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Abstract 

 

In recent years, autonomous collision avoidance systems have been researched and 

developed for realizing safe driving using cameras and sensors. These systems are 

designed to warn the drivers the presence of obstacles on the road and help them take a 

necessary action in advance. In these systems, the ability to detect obstacles is essential.  

Although various methods of obstacles detection have already been reported, these 

existing obstacles detection methods have some inadequacies: Some of them can be only 

used to detect moving obstacles; Some of them cannot extract the shape of obstacles, and 

they only use a rectangular frame that surrounds an obstacle to represent a detected 

obstacle; Some of them can only be used to detect one kind of specific object, such as 

pedestrian detection or vehicle detection. 

In order to make up for the inadequacies of the existing obstacles detection method, in 

this thesis, a method is proposed for detecting obstacles on a road by the employment of 

the background modeling and the road region detection.  

In obstacles detection, true obstacles are defined as arbitrary objects which protrude 

from the ground plane in the road region, including static and moving objects. Road marks 

in the road region and objects outside the road region are considered as false obstacles. The 

output of this obstacles detection method is based on the obstacles’ shape.  

In this thesis, we also propose a method of classifying 2D objects and 3D objects. The 

results of 2D objects and 3D objects classification can be used in the resultant image of 

obstacles detection to delete 2D objects (such as road marks) and improve the accuracy of 

obstacles detection. 

The originalities of this thesis are as follows:  

In the first place, the proposed method can detect arbitrary objects including both static 

objects and moving objects. This is helpful because static objects such as boxes fallen on 

the road from a car are dangerous for drivers. 

In the second place, the output of the proposed method is the shape of obstacles. 

Extraction of the shape of an obstacle is important for obstacles recognition. If the detected 

obstacle is recognized as a pedestrian from its shape, we can foresee his/her next motion. 

In the third place, the proposed method can distinguish which objects are 3D objects, 

and which objects are 2D objects in a pile of objects using a monocular camera. It is useful 

in the obstacles detection and other applications, such as navigation of walking robots. 

In the performed experiments, it is shown that the proposed obstacles detection method 

is able to extract the shape of both static and moving obstacles in a frontal view from a car. 
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Chapter 1  Introduction 

 

1.1  Background 
Vehicle has brought great convenience to people’s lives as one of the main tools of 

transport in modern society. However, because of substantial increase of the vehicles in 

recent years, the phenomenon of traffic congestion has become more and more serious, and 

traffic pollution and accidents have caused social general attention. To solve these 

difficulties, Intelligent Transportation Systems (ITS) has been developing rapidly in recent 

years. 

The Intelligent Transport Systems [1] are new transport systems which are comprised of 

an advanced information and telecommunication network for users, roads and vehicles. It 

contributes to solving problems such as traffic accidents and congestions. Through the 

implementation of ITS, we can improve transportation system performance, including 

reducing traffic congestion, traffic accidents, energy consumption and environmental 

pollution. Therefore, ITS have been considered as the important development direction of 

future transportation systems. Japan has the most wide application of ITS in the world: 

Actually ‘The Vehicle Information and Communication System’ (VICS) is already quite 

mature in Japan. ITS are the complex integrated systems, and can be separated into nine 

development areas [2]; advances in navigation systems, electronic toll collection systems, 

assistance for safe driving, optimization of traffic management, increasing efficiency in 

road management, support for public transport, increasing efficiency in commercial vehicle 

operations, support for pedestrians, and support for emergency vehicle operations. Among 

them, the purpose of assistance for a safe driving system is to develop various vehicle 

control techniques, such as safe driving and autonomous navigation techniques. Because 

the traditional vehicles cannot meet the needs of ITS, Intelligent Vehicle (IV) technologies 

have aroused at this historic moment. 

At present, the studies on intelligent vehicles are mainly devoted to a safe driving 

system for the reason of improving the security and comfort. One important indicator of 

improving security is reducing traffic accidents. According to the report published by 

ministry of transport of Japan national police agency [3], 629,021 traffic accidents 

happened in 2013, and casualties reached 785,867 people, including 4,373 deaths. The 

analysis of traffic accidents shows that, 80% traffic accidents were due to not prompt 

reaction and improper handling. According to the statistics of American highway driving 

safety management committee [4], if a reminder is provided to the drivers 0.5 seconds 
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earlier, the incidence of traffic accidents can be reduced by 60%. So we see if the drivers 

can get a reminder of the danger information, they may be able to react quickly and make 

the corresponding actions accurately, and then many of those accidents could be avoided or 

alleviated. 

In recent years, the autonomous collision avoidance systems have been developed 

rapidly for realizing safe driving to prevent car accidents [5-6]. These systems use camera, 

radar or other sensors (sometimes a combination of several sensors) to detect an imminent 

collision, then either provide a warning to the driver or take action autonomously (by 

braking or steering or both) without any driver’s action. 

Recently, Subaru’s Eyesight system and Volvo’s Pedestrian and Cyclist Detection with 

Full Auto Break system are two most famous commercial collision avoidance systems. 

Subaru’s Eyesight system can detect pedestrian, bicycles and vehicles on the road when a 

vehicle equipped with this system drives in the speed less than 30km/h. This Eyesight 

system uses a stereo camera, and uses a rectangular frame that surrounds an obstacle to 

represent a detected obstacle. Volvo’s Pedestrian and Cyclist Detection with Full Auto 

Break system uses a camera and a radar to detect pedestrians and cyclists in certain 

situations, such as one swerving out in front of the car. This system also uses a rectangular 

frame that surrounds an obstacle to represent a detected obstacle. 

We know that safe driving of a car depends heavily on vision. This is why so many 

accidents happen at night or when the visibility is reduced by weather conditions such as 

fog. The vision of a driver can be improved by the systems that give information on the 

environment around the vehicle that cannot be seen or hardly seen by human eyes. 

Therefore, a vision-based obstacles detection system is the mainstream of current 

researchers. Detection of obstacles in video sequences is a basic task in this system. 

Accurate obstacles detection will improve the performance of obstacles tracking, 

recognition, classification and their motion analysis. 

 
1.2  Previous Work 

The existing obstacles detection methods can be separated into three categories [7]: 

1) The first method uses a monocular static camera. This method detects obstacles 

based on the optical flows [8-10]. It is often separated into three steps. In the first 

place, the optical flow is calculated using two adjacent frames in image sequences. 

In the second place, the main movement direction of vehicles is estimated. Finally, 

the obstacles are decided based on the optical flows which are inconsistent with the 

main movement direction of vehicles. This method needs huge calculation and it is 

sensitive to vehicle motion. It cannot detect static obstacles. It can only be used to 
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detect moving obstacles.  

2) The second method uses a monocular moving camera. This method detects obstacles 

based on features. It is often used when the obstacles are defined as a specific kind 

of objects. Because these obstacles have some specific and obvious features, this 

detection can be based on searching for these features, such as shape [11-13] or 

symmetry [14]. This method can only be used to detect one kind of specific object, 

such as pedestrian detection [15-16] or vehicle detection [17-18].  

3) The third method is based on stereo vision [19-20]. Scene images are captured using 

two or more cameras from different angles simultaneously, and then the obstacles are 

detected through matching. This method needs huge amount of calculation and 

sensitive to vehicle motion.  

These existing methods have some inadequacies: 

In the first place, although the third method uses two or more cameras, it is generally 

accepted that the method which uses a monocular camera is much better because of 

economic aspect and of processing time. Actually the method using a monocular camera is 

easier to achieve real-time processing.  

In the second place, unlike the first method which detects only moving obstacles, a 

method which can detect both moving and static objects simultaneously is necessary. It is 

because static objects such as boxes fallen on the road from a car are also dangerous for 

drivers. It is, however, noted that a 2D static object such as a paper on the road is not 

dangerous for driving.  

In the third place, most of the existing methods cannot extract the shape of obstacles. 

They only use a rectangular frame that surrounds an obstacle to represent a detected 

obstacle. 

 
1.3  Objective of the Thesis 

In order to make up for the inadequacies of the existing obstacles detection method, in 

this thesis, we propose an obstacles detection method using a vehicle-mounted monocular 

camera. This camera records the road environment in front of a vehicle when the vehicle is 

moving, and the computer begins to categorize these captured images in order to 

differentiate obstacles from ordinary objects. The output of this method is based on the 

obstacles’ shape. After having obtained the obstacle information, the drivers can react 

quickly and make corresponding actions accurately to prevent car accidents. Here true 

obstacles are defined as arbitrary objects which protrude from the ground plane in the road 

region, including static and moving objects. Road marks in the road region (e.g., zebra 

crossings) and objects outside the road region are considered as false obstacles. 
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The most significant differences between the proposed method and the existing 

obstacles detection methods are as follows: 

In the first place, the proposed method detects arbitrary objects, irrespective of static 

objects or moving objects, which may pose a threat to safe driving on the road, not just 

specific objects which have been detected. This is helpful because even the objects which 

have fallen on the road from a car are dangerous for drivers. The existent methods, 

however, concentrate only on detecting moving objects such as pedestrians, bicycles and 

cars.  

In the second place, the output of the proposed method is the shape of obstacles. 

Currently, existing obstacles detection methods cannot extract the shape of obstacles. They 

only use a rectangular frame that surrounds an obstacle to represent a detected obstacle. 

This shape information is important for obstacles recognition and classification. If the 

detected obstacles are judged as a pedestrian, we can use the shape to carry out his/her 

motion recognition.  

In the third place, the proposed method can be applied for the speed up to 45 km/h 

which is usually the speed limit within the city.  

 
1.4  Organization of the Thesis 

The organization of the thesis is as follows: 

In Chapter 2, we propose a method of automatic obstacles detection for detecting 

obstacles on a road by use of background modeling and road region detection. 

In Chapter 3, we propose a method of classifying 2D objects and 3D objects. The results 

of 2D objects and 3D objects classification can be used in the resultant image of obstacles 

detection in Chapter 2 to delete 2D objects and improve the accuracy of obstacles 

detection. 

In Chapter 4, we summarize the obstacles detection method which we have proposed in 

Chapter 2 and Chapter 3. In order to prove the effectiveness of the proposed methods, we 

also introduce a comparative obstacles detection method. We carry out the comparative 

experiment using the same experimental videos to discuss the effectiveness of the proposed 

obstacles detection method. 

Finally, the thesis is concluded in Chapter 5. 
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Chapter 2  Obstacles Detection 

 

In this chapter, we propose an obstacles detection method using a vehicle-mounted 

monocular camera. This camera records the road environment in front of a vehicle when 

the vehicle is moving, and the computer begins to categorize these captured images in 

order to differentiate obstacles from ordinary objects. The output of this method is based 

on the obstacles’ shape [21]. After having obtained the obstacle information, the drivers 

can react quickly and make corresponding actions accurately to prevent car accidents. Here 

correct obstacles are defined as arbitrary objects which protrude from the ground plane in 

the road region, including static and moving objects. Road marks in the road region (e.g. 

zebra crossings) and objects outside the road region are considered as noises, they are 

incorrect obstacles. 

 
2.1  Outline of the Proposed Method 

When a car is moving forward, stationary objects in a frontal scene are considered as the 

background, and the foreground can be obtained based on the background model. Because 

the road has almost no texture, the road can be considered to be static in the frontal video 

image and is regarded as the background. In this condition, the foreground image which is 

obtained from the background model contains obstacles on the road (including static and 

moving objects), road marks in the road region and the objects outside the road region. In 

order to extract the shape of the obstacles in the foreground image, the following 

operations are employed. First, the road region is detected using Support Vector Machine 

(Section 2.3). Second, non-road region in the result of the road region detection is 

classified as noise region and obstacles region (Section 2.4.2). After the region 

classification, we have three kinds of regions, noise region, obstacles region and road 

region. All the objects inside the noise region and the road region in the foreground image 

are considered as noises and deleted using the result of region classification. Finally the 

shape of the obstacles (e.g., pedestrians, boxes, etc.) in the foreground image is extracted. 

Figure 2.1 shows the flowchart of the proposed obstacles detection method. 

 

2.2  Background Modeling 
Background modeling is a method of background reconstruction which is often used to 

detect moving objects in computer vision, with applications to several fields, such as video 

surveillance [22-23] and target tracking [24].  
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In the ideal situation, the background image can be simply acquired when the scene 

doesn’t include any moving object. However, in the realistic situation, the scene is always 

changing, such as illumination change, objects introduced or removed from the scene. 

Many background modeling methods have been developed to deal with these problems. 

These background modeling methods can be classified into following categories [25]: 

Basic Background Modeling [26], Statistical Background Modeling [27-28], Fuzzy 

Background Modeling [29-31] and Background Estimation [32-34].  

Among these background modeling methods, the Gaussian Mixture Model (GMM) is 

the most used model which was proposed by Stauffer and Grimson [24]. 

Pfinder [27] used a single Gaussian distribution to model the values of a particular pixel 

and to get the background model. When this method is applied in an indoor scene, the 

output is good; but not good for outdoor scenes. Rather than modeling the values of one 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Flowchart of the proposed obstacles detection method. 
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pixel as one Gaussian distribution, the GMM modeled the values of a particular pixel as 

mixture of Gaussian distributions. Different Gaussians are assumed to represent different 

gray values. Based on the mean value and the variance of each Gaussian in the mixture, 

they determine which Gaussians may correspond to the present background. Pixels that do 

not fit the background distributions are considered as foreground. To allow the model to 

adapt to changes in illumination and run in real-time, an update algorithm was applied. It is 

based upon selective updating. This method is capable of dealing with lighting changes, 

repetitive motions of scene elements, tracking through cluttered regions, slow-moving 

objects, and introducing or removing objects from the scene.  

The GMM is robust when employed in a fixed camera case. But, in this research, the 

employed camera is moving since it is mounted on a car. When this car is moving on the 

road, the employed camera is as well moving. In order to employ the GMM in a moving 

camera case, we need to construct a virtual scene based on a real scene. We then employ 

the GMM in this virtual scene in reconstructing the background. 

 

2.2.1 Virtual Scene Construction 

In this research, a camera is mounted on a vehicle, when the vehicle is moving, the 

camera is moving as well. This is the real situation. 

But when we see the frontal scene in the frontal video image, the camera can be 

considered to be static, and then buildings, the road and static objects are moving 

according to the relative motion. Moreover, since the road has almost no texture, we can 

assume that the road is static in the frontal video image. Thus, the virtual scene will be 

defined as the frontal scene (in the videotaped image) with the assumption of the road 

being static. In this virtual scene, the camera is static; the road area which is classified as 

the background is static; objects (including static and moving objects) and pedestrians on 

the road, buildings, road marks and zebra crossings which are classified as the foreground 

are moving. Then we employ the GMM to reconstruct the background in this moving 

camera case. 

 

2.2.2 Gaussian Mixture Model 

The sequence of a particular pixel is a time series of pixel values, i.e. the pixel values of 

a particular pixel in an image sequence over time. At any time t (t=1,2,…,T), the sequence 

of a particular pixel ( )00, yx  is given by 

{ } ( ){ }TttyxIXX T ≤≤= 1:,,,..., 001              (2.1) 
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where I is the gray value of pixel ( )00, yx . 

For the sequence of a particular pixel, { }TXX ,...1 , K Gaussian distributions are used to 

model these pixel values. The probability of the pixel value tX  is 

( ) ( )∑
=

Σ∗=
K

i
titittit XXP

1
,,, ,,µηω                (2.2) 

where K is the number of Gaussian distributions in the mixture and it is determined by the 

available memory and computational power. Currently, K = 3 to 5 are used. ti,ω  is the 

weight of the thi  Gaussian distribution at time t; ti,µ  is the mean value of the thi  

Gaussian distribution at time t; ti,Σ  is the covariance matrix of the thi  Gaussian 

distribution at time t, and η  is a Gaussian probability density function defined by 

( )

( ) ( )µXΣµX

t

t
T

t

e
Σπ

ΣµXη
−−− −

=
1

2
1

2
1

2

1

2

1
),,(          (2.3) 

For computational reasons, Stauffer and Grimson assumed that the red, green, and blue 

pixel values are independent and have the same variances. This assumption can avoid a 

costly matrix inversion at the expense of some accuracy. So the covariance matrix is 

assumed to be of the form: 

Ititi
2
,, σ=Σ                              (2.4) 

where I is a unit matrix; 2
,tiσ  is the variance value of the thi  Gaussian distribution at time 

t. 

Thus, each pixel is characterized by a mixture of K Gaussian distributions. Once the 

background model is defined, the different parameters of the Gaussian Mixture Model 

must be initialized. The parameters of the GMM are the number of Gaussians K, the weight 

ti,ω  associated to the thi  Gaussian at time t, the mean value ti,µ  and the variance value 
2
,tiσ . 

Once the parameters initialization is done, the first foreground detection is performed 

and then the parameters are updated.  

 

2.2.3 Foreground Detection 

In order to reconstruct the background, a method for deciding what portion of the 
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mixture model represents the background is needed. 

We are interested in the Gaussian distributions which have high weight and low variance. 

Because, when a static persistent object is visible, the background distributions have high 

weights and the relatively low variances. In contrast, when a new object occludes the 

background, it will not match any of the existing distributions, resulting in either 

increasing a new distribution or replacing the existing distribution with a new distribution 

having low weight and high variance. Also, the variance of the moving object is expected 

to remain larger than a background pixel until the moving object stops.  

Firstly, the existing Gaussians are ordered by the value of σω / . This value increases 

when the weight increases and the variance decreases. This ordering supposes that a 

background pixel corresponds to a high weight with a low variance due to the fact that the 

background is more present than moving objects. This ordering of the model gives an 

effective ordered list, where the most likely background distributions remain on the top and 

the less probable transient background distributions are on the bottom and are eventually 

replaced by new distributions. 

The first B Gaussian distributions which exceed certain threshold T are considered to 

represent a background distribution: 









>= ∑

=

b

i
tib TB

1
,minarg ω                     (2.5) 

Other distributions are considered to represent foreground distributions. 

Then, a match test is carried out for each pixel of the new frame taken at time t+1. Every 

new pixel value, 1+tX , is checked against K Gaussian distributions to find if it matches 

one of those distributions. The match (see Fig. 2.2) is defined by 

gauss
ti

tit
T

X
<

−+

,

,1

σ
µ

                      (2.6) 

Then, two cases can occur: 

Case 1: A match is found with one of the K Gaussians. In this case, if the matched 

Gaussian distribution represent a background distribution, the current pixel 1+tX  is 

classified as background else the current pixel 1+tX  is classified as foreground. 

Case 2: If none of the K Gaussians match the current pixel 1+tX , the current pixel 1+tX  

is classified as foreground. 
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Fig. 2.2 The matching relationship between a pixel and the background model. 

(a) Pixel tX matches the distribution, (b) the unmatched case. 

 

2.2.4 Updating of Model Parameters 

The updating algorithms of GMM are different for two cases. 

Case 1: A match is found with one of the K Gaussians. 

For the matched Gaussian distribution, the update goes as follows: 

αωαω +−=+ titi ,1, )1(                     (2.7) 

where α  is a constant learning rate. 

1,1, )1( ++ +−= ttiti Xρµρµ                   (2.8) 

( ) ( )1,11,1
2
,

2
1, )1( +++++ −−+−= tit

T
tittiti XX µµρσρσ       (2.9) 

where 

( )iitX Σ= + ,,1 µαηρ                      (2.10) 

For the unmatched Gaussian distributions, the parameters are unchanged, only the 

255 0 ti,µ
1+tX

1 

Pixel 

P
robability 

(a) (b) 
Pixel 0 1+tXgaussT gaussT255 ti,µ

1 

P
robability 
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weight is replaced by: 

titi ,1, )1( ωαω −=+                       (2.11) 

Case 2: No match is found with any of the K Gaussians. 

In this case, the least probable distribution is replaced by a new distribution with the 

parameters: 

WeightPriorLowω ti =+1,                (2.12) 

11, ++ = tti Xµ                         (2.13) 

VarianceInitialHighti =+
2

1,σ               (2.14) 

Once the parameters are updated as above, the foreground detection can be carried out 

using the next new frame taken at time t+2. 

 

This updating algorithm has one significant advantage. It need not destroy the existing 

model of the background when a moving object stops move and is stationary long enough 

to become a part of the background. The original background color remains in the mixture 

model until it becomes the last probable distribution and is replaced by a new model. 

Therefore, if this object moves again, the distribution describing the previous background 

still exists with the same µ  and 2σ , but a lower ω  will be quickly re-incorporated into 

the background.  

 

2.3  Road Region Detection 
Because the camera is moving, the foreground which is obtained from the background 

modeling often contains a lot of noises. These noises are mostly caused by the objects 

outside the road region. In order to delete these noises, we need to detect the road region. 

In advanced driving assistance systems, it is important to be able to detect the region 

covered by the road in images. To extract the road region in a general road scene, a method 

using stereo cameras has been proposed [35]. This method assumes that the stereo cameras 

are calibrated, and it estimates only those parameters relating to the 3D road plane. By 

using calibrated stereo cameras, the road region can be estimated in a stable manner. For 

practical use, however, monocular camera systems are preferred to stereo cameras systems, 
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because monocular systems have advantages in terms of reduced costs. On the other hand, 

some methods that make use of a monocular camera have also been proposed [36]. For 

stable estimation of the road region, they approximate the vehicle ego-motion by 

considering a reduced number of motion parameters. However, when a camera is mounted 

on a vehicle, other motion parameters are not negligible. Moreover, these methods warp 

one of the images by using an approximated optical flow model with regard to incremental 

motion. When the distance between the two images is not close, the accuracy of this model 

is not sufficient. These issues may cause poor estimation of the road region when using 

images taken by a vehicle-mounted camera. 

In the following sections, we propose a road region detection method using the Support 

Vector Machine (SVM). This method includes two steps: training and test. 

Figure 2.3 shows an outline of the SVM classifier training. In the first frame of the input 

video, a small sample of pixels is labeled by a human supervisor as a road class or a 

non-road class (described in Section 2.3.3). For each pixel in this sample, we extract a 

feature vector by feature extraction (described in section 2.3.2). These feature vectors are 

considered as the training data of SVM. Then, these training data are used to train a SVM 

classifier.  

Figure 2.4 gives an outline of the testing (classification) using the SVM classifier. In 

other frames of the input video, a feature vector is extracted for each pixel using the same 

feature extraction method. These feature vectors are considered as the test data. Then, each 

pixel in the input video is classified as a road pixel or a non-road pixel using the trained 

SVM classifier and the test data. 

 

2.3.1 Support Vector Machine 

The original Support Vector Machine (SVM) algorithm was invented by Boser, Guyon, 

and Vapnik in COLT-92. On the other hand, the current standard SVM was proposed 

by Corinna Cortes and VladimirVapnik in 1995 [37].  

The SVM is a useful classification tool that uses a machine learning theory to maximize 

predictive accuracy while automatically avoiding over-fit to the data. A classification task 

usually involves with training and test data which consist of some data instances. Each 

instance in the training data contains one target values and several attributes. The goal of 

SVM is to produce a model which predicts target value of data instances in the test data 

which are given only attributes. 

 

 

 



13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Outline of the SVM classifier training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Outline of the testing. 
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2.3.2 Feature Extraction 

In this research, the features we use are color features and texture features. For color 

features, three features in HSV color space are used. For texture features, five Haralick 

statistical features [38] are used as follows: 

{ }∑∑
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where ),( vup  is an element of a Gray Level Co-occurrence Matrix (GLCM). gN  is the 

size of the GLCM. yx µµ ,  and yx σσ ,  are the mean values and variance values 

calculated from GLCM, respectively.  

 

   The algorithm of texture features calculation goes as follows: 

 

1) The gray levels of original images are 256. We reduce the number of gray levels 

from 256 to 8. 

2) The pixels in the small square window of the size 5*5 centered at the current pixel 

are used to calculate a GLCM. The size of the GLCM is the same as the number of 

gray levels of the image. Therefore, in the proposed method, the GLCM is an 8*8 

matrix. The definition of the GLCM is given below: 

The GLCM is a tabulation of how often different combinations of pixel brightness 
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values (gray levels) occur in an image. GLCM texture considers the relation 

between two pixels at a time, called the reference and the neighbor pixel. ( )jiP ,δ  (i, 

j = 0,1,2,…,7) is the frequency of the reference pixel with the value i and the 

neighbor pixel with the value j which satisfy a given offset ( )YX DD ,δ  within the 

window. ( )jiP ,δ  is considered as the value of element (i, j) in GLCM. 

3) According to Eqs. (2.15) - (2.19), we calculate the five texture features. 

 

These five texture features and three color features are combined to form an 

eight-element feature vector as follows: 

],,,,,,,[ ),(),(),(),(),(),(),(),(, 32154321 jicjicjicjitjitjitjitjitji ffffffffF =  

)320,,1240,,1( LL == ji         (2.20) 

where ),( jitn
f  is the thn  Haralick statistical feature at the point (i, j) and ),( jicn

f  is the 
thn color feature at the point (i, j) in the HSV color space. 

 

2.3.3 Training Data Initialization 

The first frame in the input video is used as a training image; the other frames in the 

input video are used as test images. 

In the first frame, the training data is selected and labeled by a human. Two rectangle 

windows are used by a supervisor to select the training data on the image as shown in Fig. 

2.5. A green window is placed in the road region. The pixels located in this green window 

are labeled as positive samples. A red window is placed outside the road region. The pixels 

located in this red window are labeled as negative samples. These two samples constitute 

the training data. 

 

2.4  Detection of Obstacles in the Foreground Images 
In this section, we will extract the shape of obstacles in the foreground images which 

have been detected in Section 2.2 using the road region which have been detected in 

Section 2.3. 

In order to extract the shape of obstacles in the foreground images, we need to delete 

two kinds of things: road marks in the road region and objects outside the road region in 

the foreground images. In the following sections, we describe the method of deleting these 

two kinds of things (noises). 
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Fig. 2.5 Selection of training data. 

 

2.4.1 Problem Description 

Here we will delete road marks in the road region and objects outside the road region in 

the foreground images.  

For road marks in the road region, we can use the result of the road region detection to 

delete them.  

For objects outside the road region, if we use the non-road region to delete these objects, 

it also deletes the obstacles in the road. In order to solve this problem (reserving the 

obstacles in the road and deleting the objects outside the road), we need to divide the 

non-road region into obstacles region and noise region (Section 2.4.2). Then we use this 

noise region to delete the objects outside the road in the foreground images. 

 

2.4.2 Region Classification 

Here we will divide the non-road region into obstacles region and noise region. Figure 

2.6 (a) and (b) show the result of road region detection and the corresponding road region 

template image, respectively.  

In this road region template image, black pixels are road pixels, whereas white pixels are 

non-road pixels. If we check the pixels of one particular row in this image, we can get a 

curve to describe the distribution of these pixel values in this row. Figure 2.7 shows the 

pixel values distribution of the 140th row in the road region image. Based on this curve, we 

consider white regions (high values) which have two adjacent black regions (low values) 

both on the left and right sides as the obstacles region. Because, in this research, the 

obstacles which we want to detect are defined as the 3D objects located on the road, other 

3D objects locate outside the road are no danger to driving (classified as noise outside the 

road). Based on this definition, we know the obstacles must be located in the road region 
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(surrounded by a road region) or have adjacent road regions on both left and right sides. 

We check each row in the road region template image to carry out region classification. 

Figure 2.8 shows the result of the region classification. The obstacle region is indicated by 

gray pixels, the road region is indicated by black pixels, and the noise region is indicated 

by white pixels. 
 

   

(a)                               (b) 

Fig. 2.6 Road region detection: (a) The result of road region detection, (b) road region 

template image. 

 

 

 Fig. 2.7 Pixel values distribution of the 140th row in the road region image. 
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  Fig. 2.8 The result of region classification. 

 

2.4.3 Classification of Foreground Objects 

In the foreground image, black pixels mean the pixels of foreground objects. These 

black pixels contain the pixels of obstacles, the pixels of road marks and the pixels of 

objects outside the road. In order to extract the shape of obstacles, we should change the 

black pixels which represent the noise to white. We check each black pixel’s position in the 

result of region classification (shown in Fig. 2.8). If the current black pixel is located in the 

noise region (white region), this black pixel is considered as the object outside the road and 

is changed to white in the foreground image. If the current black pixel is located in the road 

region (black region), this black pixel is considered as the noise inside the road and is 

changed to white in the foreground image. If the current black pixel exists in the obstacle 

region, it is left unchanged. By this operation, noises are deleted. Then we carry out 

erosion operation and regional expansion as the post-processing. 
 

2.5  Experimental Results 

2.5.1 Experimental Environment 

In order to obtain the videos for obstacles detection, we install a camera as shown in Fig. 

2.9. The camera, which is fixed in front of the vice driver’s seat, records the road 

conditions in front of the car when the car moves forward.  

In this section, we examine the proposed obstacle detection method using three videos. 

Video 1 is captured in the artificial scene inside the campus; this scene includes two 

pedestrians and one box on the road. Two pedestrians cross the road in the opposite 

direction when the car is moving forward at normal speed; the box is located between 

pedestrians and a car. Video 2 is captured in the real scene: the car is moving forward to the 

crossroad, a pedestrian crosses the road before this car stops completely. Video 3 is 
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captured in the artificial scene outside the campus; this scene includes two pedestrians and 

one box on the road. Two pedestrians cross the road in the opposite direction when the car 

is moving forward at normal speed; the box is located between pedestrians and a car.  

In the proposed obstacles detection method, obstacles are defined as arbitrary objects 

that protrude from the ground plane in the road region, including static and moving objects. 

Road marks in the road region (e.g., zebra crossings) are considered as false obstacles and 

objects outside the road region is noise. According to this definition, correct objects in 

video 1 are two pedestrians and a box; a correct object in video 2 is a pedestrian; correct 

objects in video 3 are two pedestrians and a box. 

The configurations of the PC used in the experiments are shown in Table 2.1. 

 

 

Fig. 2.9 The camera installation. 

 

Table 2.1 Configurations of the PC used in the experiments. 

OS Microsoft Windows 7 Professional 64bit 

CPU Intel(R) Core(TM) i7-2600 3.40GHz 

Memory 8.0 GB 

Software Tool Microsoft Visual Studio 2008 
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2.5.2 Detection of Foreground Images 

In the first place, we reconstruct the background model using a Gaussian mixture model 

in the input images. The parameters of the Gaussian mixture model are shown in Table 2.2. 

After the background modeling, we obtain the background images and corresponding 

foreground images. Figure 2.10 – Fig. 2.12 shows the input images and the corresponding 

background and foreground images.  

Because the camera is moving, the foreground images as shown in Fig. 2.10 – Fig. 2.12 

contain a lot of noises. These noises are mostly caused by the objects outside the road 

region and shadows inside the road region. In order to delete these noises, we need to 

detect the road region. 

 

Table 2.2 The parameters of the Gaussian mixture model. 

Method Parameters Values 

Gaussian mixture model 

Learning rate α  0.05 

Threshold T 0.2 

Threshold gaussT  1.0 

The number of distributions K 3 
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Frame 182 

   

Frame 222 

   

Frame 250 

   

Frame 264 

(a)                   (b)                       (c) 

Fig. 2.10 The result of background modeling (Video 1). (a) Input images, (b) 

background images, (c) foreground images. 
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Frame 110 

   

Frame 117 

   

Frame 133 

   

Frame 150 

(a)                   (b)                       (c) 

Fig. 2.11 The result of background modeling (Video 2). (a) Input images, (b) 

background images, (c) foreground images. 
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Frame 122 

   

Frame 128 

   

Frame 140 

   

Frame 158 

(a)                   (b)                       (c) 

Fig. 2.12 The result of background modeling (Video 3). (a) Input images, (b) 

background images, (c) foreground images. 
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2.5.3 Detection of Road Region 

In the second place, we detect the road region in the input images using the Support 

Vector Machine. 

The result of road region detection depends on the selection of training data in the 

training step of road region detection (described in section 2.3.3).  

Figure 2.13 shows two different experiments of road region detection. 

In Fig. 2.13, (a) and (b) are one experiment; (a) shows the section of training data, (b) 

shows the corresponding result of road region detection. In Fig. 2.13 (a), the positive 

sample of the training data (pixels located in the green box) contains the pixels of road 

marks. In the corresponding result of road region detection (as shown in Fig. 2.13 (b)), the 

road marks are classified as a part of the road region (purple region means road region). 

In Fig. 2.13, (c) and (d) are another experiment; (c) shows the section of training data, (d) 

shows the corresponding result of road region detection. In Fig. 2.13 (c), the positive 

sample of the training data (pixels located in the green box) does not contain the pixels of 

road marks. In the corresponding result of road region detection (as shown in Fig. 2.13 (d)), 

the road marks are classified as the non-road region (purple region means road region, and 

other regions mean non-road region). 

Road marks such as zebra crossings on the road are not dangerous to driving. According 

to the definition of obstacles in this research, these road marks are considered as false 

obstacles. We should avoid detecting these false obstacles, because they will reduce the 

accuracy of detection. In order to delete road marks in the foreground images, it seems the 

result of road region detection shown in Fig. 2.13 (b) is much better.  

Figure 2.14 – Fig. 2.16 show the results of road region detection. In this detection, the 

training data contain the pixels of road marks. In these resultant images, the purple color 

region means the road region. 

 

2.5.4 Detection of Obstacles 

In the third place, we carry out region classification in the road region template images 

which have been obtained in Section 2.5.3 using the method explained in Section 2.4.2. 

The results of region classification are shown in Fig. 2.17 (b), Fig. 2.18 (b) and Fig. 2.19 

(b). In these regional template images: black region means road region; white region means 

noise region; gray region means obstacles region.  

Then, by deleting the noises in the foreground images (as shown in Fig. 2.10 (c), Fig. 

2.11 (c) and Fig. 2.12 (c)) using the result of the region classification, we obtain the results 

of obstacle detection as shown in Fig. 2.17 (c), Fig. 2.18 (c) and Fig. 2.19 (c). 
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2.5.5 Comparative Experiment 

However, in a general case, the first frame of the detected video may not contain the 

road marks. So in the training step of the road region detection, the training data doesn’t 

contain the pixels of road marks. We detect the road regions using this training data. Then 

we carry out the obstacles detection described in Section 2.5.4. This experiment is 

considered as the comparative experiment.  

Figure 2.20 – Fig. 2.21 show the results of the comparative experiment. 

 

     
(a)                            (b) 

     
(c)                            (d) 

Fig. 2.13 The experiments of road region detection. (a) Training data selection, (b) the 

result of road region detection, (c) training data selection, (d) the result of road region 

detection. 
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Frame 182 

     
Frame 222 

     
Frame 250 

     
Frame 264 

(a)                          (b) 

Fig. 2.14 The results of road region detection (Video 1). (a) Input images, (b) the results 

of road region detection. 
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Frame 110 

       
Frame 117 

       
Frame 133 

       
Frame 150 

(a)                          (b) 

Fig. 2.15 The results of road region detection (Video 2). (a) Input images, (b) the results 

of road region detection. 
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Frame 122 

     
Frame 128 

     
Frame 140 

     
Frame 158 

(a)                          (b) 

Fig. 2.16 The results of road region detection (Video 3). (a) Input images, (b) the results 

of road region detection. 
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Frame 182 

    

 Frame 222 

    

Frame 250 

    

Frame 264 

 (a)                (b)                (c)               (d) 

Fig. 2.17  Obstacle Extracting (Video 1). (a) Input images, (b) foreground images, (c) 

regional template images, (d) the result of obstacle detection. 
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Frame 110 

    

Frame 117 

    

Frame 133 

    

Frame 150 

(a)                (b)                (c)               (d) 

Fig. 2.18 Obstacle Extracting (Video 2). (a) Input images, (b) foreground images, (c) 

regional template images, (d) the result of obstacle detection. 
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Frame 122 

    

Frame 128 

    

Frame 140 

    

Frame 158 

 (a)                (b)                (c)               (d) 

Fig. 2.19 Obstacle Extracting (Video 3). (a) Input images, (b) foreground images, (c) 

regional template images, (d) the result of obstacle detection. 
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Frame 110 

    

Frame 117 

    

Frame 133 

    

Frame 150 

(a)                (b)                (c)               (d) 

Fig. 2.20 The results of comparative experiment (Video 2). (a) Input images, (b) the 

results of road region detection. (c) regional template images, (d) the result of obstacle 

detection. 
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Frame 122 

    

Frame 128 

    

Frame 140 

    

Frame 158 

(a)                (b)                (c)               (d) 

Fig. 2.21 The results of comparative experiment (Video 3). (a) Input images, (b) the 

results of road region detection. (c) regional template images, (d) the result of obstacle 

detection. 
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2.6  Evaluation 
In order to evaluate the effectiveness of the proposed obstacles detection method, we 

compare the result of obstacles detection with the Ground Truth (shown in Fig. 2.23 (a) 

and (b)). In the resultant image of comparison (shown in Fig. 2.23 (c)), the red area means 

the overlap part of (a) and (b), and this part is called True Positive; Blue means the part 

which is included in (b) but not in (a), and this part is called False Positive; Green means 

the part which is included in (a) but not in (b), and this part is called False Negative. We 

calculate recall using the following formula: 

[%]100×=
GT

TP
recall                    (2.21) 

Here TP is the number of pixels in the True Positive area; GT is the number of black pixels 

in the Ground Truth image. 

If recall is larger than 0.5, we consider this object has been extracted. Then we calculate 

Recall and Precision using the following formulas: 

[%]100×=
GT

TP

N

N
Recall                   (2.22) 

[%]100×
+

=
FPTP

TP

NN

N
Precision            (2.23) 

where TPN  is the number of correct objects in the resultant images; GTN  is the number 

of objects in the ground truth images; FPN  is the number of incorrect objects in the 

resultant images. 

  Precision can be seen as a measure of exactness or fidelity, whereas Recall is a measure 

of completeness. We also define FPR as a measure of inaccuracy; the formula is given as 

follows: 

[%]100100 ×
+

=−=
FPTP

FP

NN

N
PrecisionFPR     (2.24) 

The result of evaluation is composed of three values: Precision, Recall and FPR. The 

result of evaluation with Video 1, Video 2 and Video 3 using the proposed obstacle 

detection method (the results of obstacles detection are shown in Fig. 2.17 – Fig. 2.19) are 
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shown in Table 2.3.  

Table 2.4 – Table 2.5 show the results of evaluation with Video 2 and Video 3 using two 

different detection methods (the proposed obstacle detection method and the method 

explained in comparative experiment).  

 

     

(a) Ground Truth      (b) Obstacles       (c) Resultant Image 

Fig. 2.23 Images employed for evaluation.  

Table 2.3 The result of evaluation of three different videos using the proposed obstacle 

detection method. 

Videos 
Evaluation Values 

Precision[%] Recall[%] FPR[%] 

Video 1 97.5 79.7 2.5 

Video 2 94.5 80.0 5.5 

Video 3 96.8 73.9 3.2 

Table 2.4 The result of evaluation of Video 2 using two different detection methods. 

Methods 
Evaluation Values 

Precision[%] Recall[%] FPR[%] 
The Proposed 

Method 
94.5 80.0 5.5 

Comparative 

Experiment 
47.7 78.2 52.3 
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Table 2.5 The result of evaluation of Video 3 using two different detection methods. 

Method 
Evaluation Values 

Precision[%] Recall[%] FPR[%] 
The Proposed 

Method 
96.8 73.9 3.2 

Comparative 

Experiment 
80.7 72.5 19.3 

 

2.7  Discussion and Conclusion 
In this chapter, we proposed an obstacles detection method using a video taken by a 

vehicle-mounted monocular camera. 

In the part of background modeling, we applied GMM to a moving camera scene. The 

GMM is an effective background modeling method normally used in a static camera case. 

But we expanded it so that it can be applied to a moving camera case. This expansion is 

important to industrial applications of an obstacle detection system based on a 

vehicle-mounted camera. 

In the road region detection method using the SVM, we extracted a feature vector for 

each pixel in the input image. This feature vector is combined by five texture features and 

three color features. According to experiments, this composite feature vector contributed 

sufficiently to detecting a road region from a video. It is noted that the composite feature 

vector was better than the feature vector which only uses texture features or only uses color 

features. 

In Fig. 2.19, the input image of frame 158 includes three obstacles: two pedestrians and 

a box, but the resultant image of obstacles detection doesn’t include the box. At frame 158, 

since the car is close to the box, its reflection may have given influence to the gray value 

change with the box in the image and may have been judged as part of a road. That’s why 

the result of obstacles detection of frame 158 in Fig. 2.19 doesn’t include the box. 

The same reason is applied to the result of obstacles detection of frame 158 in Fig. 2.21 

which doesn’t include the box. 

The proposed method has some advantages over the existing obstacles detection 

methods. In the first place, the proposed method uses a monocular camera. This realizes an 

economic system and smaller computation time. It is also advantageous for achieving 

real-time processing. In the second place, the proposed method can detect arbitrary objects 

including both static objects and moving objects. To the best of our knowledge, no 
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researches have ever proposed a method which detects both static and moving objects 

simultaneously. This is helpful because static objects such as boxes fallen on the road from 

a car are dangerous for drivers. Most of the existent methods concentrate only on detecting 

moving objects such as pedestrians, bicycles and cars. In the third place, the output of the 

proposed method is the shape of obstacles. Most of the existing obstacles detection 

methods only indicate the location of an obstacle by a rectangular frame which surrounds it 

and they do not extract the shape of obstacles. Extraction of the shape of an obstacle is 

important for obstacles recognition. If the detected obstacle is recognized as a pedestrian 

from its shape, we can foresee his/her next action. 

In the results of comparative experiment (shown in Fig. 2.20 – Fig. 2.21), road marks 

such as zebra crossings are detected as obstacles. Since these 2D objects are not dangerous 

to driving, they will reduce the accuracy of detection if they are detected as obstacles. 

From Table 2.4 and Table 2.5, we see the Precision of comparative experiment is much 

lower than the proposed method. These 2D objects are considered as false obstacles. We 

should avoid detecting these false obstacles. In order not to detect these 2D objects, we 

need to develop a method of classifying 2D objects and 3D objects. Then we can use the 

result of the classification to delete these false obstacles. In the next chapter, we will 

propose a method for classifying 2D objects and 3D objects in the resultant images of 

obstacles detection. 
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Chapter 3  2D and 3D Objects Classification 

 

In Chapter 2, we have proposed an obstacles detection method based on background 

modeling. But this method detects 2D and 3D objects simultaneously. Since these 2D 

objects are not dangerous to driving, they will reduce the accuracy of detection if they are 

detected as obstacles. In order not to detect these 2D objects, in this chapter, we propose a 

method for classifying 2D objects and 3D objects in the resultant images of obstacles 

detection which have been obtained in Chapter 2. 

 
3.1  Outline of the Proposed Method 

The proposed 2D and 3D objects classification method consists of four steps; camera 

motion estimation, 3D coordinate estimation, road plane estimation, and 2D and 3D 

classification. Figure 3.1 shows the flowchart of the 2D and 3D objects classification. 

The proposed method first estimates camera motion parameters from the 

correspondences of feature points between two successive images (Section 3.2). Then we 

calculate the 3D positions of the feature points on a detected object in the world coordinate 

system using triangulation (Section 3.3). Then we estimate the parameters of the road plane 

using 3D positions of those feature points (Section 3.4). Finally we calculate the distances 

from the 3D positions of the feature points to the road plane (Section 3.5). Based on these 

distances, we classify 2D objects and 3D objects. 

 
3.2  Camera Motion Estimation 

This section estimates the camera motion parameters from the correspondences of 

feature points between two successive images. The camera motion parameters consist of a 

33×  rotation matrix R and a 13×  translation vector T [39]. In this method, two 

successive images are used at any time, i.e., the image tI  taken at time t and the image 

1+tI  taken at time t+1 are used to calculate camera motion parameters from time t to time 

t+1. 

 

3.2.1 Feature Points Detection 

In this section, we want to detect feature points in the first image tI  taken at time t. 

A corner is a point whose brightness changes dramatically in the image or which has the 

maximum curvature in the edge curve of an image. One of the most known corner 

detection methods is the Harris corner detector [40]. 
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Fig. 3.1 Flowchart of the 2D and 3D objects classification. 

 

The Harris corner detector is based on the local auto-correlation function of a signal. The 

local auto-correlation function is the change of intensity for a shift ),( yx , it is defined as: 

         [ ]2
,

),(),(),(),( ∑ −++=
vu

vuIyvxuIvuwyxE              (3.1) 

Here, ),( vuw  is a Gaussian function window which is centered at ),(vu ; ),( vuI  is the 

intensity at ),( vu ; ),( yvxuI ++  is the intensity at the moved position ),( yvxu ++ . 

The intensity at the moved position, ),( yvxuI ++ , can be approximated by a Taylor 

expansion: 

           [ ] 
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Here xI  and yI  are the first-order partial derivatives in x  and y  directions. 

Substituting Eq.(3.2) into Eq.(3.1), we have 

Start 

End 

Camera motion estimation 

3D coordinate estimation 

Road plane estimation 

2D and 3D classification 
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Let us denote 
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Then the change of intensity for a shift ),( yx  (Eq. (3.1)) can be concisely written as 

                     [ ] 






≈
y

x
MyxyxE ),(                         (3.5) 

Note that E is closely related to the local auto-correlation function, M describing the 

shape of this auto-correlation function at the origin point.  

Let 1λ , 2λ  be the eigenvalues of matrix M. 1λ , 2λ  are proportional to the principal 

curvatures of the local auto-correlation function, and they form a rotationally invariant 

description. We can decide the flat region, corner and edge through checking the values of 

1λ , 2λ . There are three cases to be considered (shown in Fig. 3.2): 

1) If both 1λ , 2λ  are small, so that the local auto-correlation function is flat(little change 

in ),( yxE  in any directions), the small window has approximately constant 

intensities. 

2) If one eigenvalue is high and the other is low, so the local auto-correlation function is 

ridge shaped, local shifts along the ridge cause little change in ),( yxE  and local shifts 
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in the orthogonal direction cause significant change; this means an edge. 

3) If both eigenvalues are high, so the local auto-correlation function is peak shaped, local 

shifts in any directions will cause a dramatic change; this means a corner. 

 

3.2.2 Feature Points Tracking 

In this section, we want to detect the corresponding feature points 1+tm  in the second 

image 1+tI  using the above detected Harris feature points tm  in the first image tI . We 

can use feature tracking methods to find the location of points on the second image. One of 

the most known methods is the Lucas-Kanade feature tracking algorithm [41]. 

Let us consider two successive images (gray images), tI  and 1+tI , and a feature point 

u [ ]T
yx uu=  in the first image tI . The goal of feature tracking is to find the location 

v=u+d [ ]T
yyxx dudu ++=  in the second image 1+tI , which should satisfy that tI (u) and 

1+tI (v) are “similar”. Here, the vector d [ ]Tyx dd=  is the optical flow at the point u. The 

similarity between tI (u) and 1+tI (v) is analyzed in a small window. Two integers xw  

and yw  are defined as the size of the window. We define the optical flow d as being the 

vector that minimizes the residual function ε  as follows: 
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Fig. 3.2 Classification of pixels using eigenvalues. 

“Flat” 

λ1 and λ2 are small. 

“Corner” 

λ1 and λ2 are large. 

E increases in all directions. 

“Edge” 

λ2 >>λ1  

“Edge” 

λ1 >>λ2  

1λ

2λ
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The residual function is measured in a small window of size )12()12( +×+ yx ww . This 

window often has the size between 2 and 7. In order to choose a good window size, two 

important aspects, accuracy and robustness, should be considered. If we choose a small 

size, it will increase the accuracy, because it carries out the calculation only using the 

nearest neighbors. But it will decrease the robustness, since large vectors are ignored. If we 

choose a large size, it will decrease the accuracy and increase the robustness. In an 

idealistic situation, we should have xx wd ≤ and yy wd ≤  to cover all the possible 

motions.  

According to Bouguet [42], a solution to this problem is a pyramidal implementation of 

the classical Lucas-Kanade algorithm. An iterative implementation of the Lucas-Kanade 

optical flow computation provides sufficient local tracking accuracy. 

First let us see the classical Lucas-Kanade algorithm, and then the pyramidal 

implementation of the classical Lucas-Kanade algorithm is explained. 

 

The Classical Lucas-Kanade Algorithm 

For clarity purposes, let us change the names, ),( yxA  is the first image; ),( yxB  is 

the second image; v
__ [ ]Tyx vv=  is the displacement vector; p [ ]Tyx pp=  is the image 

position vector. Following the new notation, the goal of the classical Lucas-Kanade 

algorithm is to find the vector v
__ [ ]Tyx vv=  that minimizes the residual function 
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At an optimum point, the first derivate of this function with respect to v
__
 is zero: 
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After expanding the derivative and replacing ),( yx vyvxB ++  by its first order Taylor 

expansion, we obtain: 
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In order to simplify Eq.(3.9), we can make some replacements as follows: 

                 ),(),(),( yxByxAyxI −=&δ                     (3.10) 
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After doing these modifications, we can rewrite Eq. (3.9) as follows: 
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We can denote the matrix by G and vector b  in the following way; 

              ∑ ∑
+

−=

+

−= 










=

xx

xx

yy

yy

wp

wpx

wp

wpy yyx

yxx

III

III
G 2

2

&                (3.16) 

               ∑ ∑
+

−=

+

−=









⋅
⋅

=
xx

xx

yy

yy

wp

wpx

wp

wpy y

x

II

II
b

δ
δ

&                     (3.17) 

Therefore, Eq. (3.15) is written as 
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Since the first derivative at an optimum point is zero (Eq. 3.8), in the end, the optimum 

optical flow is calculated by 

                         bGvopt
1−=                             (3.19) 

This is the classical Lucas-Kanade optical flow equation. 

 

Pyramidal Implementation of the Classical Lucas-Kanade Algorithm 

First, we establish an image pyramid. 

Considering an image I of size yx nn × , the pyramidal representation is constructed as 

follows: 

Let II =0  be the “zeroth” level image. This image is the original image. The image 

width and height at this level are defined as xx nn =0  and yy nn =0 .  

The pyramidal representation is then built in a recursive way: 1I  is computed based on 
0I , 2I is computed based on 1I , and so on. In a general view, LI is computed based on 

1−LI , where L is the pyramidal level. The image LI  is defined as follows: 
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The corresponding coordinates of the point u [ ]T
yx uu=  in the pyramidal image LI  

is defined as uL [ ]TL
y

L
x uu= . The vector uL is computed as follows: 

                        uL = u/2L                              (3.21) 

 

The overall pyramidal tracking algorithm proceeds as follows: 

1) The optical flow, dLm [ ]TL
y

L
x

mm dd= , is computed at the deepest pyramid levelmL  

using the classical Lucas-Kanade algorithm. The initial guess gLm is [ ]T00 . 

2) The result of that computation, dLm [ ]TL
y

L
x

mm dd= , is propagated to the upper level 

1−mL . The initial guess gLm-1 [ ]TL
y

L
x

mm gg 11 −−= is computed as follows: gLm-1 = 2( gLm + 
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dLm ). 

3) Given that initial guess, the refined optical flow, dLm-1 [ ]TL
y

L
x

mm dd 11 −−= , is computed 

at the pyramid level 1−mL  using the classical Lucas-Kanade algorithm. 

4) The same procedures are performed until we reach the level 0 (the original image). 

 

Let us describe the recursive operation between two levels L+1 and L in more details. 

We assume that an initial guess for optical flow computation at level L, gL [ ]TL
y

L
x gg= , 

is obtained from the computation done at level L+1. Then, in order to compute the optical 

flow at level L, it needs to find the residual pixel displacement vector dL [ ]TL
y

L
x dd=  that 

minimizes the new image residual functionLε of the form 
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The initial guess flow vector gL is used to pre-translate the image patch in the second 

image 1+tI . We use the classical Lucas-Kanade optical flow algorithm to compute the 

optical flow dL. Then, the result of this computation is propagated to the next level L-1 and 

gets the new initial guess gL-1: 

                    gL-1 = 2( gL + dL )                         (3.23) 

The next level optical flow residual vector dL-1 is then computed using the same 

procedure. The algorithm finishes when the level 0 (the highest pyramidal level) is 

reached. 

The final optical flow solution d is obtained by 

                        d = g0 + d0
                             (3.24) 

 

3.2.3 RANSAC 

After feature points detection and feature points tracking, we get a set of corresponding 

feature points {mt↔mt+1}. mt [ ]T
tt yx= is the point in the first image, 

mt+1 [ ]T
tt yx 11 ++= is the corresponding point in the second image. But in the practical 

situation, mt and mt+1 might be mismatched. We often call these mismatched points as 
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outliers and matched points as inliers. These outliers will severely reduce the detection 

accuracy. So we must take some measures to delete these outliers. One of the most known 

methods for this purpose is the RANdom SAmple Consensus algorithm (RANSAC) [43]. 

 

RANSAC Algorithm [43-44]: 

The data set S is a set of feature point pairs {mt↔mt+1}; model is a fundamental matrix 

F. 

1) Randomly select a sample of 8 pairs of feature points from S using 8-points 

algorithm to calculate fundamental matrix F. (For specific algorithm, see Section 

3.2.4) 

2) For each pair of feature points in the data set S, calculate the equations of 

corresponding epipolar line lt and lt+1. 

                          1
~

+= t
T

t F ml                             (3.25) 

                          tt Fml ~
1 =+                              (3.26) 

  Here, T
tttt cba ][=l ; T

tttt cba ][ 1111 ++++ =l ;  
T

ttt yx ]1[~ =m ; T
ttt yx ]1[~

111 +++ =m . 

For example, if current point pair mt and mt+1 are inliers (matched), they should 

satisfy the epipolar constraint:  For mt in the first image, the corresponding epipolar 

line is lt+1. Similarly, lt represents the epipolar line corresponding to mt+1 in the 

second image. mt+1 lies on the epipolar line lt+1: 01
T

1
=++ tt

lm .Similarly, mt lies on the 

epipolar line lt: 0T =tt lm . 

3) Calculate the distance td  from point mt to the epipolar line lt. Calculate the distance 

1+td  from point mt+1 to the epipolar line lt+1. 
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4) If ),max( 1+tt dd  is smaller than the preset threshold, the current point pair mt and 

mt+1 are classified as inliers; otherwise, outliers.  

5) Iterate steps 2), 3) and 4) until all point pairs in the data set S are classified as inliers 
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or outliers. Record the number of inliers. 

6) If the number of inliers is greater than some threshold T, re-estimate the fundamental 

matrix F using all inliers and terminate. 

7) If the number of inliers is less than T, select a new subset and repeat the above 

process. 

8) After N trials, using the results corresponding to the largest number of inliers, 

re-estimate the fundamental matrix F. 

 

3.2.4 Fundamental Matrix [44] 

The epipolar geometry is the intrinsic projection geometry between two views. It is 

independent of a scene structure, and only depends on the camera’s internal parameters and 

the relative pose. The fundamental matrix F is the algebraic representation of epipolar 

geometry.  

Definition: Suppose we have two images acquired by cameras, then the fundamental 

matrix F is a unique 33×  rank 2 homogeneous matrix which satisfies: 

0~~ T
1 =+ tt Fmm                              (3.29) 

for all corresponding points mt and mt+1. 

Here,  
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In this paper, we use the 8-points algorithm to compute the fundamental matrix.  

 

8-points Algorithm [45]: 

Equation (3.29) can be easily written in terms of the known coordinates mt and mt+1. 
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From a set of n point matches, we obtain a set of linear equations of the form 
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   (3.31) 

With respect to Mf = 0, in order to derive a solution except for the trivial solution f = 0, 

the solution f is calculated which makes fM  the minimum under the condition that 

1=f . The following theorem holds: 

Theorem [44]: Let A be a matrix having m rows and n columns and x be a column 

vector having n components. The vector x which realizes min→xA  under the 

condition that 1=x  is given by the eigenvector corresponding to the minimum 

eigenvalue of the matrix AAT . 

From the above theorem, the eigenvector f corresponding to the minimum eigenvalue of 

the matrix MM T  makes fM  the minimum. This f apparently gives the F matrix 

which satisfies Eq.(3.31) and hence Eq. (3.29), but it doesn’t satisfy 2)( =Frank . 

 

In order to enforce this constraint ( 2)(=Frank ), the following steps are adopted: 

By applying the singular value decomposition to the matrix F obtained from above, we 

have  
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Let us make 033 =d . Then we have  
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This matix F ′satisfies 2)( =′Frank  and it is employed finally as the F matrix. 

 

The key to success with the 8-points algorithm is proper careful normalization of the 

input data before constructing the equations to solve. In the case of the 8-points algorithm, 

the suggested normalization is a translation and scaling of each image so that the centroid 

of the reference points is at the origin of the coordinates and the distance of the points from 

the origin is equal to or less than2 .  

 

Fundamental Matrix Algorithm: 

1) Normalization: Transform the image coordinates according to ttt T mm =ˆ  and 

111ˆ +++ = ttt T mm , where tT  and 1+tT  are normalizing transformations consisting of a 

translation and scaling.  

2) Calculate the fundamental matrix F̂  corresponding to the matches 1ˆˆ +↔ tt mm  

using 8-points algorithm.  

3) Denormalization: Set tt TFTF ˆT
1+= . Matrix F is the fundamental matrix 

corresponding to the original data 1+↔ tt mm . 

 

3.2.5 Camera Motion Parameters 

The camera motion parameters consist of a rotation matrix R and a translation vector T 

as follows: 
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In this section, we want to calculate these camera motion parameters using the epipolar 

geometry between two views. 

First, the essential matrix E is calculated using the following formula: 

FKKE T=                            (3.34) 

Here, K is a camera inner parameters matrix (obtained from camera calibration), F is a 

fundamental matrix which has been calculated in section 3.2.4. 

Next, the essential matrix E can be represented by motion parameters of a camera 

between two images, the rotation matrix R and the translation vector T. 

[ ] RE XT=                             (3.35) 

Here,  
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is the corresponding skew-symmetric matrix of the translation vector T. 

Finally, we obtain the matrix R and translation vector T by applying the singular value 

decomposition to the essential matrix E. 

The singular value decomposition of the essential matrix E is as follows: 

TVUE Σ=                             (3.37) 

Using the results of the singular value decomposition (Eq.(3.37)), we can calculate the 

rotation matrix R and the translation vector T: 

TUWVR =  or TTVUWR =                      (3.38) 

[ ] TWUUX Σ=T   or  [ ] TTUWUX Σ=T                  (3.39) 

Here,  
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There are four possible choices of the camera motion parameters, based on the two 
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possible choices of R and two possible choices of T. 

The selection method of camera motion parameters is, using four combinations, to do 

the 3D coordinate estimation and then to check which combination’s compensation image 

is correct.  

 

3.3  3D Coordinate Estimation 
In this section, we estimate the coordinates of 3D points in the world coordinate system 

using two corresponding feature points in two successive images. 

 

3.3.1 The World Coordinate System and the Camera Coordinate System 

In this 3D coordinate estimation, two successive images are used at any time, i.e., the 

image tI  taken at time t and 1+tI  taken at time t+1. Because a camera is moving in this 

research, a camera is in different locations in these two moments. The camera locations 

and coordinates are shown in Fig. 3.3. 

Here, two blue points are camera lens at time t and time t+1, respectively; ),,( ttt ZYX  

and ),,( 111 +++ ttt ZYX  are camera coordinates at time t and time t+1, respectively; 

),,( WWW ZYX  is the world coordinate which coincides with the camera coordinate at time 

t; M is one 3D point in the world coordinate system; tm  and 1+tm  are the 2D points in 

the virtual image planes which correspond to the 3D point M; matrix R and vector T are 

camera motion parameters from time t to time t+1 which have been calculated in Section 

3.2. 

 

3.3.2 A Camera Model 

Figure 3.4 shows camera geometry in which ),,( WWW ZYX  is the world coordinate 

system; ),,( ZYX is a camera coordinate system; M is the 3D point; cX  is the coordinate 

of M in the camera coordinate system; X  is the coordinate of M in the world coordinate 

system; x ),( yx=  is the 2D point coordinate with the unit of millimeter in the virtual 

image plane, and m ),( vu=  is the 2D point coordinate with the unit of pixel in the virtual 

image plane. 

The relationship between m and x are given by 

xAm ~~ =                            (3.40) 

where A is a 33×  matrix, this parameter is decided by a camera; )1,,(~ vum = ; 

)1,,(~ yxx = . 
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Fig. 3.3 Camera locations and coordinates. 

 

 

Fig. 3.4 Camera geometry. 
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The relationship between the camera coordinate system and the virtual image plane is 

given by 

cf XPx
~~ =λ                          (3.41) 

where λ  is a constant and Pf is a 43×  matrix. This parameter is decided by a camera. 

Putting Eq. (3.41) together with Eq. (3.40) leads to the formula 

  cf XAP
~~ =mλ                           (3.42) 

The world coordinate and the camera coordinate are related via a rotation and a 

translation. The relationship is given as 

X
R

XMX c

~
10

~~








==

T
                    (3.43) 

where the parameters of R and T which relate the camera orientation and position to the 

world coordinate system are called the external parameters. 

Putting Eq. (3.43) together with Eq. (3.42) leads to the formula 

[ ]XRKXMAPf

~~~ Tm ==λ                  (3.44) 

where K is the calibration matrix of the camera (internal camera parameters), which can be 

obtained from camera calibration. 

Finally, we have the projection equation, Eq. (3.44). This equation indicates the 

relationship between 2D points in the image plane and 3D points in the world coordinate 

system. 

 

3.3.3 3D Coordinate 

In Fig. 3.3, if we just consider the moment t, we can get the camera geometry at time t 

(shown in Fig. 3.5). At this moment, the world coordinate system coincides with the 

camera coordinate system. According to this, rotation matrix R is equal to a unit matrix I; 

translation matrix T is equal to zero vector 0. Projection equation Eq. (3.44) is rewritten as 

      [ ]XIKtt

~~ 0m =λ                          (3.45) 

At the moment t+1, the camera geometry is shown in Fig. 3.6. At this moment, the 
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world coordinate system and the camera coordinate system are in different locations. 

Because the world coordinate system coincides with the camera coordinate system at time t, 

and the motion parameters between two camera coordinate systems have been calculated in 

Section 3.2, rotation matrix R and translation vector T is known. Projection equation Eq. 

(3.44) is rewritten as 

[ ]XRKtt

~~
11 Tm =++λ                        (3.46) 

According to the forms of the following matrices (Eq. (3.47) and Eq. (3.48)), 
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Eq. (3.45) and Eq. (3.46) are easily rewritten in terms of the known coordinates mt and 

mt+1 as follows: 
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Based on Eq. (3.49) and Eq. (3.50), we can calculate the 3D coordinates of point M. 
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Fig. 3.5 Camera geometry at time t. 

                                    

 

Fig. 3.6 Camera geometry at time t+1. 
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3.4  Road Plane Estimation 
In this section, we estimate the parameters of the road plane using the 3D coordinates of 

feature points which locate in the road region.  

The equation of a road plane is given by 

           0=+++ dcZbYaX                         (3.51) 

Since the norm of the normal vector of the road plane is 1, we can calculate the 

parameters of the road plane using three 3D points. 

However, because of the false detection in the road region detection, some points which 

are identified as being in the road region in the previous frame and some points which have 

false 3D positions due to false correspondences may not actually exist on the road. To 

escape from these difficulties, the LMedS (Least Median of Squares) estimator [46] is used 

in this paper for estimating the parameters of the road plane. 

 

3.5  2D and 3D Classification 
Once we obtain the equation of a road plane, we can calculate the distances from the 3D 

positions of the feature points to the road plane. Based on the distance, we determine 

whether the 3D position of a feature point is located in the road plane.  

For a feature point ),( yx , ),,( ZYX  is the corresponding 3D position of this feature 

point. We calculate the distance from ),,( ZYX  to the road plane (Eq. (3.51)) as follows: 

           
222 cba

dcZbYaX
d

++

+++
=                        (3.52) 

If the distance d is smaller than the threshold Tdis, it means this 3D position of the feature 

point is located in the road plane. Then this feature point ),(yx  is classified as a 2D point; 

otherwise, classified as a 3D point. 

For all feature points of an object, we carry out this classification operation to classify 

them as 2D points or 3D points. Then, we count the number of 2D points and the number 

of 3D points. If the number of 2D points is larger than the number of 3D points, then this 

object is considered as a 2D object. Otherwise, this object is considered as a 3D object. 

 

3.6  Experimental Results 
First, we construct a set of feature points tS  located in the road region using the result 

of road region detection in the first image tI  taken at time t. 

Second, we construct a set of corresponding feature points 1+tS  using the 
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Lucas-Kanade Tracker in the second image 1+tI  taken at time t+1. 

Third, we construct a set of 3D candidate points on the road by calculating 3D 

coordinates of the feature points sets tS  and 1+tS  using the method described in Section 

3.3.  

Fourth, the equation of the road plane is estimated from the 3D coordinates of these 

candidate points. 

Finally, 2D and 3D objects are classified based on this road plane in the resultant image 

of obstacles detection. 

Figure 3.7 and Fig. 3.8 show experimental results of 2D and 3D objects classification of 

video 2 and video 3. In Fig. 3.7 and Fig. 3.8, (a) shows the input images and (b) is the 

result of 2D and 3D points classification. In Fig. 3.7 (b) and Fig. 3.8 (b), black regions 

mean the shapes of the obstacles which have been detected in Chapter 2; red points mean 

2D points; blue points mean 3D points. Then based on the number of 2D and 3D points, 

we obtain the result of 2D and 3D objects classification (shown in Fig. 3.7 (c) and Fig. 3.8 

(c)); blue regions mean 3D objects, whereas red regions mean 2D objects. 

 

3.7  Evaluation 
In order to evaluate the effectiveness of the proposed 2D and 3D objects classification 

method, we calculate Precision using the following formula: 

                 [%]100×=
all

correct

N

N
Precision                  (3.53) 

Here Ncorrect is the number of areas classified correctly and Nall is the number of total areas. 

The results of evaluation are shown in Table 3.1. 

 

Table 3.1 The result of evaluation of two different videos using the proposed 2D and 3D 

objects classification method. 

Videos Precision[%] 

Video 2 88.7 

Video 3 85.4 
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3.8  Discussion and Conclusion 
In this chapter, we proposed a method for classifying 2D objects and 3D objects in the 

resultant images of obstacles detection described in Chapter 2. 

In the part of camera motion estimation, in order to improve the calculation accuracy of 

the fundamental matrix, we normalized the coordinates of input data before constructing 

the equations to calculate the fundamental matrix F using the 8-point algorithm. 

In the part of road plane estimation, we use the points that are contained in the road 

region detected in Chapter 2 to estimate the parameters of the road plane. In this estimation, 

because there are some errors in the calculation, we use the LMedS estimator. 

In the obstacles detection method which we proposed in Chapter 2, if there is a paper or 

other 2D objects on the road, they are detected as obstacles. But these 2D objects are false 

obstacles. The method proposed in Chapter 3 can classify the 2D objects and 3D objects in 

the resultant image of the obstacles detection and delete these 2D objects using the result 

of object classification successfully. In this way, the obstacle detection method proposed in 

Chapter 2 has been improved and gained better accuracy.  
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Frame 111 

   

Frame 131 

   

Frame 150 

   

Frame 167 

(a)                   (b)                       (c) 

Fig. 3.7 Experimental results of 2D and 3D objects classification (Video 2). (a) Input 

images, (b) the result of 2D and 3D points classification, (c) the result of 2D and 3D 

objects classification. 
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Frame 109 

   

Frame 121 

   

Frame 124 

   

Frame 127 

(a)                   (b)                       (c) 

Fig. 3.8 Experimental results of 2D and 3D objects classification (Video 3). (a) Input 

images, (b) the result of 2D and 3D points classification, (c) the result of 2D and 3D 

objects classification. 
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Chapter 4  Final Experimental Results and Evaluation 

 

In this chapter, we use the results of 2D and 3D objects classification to optimize the 

results of obstacles detection. We also carry out a comparative experiment using the same 

experimental videos to discuss the effectiveness of the proposed obstacles detection 

method. 

 
4.1  The Proposed Obstacles Detection Methods 

In this section, we summarize two obstacles detection methods which we have proposed 

in Chapter 2 and Chapter 3. 

 

The Proposed Method 1: 

STEP1: Background modeling (described in Section 2.2). 

STEP2: Road region detection (described in Section 2.3). 

         In this road region detection, the training data contains the pixels of road 

marks. In the result of this road region detection, the road marks are classified 

as a part of the road region (shown in Fig. 2.15 – Fig. 2.16). 

STEP3: Region classification (described in Section 2.4.2). 

STEP4: Classification of foreground objects (described in Section 2.4.3). 

The results of obstacles detection using the proposed method 1 are shown in Fig. 2.17 – 

Fig. 2.19. 

 

The Proposed Method 2: 

STEP1: Background modeling (described in Section 2.2). 

STEP2: Road region detection (described in Section 2.3). 

In this road region detection, the training data doesn’t contain the pixels of 

road marks. In the result of this road region detection, the road marks are 

classified as the non-road region (shown in Fig. 2.20 (b) and Fig. 2.21 (b)). 

STEP3: Region classification (described in Section 2.4.2). 

STEP4: Classification of foreground objects (described in Section 2.4.3). 

         The results of operations from STEP 1 to STEP 4 are shown in Fig. 2.20 – 

Fig. 2.21. 

STEP5: 2D and 3D objects classification (described in Chapter 3). 

         The results of 2D and 3D objects classification are shown in Fig. 3.7 – Fig. 
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3.8. 

STEP6: Deleting 2D objects in the resultant images of STEP 4. 

Figure 4.1 and Fig. 4.2 show the experimental results of detecting 2D objects, these 

results are the results of obstacles detection using the proposed method 2.  

In Fig. 4.1 and Fig. 4.2, (a) shows the resultant images of STEP 4 (also shown in Fig. 

2.20 (d) and Fig. 2.21 (d)). (b) shows the results of 2D and 3D objects classification (also 

shown in Fig.3.7 (c) and Fig. 3.8 (c)); blue regions mean 3D objects, red regions mean 2D 

objects. We can get the final results of obstacles detection after deleting 2D objects in (a) 

using the results shown in (b) and deleting the small noise. The results of obstacles 

detection using the proposed method 2 are shown in Fig. 4.1 (c) and Fig. 4.2 (c). 

 

4.2  The Method of Comparative Experiment 
In this section, we introduce a comparative method. 

 

The Comparative Method: 

STEP1: Background modeling (described in Section 2.2). 

STEP2: Road region detection. 

         In this road region detection, we detect the road regions using another method. 

This road region detection method has been proposed in [47-48], which is called 

the road region detection method using motion compensation. 

         The road region detection method using motion compensation assumes all the 

3D points in the world coordinate system which correspond to the pixels in the 

first image are on the road plane. Based on this assumption, using the camera 

motion parameters and epipolar geometry, it warps the first image and gets the 

warped image. Then the second image is compared with the warped image, the 

different region between these two images are caused by 3D points which are 

not on the road plane and this region is the non-road region; the similar region 

in these two images is the road region. 

STEP3: Region classification (described in Section 2.4.2). 

STEP4: Classification of foreground objects (described in Section 2.4.3). 

The results of obstacles detection using the comparative method are shown in Fig. 4.3 – 

Fig. 4.5. 
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Frame 111 

   

Frame 131 

   

Frame 150 

   

Frame 167 

 (a)                   (b)                       (c) 

Fig. 4.1 The results of obstacles detection using the proposed method 2 (Video 2). (a) The 

resultant images of STEP 4, (b) the results of 2D and 3D objects classification, (c) the 

results of obstacles detection using the proposed method 2. 
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Frame 109 

   

Frame 121 

   

Frame 124 

   

Frame 127 

(a)                   (b)                       (c) 

Fig. 4.2 The results of obstacles detection using the proposed method 2 (Video 3). (a) The 

resultant images of STEP 4, (b) the results of 2D and 3D objects classification, (c) the 

results of obstacles detection using the proposed method 2. 
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Frame 182 

   
Frame 222 

   

Frame 250 

   

Frame 264 

(a)                   (b)                       (c) 

Fig. 4.3 The results of obstacles detection using the comparative method (Video 1). (a) 

Input images, (b) the results of road region detection using motion compensation, (c) the 

results of obstacles detection of comparative experiment. 
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Frame 110 

   

Frame 117 

   

Frame 133 

   

Frame 150 

(a)                   (b)                       (c) 

Fig. 4.4 The results of obstacles detection using the comparative method (Video 2). (a) 

Input images, (b) the results of road region detection using motion compensation, (c) the 

results of obstacles detection of comparative experiment. 
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Frame 122 

   
Frame 128 

   

Frame 140 

   
Frame 161 

(a)                   (b)                       (c) 

Fig. 4.5 The results of obstacles detection using the comparative method (Video 3). (a) 

Input images, (b) the results of road region detection using motion compensation, (c) the 

results of obstacles detection of comparative experiment. 
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4.3  Evaluation 
In this section, we evaluate the effectiveness of the proposed method 1, the proposed 

method 2 and the comparative method using the evaluation method described in Section 

2.6. The result of evaluation is composed of three values: Precision, Recall and FPR. 

Precision is a measure of exactness or fidelity; Recall is a measure of completeness; FPR 

is a measure of inaccuracy. 

Table 4.1 shows the results of evaluation with Video 1 using two different detection 

methods (the proposed method 1 and the comparative method). 

Table 4.2 – Table 4.3 show the results of evaluation with Video 2 and Video 3 using 

three different detection methods (the proposed method 1, the proposed method 2 and the 

comparative method).  

 

Table 4.1 The result of evaluation of Video 1 using two different detection methods. 

Methods 
Evaluation Values 

Precision[%] Recall[%] FPR[%] 
The Proposed 

Method 1 
97.5 79.7 2.5 

The Comparative 

Method 
94.9 74.6 5.1 

 

Table 4.2 The result of evaluation of Video 2 using three different detection methods. 

Methods 
Evaluation Values 

Precision[%] Recall[%] FPR[%] 
The Proposed 

Method 1 
94.5 80.0 5.5 

The Proposed 

Method 2 
94.0 80.0 6.0 

The Comparative 

Method 
92.9 80.0 7.1 
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Table 4.3 The result of evaluation of Video 3 using three different detection methods. 

Methods 
Evaluation Values 

Precision[%] Recall[%] FPR[%] 
The Proposed 

Method 1 
96.8 73.9 3.2 

The Proposed 

Method 2 
95.2 73.5 4.8 

The Comparative 

Method 
93.4 55.7 6.6 

 

4.4  Discussion 
In this chapter, we summarized two proposed obstacles detection methods which have 

been described in Chapter 2 and Chapter 3. We also introduced a comparative obstacles 

detection method, and then compared these three obstacles detection methods and 

evaluated the effectiveness of them. 

According to the results of evaluation (shown in Table 4.1 – Table 4.3), the proposed 

method 1 and the proposed method 2 work well than the comparative method. It is because, 

in the part of road region detection, the comparative method detected the road region using 

the method based on motion compensation. This road region detection method using 

motion compensation needs camera calibration [49] and must calculate the motion 

parameters of the car. Due to the error of these calculations, the road region detection 

results are worse than the road region detection method using SVM. This also leads to the 

low precision of the final obstacles detection. 

The performance of the proposed obstacles detection method depends on the size of an 

obstacle in an image or the distance between the obstacle and the car. If the size of an 

obstacle in an image is too small, it is recognized as noise and deleted. According to the 

performed experiments, the maximum feasible distance of detecting a pedestrian is about 

70m.  

The distance that a car moves during the period from the detection system starts 

detecting obstacles until the car stops is defined as a stop distance. When this stop distance 

is larger than the maximum feasible distance, the obstacle detection makes no sense as the 

car crashes against the obstacle. We calculate the stop distance using the following 

formula: 
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                      vrf dvtvtd ++=                           (4.1) 

where v  is the speed of a car; ft  is the processing time of each frame; rt  is the driver 

reaction time; vd  is the distance needed to stop the car from the instance of brake 

application begins. The term fvt  means the distance that the car moves during the 

process of the detection; rvt  is the distance that the car moves during the driver reaction 

time. The processing time of the detection method ft  is 695ms/f. The parameters rt  and 

vd  can be found in [50]. Then the stop distance can be calculated and the results are 

shown in Table 4.4. 

Because the stop distance must be smaller than the maximum feasible distance, the 

proposed method can be applied to a vehicle driving up to 45 km/h. This obstacles 

detection method can be applied to the real driving condition of a vehicle in the city. 

Table 4.4 Stop distance. 

Speed of a car 
(km/h) 

20 30 40 50 60 

Stop distance 
(m) 

24 41 58 75 97 
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Chapter 5  Conclusion 

 

5.1  Conclusion 
In this thesis, we proposed an obstacles detection method using a video taken by a 

vehicle-mounted monocular camera. 

In Chapter 2, a method of automatic obstacles detection is proposed for detecting 

obstacles on a road, even if they are moving or static, by the use of background modeling 

and road region detection.  

Background modeling is often used to detect moving objects when a camera is static. In 

the proposed method, we apply it to a moving camera case in order to obtain foreground 

images.  

In the part of road region detection, we carried out two experiments: the training data 

contains the pixels of road marks; the training data doesn’t contain the pixels of road marks. 

In the experiment of the training data which contains the pixels of road marks, it can delete 

2D objects (which are considered as false obstacles) in the foreground images; whereas the 

experiment of the training data which doesn’t contain the pixels of road marks cannot 

delete 2D objects. 

In the performed experiments, it is shown that the experiment of the training data which 

contains the pixels of road marks works much better than the experiment of the training 

data which doesn’t contain the pixels of road marks.  

In Chapter 3, we proposed a method of classifying 2D objects and 3D objects. This 

classification method is based on the estimation of a road plane. According to the 

relationship between the feature points and the road plane, these feature points are 

classified as 2D points or 3D points. Finally, one object is considered as a 2D object or a 

3D object based on the number of 2D points and the number of 3D points on the object. 

This classification method can be used to delete 2D objects (considered as false 

obstacles) in the resultant images of obstacles detection (obtained from the method 

described in Chapter 2). After deleting these 2D objects, it will improve the accuracy of 

obstacles detection. In addition to the obstacles detection, the proposed 2D and 3D objects 

classification method also can be used in other applications (e.g., walking robots). 

In Chapter 4, we summarized the obstacles detection methods which we have proposed 

in Chapter 2 and Chapter 3. In order to prove the effectiveness of the proposed methods, 

we also introduced a comparative method. In the road region detection part of the 

comparative method, it detected the road regions using another method (the road region 
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detection method using motion compensation).  

This road region detection method using motion compensation needs camera calibration 

and it must calculate the motion parameters of the car. Due to the error of these 

calculations, the proposed method 1 and the proposed method 2 work better than the 

comparative method (shown in the results of evaluation Table 4.1 – Table 4.3). 

The proposed obstacles detection method has some advantages over the existing 

obstacles detection methods: 

In the first place, the proposed method uses a monocular camera. This realizes an 

economic system and smaller computation time. It is also advantageous for achieving 

real-time processing.  

In the second place, in the proposed method, the video which is used to reconstruct the 

background is captured by a vehicle-mounted camera, and this car is driving at normal 

speed. The existing background modeling methods are often used in the static camera 

occasions or in the slow-moving camera occasions (e.g., when a car is driving near the 

crossroad). This characteristic of the proposed method is important to the industrial 

applications of a vehicle-mounted camera based obstacles detection system. 

The originalities of this thesis are as follows:  

In the first place, the proposed method can detect arbitrary objects including both static 

objects and moving objects. To the best of our knowledge, no researches have ever 

proposed a method which detects both static and moving objects simultaneously. This is 

helpful because static objects such as boxes fallen on the road from a car are dangerous for 

drivers. The existent methods concentrate only on detecting moving objects such as 

pedestrians, bicycles and cars.  

In the second place, the output of the proposed method is the shape of obstacles. Most of 

the existing obstacles detection methods only indicate the location of an obstacle by a 

rectangular frame which surrounds it and they do not extract the shape of obstacles. 

Extraction of the shape of an obstacle is important for obstacles recognition. If the detected 

obstacle is recognized as a pedestrian from its shape, we can foresee his/her next motion. 

In the third place, the proposed 2D and 3D objects classification method can distinguish 

which objects are 3D objects, and which objects are 2D objects in a pile of objects using a 

monocular camera. To the best of our knowledge, no researches have ever proposed a 

method which classified 2D and 3D obstacles on the road. The proposed 2D and 3D 

objects classification method can be used to delete 2D objects in the resultant images of 

obstacles detection and improve the accuracy of obstacles detection. It is useful in the 

obstacles detection and other applications, such as navigation of walking robots. 
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5.2  Future Work 
The proposed obstacles detection method also has disadvantages, and these are our 

future work. 

In the first place, the proposed method is weak on a rainy day since the windscreen 

wipers hinder visibility of background images.  

In the second place, the proposed method is also not effective on hilly roads as the 

method assumes the road is an even plane while detecting the road region.  

In the third place, the proposed method works well in a straight road. But when it is 

applied to a curved road, the result of detection is not very well compared to the result 

when applied to a straight road. The proposed method is now under improvement so that it 

may be applicable to a slightly curved road. 
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