Integer Antimagic Labeling for Cycle with One Chord

Jinze Zheng
Illinois Wesleyan University

Daniel Roberts, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
Part of the [Education Commons](http://digitalcommons.iwu.edu/education_commons), and the [Mathematics Commons](http://digitalcommons.iwu.edu/mathematics_commons)

Jinze Zheng and Daniel Roberts, Faculty Advisor, "Integer Antimagic Labeling for Cycle with One Chord" (April 16, 2016).
http://digitalcommons.iwu.edu/jwprc/2016/posters2/20
For $k \geq 2$, a graph G is called Z_k-antimagic if there exists a labeling of its edges $f : E(G) \rightarrow Z_k \setminus \{0\}$ such that the labels induced on the vertices given by the sums of the labels of the edges incident to each vertex are all distinct. For a given graph G, the integer antimagic spectrum is the set of all integers k for which G is Z_k-antimagic. This project focuses on characterizing the integer antimagic spectrum for a class of graphs $C_n(l)$, which are composed of a cycle and a chord inside the cycle, C_n. Our method consists of the alternating path and alternating cycle labelings and also previous results on the existence of Z_k-antimagic labelings of cycles.