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Abstract 

Ferrocenylnaphthalene diimide ligands 1-7 were synthesized by joining a piperazino 

or N-methylamino linker of the naphthalene diimide skeleton with ferrocenecarboxylic, 

ferroceneacetic, or ferrocenepropionic parts.  Their interaction with double stranded 

DNA (dsDNA) was studied kinetically and electrochemically. Association rate constants 

of these ligands were found to correlate with their intramolecular stacking ability 

between the ferrocene and naphthalene diimide planes: Ligands which can adopt a 

stacked conformation in buffer solution were unfavorable in the association with dsDNA, 

resulting in a smaller association rate constant. Dissociation rate constants of these 

ligands carrying the bulky piperazino linker were smaller than that of those carrying an 

N-methylamino one. Binding constants were dictated by the balance of these two factors. 

These ligands were applied to the electrochemical detection of the amount of dsDNA on 

the electrode. Ligand 6 having the highest affinity for dsDNA gave rise to the largest 

current increase upon dsDNA formation in the electrochemical hybridization assay. 
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1. Introduction 

Electrochemical gene analysis has attracting considerable attention from a 

standpoint of rapid and simple detection of genes with high sensitivity [1-18]. 

Electrochemical gene analysis has been done by the criteria to determine whether 

double stranded DNA (dsDNA) could be formed with sample DNA on the DNA 

probe-immobilized electrode. Several researchers have been developing the following 

methods to obtain a dsDNA formation (hybridization) signal electrochemically: (i) 

Labeling of electrochemically active moieties to DNA sample and its hybridization with 

a DNA probe-immobilized electrode [1,2], (ii) Immobilization of an electrochemically 

active DNA probe on the electrode and its electrochemical signal change after 

hybridization [3,4], (iii) Impedance change before and after hybridization with sample 

DNA [5,6], or (iv) Detection of the electrochemical signal of the ligand bound to the 

dsDNA formed between sample DNA and probe DNA on the electrode [7-17]. The 

methods (i) and (ii) require labeling of the sample DNA with electrochemically active 

molecules, whereas methods (iii) and (iv) do not require such a labeling reaction 

especially in (iv). Electrochemical detection can be achieved simply by the addition of a 

ligand in (iv). 



We have been developing ferrocenylnaphthalene diimide derivatives as ligand for 

dsDNA detection and are developing an electrochemical hybridization assay for 

electrochemical gene detection. Ferrocenylnaphthalene diimide can bind to dsDNA 

through threading intercalation to form a stable complex. The ferrocenyl linker chain of 

this ligand can act as an anchor to prevent its dissociation from dsDNA. At first, we 

reported the application of ferrocenylnaphthalene diimide (1) in the single nucleotide 

polymorphism (SNP) analysis of lipoprotein lipase [11,12] and p53 genes [14]. In those 

studies, both PCR products and genomic DNA were amenable, but the redox potential of 

1, 0.45 V vs. Ag/AgCl, overlapped with the background current from the electrolyte used. 

To circumvent this problem, ferrocenylnaphthalene diimide 5 having a lower potential, 

was synthesized and its interaction with dsDNA was studied [15]. It turned out that the 

redox potential of 5 appeared at 0.28 V vs. Ag/AgCl, where the effect of the background 

current was negligible and that it has higher binding affinity for dsDNA than 1. 

Encouraged by these observations, a series of ferrocenylnaphthalene diimide ligands 

1-7 were designed and synthesized, and their binding behavior with dsDNA and the 

electrochemical response of the resulting complex on the electrode were studied 

systematically in this paper. 

 



2. Experimental 

2.1. General 

Melting points are uncorrected. 1H-NMR spectra were recorded on a Bruker AC250P 

spectrometer operating at 250 MHz or Bruker AVANCE 400 spectrometer operating at 

400 MHz for proton with tetramethylsilane (TMS) as an internal standard. Mass 

spectra (MS) were taken on a VoyagerTM Linear-SA (PerSeptive Biosystems Inc., Foster 

city, CA) by the time-of-flight mode with α-cyano-4-hydroxycinnamic acid as matrix. 

Electronic absorption spectra were recorded with Hitachi 3300 spectrophotometers 

equipped with an SPR10 temperature controller. 

Calf thymus DNA was purchased from Sigma-Aldrich (St. Louis, MO) and used after 

sonication according to the method reported previously [19]. The concentration of calf 

thymus DNA was estimated from the molar absorptivity based on nucleic bases of 6,412 

cm-1M-1 at 260 nm [20]. Oligonucleotides, thiolated dT20 (HSdT20) and dA20, used in this 

study were custom synthesized by Genenet Co. (Fukuoka, Japan) and their 

concentrations were estimated from the molar absorptivities of 162,600 and 243,400 

cm-1M-1 at 260 nm, respectively. 

 



2.2. Synthesis 

Ferrocenylnaphthalene diimide derivatives 1-7 were synthesized according to the 

route given in Scheme 1. 

Ferrocenepropionic acid was synthesized from trimethylamminomethylferrocene in 

24% yield according to the procedure reported previously [21]: Mp 119-121 °C 

(121-122 °C [21]); 1H-NMR (250 MHz, CDCl3) δ 2.71-2.58 (4H, m) and 4.12-4.08 (9H, m) 

ppm. N,N’-bis[3-(3-Ferroceneacetamidopropyl)methylaminopropyl]- 

naphthalene-1,4,5,8-tetracarboxylic acid diimide (5) was synthesized as a brown solid 

by the route previously reported [15]: Mp 159-160 °C (Mp 159-160 °C [15]). 

Ferrocenecarboxylic acid N-hydroxysuccinimide ester (14) was synthesized in 89% yield 

according to the procedure reported previously as an orange colored solid [22]; Mp 

161-163 °C; 1H-NMR (250 MHz, CDCl3) δ 2.88 (4H, s), 4.39 (5H, s), 4.57 (2H, t), and 4.94 

(2H, d) ppm. N,N-bis[3-(3-Aminopropyl)methylaminopropyl]naphthalene- 

1,4,5,8-tetracarboxylic acid diimide (13) was synthesized by the route reported 

previously [15]. N,N’-bis(3-Ferrocenylamidomethylaminopropyl)- 

naphthalene-1,4,5,8-tetracarboxylic acid diimide (7) was synthesized by the route 

reported previously [23]: Mp 191-193 °C (182-185 °C [23]). 



 

Ferrocenepropionic acid N-hydroxysuccinimide ester (15) 

A solution of ferrocenepropionic acid (0.56 g, 2.2 mmol) and N-hydroxysuccinimide 

(0.28 g, 2.4 mmol) in dioxane (9 ml) was added with stirring to a solution of 

dicyclohexylcarbodiimide (0.49 g, 2.4 mmol) in dioxane (15 ml) over a period of 1 h at 0 

oC. The reaction was allowed to proceed for 16 h at room temperature. The precipitate 

formed was removed by filtration, and the filtrate was evaporated to leave a yellow solid. 

The crude product was purified by collecting the Rf = 0.10 (Choloroform/hexane = 10:1) 

fraction on silica gel chromatography with the same solvent as eluent: yield 0.50 g 

(64%); Mp 117-119 °C. 1H-NMR (400 MHz, CDCl3) δ 1.85 (t, J = 3.48 Hz, 2H, FcCH2CH2), 

2.67-2.87 (m, 6H, FcCH2CH2+CH2 of Su), and 4.17-4.13 (m, 9H, CpH) ppm. 

 

2.2.1. [3-[4-(3-Aminopropyl)piperazin-1-yl]propyl]carbamic acid tert-butyl ester (8) [24] 

N, N’-bis(3-Aminopropyl)piperazine (20.6 ml, 0.10 mol) was dissolved in dioxane (10 

ml) and S-tert-butoxycarbonyl-4,6-dimethyl-2-mercaptopyrimidine (4.8 g, 20 mmol) in 

dioxane (50 ml) was added slowly to this solution with stirring. The precipitate formed 



during this time was taken up in a small amount of water. After stirring for 18 h, the 

precipitate remained was filtered off and the filtrate was evaporated. The residue was 

taken up in water (20 ml) containing 20 g of NaCl, and then extracted with ethyl acetate. 

The organic phase was combined, dried over potassium carbonate, and evaporated 

under reduced pressure to give 8 as yellow viscous oil: yield 5.3 g (88% for 

S-tert-butoxycarbonyl-4,6-dimethyl-2-mercaptopyrimidine). 1H-NMR (400 MHz, CDCl3) 

δ 1.28 (s, 9H, t-Bu), 1.60-1.68 (m, 4H, H2NCH2CH2+NHCH2CH2), 2.37-2.47 (m, 12H, 

CH2N(CH2CH2)2NCH2), 2.74 (t, J = 6.8 Hz, 2H, H2NCH2), 3.18 (t, J = 5.9 Hz 2H, 

NHCH2), and 5.49 (br s, 1H, NHCO) ppm. 

 

2.2.2. N,N’-bis[[3-(3-tert-Butoxycarbonylaminopropyl)piperazin-1-yl]propyl]- 

naphthalene-1,4,5,8-tetracarboxylic acid diimide (10) 

Naphthalene-1,4,5,8-tetracarboxylic dianhydride (1.3 g, 5.0 mmol) and mono-Boc 

amine 8 (7.3 g, 24 mmol) were refluxed in THF (31 ml) for 18 h. The reaction mixture 

was allowed to cool and then poured into chloroform (50 ml). The precipitate formed was 

removed by filtration and the solvent was removed under reduced pressure. The residue 

was dissolved in methanol (30 ml) and poured into water (200 ml). The product was 



obtained as a reddish brown solid: yield 0.58 g (14%). Mp 162-163 °C. 1H-NMR (400 

MHz, CDCl3) δ 1.42 (s, 18H, t-Bu), 1.61 (m, 4H, NHCH2CH2), 1.95 (m, 4H，NCH2CH2 ), 

2.29 (m, 8H, CH2N(CH2CH2)2NCH2), 2.50 (m, 8H, CH2N(CH2CH2)2NCH2), 3.15 (m, 4H, 

NHCH2), 4.28 (t, J = 7.0 Hz, 4H, NCH2), and 8.76 (s, 4H, Ar-H) ppm. Elemental analysis. 

Anal. Calc. for C44H64N8O8: C, 63.44; H, 7.74; N, 13.45. Found: C, 63.17, H, 7.71; N, 

4.69%. 

 

2.2.3. N,N’-bis[[3-(3-Aminopropyl)piperazin-1-yl]propyl]naphthalene- 

1,4,5,8-tetracarboxylic acid diimide (12) 

Boc naphthalene diimide derivative 10 (0.58 g, 0.69 mmol) was dissolved in 

trifluoroacetic acid (TFA) (5 ml) and the solution was stirred for 40 min. TFA was 

removed under reduced pressure after addition of a small amount of methanol to obtain 

an pale brown solid. This solid was dissolved in methanol (30 ml) and poured into 

chloroform (400 ml) and kept at 4 °C overnight. The precipitate formed was collected 

and dried under reduced pressure to leave a pale pink solid: yield 0.69 g (70%). Mp 

180-181 °C. Elemental analysis. Anal. Calc. for C34H64N8O4·6CF3COOH·1.3H2O: C, 

41.22; H, 4.16; N, 8.36. Found: C, 41.18, H, 4.12; N, 8.6%. 



 

2.2.4. N,N’-bis[[4-(3-Ferrocenecarboamidopropyl)piperazin-1-yl]propyl]- 

naphthalene-1,4,5,8-tetracarboxylic acid diimide (1) 

  Previously, 1 was synthesized with the amino group unprotected [10], but this route 

was switched to one where the amino was protected with a Boc group to ease work-up 

and improve yield. 

A solution of 12 (5.0 g, 3.8 mmol), 14 (3.1 g, 9.4 mmol), and triethylamine (5 ml) in 

chloroform (15 ml) was stirred at room temperature for 30 h and the solvent was 

removed. Chloroform (200 ml) was added, washed successively twice each with 

saturated brine (200 ml each) and water (200 ml each), and dried over magnesium 

sulfate. The solvent was removed and the residue was chromatographed on silica gel 

(Merck 60) with methanol as eluent. The fraction showing a Rf of 0.2 on TLC (methanol) 

was collected and the solvent was removed under reduced pressure. The residue was 

dissolved in a small amount of methanol. The residue was taken up in a small amount 

of methanol, sonicated, and then the solvent evaporated. This process was repeated 

several times until the orange-yellow product (1) solidified: yield 1.28 g (24%). Mp 

233-235 °C (Mp 237-240 °C [10]). 1H-NMR (400 MHz, CDCl3) δ 1.70 (m, 4H, 



NHCH2CH2), 1.97 (m, 4H，NCH2CH2 ), 2.40 (t, J = 6.2 Hz, 8H, CH2N(CH2CH2)2NCH2), 

2.55 (t, J = 6.9 Hz, 8H, CH2N(CH2CH2)2NCH2), 3.44 (m, 4H, NHCH2), 4.18 (s, 10H, CpH), 

4.28 (m, 8H,COCCHCH of NHCOCp + NCH2), 4.67 (d, J = 1.9 Hz, 4H, COCCHCH of 

NHCOCp), 7.00 (t, J = 5.7 Hz, 2H, NH) and 8.77 (s, 4H, Ar-H) ppm. MS m/z [M+H] 

1058.1 (theory for C56H64Fe2N8O6+H+ 1057.9). 

 

2.2.5. N,N’-bis[[4-(3-Ferroceneacetamidopropyl)piperazin-1-yl]propyl]- 

naphthalene-1,4,5,8-tetracarboxylic acid diimide (2) 

A solution of 12 (0.60 g, 0.46 mmol), ferroceneacetic acid (0.26 g, 1.4 mmol), 

1-ethyl-3-(3-dimethylaminopropyl-9-carbodiimide (0.26 g, 1.4 mmol) and triethylamine 

(0.6 ml) in chloroform (3.7 ml) was stirred at room temperature for 27 h. The solvent 

was removed and the residue was chromatographed on silica gel with 

chloroform/ethanol/diethylamine=10/1.0/0.25 as eluent. The fraction showing an Rf of 

0.4 on TLC with the same solvent was collected and the solvent was removed under 

reduced pressure. The residue was taken up in a small amount of methanol, sonicated, 

and then the solvent evaporated. This process was repeated several times until the 

yellow product (2) solidified: yield 0.27 g (55%), Mp 169-170 °C. 1H-NMR (400 MHz, 



CDCl3) δ 1.85 (m, 4H, NHCH2CH2), 1.95 (m, 4H，NCH2CH2 ), 2.23 (t, J = 6.9 Hz, 8H, 

CH2N(CH2CH2)2NCH2), 2.51 (t, J = 7.0 Hz, 8H, CH2N(CH2CH2)2NCH2), 3.23 (m, 4H, 

NHCH2),3.27 (s, 4H, CH2Cp) 4.10 (s, 10H, CpH), 4.13 (m, 8H,CH2CCHCH of CH2Cp + 

NCH2), 4.27 (d, J = 7.2 Hz, 4H, CH2CCHCH of CH2Cp), 6.4 (t, J = 5.7 Hz, 2H, NH) and 

8.75 (s, 4H, Ar-H) ppm. Elemental analysis. Anal. Calc. for C58H68Fe2N8O6·0.8H2O: C, 

63.37; H, 6.31; N, 10.19. Found: C, 63.35, H, 6.26; N, 10.30%. MS m/z [M+H] 1088.7 

(theory for C58H68Fe2N8O6+H+ 1085.9). 

 

2.2.6. N,N’-bis[[4-(3-Ferrocenepropionamidopropyl)piperazin-1-yl]propyl]- 

naphthalene-1,4,5,8-tetracarboxylic acid diimide (3) 

A suspension of 12 (0.29 g, 0.22 mmol) in chloroform (10 ml) was dissolved by addition 

of triethylamine (0.19 ml, 1.3 mmol) and 15 (0.23 g, 0.65 mmol) was added and the 

mixture was stirred at room temperature for 18 h. Chloroform (50 ml) was added, 

washed with water (50 ml), and dried over magnesium sulfate. The solvent was 

removed and the residue was chromatographed on silica gel with 

chloroform/methanol/diethylamine = 10/0.2/0.5 as eluent. The fraction showing an Rf of 

0.25 on TLC with the same solvent was collected and the solvent was removed under 



reduced pressure. The residue obtained was taken up in a small amount of methanol, 

sonicated, and then the solvent evaporated. This process was repeated several times 

until the orange product (3) solidified: yield 0.12 g (49%), Mp 168-170 °C. 1H-NMR (400 

MHz, CDCl3) δ 1.58(m, 4H, NHCH2CH2), 1.95 (m, 4H，NCH2CH2 ), 2.28-2.23 (m, 12H, 

CH2N(CH2CH2)2NCH2 + CH2Cp), 2.51 (t, J = 6.9 Hz, 8H, CH2N(CH2CH2)2NCH2), 2.68 (t, 

J = 7.3 Hz, 4H, COCH2), 3.30 (m 4H, CONHCH2) 4.02 (d, J = 1.7 Hz, 4H, CH2CCHCH of 

CH2Cp), 4.06 (d, 4H, CH2CCHCH of CH2Cp), 4.09 (s, 10H, CpH), 4.27 (t, J = 7.3 Hz, 4H, 

NCH2), 7.03 (t, J = 4.8 Hz, 2H, NH) and 8.76 (s, 4H, Ar-H) ppm. Elemental analysis. 

Anal. Calc. for C60H72Fe2N8O6·0.6H2O: C, 64.13; H, 6.51; N, 9.97. Found: C, 64.09, H, 

6.52; N, 9.94%. MS m/z [M+H] 1113.6 (theory for C60H72Fe2N8O6+H+ 1114.0). 

 

2.2.7. N,N-bis[3-(3-Ferrocenecarboxamidopropyl)methylaminopropyl]- 

naphthalene-1,4,5,8-tetracarboxylic acid diimide (4) 

A suspension of 12 (1.0 g, 1.0 mmol) in chloroform (13 ml) was dissolved by addition of 

triethylamine (1.0 ml, 7.2 mmol) and 15 (1.0 g, 3.1 mmol) was added and the mixture 

was stirred at room temperature for 42 h. Chloroform (100 ml) was added, washed with 

water (50 ml), and dried over magnesium sulfate. The solvent was removed and the 



residue was chromatographed on silica gel with chloroform/methanol/diethylamine = 

10/0.2/0.5 as eluent. The fraction showing an Rf of 0.20 on TLC in the same solvent was 

collected and the solvent was removed under reduced pressure. The residue was taken 

up in a small amount of methanol, sonicated, and then the solvent evaporated. This 

process was repeated several times until the orange product (4) solidified: yield 0.29 g 

(30%), Mp 185-186 °C. 1H-NMR (400 MHz, CDCl3) δ 1.76 (m, 4H, NHCH2CH2), 1.99 (m, 

4H，NCH2CH2 ), 2.32 (s, 6H, NCH3), 2.53 (t, J = 6.0 Hz, 4H, NHCH2CH2CH2), 2.58 (t, J = 

7.0 Hz, 4H, NCH2CH2CH2), 3.49 (t, J = 8.6 Hz,4H, CONHCH2), 4.15 (s, 10H, CpH), 4.29 

(m, 8H, COCpH), 4.67 (t, J = 1.9 Hz, 4H, NCH2), 7.15 (t, J = 5.0 Hz, 2H, NH) and 8.75 (s, 

4H, Ar-H) ppm. Elemental analysis. Anal. Calc. for C52H60Fe2N6O6: C, 63.44; H, 5.75; N, 

8.88. Found: C, 63.29, H, 5.91; N, 8.94%. MS m/z [M+H] 975.46 (theory for 

C52H60Fe2N6O6+H+ 975.76). 

 

2.2.8. N,N’-bis[3-(3-Ferrocenepropionamidopropyl)methylaminopropyl]- 

naphthalene-1,4,5,8-tetracarboxylic acid diimide (6) 

A suspension of 12 (0.29 g, 0.3 mmol) in chloroform (15 ml) was dissolved by addition 

of triethylamine (0.26 ml, 1.8 mmol) and 15 (0.31 g, 0.90 mmol) was added and the 



mixture was stirred at room temperature for 42 h. Chloroform (100 ml) was added, 

washed with saturated brine four times (50 ml each), and dried over MgSO4. The 

solvent was removed and the residue was chromatographed on silica gel with 

chloroform/methanol/diethylamine = 10/0.2/0.5 as eluent. The fraction showing Rf of 

0.20 on TLC with the same solvent was collected and the solvent was removed under 

reduced pressure. The residue was taken up in a small amount of methanol, sonicated, 

and then the solvent evaporated. This process was repeated several times until the 

orange product (6) solidified: yield 0.21 g (70%), Mp 91-93 °C. 1H-NMR (400 MHz, 

CDCl3) δ 1.68 (m, 4H, NHCH2CH2), 1.85 (m, 4H，NCH2CH2 ), 2.22 (s, 6H, NCH3), 

2.40-2.48 (m, 12H, CH2N(CH3)CH2 + CH2Cp), 2.70 (m, 4H, CH2CH2Cp), 3.37 (m, 4H, 

CONHCH2), 3.95 (m, 4H, CH2CCHCH of CH2Cp), 4.03-4.06 (m, 14H, CpH + 

CH2CCHCH of CH2Cp), 4.22 (t, J = 7.7 Hz, 4H, NCH2), 6.98 (t, J = 5.6 Hz, 2H, NH) and 

8.71 (s, 4H, Ar-H) ppm. Elemental analysis. Anal. Calc. for C54H62Fe2N6O6: C, 64.68; H, 

6.23; N, 8.38. Found: C, 64.63, H, 6.32; N, 8.10%. MS m/z [M+H] 1005.0 (theory for 

C54H62Fe2N6O6+H+ 1003.8). 

 

2.3. Binding kinetics 



Kinetic experiments were performed with an SF-61 DX2 double mixing stopped flow 

system (Hi-Tech Scientific Inc., Salisbury, UK) equipped with a Lauda RF206 

temperature controller. Single absorbance versus time was collected in 10 mM 

morpholinoethanesulfonic acid (MES) buffer (pH 6.2) containing 1 mM EDTA and 0.10 

M NaCl. Absorbance was measured at 383 nm, the wavelength where the absorption of 

naphthalene diimide derivatives is largest. Association rate constants of ligands with 

dsDNA were obtained by fitting the exponential data of absorption change after mixing 

with a 10-fold excess of dsDNA over ligand to the equation of A1exp(-k1t)+A2exp(-k2t), 

where A and k refer to the fractional amplitudes and rate constants, respectively, for the 

two-exponential fit to the results. Intrinsic second-order association rate constant (ka) 

and dissociation rate constants (kd) were obtained from the slope of the plot of apparent 

association rate constant (kapp) against dsDNA concentration according to the equation 

kapp = ka[DNA] + kd [25]. Dissociation rate constant (kd) of the ligand from dsDNA was 

determined by sodium dodecyl sulfate (SDS)-driven dissociation measurements 

described previously [26]. Two kinds of solutions (1% SDS and DNA-ligand complex) 

were mixed instantaneously using a piston and the change in the absorption spectrum 

was measured soon after mixing. Thus, when the DNA-ligand complex was mixed with 

an SDS solution, free ligand is incorporated into the SDS micelle. Since this process is 



diffusion-controlled, the entire absorption change represents the kd-dependent process 

and therefore fitting of the kinetic trance provides kd values. 

 

2.4. Preparation of a 6-mercaptohexanol (6-MH)- or dT20-immobilized electrode and 

hybridization of the latter with dA20 

A gold electrode (2.0 mm2 in area) was polished with 6 µm, 1 µm of a diamond slurry, 

and 0.05 µm of an alumina slurry in this order and washed with Milli-Q water. The 

electrode was electrochemically polished by scanning 40 segments from -0.2 to 1.5 V at a 

scan rate of 100 mV/s in 0.5 M H2SO4 aqueous solution and washed with Milli-Q water. 

Masked electrodes were prepared by soaking the pretreated bare electrode in 100 µl of 1 

mM 6-mercaptohexanol (6-MH) and subsequently incubating at 45 °C for 1 h and 

washing with Milli-Q water. dT20-Immobilized electrodes were prepared by soaking the 

pretreated bare electrode in 100 µl of a 0.5 M NaCl solution containing HS-dT20 (0.50 

pmol/µl), keeping at 37 °C overnight, washing with Milli-Q water, and soaking in 100 μl 

of 1 mM 6-MH for 1 h at 45 °C. Hybridization with dA20 was carried out by soaking the 

dT20-immobilized electrode in 100 µl of 2.5 pmol/µl dA20 in 2xSSC (0.03 M sodium citrate 

buffer containing 0.3 M NaCl for 1 h at 25 °C. 



 

2.5. Electrochemical measurements 

Electrochemical measurements were carried out with an ALS model 600 

electrochemical analyzer (CH Instrument, Austin, TX). Cyclic voltammogram (CV) and 

differential pulse voltammogram (DPV) were measured at 25 °C with a three-electrode 

configuration consisting of an Ag/AgCl reference electrode, a Pt counter electrode, and  

a dT20-immobilized electrode before and after hybridization with dA20 as working 

electrode in 0.10 M AcOK-AcOH buffer (pH 5.5) containing 0.10 M KCl and 50 μM 

ligand. 

 

3. Results and Discussion 

3.1. Kinetic analysis 

When ligands 1-7 were mixed with calf thymus DNA, the absorption at 383 nm 

decreased dramatically and underwent a slight bathochromic shift. This phenomenon is 

typical for threading intercalation of substituted naphthalene diimides into DNA and it 

was used for kinetic analysis of DNA interaction of these ligands.21-22) A typical example 



of the association and dissociation kinetic traces for calf thymus DNA – 1 interaction is 

shown in Figs. 1 and 2. All data were analyzed by two-exponential fitting and the 

results determined for several ligands in 10 mM MES and 1 mM EDTA (pH 6.2) 

containing 0.10 M NaCl are summarized in Table 1. Binding constants calculated by 

dividing ka by kd and the molar absorptivities for these ligands in chloroform and buffer 

were also compiled in Table 1. The ka value of 3 could not be determined because of 

precipitation upon mixing DNA and 3. 

Association rate constants for the ligands 1-6 increased in the following order: 

ferrocenepropionic (3) > ferroceneacetic (2,5) > ferrocenecarboxylic types of ligands (1,4).  

Molar absorptivities of the ligands in chloroform and 10 mM MES and 1 mM EDTA (pH 

6.2) containing 0.10 M NaCl were about 3 x 104 cm-1M-1, and those in the buffer 

increased in the following order: ferrocenecarboxylic (1,4) > ferroceneacetic (2,5) > 

ferrocenepropionic type ligands (3,6). This order correlates with that of association rate 

constant. This coincidence stems presumably from the fact that the decreased molar 

absorptivity in the buffer should derive from the intramolecular stacking between the 

ferrocene and naphthalene diimide parts. As the stacked conformation of the ligands in 

the buffer should be transformed to an extended one upon threading intercalation into 

dsDNA, these ligands were not favorable in the association with dsDNA. On the other 



hand, dissociation rate constants of the N-methylamino linker type ligands (1-3) were 

smaller than that of piperazino linker type ligands (4-6). Although the piperazino linker 

has larger molecular size than the N-methylamino one, the piperazino linker should act 

as an effective anchor to prevent dissociation from dsDNA. 

Binding constants, Ks, were calculated from the ka and kd values, and the Ks values 

thus obtained increased as follows: 4 < 5 < 7 < 2 < 1 < 6. The binding constants of the 

piperazino type ligands (1-3) were larger than those of the N-methylamino type ligands 

(4-6). The binding constants of these ligands seem to be dictated by the balance between 

the ease of threading into dsDNA and the stability of the dsDNA - ligand complex. The 

latter factor was the main determinant of the binding constant. 

 

3.2. Electrochemical behavior 

Cyclic voltammograms (CVs) were measured with a (the bare) gold electrode in 0.10 

M AcOK-AcOH buffer (pH 5.5) containing 0.10 M KCl and 50 μM ligands 1-7. As the 

observed redox response derives from the ligand absorbed on the gold electrode, CVs 

were measured with the 6-MH-immobilized electrode in the same electrolyte to 

suppress this absorption. Examples of CVs and differential pulse voltammograms 



(DPVs) of 1-7 are shown in Fig. 3. A one-step redox reaction of the ferrocene moiety of 

1-7 were observed over 0.18 - 0.44 V as shown in Table 2. The piperazino linker type 

ligands (1- 3) gave rise to E1/2M at the more positive sides than the N-methyl linker type 

ligands (4-6). E1/2Ms for ferrocenecarboxylic, ferroceneacetic, ferrocenepropionic type 

ligands decreased in this order. This is reasonable, given the electron-donating ability of 

the substituent attached to the ferrocene skeleton. ∆EpMs of these ligands were about 60 

mV. The oxidative peak current, ipa, was plotted against the logarithm of the scan rates 

for the individual peaks of these ligands, and the slope obtained (0.51 - 0.75) suggests 

that the absorption process contributes partially to the electron transfer reaction in 

these cases. 

The electrochemical parameters for 1 - 7 with a dA20dT20-immobilized electrode are 

also summarized in Table 2. E1/2Ds slightly shifted towards the positive side in this case. 

∆EpDs were also slightly smaller than those in the modified electrode. Furthermore, 

these slopes of the logarithm of the scan rate for the individual peak current were in the 

range of 0.77 – 0.96, which are larger than that in the modified electrode. These results 

suggested that the electrochemical signals are generated from the ligand intercalated 

into dsDNA on the electrode. 



 

3.3. Electrochemical behavior of ligands in the DNA-immobilized electrode 

To evaluate the preference of the ligands for dsDNA over ssDNA, DPVs of a dT20- or 

dA20dT20-immobilized electrode were determined in the electrolyte containing 50 μM 

ligands. The DPV curves for 6 before and after hybridization of dA20 with a 

dT20-immobilized electrode are shown in Fig. 4. A current peak of 2.0 µA was observed 

with the former electrode and the peak current increased to 5.1 µA after hybridization 

with dA20. Current increases of similar magnitude were observed also for other ligands 

after hybridization as shown in Fig. 5. All data were standardized using ∆i values, 

defined as (i/io-1)x100%, where io and i refer to the current before and after 

hybridization, respectively. The ∆i values of these ligands were found to be 60 – 150%. 

Similar io or i values were obtained for 1 – 3. However, when the individual data were 

scrutinized more closely, they were found to be in the following order: 1 < 2 < 3 and the 

∆i values were also in the same order. A largest i value was obtained with 6, while its io 

value was similar to those of other ligands, resulting in the largest ∆i value for 6. 

Ligands 4 and 5 showed smaller io and i values than other ligands for unknown reasons. 

∆i values of 4 - 6 were the following order: 4 < 5 < 6. The ∆i value of 7 was intermediate 



between the piperazino types (1 – 3) and the N-methylamino one excepting 6 (4 and 5). 

It was found that there is a good correlation between the ∆i values and the K values (Fig. 

6), suggesting that the current increase is based on the stability of the complex of ligand 

with dsDNA on the electrode. Although a ka value for ligand 3 could not be determined, 

the K value may be estimated as 2.0 x 106 M-1 from Fig. 6. 

 



4. Conclusion 

  Ferrocenylnaphthalene diimide ligands 1 - 7 synthesized in this paper gave rise to a 

redox peak current at various potentials (0.18 – 0.44 V), depending on the nature of the 

linker part of the ferrocene moiety. The binding affinity for dsDNA of these ligands also 

varied considerably (1.3 x 104 – 8.7 x 105 M-1) depending on the linker chain. These 

values were found to correlate with the current increase after hybridization on the 

electrode. Ligand 6 having the highest affinity for dsDNA gave the current peak at 0.20 

V, where the background current was smallest, and therefore 6 is the ligand most 

suitable for the electrochemical hybridization assay. 
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Table 1 Binding parameters and molar absorptivities of 1-7a 

Ligand 10-4ka/M-1s-1 kd/s-1 10-4K/M-1 
10-4ε/cm-1M-1 

in Choloroform in buffer 
1 2.35 0.13 18.1 3.1 2.6 
2 5.50 0.42 13.0 3.1 2.9 
3 - b 1.32 - 3.1 2.8 
4 2.34 1.82 1.28 2.8 2.4 
5 5.61 0.84 6.70 3.1 2.6 
6 153 1.75 87.4 2.9 3.0 
7 14.1 1.34 10.5 3.0 2.4 

aUnless stated otherwise, experiments were conducted in 10 mM MES (pH 6.2) and 1 

mM EDTA containing 0.10 M NaCl at 25 °C. bData were not obtained because of low 

solubility of 3. 

 



Table 2 Electrochemical parameters for 1 – 7a 

Ligand E1/2M/V ∆EpM/V SlopeM E1/2D/V ∆EpD/V SlopeD 

1 0.45 0.61 0.61 0.47 0.29 0.77 

2 0.25 0.59 0.63 0.26 0.29 0.92 

3 0.21 0.46 0.75 0.23 0.41 0.96 

4 0.47 0.61 0.51 0.47 0.35 0.79 

5 0.26 0.60 0.60 0.27 0.31 0.84 

6 0.22 0.55 0.66 0.23 0.34 0.91 

7 0.41 0.57 0.62 0.41 0.36 0.80 

aExperiments were conducted in 0.10 M AcOK-AcOH buffer (pH 5.6) and 0.10 M KCl 

containing 50 μM ligand at 25 °C. The can rate was 100 mV/s. Subscript M or D 

represents the experimental values in the case of 6-mecaptohexanol- or 

dA20dT20-immobilized electrodes, respectively. Slopes were obtained from the log-log 

plots of the oxidation peak current versus scan rate. 

 

 



 

Scheme 1 



 

Fig. 1. Stopped-flow kinetic traces of absorption spectra (a) and absorption at 383 nm (b) 

for association of 10 μM 1 with 100 μM calf thymus DNA in 10 mM MES (pH 6.2) and 1 

mM EDTA at 25 °C. Shown below the experimental plot are the residuals for the fit. 

 

 

 

 

 

 



 

Fig. 2. Stopped-flow kinetic traces of absorption spectra (a) and absorption at 383 nm (b) 

for SDS-driven dissociation of 10 μM 1 from 100 μM calf thymus DNA in 10 mM MES 

(pH 6.2) and１mM EDTA at 25 °C. Shown below the experimental plot are the residuals 

for the fit. 

 

 

 

 

 



 

 

Fig. 3. Cyclic voltammograms (A) and different pulse voltammograms (B) for 50 μM 1 

(red broken line), 2 (blue broken line), 3 (green broken line), 4 (red solid line), 5 (blue 

solid line), 6 (green solid line), and 7 (solid line) on a 6-mercaptohexanol-immobilized 

gold electrode in 0.10 M AcOH-AcOK (pH 5.6) and 0.10 M KCl at 25 °C. Scan rate 100 

mV/s. 
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Fig. 4. Differential pulse voltammograms of a dT20-immobilized gold electrode before 

(broken line) and after (solid line) hybridization with dA20 in 0.10 M AcOH-AcOK (pH 

5.6), 0.10 M KCl, 50 μM 6 at 25 °C 
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Fig. 5. (A) Current response for a dT20-immobilized electrode before (io) and after (i) 

hybridization with dA20 in 0.10 M AcOK-AcOH (pH 5.6) and 0.10 M KCl containing 50 

μM 1 - 7 at 25 °C. The number of measurements (n) = 6. Current change, ∆i, defined as 

(i/io-1)x100% is also shown in (B). 

 

 

 

 



 

0
20
40
60
80

100
120
140
160
180

1 10 100

∆�
i/%

10-4 K/M-1
 

Fig. 6. Correlation of the current increase after hybridization (∆i) against K 
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Synopsis 

Synthetic ferrocenylnaphthalene diimide ligands 1 – 7 showed the redox peak current at varied 

potential depending on their linker types. Binding affinity of 1 – 7 with double stranded DNA was 

showed the good correlation with the current increasing based on their ligands after DNA duplex 

formation on the electrode. 

 

 

 


