al., 2020). MDD on the other hand has been estimated to be the 

most polygenic of all major brain disorders (Holland et al., 2020), involving many genetic variants with small 

effects that explain a small amount of its heritability (Wray et al., 2018). Regardless, given the high comorbidity 

and indications of shared neurobiological pathways, substantial genetic overlap is to be expected, which may 

be leveraged to better understand these disorders (Smeland et al., 2020). Indeed, several candidate gene 

studies have identified shared genetic risk factors (Ye, Bai, & Zhang, 2016) that implicate hypothesized shared 

mechanisms, such as chronic neuroinflammatory changes in the brain (Leszek et al., 2018). While negligible 

genetic overlap between AD and MDD has been reported (Gibson et al., 2017; Lutz, Sprague, Barrera, & Chiba-

Falek, 2020), substantial genetic overlap may remain hidden from measures of global genetic correlation due 

to mixed directions of effects. Here, we assess the genetic overlap between AD and depression across the 

genome through tools that capture the extent of overlap or specific loci, regardless of directions of effect. This 

was followed-up by analyses of the associations between shared loci and regional brain morphology in the UK 

Biobank (UKB) population study, providing valuable insights into their shared neurobiology.

Materials and Methods
GWAS Summary Statistics

To investigate the genetics of AD, we made use of the phase 1 summary statistics from a recent genome-

wide association study (GWAS) that combined samples from the Psychiatric Genomics Consortium (PGC), the 

International Genomics of Alzheimer’s Project (IGAP), and the Alzheimer’s Disease Sequencing Project (ADSP) 

(Jansen et al., 2019). The phase 1 sample of this GWAS was chosen as it did not include any UKB participants, 

thereby preventing sample overlap with our follow-up analyses in the UKB. The summary statistics contained 

9,862,739 SNPs and was based on 24,087 late-onset AD cases and 55,058 controls with European ancestry. 

For the depression phenotype of the GWAS data, we obtained the summary statistics from the PGC MDD 

GWAS from 2019, including the 23andMe cohort (Wray et al., 2018). The construct of depression here is 

based on data from cohorts with MDD as well as self-reported depression, thereby closely aligning to the 

measure of depression that we constructed from the UKB data. We used a version of the meta-analyzed 

summary statistics where the UKB sample was left out, to prevent sample overlap in downstream analyses. 

This version contained 15,507,882 SNPs for 121,198 individuals with depression and 329,421 controls. For the 

post-GWA analyses, we excluded the major histocompatibility complex (MHC) region (chr6: 26–34MB) from 

both summary statistics, as well as the APOE locus (chr19: 45–45.8 MB) from the AD GWAS, in accordance 

with recommendations (Smeland et al., 2020). 
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For the estimate of rg, we applied cross-trait linkage disequilibrium score regression (LDSR) (Bulik-Sullivan et al., 

2015). We further applied Gaussian mixture modelling, as implemented in the MiXeR tool, to the GWAS summary 

statistics, to estimate distributions of causal genetic variants, i.e., unobserved functional genetic variants that 

influence the phenotypes under investigation (Frei et al., 2019). MiXeR achieves this by fitting Gaussian curves 

to the GWAS summary statistics to optimally model null and non-null effects. The shapes of these Gaussians 

are then used to estimate the polygenicity (the number of causal genetic variants involved) and discoverability 

(average effect size of the causal variants, as h2) of AD and depression. We further estimated the genetic overlap 

between AD and depression, as the number of causal variants shared regardless of direction of effects, through 

bivariate MiXeR. For the calculations of the MiXeR parameters, we made use of 9,997,231 SNPs from the 1000 

Genomes Phase 3 data. Please see the MiXeR design paper for more details (Frei et al., 2019)).

We conducted conjunctional false discovery rate (cFDR) analysis through the pleioFDR tool using default 

settings (Smeland et al., 2020). We set an FDR threshold of 0.05 as whole genome significance, in accordance 

with recommendations.

Participants
We made use of data from participants of the UKB population cohort, under accession number 27412. The 

composition, setup, and data gathering protocols of UKB have been extensively described elsewhere (Sudlow 

et al., 2015). We selected all individuals with White European ancestry, as determined by a combination of 

self-identification as “White British” and similar genetic ancestry based on genetic principal components (UKB 

field code 22006), with good quality genetic data. 

We constructed a proxy measure of AD case-control status, combining information on International 

Classification of Disease, version 10 (ICD-10) diagnoses of dementia of the participants together with parental 

age and parental AD status, as described previously (Jansen et al., 2019). Based on lifetime hospital inpatient 

records linked to the UKB data, we made use of the ICD-10 to assign a score of 2 to any participants with a 

diagnosis of AD (F00 and/or G30; n=782). All other participants received a 1-U increase for each biological 

parent reported to have (had) AD. Further, the contribution for each unaffected parent to the score was 

inversely weighted by the parent’s age/age at death, namely (100-age)/100, giving us an approximate score 

between 0 and 2. This approach was taken in order to account for possible late-life onset AD, i.e., to minimize 

the labelling of individuals that will develop AD as controls. This proxy measure has been shown to be highly 

genetically correlated to AD status (rg=0.81) (Jansen et al., 2019). Participants with missing data on any of the 

relevant questions were excluded from these analyses (n=19,332). The final sample size was n=390,284, with 

a mean age of 57.33 years (SD=7.49), and 52.02% was female. 

The depression phenotype utilized in this study was constructed by assigning case status to any UKB participant 

with an ICD10 diagnosis of depression (F32–34, F38–39), n=15,238, as well as any additional participants that 

answered affirmative o the question whether they had ever seen a general practitioner or psychiatrist for nerves, 

anxiety, tension, or depression (UKB field codes 2090 and 2010), during any UKB testing visit (n=159,063). Control 
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status was assigned to anyone who had answered “no” to these questions at all testing visits. This definition 

of depression is identical to the “broad depression phenotype” described by Howard in 2018 (Howard et al., 

2018), based on a GWAS of depression in the UKB, which reported that this definition led to the largest number 

of genome-wide significant hits, while still being highly genetically correlated with GWAS using a strict clinical 

definition of MDD, rg=0.85 (Howard et al., 2018). We excluded anyone with any missing data on these questions 

(n=6,587). The final sample size was n=403,029, with a mean age of 57.21 years (SD=7.49), and 52.02% was female. 

Our sample size for the neuroimaging analyses, following preprocessing as described below and excluding 

individuals with brain disorders, was n=30,699. As the neuroimaging data collection took place several years 

after the initial data collection, this subsample had a mean age of 64.32 years (SD=7.48), and 52.06% was female. 

Genetic Data Pre-processing

We made use of the UKB v3 imputed data, which has undergone extensive quality control procedures as 

described by the UKB genetics team (Bycroft et al., 2018). After converting the BGEN format to PLINK binary 

format, we additionally carried out standard quality check procedures, including filtering out individuals with 

more than 10% missingness, SNPs with more than 5% missingness, SNPs with an INFO score below 0.8, and 

SNPs failing the Hardy–Weinberg equilibrium test at p=1 _ 10􀀀9. We further set a  minor allele frequency 

threshold of 0.001, leaving 12,245,112 SNPs. 

Image Acquisition

For the analyses involving neuroimaging data, we made use of MRI data from UKB released up to March 2020. 

T1-weighted scans were collected from four scanning sites throughout the United Kingdom, all on identically 

configured Siemens Skyra 3T scanners, with 32-channel receive head coils. The UKB core neuroimaging team 

has published extensive information on the applied scanning protocols and procedures, which we refer to for 

more details (Miller et al., 2016). 

The T1-weighted scans were stored locally at the secure computing cluster of the University of Oslo. We 

applied the standard “recon-all-all” processing pipeline of FreeSurfer v5.3, performing automated surface-

based morphometry and subcortical segmentation (Desikan et al., 2006; Fischl et al., 2002). From the output, 

we extracted all commonly studied global, subcortical, and cortical morphology measures, as listed in 

Supplementary Table S5.1. For each of these, we summed the left and right hemisphere measure, if applicable, 

leaving a total of 96 brain measures. 

We excluded individuals with bad structural scan quality as indicated by an age and sex-adjusted Euler number 

[a measure of segmentation quality based on surface reconstruction complexity (Rosen et al., 2018)] more 

than three standard deviations lower than the scanner site mean, or with a global brain measure more than 

five standard deviations from the sample mean, n=717.
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Statistical Analyses
All downstream analyses were carried out in R v3.6.1. In all follow-up analyses, involving UKB data, we 

adjusted for age, sex, and the first 20 genetic principal components to control for population stratification. 

For the neuroimaging analyses, we additionally adjusted for scanner site, Euler number (Rosen et al., 2018), 

and a measure-specific global estimate for the regional measures (total surface area, mean cortical thickness, 

or intracranial volume). The latter was done to ensure that we are studying associations with regional brain 

morphology rather than global effects. 

To correct for multiple comparisons, we applied spectral decomposition to the Pearson’s correlation matrix of 

the 96 regional brain measures (Nyholt, 2004). Based on the observed eigenvalues, we estimated the effective 

number of independent traits in our neuroimaging analyses to be 51. We therefore set an alpha of.001 for 

these analyses. 

Graphs were created through ggplot2 (Wickham, 2009), and brain maps through ggseg (Mowinckel & Vidal-

Piñeiro, 2020). The code for running pleioFDR and MiXeR is available via GitHub, https://github.com/precimed/.

Results 
Global genetic overlap

Eighteen loci were genome-wide significant in the AD GWAS, which had an estimated SNP-based heritability, 

h2, of 0.05 (SE=0.01). The depression GWAS summary statistics contained 33 significant loci, with an h2 of 0.05 

(SE=0.002), see Figure 5.1A. These numbers are in line with the results from the original GWAS studies (Jansen 

et al., 2019; Wray et al., 2018). Using LDSC, the two disorders showed a negligible genetic correlation of -0.03 

(SE=0.06, p=0.60). 

Through univariate mixture modelling, we found that AD has an estimated 261 causal genetic variants, with a 

discoverability of 2.1 x10-4. Depression was estimated to involve 15,228 variants, with a discoverability of 6.8 x 

10-6. In other words, depression was estimated to be over 50 times more polygenic and its genetic determinants 

were estimated to be approximately 30 times less discoverable than AD. Expected sample sizes needed to explain 

half of the genetic variance for AD was 0.5 million, for depression 10 million, see Figure 5.1B. 

Bivariate mixture modelling indicated that there were 98 causal variants overlapping between the two traits, 

i.e., 38% of all variants for AD and 1% of all variants for depression, see Figure 5.1C. Given the size of the 

reference genome, we estimate that by chance the overlap would be approximately four variants. The fraction 

of concordant directions of effects for the shared variants was 0.44. The bivariate density plot, Figure 5.1D, 

illustrates the presence of mixed directions of associations for many SNPs; some SNPs have the same direction 

of association for both traits, while others are positively associated with AD and negatively associated with 

https://github.com/precimed/
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depression or vice versa. The net result of this is a negligible negative correlation, despite a large proportion 

of AD’s causal variants overlapping with depression. 

Figure 5.1 | Genetic overlap between Alzheimer’s disease (AD) and depression. A) Miami plot, contrasting the observed 
􀀀log10 (p-values), shown on the y-axis, of each SNP for AD (top half, blue) with depression (bottom half, red). The x-axis 
shows the relative genomic location, grouped by chromosome, and the red dashed lines indicate the whole-genome signifi-
cance threshold of 5 10􀀀8. B) Estimated percent of genetic variance explained by SNPs surpassing the genome-wide signifi-
cance threshold, on the y axis, as a function of sample size, depicted on the x axis on a log10 scale, for AD and depression. 
Current sample sizes and percentages of genetic variance explained by discovered SNPs are shown in parentheses. C) Venn 
diagram depicting the estimated number of causal variants shared between AD and depression and unique to either of 
them. Below the diagram, we show the estimated genetic correlation. D) Bivariate density plot, illustrating the relationship 
between the observed GWAS Z-values for AD (on the x-axis) and depression (on the y-axis).
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Locus Overlap 

Through conjunctional FDR analysis, we discovered a SNP at chromosome 7, rs5011436, located at an 

intron of the TMEM106B gene, that was significantly associated with both traits. We replicated this 

association with both traits using UKB data; for AD, we found a negative relation with the number of 

copies of the C allele (B=-0.002, SE=6.5 x 10-4, p=9.1 x 10-4), whereas for depression we found a positive 

relation (B=0.007, SE=0.001, p=3.2 x 10-9), in accordance with the directions of effects as reported in the 

two original GWAS. We subsequently calculated the association of rs5011436 with cortical and subcortical 

brain morphology, using the neuroimaging subset of the UKB. As shown in Figure 5.2, we found that the C 

allele of this SNP is significantly associated with higher volume of the posterior (B=0.035, SE=7.6 x 10-3, 

p=3.4 x 10-6), mid posterior (B=0.026, SE=7.5 x 10-3, p=6.6 x 10-4), and anterior (B=0.024, SE=7.3 x 10-

3, p=8.6 x 10-4) sections of the corpus callosum, lower volume of the third ventricle (B=-0.025, SE=6.1 x 

10-3, p=5.0 x 10-6), as well as larger area of the inferior temporal gyrus (B=0.017, SE=4.8 x 10-3, p=5.3 x 

10-4).
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Figure 5.2 | rs5011436 C allele relation to brain morphology. Brain maps showing the spatial distribution of Z scores. Le-
gend color’s intensity shows strength in correlation. Positive correlation in orange, negative correlations in blue. Stars mark 
the regions that remain significant after multiple comparisons correction (p<.001). Cortical thickness: no significant regions; 
Cortical surface area: inferior temporal gyrus; Subcortical volume: anterior, mid posterior and posterior corpus callosum, 
and third ventricle. 
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Discussion 
Here we employed state-of-the-art biostatistical tools to improve our knowledge of the genetic underpinnings 

of the relation between AD and depression. In line with previous reports we have identified large differences 

in the genetic architecture of these disorders. We add new knowledge by revealing the presence of genetic 

overlap between them. We further illustrated how conjunctional analysis may be used to discover specific 

shared genetic loci, and substantially expanded on previous efforts by mapping the effects onto the brain in 

order to identify neurobiological mechanisms that contribute to the relation between these disorders.

We found that many of the causal variants for AD are overlapping with depression. This partly contradicts 

the previously reported negligible genetic correlation between AD and MD (Gibson et al., 2017), as well as 

the overall low genetic correlation reported between neurologic and psychiatric disorders (Consortium et al., 

2018). However, whereas genetic correlations rely on globally consistent directions of effects between the 

two traits under investigation, bivariate Gaussian mixture modelling estimates the number of causal variants 

that have an effect on both, regardless of directions of effects. High levels of mixed directions of effects is 

likely to be commonplace for complex traits such as brain disorders. This can be seen in, for instance, another 

psychiatric disorder like schizophrenia, which has been estimated to share virtually all causal variants with 

educational attainment, despite a near-zero genetic correlation (Frei et al., 2019). 

The strong heterogeneity of depressive disorders is likely to contribute to the mixed directions of effects 

between the two traits, which appears in contradiction to the high levels of reported comorbidity with AD. 

The heterogeneity of the depression phenotype is evident from its wide range of signs and symptoms and 

the likely existence of several depression subtypes. This may explain how the extent of genetic overlap can be 

large for the less polygenic AD, yet very small for depression, which fits with numerous reports that depressive 

disorders are an important predictor of AD pathology while the opposite is less true (Kramberger et al., 2012; 

Rapp et al., 2006; Verkaik et al., 2007). We speculate that some depressive disorder subtypes will be shown as 

genetically more concordant with AD than others, in line with indications that depressive disorders subtypes 

have significantly different genetic architectures (Jang, Livesley, Taylor, Stein, & Moon, 2004; Milaneschi et al., 

2016). The wide range of reported levels of comorbidity with AD across studies (Gracia-García et al., 2015; 

Mega, Masterman, O’Connor, Barclay, & Cummings, 1999; Starkstein et al., 2005; Verkaik et al., 2007; Zubenko 

et al., 2003) may also be due to this heterogeneity, as they differ in defining and subtyping of depression. A direct 

investigation of the relation of AD comorbidity and depressive disorders subtypes, coupled to neurobiological 

data, would be valuable. We postulate that studies using more narrow depressive disorder subtypes would 

find lower polygenicity and more concordant directions of effects with AD for specific subtypes.

Our use of cFDR to identify a specific locus shared by AD and depression is an example of how we may use genetics 

to improve our understanding of the neurobiology underlying the relation between these two disorders. The 

SNP rs5011436 is located in an intron of the gene TMEM106B, which encodes the transmembrane protein 

106B. TMEM106B was the first genetic risk factor to be identified for fronto-temporal lobar degeneration 
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(FTLD, Van Deerlin et al., 2010). Since then, it has also been reported in GWAS of both AD (Jun et al., 2016) 

and MD (Howard et al., 2019). The protein TMEM106b is thought to regulate lysosomal function, with a role in 

the clearance of TPD-43 (Nicholson & Rademakers, 2016). Both lysosomal function and specifically TDP-43 are 

highly related with the pathogenesis of AD (Nixon et al., 1992; A. C. Wilson, Dugger, Dickson, & Wang, 2011) 

and MD (Modrego & Ferrández, 2004). TMEM106B expression has been shown to be downregulated in brains 

of individuals with AD (Satoh et al., 2014), while it has been found to be upregulated in individuals with MD 

(Dall’Aglio, Lewis, & Pain, 2021). 

The evidence for involvement of TMEM106B in both disorders is further substantiated by our neuroimaging 

analyses, indicating effects on several brain regions that have been tied to both AD and depression. In 

particular, the corpus callosum was implicated by our analyses, in line with previous neuroimaging findings on 

TMEM106B (Adams et al., 2014), with higher volume of several callosal subregions for carriers of the rs5011436 

c-allele, the allele that we found to convey risk for depression and to be protective for AD. MDD is associated 

with abnormal cerebral lateralization, and individuals with familial MDD have been found to have significantly 

larger callosal volume than individuals with non-familial forms of MDD (Lacerda et al., 2005), while AD has 

been repeatedly linked to degeneration of the corpus callosum (Di Paola, Spalletta, & Caltagirone, 2010). Thus, 

specific, genetically mediated, forms of depression have been found to have opposing directions of effects on 

the corpus callosum than other forms of depression and AD. 

Our estimates of heritability, polygenicity, and discoverability highlight the complexity of the genetic architecture 

of both disorders. While twin studies have indicated high broad heritability of AD (Gatz et al., 1997) and MD 

(Sullivan et al., 2000), we replicated previous findings of low SNP-based heritability, as captured by GWAS data 

(Jansen et al., 2019; Lambert et al., 2013; Wray et al., 2018). This possibly implicates an important role for 

rare variants, as well as a high degree of genetic and environmental interaction effects. Contrasting the two 

disorders, it is clear that AD polygenicity is relatively low, with a recent study even qualifying late-onset AD as 

oligogenic (Zhang et al., 2020). Depressive symptoms on the other hand are highly polygenic, partly reflecting 

the substantial clinical heterogeneity which may capture a broad range of conditions, each likely with partly 

distinct genetic determinants (Jang et al., 2004). Regardless of these differences in genetic architectures, 

our analyses made clear that, with current approaches, GWAS sample sizes will need to reach millions of 

individuals to uncover a substantial fraction of the common genetic variance influencing both disorders. 

Our findings once again reiterate the complexity of the genetic architectures of brain disorders, highlighting 

the limitations of the GWAS approach. Our power analyses suggest that, despite tremendous efforts from 

worldwide consortia to bring together large samples, we are only at the very beginning of uncovering the 

genetic determinants of AD and depression through the standard GWAS approach. Clearly, more powerful 

biostatistical tools are needed, ones that better match this complexity and that leverage genetic signal shared 

across traits of interest (Frei et al., 2019; Smeland et al., 2020; van der Meer et al., 2020) in order to lower 

the required sample sizes and provide more meaningful metrics. While approaches like Gaussian mixture 

modelling are a step in the right direction, the current implementation does still suffer from oversimplified 
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assumptions about the nature of the genetic architecture of brain disorders; AD is enriched for rare variants, 

while the MiXeR analysis focuses on common variants only. Further, low polygenicity implies a handful of large 

genetic effects – there is a bigger chance that the distribution of those effect sizes won’t follow a Gaussian 

distribution, violating model assumptions. We are developing extensions of this method that will handle such 

characteristics. 

To conclude, in this study we provided further insights into the genetic relationship between AD and 

depression, providing evidence of significant genetic overlap, and neuropathological effects reflected in brain 

morphological changes, warranting further genetic research. However, it seems that the complex relation 

between AD and depression will require future research to employ larger sample sizes, cleaner phenotype 

definitions and further improvements of biostatistical tools. It will also be important to study interaction effects 

between genetic variants and between genetic and environmental factors, as well as the dynamic interplay 

between relevant factors over the lifespan. These all will influence the underlying biological mechanisms that 

account for the complex relationship between these disorders. Ultimately this knowledge may provide a path 

toward more effective treatments, thereby reducing the enormous burden that AD and depression place on 

patients and their care-givers.
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Supplementary Table S5.1. List of the 96 brain measures included in the analyses

Global measures and subcortical volumes Regional cortical thickness and surface area

Estimated intracranial volume 1. Bankssts
Cerebrospinal fluid 2. Caudalanteriorcingulate
Total white surface area 3. Caudalmiddlefrontal
Mean cortical thickness 4. Cuneus
Lateral Ventricle 5. Entorhinal
Inferior Lateral Ventricle 6. Fusiform
Cerebellum White Matter 7. Inferiorparietal
Cerebellum Cortex 8. Inferiortemporal
Thalamus Proper 9. Isthmuscingulate
Caudate 10. Lateraloccipital
Putamen 11. Lateralorbitofrontal
Pallidum 12. Lingual
3rd Ventricle 13. Medialorbitofrontal
4th Ventricle 14. Middletemporal
Brain Stem 15. Parahippocampal
Hippocampus 16. Paracentral
Amygdala 17. Parsopercularis
Accumbens Area 18. Parsorbitalis
Ventral Diencephalon 19. Parstriangularis
Vessel 20. Pericalcarine
Choroid Plexus 21. Postcentral
5th Ventricle 22. Posteriorcingulate
Optic Chiasm 23. Precentral
Corpus Callosum Posterior 24. Precuneus
Corpus Callosum Mid Posterior 25. Rostralanteriorcingulate
Corpus Callosum Central 26. Rostralmiddlefrontal
Corpus Callosum Mid Anterior 27. Superiorfrontal
Corpus Callosum Anterior 28. Superiorparietal

29. Superiortemporal
30. Supramarginal
31. Frontalpole
32. Temporalpole
33. Transversetemporal
34. Insula

Supplementary Table S5.1. List of the 96 brain measures included in the analyses
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Outline & key findings 
Brain imaging in population-based cohort studies plays a pivotal role in unveiling the structural changes and 

underlying pathophysiological mechanisms associated with various degenerative, psychiatric, and metabolic 

diseases. The primary objective of this thesis is to leverage high-quality neuroimaging data from two 

distinguished population-based cohorts to investigate methodological considerations and clinical applications 

of this invaluable resource.

Chapter 2 investigates the effects of manual editing on brain segmentations, aiming to assess the impact on 

morphological estimates. Additionally, it strives to identify a reliable and time-efficient quality control strategy 

that can serve as an alternative to the current gold standard, visual inspection. Results demonstrate that 

manual editing of brain surfaces induces significant changes in brain estimates, particularly within subcortical 

structures. Manual quality control exhibits the highest reliability, while the exclusion of outliers based on 

automatically generated Euler numbers in FreeSurfer emerges as the most reliable time-efficient alternative 

among the automated quality control strategies.

Chapter 3 focuses the associations between prediabetes, type 2 diabetes mellitus (T2DM), and continuous 

measures of hyperglycemia with the volumes of hippocampal subfields. Notably, no significant associations 

were observed between prediabetes and hippocampal subfields, whereas T2DM was associated with a 

generalized lower volume of most subfields. Linear trend analysis and the use of continuous measures of 

hyperglycemia, show a dose-response relationship between hyperglycemia and lower hippocampal subfield 

volumes.

Chapter 4 examines the associations between the incidence, prevalence, and course of depression with the 

volumes of hippocampal subfields. The results indicate that changes in hippocampus subfield volumes may 

co-occur or follow the onset of depressive symptoms, rather precede it. We found limited evidence to support 

that specific volume changes could precede the onset of (chronic) depressive symptoms. 

Chapter 5 explores the genetic overlap between depression and Alzheimer’s disease. There is genetic overlap 

with varying directions of effect between both diseases. Notably, a single nucleotide polymorphism (SNP) 

located in the TMEM106B gene is shared by both Alzheimer’s disease and depression. The presence of this 

SNP correlates with higher volumes of the corpus callosum and higher surface area in the inferior temporal 

gyrus.

Overall, this thesis utilizes robust neuroimaging data from recognized population-based cohorts to unravel 

crucial insights into structural changes, pathophysiological mechanisms, and clinical applications in the context 

of degenerative, psychiatric, and metabolic diseases.
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Neuroimaging in large population-based cohorts
This thesis utilizes data from two large population-based cohorts that include neuroimaging data, 

namely, The Maastricht Study and the United Kingdom (UK) Biobank, to investigate the neurobiological 

underpinnings of complex diseases such as T2DM, depression, and Alzheimer’s disease. As the brain is a 

complex organ where small changes may have a considerable impact, large-scale approaches are needed 

to capture the subtle variations in brain structure associated with these conditions. The use of population-

based cohorts is beneficial to identify early markers before the onset of a disease, helping understand its 

etiological process. Further, large population-based cohorts increase the statistical power needed to detect 

meaningful differences in brain structure associated with these diseases. Additionally, large cohorts enable 

the use of more complex biological models, facilitating the formulation of more specific research questions. 

For instance, multiple regression analysis can add covariates to a statistical model that might be related 

to the outcome, controlling for the effect that a specific covariate has on the dependent variable. This 

approach helps to rule out whether a covariate is driving the association detected between a dependent 

and an independent variable. By carefully considering the role of covariates, the associations between 

diseases and brain structure can be studied while holding other potentially influential factors constant, 

thereby improving the validity and reliability of our findings.

The use of large population-based cohorts also improves the generalizability of the results, increasing the 

probability that the findings are representative of the entire population. As in any cohort study, healthier 

people are more willing to participate, creating a selection bias. However, as long as the variation in 

determinants and outcomes is large enough, this should not interfere too much with the results. Further, 

it is important to take into consideration any oversampling of specific phenotypes, as this may affect the 

generality of the results. In this regard, The Maastricht Study was designed with the specific purpose to 

study T2DM, its complications and comorbidities. Therefore, The Maastricht Study has an oversampling 

for T2DM, which increases the available sample size for studying this phenotype that is otherwise scarce 

in the general population. This allows for greater statistical power in certain analyses, but may affect the 

generalizability of the results. Chapter 3 investigates the associations between prediabetes, T2DM, and 

continuous measures of hyperglycemia and the hippocampal subfields using data from The Maastricht 

Study. The oversampling for T2DM proved to be extremely useful in this case. The study uses a sample of 

n=4636 participants with available data on glucose metabolism status, neuroimaging, and all covariates. 

According to recent epidemiological studies, the prevalence of T2DM in the Netherlands ranges between 

2.2% and 3.2% (Baan & Feskens, 2001; Ubink-Veltmaat et al., 2003). In our sample, this would imply a total 

of n=148 cases with T2DM in the scenario with the highest prevalence. However, due to the oversampling 

for T2DM in The Maastricht Study, a total of n=869 participants with T2DM were available, considerably 

increasing the statistical power and enabling the formulation of a very specific research question about the 

association between T2DM and hippocampal subfields.
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Despite this oversampling, the cohort can be used as population sample as well. However, additional analyses 

are then needed to take this into account. Chapter 4 investigates the associations between prevalent and 

incident depression and the volume of the hippocampal subfields. For this particular research question, 

T2DM was first included as a covariate, enabling to account for its potential confounding effect on the 

association between depression and the volume of the hippocampal subfields. However, the inclusion of 

a covariate is not always a perfect solution. For the inclusion of T2DM in the model, one has to take into 

consideration that if a covariate is highly correlated with another covariate, the model may present multi-

collinearity, which can result in unstable estimates, inflated standard errors, and ultimately decrease the 

power of the model. Furthermore, when a covariate is not actually related to the outcome variable, and 

does not explain any additional variance beyond what is already accounted for by other variables in the 

model, including such a covariate could increase the model complexity and decrease degrees of freedom, 

ultimately reducing the power of the model. In the case of Chapter 4, however, the inclusion of T2DM as a 

covariate revealed no influence of T2DM on the association between depression and hippocampal subfields. 

In other words, correcting for T2DM allows to claim that the associations found between depression and 

hippocampal subfields were independent of T2DM. Nevertheless, the cohort still does not represent the 

entire population, and caution should be exercised when generalizing the results, even when accounting 

for the oversampled covariate in the model. To ensure the robustness of the findings, sensitivity analyses 

were conducted where participants with T2DM were excluded from the analysis. This alternative approach 

verified that participants with T2DM did not drive the associations, thereby increasing the confidence in the 

reliability of our results.

The use of large population-based neuroimaging cohorts also presents numerous challenges, including 

the acquisition and storage of vast amounts of data that require significant resources in infrastructure and 

personnel. In addition, ensuring the accuracy, reliability, and validity of the data and results while minimizing 

errors and biases is critical in neuroimaging, and particularly in structural brain segmentation. Traditional 

manual quality control of the acquired phenotypes is complex due to the high numbers and subsequent labor 

involved. Chapter 2 assesses the effects of manual editing brain segmentations on the phenotype-derived 

information used to answer subsequent research questions. Further, and to find a reliable and time-efficient 

quality control strategy for The Maastricht Study, several available and commonly used quality control 

strategies were compared to manual quality control, currently considered the gold standard. The obtained 

results identified a time-efficient and reproducible automated quality control strategy suitable to be applied 

in The Maastricht Study brain segmentation data. This process enhanced the quality of the data used in the 

subsequent chapters. 
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Neuroimaging of the hippocampus in T2DM and depression
The hippocampus is a complex brain structure located in the medial temporal lobe, composed of different 

subfields with distinct cellular and molecular properties. It is associated with memory formation, consolidation 

and retrieval, emotional processing, and spatial navigation (Knierim, 2015). 

This thesis shows that both T2DM and chronic depression are associated with lower hippocampal subfields 

volume. Given the different cellular composition and physiology of the hippocampal subfields (Fanselow 

& Dong, 2010), we hypothesized that the subfields would be differently associated with hyperglycemia. 

However, results in Chapter 3 indicate that T2DM is associated with a generalized atrophy of the hippocampus. 

Hyperglycemia has previously been linked to neuronal loss and impaired connectivity (Vergoossen et al., 2020; 

Zhang, Shaw, & Cherbuin, 2022), and our findings suggest that this is occurring throughout the hippocampus, 

with no specificity across subfields. In contrast, findings in Chapter 4 showed that depression exhibited some 

specificity for particular hippocampal subfields. These are lower volumes in the fimbria, dentate gyrus, and 

Cornu Ammonis structures, as well as a higher volume in the molecular layer. These results raise the question 

of whether it is better to study the hippocampus as a whole or to divide it into subfields. On the one hand, 

using different subfields entails repeating the statistical analysis in each subfield, increasing the possibility of 

a type I error. On the other hand, studying the hippocampus as a whole might obscure the association due 

to mixed directions of effect of its parts, increasing the possibility of a type II error. Moreover, studying the 

hippocampus as a whole might overlook relevant associations with subfields that have specific functions. 

Chapter 4 illustrates this concept. While the analysis of the entire hippocampus revealed a lower volume to 

be associated with a chronic course of depression, studying the subfields further uncovered a higher volume 

of the molecular layer. The study of the hippocampal subfields volume in addition to the total hippocampus 

volume shows associations otherwise hidden, providing further insights into the underlying pathophysiology 

of depression and comorbid conditions such as cognitive impairment. 

Both T2DM and depression are associated with lower volumes in fimbria, dentate gyrus, Cornu Ammonis, and 

subicular structures. Furthermore, T2DM is associated with lower volumes in the subiculum and tail, which 

are not found in depression. As mentioned before, T2DM seems to be associated with generalized atrophy. 

However, depression is additionally associated with a higher volume in the molecular layer. This is a remarkable 

result that has never been shown before. A higher volume could be due to inflammatory processes, cellular 

degeneration, or the associated edema. In fact, oxidative stress and inflammation have been proposed to 

explain the structural changes observed throughout the illness progression in depression (Bellau, 2019). 
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Advanced phenotyping 

Diabetes

Chapter 3 delves into the associations of T2DM, prediabetes, and continuous measures of hyperglycemia 

with the volume of hippocampal subfields. Glucose metabolism status assessment in The Maastricht 

Study was conducted through an oral glucose tolerance test following an overnight fasting, as described 

by Schram et al. (2014). This method is currently considered the gold standard, ensuring highly accurate 

assessment of participants’ glucose metabolism status. The classification into T2DM, prediabetes, or normal 

glucose metabolism status was determined following the World Health Organization criteria (World Health 

Organization, 2006), which is widely used in research in Europe. In the United States, levels of HbA1c and the 

American Diabetes Association criteria (Gavin III, Alberti, Davidson, & DeFronzo, 1997) are more often used. 

However, both measures and criteria are widely recognized and trusted in the literature (Barzilay et al., 1999; 

Gabir et al., 2000). The oral glucose tolerance test measurement also enabled the use of continuous measures 

of hyperglycemia (fasting blood glucose, 2 hours post load blood glucose, and HbA1c) directly into the 

analysis, which is not possible in studies relying on self-reported glucose metabolism status. This feature holds 

significant value in understanding the nature of the associations between hyperglycemia and brain damage. 

Notably, leveraging this feature, Chapter 3 uncovered a dose-response relationship between hyperglycemia 

and differences in hippocampal volume, thereby highlighting the significance of employing deep phenotyping 

with high-quality data to advance our understanding of diabetes.

Depression

Depression is a multifactorial disease, with a complex neurobiological correlate widely studied in neuroscience. 

Several tools and definitions can be used to classify depression. Chapter 4 examines the relationship 

between depressive symptoms and hippocampal volumes. Depressive symptoms were assessed using the 

9-item Patient Health Questionnaire (PHQ-9) developed by Kroenke, Spitzer, and Williams (2001). The PHQ-

9 is a self-administered questionnaire that measures the presence of nine symptoms associated with major 

depressive disorder, as defined by the DSM-IV criteria (American Psychiatric Association, 1994). The PHQ-9 

has demonstrated high validity and reliability (Kroenke et al., 2001; Martin, Rief, Klaiberg, & Braehler, 2006). 

Further, to define “clinically relevant depressive symptoms”, a cutoff score of ≥10 was utilized. This has shown 

high sensitivity and specificity in identifying depression (Pettersson, Boström, Gustavsson, & Ekselius, 2015). 

However, despite the good sensitivity and specificity, the PHQ-9 does not equal a diagnostic of major depressive 

disorder that is used in clinical care (Negeri et al., 2021). Hence, it is important to note that although elevated 

scores on the PHQ-9 may strongly indicate the presence of major depressive disorder, they alone do not provide 

a definitive confirmation of its diagnosis. Yet, the PHQ-9 is an easy tool to apply as it is a short questionnaire 

that participants can complete on their own, whereas a diagnostic interview requires the participant to meet 
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in person with an instructed professional, which makes the assessment more time and resource consuming. 

Using the PHQ-9 increases adherence to the study as it reduces the burden for the participant, and further 

allows for an annual evaluation of depressive symptoms, together with a set of tests and questionnaires that 

are sent to the participants of The Maastricht Study every year. Another advantage of utilizing the PHQ-9, and 

specifically PHQ-9 scores, is that it allows for the examination of depressive symptoms as a continuum. This 

continuous measure of depressive symptoms is highly relevant, and by considering depressive symptoms on a 

spectrum rather than a categorical diagnosis, one could gain a more nuanced understanding of the association 

between depression and the brain.

Chapter 5 employs data from the UK Biobank to explore the genetic overlap between Alzheimer’s disease and 

depression. In this case, the “broad depression phenotype” described by Howard et al. (2018) was utilized. 

Depressive status was determined based on clinical records and self-report. Participants were classified as 

having depression if a clinical diagnosis according to ICD-10 was documented in their clinical records, or if they 

reported seeking professional help for nerves, anxiety, or depression. The creation of a composite in this case 

helps mitigate potential inaccuracies stemming from incomplete or outdated clinical records. However, it is 

important to acknowledge that seeking help for depression does not necessarily equate to a clinical diagnosis 

of depression. Nevertheless, Howard et al. (2018) conducted a genome-wide association study (GWAS) using 

this composite measure in the UK Biobank, and the results demonstrated a high genetic correlation with a 

GWAS that employed a strict clinical definition of major depressive disorder, making this phenotype a good 

proxy for major depressive disorder. 

Early-life depression has been associated with an increased risk for the later development of Alzheimer’s 

disease (Andersen, Lolk, Kragh-Sørensen, Petersen, & Green, 2005; Ownby, Crocco, Acevedo, John, & 

Loewenstein, 2006), even when depressive symptoms were observed 25 years before the onset of Alzheimer’s 

disease (Green et al., 2003). The ways in which these pathologies are associated are complex, and some 

studies suggest that depression may not be a risk factor but a prodromal manifestation of Alzheimer’s disease 

(Alexopoulos et al., 2002; Chen, Ganguli, Mulsant, & DeKosky, 1999; Geerlings & Gerritsen, 2017; Sun et 

al., 2008). Chapter 5 aimed to elucidate the potential genetic overlap between both diseases. We found 

a single nucleotide polymorphism located in the TMEM106B gene to be associated with both depression 

and Alzheimer’s disease. Consistent with our findings, previous literature has shown the TMEM106B gene is 

upregulated in the brains of individuals with depression (Dall’Aglio et al., 2020), while being downregulated 

in the brains of individuals with Alzheimer’s disease (Satoh et al., 2014). However, this genetic overlap only 

explains a small part of the complex relationship between these diseases. 

Overall, the study of the associations between depression and brain volumes is complex. The use of self-

reported tools and proxies when clinical diagnoses are not available, add another layer of complexity in an 

already difficult question. Also, depression is a heterogeneous disease, characterized by a wide range of, 

sometimes contrary, signs and symptoms, with different courses and severity. This further complicates the 

analysis of its relationship with brain structures. It is important to note that a current report of depression, 
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whether self-reported or diagnosed by a healthcare professional, does not differentiate between depression 

resulting from external stressors and depression as an intrinsic chronic condition. This is a significant 

consideration since a depressive response to a stressful and challenging event can be specific to the situation, 

and once the stressor diminishes, the depressive symptoms can in some occasions dissipate. Distinguishing 

between transient and persistent depression is crucial for a comprehensive understanding of the underlying 

mechanisms and brain correlates. Chapter 4 addresses this topic through the use of longitudinal data 

on depression. Depression was assessed in The Maastricht Study annually, over a period of 7 years. This 

allowed the distinction between chronic or transient depression, and results show a significant association 

with some hippocampal subfields in chronic but not in transient depression. This result emphasizes the 

need for cautious interpretation when studying the associations between brain structure and depression, 

and potentially, provide a hint to address this heterogeneity by defining subtypes of depression. Overall, 

these results highlight the importance of considering various factors, such as the nature and duration 

of depressive symptoms, the presence of external stressors, and the potential for adaptive responses to 

challenging life circumstances, for the better understanding of depression’s neurological processes. Further 

research needs a comprehensive approach to disentangle the intricate interplay between brain structure 

and depression in its various manifestations.

Alzheimer’s disease

The use of phenotypes by proxy in research is a valuable approach, particularly when direct measurement 

of a specific phenotype poses challenges or is not feasible. This method involves leveraging related proxy 

measures or indicators to make inferences about the presence of a particular phenotype of interest. Chapter 

5 investigates the genetic overlap between depression and Alzheimer’s disease using data from the UK 

Biobank. To achieve this, an Alzheimer’s disease by proxy measure was employed, following the methodology 

previously described by Jansen et al. (2019). This measure was created by gathering information from clinical 

records, including diagnoses of dementia, parental age at diagnosis, at death or at assessment, and parental 

Alzheimer’s disease status. In essence, participants with a confirmed diagnosis of Alzheimer’s disease were 

assigned a score of 2. For other participants, a score of 1 was given for each biological parent reported to 

have had Alzheimer’s disease. Additionally, the contribution of unaffected parents to the score was inversely 

weighted by their age or age at death, employing the formula (100-age)/100. It is important to note that, as 

expected in a population-based cohort, the number of cases with a current diagnosis of Alzheimer’s disease 

was small. Therefore, most cases of Alzheimer’s disease by proxy used in this thesis were actually based on 

parental Alzheimer’s disease information.

The utilization of Alzheimer’s disease by proxy in our study holds significant advantages, primarily due to 

its robust correlation with familial risk of Alzheimer’s disease, as demonstrated by Jansen et al. (2019). 

This correlation presented a valuable opportunity for the objectives outlined in Chapter 5, where the main 

focus was to investigate the genetic overlap between Alzheimer’s disease and depression. One crucial 
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aspect was the identification of potential cases of Alzheimer’s disease before the onset of symptoms, which 

was essential to capture individuals who may carry a higher genetic risk for the disease. This approach 

allowed us to avoid misclassifying those with high risk burden as controls and enabled us to gain a deeper 

understanding of the genetic overlap between Alzheimer’s disease and depression. Additionally, it provided 

the opportunity to map the associations between these genetic factors and the structural changes in the 

brain that precede the manifestation of clinical symptoms. By identifying individuals at-risk prior to symptom 

onset, one could uncover valuable insights into the genetic, environmental and lifestyle factors involved in 

the development of both Alzheimer’s disease and depression, as well as their structural brain correlates. 

This early identification not only contributes to advancing our knowledge in the field but also opens avenues 

for potential early interventions and personalized approaches in managing these conditions. Although 

the Alzheimer’s disease by proxy construct shows a strong genetic correlation with Alzheimer’s disease 

(rg=0.81) (Jansen et al., 2019), this approach cannot predict who will develop the symptoms associated to 

the disease, which may result in some misclassification and subsequent dilution of the associations being 

studied. Overall, despite some potential misclassification, the use of Alzheimer’s disease by proxy in our 

study allowed us to explore the complex interplay between genetics, structural brain changes, and the 

development of Alzheimer’s disease and depression, providing a valuable foundation for future research 

and potential clinical implications.

Hippocampal subfields

MRI is an invaluable tool for investigating the morphology of the brain in living subjects. This noninvasive 

technique offers high spatial resolution, enabling precise examination of brain structures. By employing 

segmentation algorithms, it becomes possible to measure the different components that constitute the brain. 

Chapters 3 and 4 explore the relationships of T2DM and depression, with the hippocampal subfields using 

neuroimaging data from The Maastricht Study, with a comprehensive brain segmentation using FreeSurfer 

v6.0 (Fischl, 2012). An additional specialized segmentation technique for the segmentation of hippocampal 

subfields was used, as described by J. Iglesias (2020).

The automatic segmentation of hippocampal subfields, particularly at 3T, may initially raise concerns 

due to the complexity and small size of this structures. In The Maastricht Study, T1-w images have a 

1.0 mm3 reconstructed voxel size. However, images with similar acquisition parameters demonstrated 

favorable test-retest reliability in several studies (Brown et al., 2020; Marizzoni et al., 2015; Quattrini et 

al., 2020; Worker et al., 2018). Among the larger subfields, such as the tail, subiculum, presubiculum, 

CA1-4, dentate gyrus, and molecular layer, the highest reproducibility has been observed (Marizzoni 

et al., 2015). Additionally, a strong agreement of FreeSurfer’s hippocampal segmentation with manual 

segmentation has also been reported (Tae, Kim, Lee, Nam, & Kim, 2008). However, the anterior portion 

of the hippocampal formation, specifically the CA1 and subiculum boundary, exhibits lower agreement. 

FreeSurfer tends to include parts of CA1 within the subiculum, resulting in an overestimation of this subfield 
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volume (de Flores et al., 2015; Marizzoni et al., 2015; Yushkevich et al., 2015). To improve segmentation 

quality, multispectral segmentation was used in our sample (J. E. Iglesias et al., 2015; Seiger et al., 2021). 

This method employs the intensities of the main T1 volume to improve the segmentation reliability. 

Furthermore, all segmentations obtained in The Maastricht Study underwent rigorous quality control, 

which involved excluding of outliers based on Euler numbers. This technique offers similar benefits in 

quality control compared to visual inspection for hippocampal subfield segmentation (Monereo-Sánchez 

et al., 2021), thus ensuring the robustness of the data.

While automated segmentation of hippocampal subfields has proven to be a valuable tool in gaining insight 

into the neurobiological foundations of various brain-related traits and disorders (Sämann et al., 2018), it is 

important to interpret the results with caution, particularly when considering the smaller subfields such as the 

fimbria or hippocampal fissure. Despite employing various strategies to enhance the reliability of hippocampal 

subfield segmentation, the inherent complexity and intricacies of these smaller subfields pose challenges that 

require careful consideration. 

GWAS

Genome Wide Association Studies (GWAS) constitute a very powerful tool to identify genes associated with a 

specific trait. Chapter 5 explores the genetic relationship between depression and Alzheimer’s disease using 

GWAS summary statistics. This allowed to identify shared genetic factors between these two conditions. 

Additionally, Chapter 5 studies the connection between a single nucleotide polymorphism found to be 

significantly associated with both Alzheimer’s disease and depression, and its association with brain structure. 

Findings revealed a correlation with higher volume in the corpus callosum, lower volume in the third ventricle 

and larger surface area in inferior temporal gyrus. Reverse causation or confounding is unlikely due to 

the nature of genetic data. However, it is crucial to recognize that establishing a direct causal relationship 

between genetic variants and brain structure is challenging due to the intricate interplay of genes, behavior, 

and environmental factors. Genetic variants can indeed contribute to variations in brain structure. However, 

it is essential to interpret their impact with caution. Genetic factors alone do not provide a comprehensive 

explanation for the complexities of brain structure, as they interact with a wide range of behavioral and 

environmental influences. Thus, a holistic understanding of brain structure and its underlying determinants 

requires consideration of multiple factors beyond genetics alone. 
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Statistical considerations
The interpretation of the findings in this dissertation requires thoughtful consideration of several methodological 

factors. It is important to note that the reported associations are derived from observational data, which can 

be susceptible to various biases. 

Confounding

Confounding refers to a situation where the association between an independent and a dependent variable is 

obscured by the influence of a third variable (Rothman, Greenland, & Lash, 2008). Given the intricate nature 

of the associations between brain morphology and the diverse and complex pathologies addressed in this 

thesis, it was essential to account for the potential influences that confounding variables might have had in 

our analysis. 

To address confounding, a comprehensive set of covariates was incorporated to the models. The covariates 

were specific for each chapter, yet, when relevant they included demographic factors (age, sex and educational 

level), lifestyle and cardiovascular risk factors (such, waist circumference, smoking status, alcohol intake, 

hypertension, or total‐to‐HDL cholesterol ratio), and relevant covariates related to brain MRI (such as lag time 

between assessment of variables and MRI scans). By including these covariates in the models, the potential 

confounding effects that these variables could introduce were minimized. Furthermore, sensitivity analyses 

were conducted to assess the robustness of our findings. Specifically, sensitivity analyses where participants 

with specific characteristics were excluded from the analysis, such as participants with T2DM or participants 

with a history of major depressive disorder. This allowed to examine the impact of these covariates on the 

observed associations and limit their potential impact as confounders. This strategy was aimed to strengthen 

the internal validity of the study by exploring the consistency of the results across different scenarios. However, 

it is important to acknowledge that despite our efforts, residual confounding may still exist, as confounding 

variables can be difficult to fully capture and account for in any study. Nevertheless, by employing rigorous 

methodologies, incorporating a range of covariates, and conducting sensitivity analyses, significant steps were 

taken towards minimizing the impact of confounding and enhancing the robustness of the findings.

Selection bias

Selection bias is a systematic error that arises when the selection of participants in a sample is not 

representative of the entire population, leading to a disparity in the characteristics compared to those who 

are not selected. This can result in over- or under-estimations of the true associations under investigation 

(Szklo & Nieto, 2014). Cohort studies usually exhibit a selection bias towards healthier participants, which 

can manifest at several stages of the study. During the recruitment process, individuals who are willing to 

participate in research studies often exhibit better health. For instance, responders in the UK Biobank tend 
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to be older, female, and reside in less socioeconomically deprived areas compared to non-responders (Fry 

et al., 2017). Additionally, compared to the general population, participants in these cohorts demonstrate a 

more favorable cardio-metabolic profile and healthier lifestyle (Fry et al., 2017). Another potential source of 

selection bias is the selection of specific groups for the study. For example, in Chapters 3 and 4, data from 

The Maastricht Study included only 4,643 out of 7,689 participants. Most excluded cases had missing MRI 

data or missed some covariate, and these participants tended to be older, have a worse cardiovascular risk 

profile, and more frequently possess lower educational attainment compared to those included in the study. 

A third source of selection bias is the retention of participants throughout the study, specifically in longitudinal 

studies. Loss to follow-up can introduce biases if the attrition is not random, which might be the case with 

depression. However, The Maastricht Study preserves a high response rate towards depression questionnaires 

of around 80% in the first years. The lower numbers in later years are a result of the still ongoing annual 

follow up. Although population-based cohorts may be subject to a healthy volunteer bias, which can limit their 

representativeness, this limitation is not relevant unless the objective is to study the absolute prevalence or 

incidence of a specific phenotype. When examining associations between brain volumes and specific diseases, 

as long as there is adequate variation in the determinant and outcome, representativeness is not essential. 

However, it is crucial to take it into consideration when interpreting the results of the analysis.

Information bias 

Information bias refers to a systematic error that occurs when there are inaccuracies in the measurements of 

variables in a study. Such inaccuracies can cause the collected data to deviate from reflecting the true values 

of the variables of interest, consequently leading to biased estimates of associations (Rothman et al., 2008).

Chapter 2 focuses exclusively on investigating strategies aimed at detecting and preventing segmentation 

inaccuracies to minimize information bias, thereby ensuring the validity and reliability of subsequent study 

findings. Segmentation inaccuracies occur when the boundary of a brain structure, as proposed by our used 

segmentation tool, FreeSurfer v6.0 (Fischl, 2012), fails to align with the actual anatomical boundary. These 

inaccuracies tend to be more prevalent in MRI scans of lower quality or with diminished parenchymal integrity, 

which commonly arise among older and less healthy participants. The accuracy of the segmentation process 

may vary across specific subgroups, potentially leading to either an overestimation or underestimation of 

the true associations in our analysis. However, by employing automated segmentation techniques, biases 

associated with subjective interpretation of data, recall bias, and observer bias were avoided.

To effectively mitigate information bias in these scenarios, the implementation of quality control strategies 

becomes crucial. Chapter 2 shows that employing visual inspection with exclusion of inaccurate brain 

segmentations yields the most favorable outcomes in reducing measurement errors. However, given the 

impracticality of this approach for large cohorts such as The Maastricht Study, the objective in Chapter 2 was to 

identify an alternative (semi)automated strategy that was both time and resource efficient. Our investigation 
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led to determine that the exclusion of outliers based on Euler numbers was the most effective strategy within 

our sample. Euler numbers, a measure of surface reconstruction complexity (Dale, Fischl, & Sereno, 1999), 

showed a strong correlation with visual inspection, as previously established (Rosen et al., 2018). Conversely, 

the UK Biobank employs Qoala-T (Klapwijk, Van De Kamp, Van Der Meulen, Peters, & Wierenga, 2019) in 

combination with visual inspection of segmented cases to identify and exclude inaccurate segmentations (UK 

Biobank, 2022). In Chapter 2 Qoala-T was also evaluated, exhibiting good performance, particularly in assessing 

measures of cortical surface area. Yet, the exclusion of outliers based on Euler numbers outperformed this tool 

when used in The Maastricht Study cohort. 

Multiple comparison correction

The analysis of segmented brain structures entails examining multiple brain region estimates, which 

necessitates conducting multiple analyses to address the research question at hand. Chapter 3 explores the 

associations between hyperglycemia and 13 distinct hippocampal volumes. Chapter 4 focused on investigating 

the relationship between depression and 26 hippocampal volumes (13 volumes for each hemisphere). 

Furthermore, Chapter 5 mapped the genetic overlap between depression and Alzheimer’s disease into the 

brain across 95 brain volumes. Performing analyses on each individual brain region increases the likelihood 

of encountering type I errors. Therefore, correction for multiple comparisons is necessary. However, caution 

needs to be exercised as an overly strict adjustment may lead to type II errors (Rothman, 1990). To address 

this concern, raw p-values were reported, and a significance α threshold was defined by employing Matrix 

Spectral Decomposition (Nyholt, 2004). Matrix Spectral Decomposition allows for corrections of multiple 

comparisons while accounting for the intersecting nature of brain regions. Matrix Spectral Decomposition 

generates a matrix that determines the true independence among each brain region, providing an accurate 

count of the genuinely independent analyses being conducted. This results in a strategy that incorporates 

multiple comparison correction while being less stringent than a conservative Bonferroni correction.

Implications and directions for future research 
Chapter 2 of this thesis offers a comprehensive comparison of various quality control strategies, providing 

a foundation for the selection of suitable quality control measures in large-scale neuroimaging studies. 

This comparison aims to serve as a reference for researchers in the field seeking to ensure the quality and 

reliability of their MRI data volumetric estimates. It is imperative to continue improving segmentation tools 

and developing new, time-efficient quality control strategies to ensure the use of high-quality data. The 

implications of poor data quality are far-reaching and can undermine the reliability of research findings, and 

affecting clinical and scientific decision-making processes. Hence, ensuring the highest possible data quality 

should be a top priority in neuroimaging research.
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Contrary to our initial hypothesis, the findings presented in Chapter 3 show that hyperglycemia is associated 

with lower volumes in hippocampus as a whole rather than in specific subfields. Interestingly, the absence of 

observable hippocampal differences during the prediabetes stage suggests the existence of a critical window 

of opportunity for interventions aimed at preventing neuronal degeneration. To gain a deeper understanding 

of when these changes occur and the precipitating factors involved, further research is necessary. Replicating 

the results using longitudinal data and conducting a more detailed assessment of the dose-response patterns 

observed in hyperglycemia could greatly enhance our understanding of the effects of both prediabetes and 

T2DM on brain structure. By investigating the timing and underlying factors associated with hippocampal 

changes, clinicians might be able to contribute to the development of strategies to prevent hippocampal 

degeneration and mitigate the resulting cognitive impairments. Continued research in this area holds 

promise for optimizing preventive measures and improving patient outcomes in the context of hippocampal 

degeneration.

The results presented in Chapter 4 provide insights into the associations between depression and hippocampal 

subfield volumes. The findings suggest that the observed associations may either co-occur with, or follow, 

the onset of depressive symptoms, while no evidence supports the notion that differences in hippocampal 

volumes precede the onset of symptoms. Notably, the study highlights that the presence of chronic depression, 

rather than transient depression, is associated with differences in hippocampal volume. This underscores the 

importance of considering the course of depression, in addition to its mere presence, when designing future 

studies. Considering the longitudinal trajectory of depression can provide a more comprehensive understanding 

of the brain correlates associated with depressive disorders, thereby aiding in the resolution of the multitude 

of inconsistent results within this field of study. The heterogeneity of signs and symptoms that constitute 

the pathophysiology of depression, gives rise to the hypothesis that a more comprehensive classification of 

depression subtypes would be beneficial for a better understanding of the correlations between depression 

and brain structure. This, in turn, could lead to improved diagnostics and personalized treatment. Findings in 

Chapter 4 serve as a valuable addition to the existing body of knowledge, bringing us closer to unraveling the 

complexities surrounding the brain correlates of depressive disorders. 

The study of the genetic overlap between depression and Alzheimer’s disease, conducted in Chapter 5, sheds 

additional light on the potential mechanisms linking these diseases to alterations in brain morphology. The 

identification of a shared genetic locus adds evidence to intriguing possibilities that are now being questioned, 

such as the existence of a distinct subtype of depression associated with Alzheimer’s disease or even depression 

being a prodromal stage of this condition. These findings contribute to our evolving understanding of the 

intricate relationship between depression and Alzheimer’s disease, opening avenues for further investigation 

into their shared etiological factors and potential clinical implications. 
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SUMMARY
Brain MRI is an extraordinary non-invasive approach that enables the examination of the intricate structure 

of the human brain. The study of brain structure under various metabolic conditions such as type 2 diabetes 

mellitus (T2DM), psychiatric disorders like depression, or neurodegenerative diseases such as Alzheimer’s 

may help to unveil the underlying biological causes and deepen our comprehension of their pathophysiology. 

However, this avenue of research poses an inherent complexity, requiring the inclusion of large sample sizes. 

In recent years, the integration of neuroimaging techniques into population-based cohorts has provided 

a powerful tool to enhance our understanding of neurobiological diseases. The study of large numbers of 

neuroimaging data offers an opportunity to address key research questions. Nonetheless, the inclusion of 

large datasets brings its own challenges, including the quality control of such a vast amount of data. Therefore, 

the first objective of this dissertation is to identify a suitable and time-efficient solution for ensuring good 

quality of brain segmentation data in large samples. Once this challenge is solved, high-quality, population-

based large cohorts is utilized to conduct a comprehensive study of brain structure under specific conditions. 

This research aims to deepen our understanding of the intricate relationship between brain structure and 

various pathological conditions.

Chapter 1 presents a general introduction to the current state of neuroimaging in population-based 

cohorts. It provides an overview of the field, emphasizing the significance of studying brain structure within 

large cohorts. Two prominent cohorts utilized in this thesis, namely The Maastricht Study and the United 

Kingdom (UK) Biobank, are introduced, offering valuable resources for investigating the relationship between 

neuroimaging data and various health conditions. The importance of ensuring data quality is emphasized, 

as it is crucial for drawing reliable conclusions from analyses. Additionally, a comprehensive overview of the 

current understanding of neuroimaging in relation to the three conditions under investigation in this thesis 

(T2DM, depression, and Alzheimer’s disease) is provided, serving as the foundation for subsequent chapters 

that delve deeper into the study of brain structure under these specific conditions.

Chapter 2 explores quality control strategies for brain segmentation data. Recognizing the impracticality of 

manual quality control for large cohorts, the objective is to establish an efficient and reproducible automated 

quality control approach to ensure the accuracy of brain segmentation data in The Maastricht Study dataset. 

With this aim, a subsample of The Maastricht Study dataset is carefully selected. Visual inspection and manual 

editing is performed to rectify any inaccurate segmentations. Furthermore, multiple automated quality 

control strategies are implemented. Both manual and automated quality control strategies are tested on their 

ability to reduce the unexplained variance generated in a regression analysis. Among the strategies tested, 

manual intervention yields the most significant reduction in unexplained variance, making it the preferred 

strategy for ensuring the highest quality of brain segmentation. However, an automated strategy emerges 

as a viable alternative. Specifically, the exclusion of outliers based on Euler numbers exhibits superior 

performance compared to other automated approaches. This strategy is selected as the optimal solution 
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for maintaining high-quality brain segmentations when time efficiency is a priority. The chosen automated 

strategy is subsequently applied to the full The Maastricht Study sample, ensuring uniformity and accuracy of 

brain segmentation data used in subsequent chapters.

Chapter 3 utilizes The Maastricht Study dataset to investigate the associations between prediabetes, 

T2DM, continuous measures of hyperglycemia, and the volume of hippocampal subfields. The findings 

reveal that T2DM is associated with reduced hippocampal volumes, independent of demographic, lifestyle, 

and cardiovascular risk factors. The association appears to be widespread, affecting most hippocampal 

subfields. However, no significant associations between prediabetes and hippocampal volumes are observed. 

Nonetheless, analysis using continuous measures of hyperglycemia and trend analysis indicate a continuous 

dose-response association between glucose metabolism and lower hippocampal volumes.

In Chapter 4, the focus shifts to examining the links between hippocampal subfield volumes and the 

prevalence, course, and incidence of depressive symptoms. Longitudinal data on depressive symptoms is 

obtained through the PHQ-9 questionnaire. The results show specific hippocampal subfields are associated 

with prevalent depression, specifically with a chronic course. Longitudinal analyses find some evidence that 

smaller volume in left HATA is associated with a risk of incident depression with a chronic course. This results 

could be capturing a biological foundation for the development of chronic depression, and further stress the 

need to discriminate between subtypes of depression to unravel its biological underpinnings. 

Deepening in the study of depression, Chapter 5 investigates the genetic links between depression and 

Alzheimer’s disease using UK Biobank data. The analysis shows 98 overlapping causal genetic variants, 

identifying a shared single nucleotide polymorphism located in the TMEM106B gene. Subsequently, the 

associations of this gene with brain morphometry are assessed. The findings indicate that the presence of 

this gene is associated with higher surface area in the inferior temporal gyrus, larger volumes in the corpus 

callosum, and a lower volume of the third ventricle. These results revealed a previously undisclosed genetic 

overlap between depression and Alzheimer’s disease, which was previously obscured by mixed directions 

of effect. 

Chapter 6 provides a comprehensive discussion of the key findings, limitations of the statistical approaches, 

and the clinical relevance of the content presented in this thesis.
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SAMENVATTING
Brein MRI is een niet-invasieve beeldvormende techniek die het mogelijk maakt de ingewikkelde structuur 

van het menselijk brein te onderzoeken. Het bestuderen van de hersenstructuur bij verschillende metabole 

aandoeningen, zoals diabetes mellitus type 2 (T2DM), psychiatrische stoornissen zoals depressie of 

neurodegeneratieve ziekten zoals de ziekte van Alzheimer, kan helpen om de onderliggende biologische 

oorzaken te vinden en ons begrip van hun pathofysiologie te verdiepen. Dit type onderzoek brengt echter een 

inherente complexiteit met zich mee, waardoor een grote steekproefomvang vereist is. In de afgelopen jaren 

heeft de toepassing van neuroimaging-technieken in populatie gebaseerde cohortonderzoeken een krachtig 

middel opgeleverd om ons begrip van neurobiologische ziekten te vergroten. Het bestuderen van grootschalige 

neuroimaging-gegevens biedt de mogelijkheid om belangrijke onderzoeksvragen te beantwoorden. 

Desalniettemin brengt het gebruik van grote datasets zijn eigen uitdagingen met zich mee, waaronder 

de kwaliteitscontrole van de grote hoeveelheid data. Daarom is het eerste doel van dit proefschrift het 

identificeren van een geschikte en tijdbesparende oplossing om een goede kwaliteit van hersensegmentaties 

in een grote steekproef te garanderen. Hierna wordt de gevonden oplossing toegepast op grote cohorten met 

hoogkwalitatieve data om uitgebreid onderzoek van de hersenstructuur onder specifieke condities mogelijk 

te maken. Dit onderzoek heeft tot doel ons begrip van de ingewikkelde relatie tussen hersenstructuur en 

verschillende pathologische aandoeningen te verdiepen.

Hoofdstuk 1 geeft een algemene inleiding tot de huidige stand van zaken op het gebied van neuroimaging 

in bevolkingscohorten. Het geeft een overzicht van het onderzoeksveld en benadrukt het belang van het 

bestuderen van de hersenstructuur binnen grote cohorten. Twee prominente cohorten die in dit proefschrift 

worden gebruikt, namelijk De Maastricht Studie en de UKBiobank in het Verenigd Koninkrijk, worden 

geïntroduceerd en bieden waardevolle bronnen voor het onderzoeken van de relatie tussen neuroimaging-

gegevens en verschillende gezondheidsaandoeningen. Het belang van het waarborgen van datakwaliteit 

wordt benadrukt, aangezien dit cruciaal is voor het trekken van betrouwbare conclusies. Daarnaast wordt een 

uitgebreid overzicht gegeven van het huidige begrip van neuroimaging in relatie tot de drie aandoeningen die 

in dit proefschrift worden onderzocht (T2DM, depressie en de ziekte van Alzheimer), dat als basis dient voor 

volgende hoofdstukken die dieper ingaan op de relatie tussen hersenstructuur en deze aandoeningen. 

Hoofdstuk 2 verkent strategieën voor kwaliteitscontrole van hersensegmentaties. Omdat handmatige 

kwaliteitscontrole voor grote cohorten praktisch niet uitvoerbaar is, is het doel om een efficiënte en 

reproduceerbare geautomatiseerde kwaliteitscontrole te vinden, die de nauwkeurigheid van hersensegmentaties 

in de dataset van De Maastricht Studie kan waarborgen. Hiervoor werd een subset van De Maastricht Studie 

zorgvuldig geselecteerd. Visuele inspectie en handmatige bewerking werden uitgevoerd om onnauwkeurige 

segmentaties te corrigeren. Bovendien werden meerdere geautomatiseerde kwaliteitscontrolestrategieën 

geïmplementeerd. Zowel handmatige als geautomatiseerde kwaliteitscontrolestrategieën werden getest op 

hun vermogen om de onverklaarde variantie die wordt gegenereerd in een regressieanalyse te verminderen. 
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Van de geteste strategieën levert handmatige interventie de meest significante vermindering van onverklaarde 

variantie op, waardoor het de voorkeursstrategie is om de hoogste kwaliteit van hersensegmentatie te 

waarborgen. Een geautomatiseerde strategie komt echter naar voren als een goed alternatief. Met name 

de exclusie van uitschieters op basis van Euler-getallen vertoont superieure prestaties in vergelijking met 

andere geautomatiseerde benaderingen. Deze strategie is een optimale oplossing voor het behouden van 

hersensegmentaties van hoge kwaliteit wanneer tijdsefficiëntie een prioriteit is. De gekozen geautomatiseerde 

strategie is vervolgens toegepast op de volledige De Maastricht Studie dataset, waardoor de uniformiteit 

en nauwkeurigheid van de hersensegmentaties die in volgende hoofdstukken worden gebruikt, wordt 

gegarandeerd.

Hoofdstuk 3 gebruikt de dataset van De Maastricht Studie om de associaties tussen prediabetes, T2DM, continue 

maten van hyperglycemie en het volume van verschillende onderdelen van de hippocampus te bestuderen. 

De bevindingen onthullen dat T2DM geassocieerd is met kleinere hippocampusvolumes, onafhankelijk van 

demografische, levensstijl- en cardiovasculaire risicofactoren. De associatie lijkt generiek te zijn en betreft de 

meeste onderdelen van de hippocampus. Er worden echter geen significante associaties tussen prediabetes 

en volumes van onderdelen van de hippocampus gevonden. Desalniettemin wijzen analyses met behulp 

van continue metingen van hyperglycemie en trendanalyse op een continue dosis-respons relatie tussen 

glucosemetabolisme en lagere hippocampusvolumes.

In Hoofdstuk 4 worden de verbanden tussen de volumes van de onderdelen van de hippocampus en de 

prevalentie, het beloop en de incidentie van depressieve symptomen onderzocht. Longitudinale gegevens 

over depressieve symptomen worden verkregen via de PHQ-9-vragenlijst. De resultaten tonen aan dat 

volumes van specifieke onderdelen van de hippocampus geassocieerd zijn met prevalente depressie, in het 

bijzonder met een chronisch beloop. Longitudinale analyses tonen aan dat een kleiner volume in de linker 

HATA geassocieerd is met een risico op incidente depressie met een chronisch beloop. Deze resultaten geven 

mogelijk een biologische verklaring voor de ontwikkeling van chronische depressie, en benadrukken de 

noodzaak om onderscheid te maken tussen subtypes van depressie om het biologische mechanisme ervan te 

ontrafelen.

Hoofdstuk 5, verdiept zich in depressie en onderzoekt de genetische verbanden tussen depressie en de ziekte 

van Alzheimer met behulp van UK Biobank-gegevens. De analyse toont 98 overlappende oorzakelijke genetische 

varianten, die een gemeenschappelijk single-nucleotide polymorfisme in het TMEM106B-gen identificeren. 

Vervolgens worden de associaties van dit gen met breinsegmentaties onderzocht. De bevindingen geven aan 

dat de aanwezigheid van dit gen geassocieerd is met een groter volume van de inferieure temporale gyrus, 

grotere volumes van het corpus callosum en een kleiner volume van het derde ventrikel. Deze resultaten laten 

een voorheen niet bekende genetische overlap zien tussen depressie en de ziekte van Alzheimer, die eerder 

verborgen bleef door de tegengestelde richting van de afzonderlijke effecten.

Hoofdstuk 6 geeft een uitgebreid discussie van de belangrijkste bevindingen, beperkingen van de statistische 

benaderingen en de klinische relevantie van dit proefschrift.
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RESUMEN
La resonancia magnética cerebral es una extraordinaria técnica no invasiva que permite el examen de la 

estructura del cerebro humano. El estudio de la morfología cerebral bajo diversas condiciones metabólicas 

como la diabetes mellitus tipo 2 (DM2), trastornos psiquiátricos como la depresión, o enfermedades 

neurodegenerativas como el Alzheimer, puede ayudar a desvelar las causas biológicas subyacentes de estas 

patologías y profundizar en nuestra comprensión de su fisiopatología. Sin embargo, debido a la complejidad 

de esta vía de investigación se requiere el uso de bases de datos de grandes dimensiones. En los últimos años, 

la integración de técnicas de neuroimagen en cohortes poblacionales ha proporcionado una herramienta muy 

útil para mejorar nuestra comprensión de las enfermedades neurobiológicas, ya que el uso de un gran número 

de datos en este campo ofrece la oportunidad de abordar cuestiones de investigación más complejas. No 

obstante, el uso de grandes bases de datos trae desafíos específicos, entre los cuales se incluye el control de 

calidad de una cantidad de información tan grande. Por lo tanto, el primer objetivo de esta tesis es identificar 

una solución reproducible y eficiente para garantizar una buena calidad de la segmentación de imágenes 

cerebrales en muestras de gran tamaño. Una vez resuelto este desafío, se utilizan cohortes poblacionales de 

grandes dimensiones que cuentan con una neuroimagen de alta calidad para realizar un estudio integral de 

la estructura del cerebro en condiciones específicas. Esta investigación tiene como objetivo profundizar en 

nuestra comprensión de la compleja relación entre la estructura del cerebro y las diversas patologías.

El Capítulo 1 presenta una introducción general al estado actual de la neuroimagen en cohortes poblacionales. 

Proporciona una descripción general del campo, y subraya la importancia de estudiar la estructura cerebral 

mediante el uso de grandes bases de datos. Se presentan dos cohortes destacadas y utilizadas en esta tesis, 

a saber, The Maastricht Study y el United Kingdom (UK) biobank, que ofrecen recursos valiosísimos para la 

investigación del cerebro bajo diferentes condiciones. Se enfatiza la importancia de asegurar la calidad de los 

datos, ya que es crucial para sacar conclusiones fiables de los análisis. Además, se proporciona una descripción 

general de los conocimientos actuales sobre neuroimagen en las tres patologías que se investigan en esta 

tesis (DM2, depresión y enfermedad de Alzheimer), lo que sirve de base para los capítulos posteriores. Estos 

profundizan en el estudio de la estructura cerebral bajo dichas condiciones.

El Capítulo 2 explora las estrategias de control de calidad para la segmentación de imágenes cerebrales. 

Tras reconocer la impracticabilidad del control de calidad manual para grandes bases de datos, el objetivo 

es establecer un enfoque automatizado, eficiente y reproducible, para garantizar la precisión de los datos de 

segmentación de neuroimagen en la base de datos de The Maastricht Study. Con este objetivo, se selecciona 

cuidadosamente una muestra a la que se realiza una inspección visual y una edición manual para corregir 

cualquier segmentación inexacta. Además, se implementan múltiples estrategias de control de calidad 

automatizado. Tanto la estrategia de control de calidad manual como las automatizadas se ponen a prueba 

en cuanto a su capacidad para reducir la varianza no explicada generada en un análisis de regresión. Entre 

las estrategias probadas, la intervención manual produce la reducción más significativa en la varianza no 
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explicada, lo que la convierte en la estrategia preferida para garantizar la máxima calidad de segmentación. Sin 

embargo, la exclusión de valores atípicos basados en números de Euler resulta ser la estrategia automatizada 

más eficaz, ya que muestra un rendimiento superior en la reducción de varianza inexplicada en comparación 

con otros enfoques automatizados. Esta estrategia se selecciona como la solución óptima para mantener 

segmentaciones de neuroimagen de alta calidad cuando la eficiencia es una prioridad. Esta estrategia se aplica 

entonces a la base de datos completa de The Maastricht Study, y se garantiza así la uniformidad y la precisión 

de los datos de segmentación de neuroimagen utilizados en los capítulos posteriores.

El Capítulo 3 utiliza la base de datos de The Maastricht Study para investigar las asociaciones entre la prediabetes, 

la DM2, y las medidas continuas de hiperglucemia, con el volumen de las subestructuras del hipocampo. 

Los hallazgos revelan que la DM2 se asocia con volúmenes hipocampales reducidos, independientemente 

de los factores demográficos, de estilo de vida y de riesgo cardiovascular. La asociación parece estar muy 

extendida y afecta a la mayoría de las subestructuras del hipocampo. Sin embargo no se observan asociaciones 

significativas entre la prediabetes y ninguna subestructura del hipocampo. No obstante, el análisis de medidas 

continuas de hiperglucemia y el análisis de tendencias indican una asociación dosis-respuesta continua entre 

el metabolismo de la glucosa y los volúmenes del hipocampo.

En el Capítulo 4, el enfoque cambia para examinar los vínculos entre las subestructuras del hipocampo y la 

prevalencia, el curso y la incidencia de los síntomas depresivos. Los datos longitudinales sobre estos síntomas 

se obtienen a través del cuestionario PHQ-9. Los resultados muestran que los volúmenes de subestructuras 

especificas del hipocampo están asociados con la depresión prevalente, específicamente con un curso crónico. 

Los análisis longitudinales muestran alguna evidencia de que un volumen más pequeño en la estructura de 

transición entre el hipocampo y la amígdala izquierda está asociado con un riesgo de depresión incidente 

con un curso crónico. Estos resultados podrían capturar una base biológica para el desarrollo de la depresión 

crónica, y enfatizar además la necesidad de discriminar entre los subtipos de depresión para desentrañar sus 

fundamentos biológicos.

Profundizando en el estudio de la depresión, el Capítulo 5 investiga los vínculos genéticos entre la depresión 

y la enfermedad de Alzheimer utilizando datos del UK Biobank. El análisis muestra 98 variantes genéticas 

causales superpuestas, e identifica un polimorfismo de un solo nucleótido compartido ubicado en el gen 

TMEM106B. Posteriormente se evalúan las asociaciones de este gen con la morfometría cerebral. Los hallazgos 

indican que la presencia de este gen se asocia con una mayor superficie en la circunvolución temporal inferior, 

mayores volúmenes en el cuerpo calloso y un menor volumen del tercer ventrículo. Estos resultados revelan 

una superposición genética nunca detectada previamente entre la depresión y la enfermedad de Alzheimer, 

posiblemente oscurecida anteriormente por direcciones de efecto mixtas.

El Capítulo 6 proporciona una discusión exhaustiva de los hallazgos clave, las limitaciones de los enfoques 

estadísticos y la relevancia clínica del contenido presentado en esta tesis.
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IMPACT PARAGRAPH

Main findings

The goal of this thesis was to examine quality control in human brain segmentations and investigate the 

clinical applications of neuroimaging in large population-based cohorts. As a result, several quality control 

strategies were initially performed on a subsample of The Maastricht Study to compare their performance. 

Subsequently, high-quality neuroimaging data from The Maastricht Study were utilized to investigate the 

associations of depression and diabetes with the volume of the hippocampal subfields. Additionally, the 

genetic overlap between depression and Alzheimer’s disease was examined, and the potential morphological 

correlates of this overlap across brain structures were explored.

It was found that the best results were achieved through manual quality control via visual inspection, followed 

by the exclusion of outliers based on Euler numbers. Furthermore, an association was discovered between 

type 2 diabetes mellitus (T2DM) and generalized atrophy of the hippocampus. Additionally, an association 

was observed between specific subfields of the hippocampus and chronic depressive symptoms. Notably, 

larger volumes in the molecular layer and smaller volumes in Cornu Ammonis 2/3 were associated with 

chronic depressive symptoms. Finally, an overlapping locus in the TMEM106B gene between depression 

and Alzheimer’s disease was identified, which was found to be associated with larger volumes of the corpus 

callosum and a greater surface area in the inferior temporal gyrus.

Relevance

The use of high-quality imaging data is crucial for ensuring the reliability of research findings. Insufficient data 

quality can significantly impact the trustworthiness of the results obtained. In this thesis, a novel perspective 

is presented regarding the assessment of MRI segmentation quality, which serves as a fundamental basis for 

addressing numerous important research inquiries. The conclusions reached through this study are especially 

relevant in large scale population studies, where the vast amount of available data limits the ability to apply 

manual quality control strategies.

Furthermore, in recent years, there has been a rise in the prevalence of diabetes, depression, and Alzheimer’s 

disease. This increase can be attributed to various factors associated with the fast-paced and stressful nature 

of modern life, rapid urbanization, and the aging population. However, the increased numbers of diagnosed 

cases are also partly a result of the growing awareness surrounding these diseases. This increased awareness 

enables interventions to be implemented at earlier stages. By identifying the association of hippocampal 

volume changes and different stages of T2DM pathology, the study emphasizes the importance of recognizing 

and addressing prediabetes as a potential risk factor for cognitive decline and neurodegenerative processes. 
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Additionally, while the association between depression and specific hippocampal subfields remains less 

clear, the results shed light on the existence of distinct depression subtypes with divergent patterns of brain 

damage. Notably, chronic depression emerges as a condition that appears to exhibit heightened vulnerability 

to such damage compared to other types of depression. This highlights the need for increased attention and 

specialized interventions aimed at preserving brain health in individuals with chronic depression, as these 

findings have significant implications for understanding the long-term consequences of depressive disorders. 

Moreover, the study reveals a potential genetic underpinning for the frequently observed clinical overlap 

between depression and Alzheimer’s disease, although the available evidence is currently limited and requires 

replication. 

These findings carry significant implications for both clinical practice and future research in the field of 

neurodegenerative disorders, urging a comprehensive approach towards early intervention and targeted 

preservation of brain health in at-risk populations. Conducting basic neuroimaging research helps delving into 

the neurobiological changes associated with these conditions. This insight allows us to comprehend better 

the underlying pathophysiological processes occurring in the brain during different disease states. Finally, 

understanding when and where these changes take place provides crucial information about the diseases 

themselves. 

Target group

The target audience for our research findings encompasses neuroscientists, epidemiologists, imaging 

engineers, and clinicians in internal medicine, psychiatry, neurology and neuropsychology. Specifically, there 

is a need for additional investigations to enhance neuroimaging quality during acquisition and preprocessing, 

with a focus on segmentation. This is to avoid acquisition artifacts, improve image quality and ultimately 

achieving a reliable brain segmentation. Efforts should also be directed towards finding and implementing 

strategies to identify and improve cases with poor segmentation quality. Furthermore, it is crucial to address 

the progression of brain damage in longitudinal studies. Understanding how brain damage evolves over time 

is essential for the development of effective interventions and preventive measures. In addition, researchers 

should delve into the definition and subtypes of depression, exploring their correlation with brain morphology 

and its progression over time. 

The research conducted in this thesis can contribute to efforts towards early recognition of brain changes 

associated with metabolic or neurodegenerative disorders. The rising prevalence of T2DM, depression, and 

Alzheimer’s disease have substantial societal and economic impacts. This makes the findings presented in this 

thesis of significant relevance for the general public. These conditions impose a heavy burden on individuals, 

families, and healthcare systems worldwide. By shedding light on the intricate relationships these conditions 

and the brain structure, this research contributes a crucial piece to the puzzle in understanding how brain 

damage develops and, more importantly, how it can potentially be prevented. 
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Dissemination activities

Our research findings have received significant recognition and engagement within the academic community. 

They have been extensively discussed at various research meetings held at Maastricht University, including 

several years at the annual School for Mental Health and Neuroscience (MHeNs) research day. Additionally, 

our results on segmentation quality were presented and discussed at the University of Cape Town in South 

Africa in an invited lecture as a part of a seminar organized between Cape Town University and the Norwegian 

Center for Mental Disorders Research. Moreover, our findings regarding T2DM were showcased at prominent 

conferences such as the Research Accelerating Psychosocial Innovations in Diabetes (RAPID) conference, and 

the Organization for Human Brain Mapping (OHBM) meeting in 2022. It is our aspiration that our dissemination 

efforts have fostered a broader interest and encouraged researchers worldwide to explore and expand upon 

the knowledge and insights we have contributed.

Conclusion

In conclusion, this thesis aimed to examine quality control in brain segmentations and investigate the clinical 

applications of neuroimaging in large population-based cohorts. The study involved comparing different 

quality control strategies and analyzing high-quality neuroimaging data to explore the associations between 

depression, diabetes, and the volume of hippocampal subfields. Additionally, the genetic overlap between 

depression and Alzheimer’s disease was examined. The findings revealed the effectiveness of manual quality 

control and identified associations between T2DM and hippocampal atrophy, specific hippocampal subfields 

and chronic depressive symptoms, and a genetic locus shared between depression and Alzheimer’s disease. 

These findings have significant implications for improving diagnosis precision, personalized treatment, and 

understanding the underlying mechanisms of brain damage.
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