<table>
<thead>
<tr>
<th>Title</th>
<th>On the relation between the weak Palais-Smale condition and coercivity given by Zhong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Suzuki, Tomonari</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-04-15T00:00:00Z</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10228/1235</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
ON THE RELATION BETWEEN THE WEAK PALAIS-SMALE CONDITION AND COERCIVITY BY ZHONG

TOMONARI SUZUKI

Abstract. In this paper, we discuss Zhong’s result of that the weak Palais-Smale condition implies coercivity under some assumption in [Nonlinear Anal., 29 (1997), 1421–1431]. We also give a simple proof of Zhong’s result. Further we generalize the result in Caklovic, Li and Willem [Differential Integral Equations, 3 (1990), 799–800].

1. Introduction

Throughout this paper we denote by \(\mathbb{N} \) the set of all positive integers and by \(\mathbb{R} \) the set of all real numbers.

Let \(f \) be a function from a Banach space \(X \) into \((−∞, +∞]\). We recall that \(f \) is called \(Gâteaux differentiable \) at \(x \in X \) with \(f(x) \in \mathbb{R} \) if there exists a continuous linear functional \(f'(x) \) such that
\[
\lim_{t \to 0} \frac{f(x + ty) - f(x)}{t} = \langle f'(x), y \rangle
\]
holds for every \(y \in X \). \(f \) is said to be coercive if
\[
\lim_{r \to \infty} \inf_{\|x\| \geq r} f(x) = \infty
\]
holds. Also, \(f \) is said to satisfy the \(\text{weak Palais-Smale condition} \) [17] if there exists a nondecreasing function \(h \) from \([0, ∞)\) into itself satisfying \(\int_0^\infty (1/(1 + h(t)))dt = ∞ \), and the following condition: Every sequence \(\{x_n\} \) in \(X \) such that \(\{f(x_n)\} \) is bounded and
\[
\lim_{n \to \infty} \|f'(x_n)\| (1 + h(\|x_n\|)) = 0
\]
contains a convergent subsequence. This definition seems to be weaker than the definition in [17]. However they are equivalent; see Section 5. In the case of \(h(t) = 0 \) for all \(t \in [0, ∞) \), we call that \(f \) satisfies the \(\text{Palais-Smale condition} \). In the case of \(h(t) = t \) for all \(t \in [0, ∞) \), we call that \(f \) satisfies the \(\text{Cerami-Palais-Smale condition} \) [4].

It is well known that the Palais-Smale condition implies coercivity under some assumption; see Brézis and Nirenberg [2], Caklovic, Li and Willem [3] and others. In 1997, Zhong [17] generalized these results and proved that the weak Palais-Smale condition implies coercivity. However the proof is slightly complicated.

2000 Mathematics Subject Classification. 49K27.

Key words and phrases. Palais-Smale condition, coercivity, Ekeland’s variational principle, Zhong’s variational principle, \(\tau \)-distance.

The author is supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology.
In this paper, we discuss Zhong’s result and we also give a simple proof of it. Further we generalize the result in Caklovic, Li and Willem [3]. We also discuss the conditions of the continuity of \(h, \int_0^\infty (1/(1 + h(t))) dt = \infty \), and the completeness of \(X \).

2. \(\tau \)-Distance

In our discussion, the notion of \(\tau \)-distance plays an important role.

Let \((X, d) \) be a metric space. Then a function \(p \) from \(X \times X \) into \([0, \infty)\) is called a \(\tau \)-distance on \(X \) [10] if there exists a function \(\eta \) from \(X \times [0, \infty) \) into \([0, \infty)\) and the following are satisfied:

\[
\begin{align*}
(\tau 1) & \quad p(x, z) \leq p(x, y) + p(y, z) \text{ for all } x, y, z \in X; \\
(\tau 2) & \quad \eta(x, 0) = 0 \text{ and } \eta(x, t) \geq t \text{ for all } x \in X \text{ and } t \in [0, \infty), \text{ and } \eta \text{ is concave and continuous in its second variable}; \\
(\tau 3) & \quad \lim_n x_n = x \text{ and } \lim_n \sup \{\eta(z_n, p(z_n, x_m)) : m \geq n\} = 0 \text{ imply } p(w, x) \leq \lim\inf_n p(w, x_n) \text{ for all } w \in X; \\
(\tau 4) & \quad \lim_n \sup \{p(x_n, y_m) : m \geq n\} = 0 \text{ and } \lim_n \eta(x_n, t_n) = 0 \text{ imply } \lim_n \eta(y_n, t_n) = 0; \\
(\tau 5) & \quad \lim_n \eta(z_n, p(z_n, x_n)) = 0 \text{ and } \lim_n \eta(z_n, p(z_n, y_n)) = 0 \text{ imply } \lim_n d(x_n, y_n) = 0.
\end{align*}
\]

We note that \(\eta \) is strictly increasing in its second variable. We also note that the metric \(d \) is a \(\tau \)-distance on \(X \). Many useful propositions and examples are stated in [7–16].

Though the following is a corollary of Proposition 2 in [12], we give a proof.

Proposition 1. Let \((X, d) \) be a metric space with a \(\tau \)-distance \(p \). Let \(q \) be a function from \(X \times X \) into \([0, \infty)\). Suppose that

(i) \(q \) satisfies (\(\tau 1 \))\(_q \), i.e., \(q(x, z) \leq q(x, y) + q(y, z) \) for all \(x, y, z \in X \);
(ii) \(q \) is lower semicontinuous in its second variable;
(iii) \(q(x, y) \geq p(x, y) \) for all \(x, y \in X \).

Then \(q \) is also a \(\tau \)-distance on \(X \).

Proof. Let \(\eta \) be a function satisfying (\(\tau 2 \))–(\(\tau 5 \)). From the assumption (ii), (\(\tau 3 \))\(_q \) clearly holds. We assume that \(\lim_n \sup \{q(x_n, y_m) : m \geq n\} = 0 \) and \(\lim_n \eta(x_n, t_n) = 0 \). Then from the assumption (iii), we have \(\lim_n \sup \{p(x_n, y_m) : m \geq n\} = 0 \). So by (\(\tau 4 \)), we obtain \(\lim_n \eta(y_n, t_n) = 0 \). This is (\(\tau 4 \))\(_q \). Let us prove (\(\tau 5 \))\(_q \). We assume that \(\lim_n \eta(z_n, q(z_n, x_n)) = 0 \) and \(\lim_n \eta(z_n, q(z_n, y_n)) = 0 \). Then from the assumption (iii) again, we have \(\lim_n \eta(z_n, p(z_n, x_n)) = 0 \) and \(\lim_n \eta(z_n, p(z_n, y_n)) = 0 \). So by (\(\tau 5 \)), we obtain \(\lim_n d(x_n, y_n) = 0 \). This completes the proof. \(\square \)

Now, we give the following example.

Example 1. Let \((X, d) \) be a metric space, and \(h \) a nondecreasing function from \([0, \infty)\) into itself such that \(\int_0^\infty (1/(1 + h(t))) dt = \infty \). Fix \(z_0 \in X \). Then functions \(p \) and \(q \) from \(X \times X \) into \([0, \infty)\) defined by

\[
p(x, y) = \int_{d(z_0, x)}^{d(z_0, x) + d(x, y)} \frac{dt}{1 + h(t)} \quad \text{and} \quad q(x, y) = p(x, y) + p(y, x)
\]

for all \(x, y \in X \) are \(\tau \)-distances on \(X \).
Proof. We know that \(p \) is a \(\tau \)-distance on \(X \); see Proposition 4 in [10]. So, since \(p \) satisfies (\(\tau 1 \)), we have

\[
q(x, z) = p(x, z) + p(z, x) \\
\leq p(x, y) + p(y, z) + p(z, y) + p(y, x) \\
= q(x, y) + q(y, z)
\]

for \(x, y, z \in X \). This is (\(\tau 1 \)). It is obvious that \(q \) is continuous and \(q(x, y) \geq p(x, y) \) for all \(x, y \in X \). So by Proposition 1, we have \(q \) is a \(\tau \)-distance on \(X \). \(\square \)

In [10], using the above \(p \), the author gave the slight generalization and another proof of Zhong’s variational principle [17, 18]. In this paper, we use the above \(q \).

The following is Theorem 4 in [10], which is the \(\tau \)-distance version of Ekeland’s variational principle [5, 6]. Of course, this is one of the generalizations of the Banach contraction principle [1].

Theorem 1. Let \(X \) be a complete metric space with a \(\tau \)-distance \(p \). Let \(f \) be a function from \(X \) into \((-\infty, +\infty]\) which is proper lower semicontinuous and bounded from below. Then for \(\varepsilon > 0 \) and \(u \in X \) with \(p(u, u) = 0 \), there exists \(v \in X \) such that \(f(v) \leq f(u) - \varepsilon p(u, v) \) and \(f(w) > f(v) - \varepsilon p(v, w) \) for all \(w \in X \) with \(w \neq v \).

From Example 1 and Theorem 1, we obtain the following.

Theorem 2. Let \(X \), \(d \), \(h \), \(z_0 \) be as in Example 1. Suppose that \(X \) is complete. Let \(f \) be a function from \(X \) into \((-\infty, +\infty]\) which is proper lower semicontinuous and bounded from below. Then for \(\varepsilon > 0 \) and \(u \in X \), there exists \(v \in X \) such that

\[
f(v) \leq f(u) - \varepsilon \int_{d(z_0, u)}^{d(z_0, v) + d(u, v)} \frac{dt}{1 + h(t)} - \varepsilon \int_{d(z_0, v)}^{d(z_0, w) + d(v, w)} \frac{dt}{1 + h(t)}
\]

and

\[
f(w) > f(v) - \varepsilon \int_{d(z_0, v)}^{d(z_0, w) + d(v, w)} \frac{dt}{1 + h(t)} - \varepsilon \int_{d(z_0, u)}^{d(z_0, v) + d(u, v)} \frac{dt}{1 + h(t)}
\]

for all \(w \in X \) with \(w \neq v \).

3. Zhong’s Result

In this section, using Theorem 2, we can easily prove the following Zhong’s result in [17]. Compare the proof with Zhong’s. We use Theorem 2 only one time.

Theorem 3 (Zhong [17]). Let \(X \) be a Banach space, and \(h \) a nondecreasing function from \([0, \infty)\) into itself such that \(\int_0^{\infty} (1/(1 + h(t))) dt = \infty \). Let \(f \) be a function from \(X \) into \((-\infty, +\infty]\) which is proper lower semicontinuous. Assume that \(f \) is Gâteaux differentiable at every point \(x \in X \) with \(f(x) \in \mathbb{R} \). If

\[
\alpha := \lim_{r \to \infty} \inf_{\|x\| \geq r} f(x) \in \mathbb{R},
\]

then there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim_n \|x_n\| = \infty \), \(\lim_n f(x_n) = \alpha \), and

\[
\lim_{n \to \infty} \|f'(x_n)\| (1 + h(\|x_n\|)) = 0.
\]

Remark. In [17], the continuity of \(h \) is needed. We discuss this condition in Section 5.

In the proof of Theorem 3, we use the following lemma, which is well known.
Lemma 1. Suppose that $c \geq 0$, $\delta > 0$, $v \in X$, $f(v) \in \mathbb{R}$ and either of the following holds:

- $f(w) \geq f(v) - c \|v - w\|$ for all $w \in X$ with $0 < \|v - w\| < \delta$; or
- $f(w) \leq f(v) + c \|v - w\|$ for all $w \in X$ with $0 < \|v - w\| < \delta$.

Then $\|f'(v)\| \leq c$.

Proof of Theorem 3. We shall only show the following: For every $\varepsilon > 0$, there exists $v \in X$ satisfying $\|v\| \geq 1/\varepsilon$, $|f(v) - \alpha| \leq \varepsilon$, and $\|f'(v)\| \left(1 + h(\|v\|)\right) \leq \varepsilon$. Fix $\varepsilon > 0$. Define a function θ from $[0, \infty)$ into itself by

$$(1) \quad \theta(t) = 1 + 2h(t + 1)$$

for $t \in [0, \infty)$. Then it is obvious that θ is nondecreasing, and we have

$$\int_0^\infty \frac{dt}{1 + \theta(t)} = \frac{1}{2} \int_0^\infty \frac{dt}{1 + h(t + 1)} = \frac{1}{2} \int_1^\infty \frac{dt}{1 + h(t)} = \infty.$$

We also define a function g from X into $(-\infty, +\infty]$ by

$$g(x) = \max \{f(x), \alpha - 2\varepsilon\}$$

for $x \in X$. Then it is obvious that g is proper lower semicontinuous and bounded from below. We next choose $r, r' \in \mathbb{R}$ with $1/\varepsilon < r < r'$, $1 < r$,

$$\inf_{\|x\| \geq r} f(x) > \alpha - \varepsilon, \quad \text{and} \quad \int_r^{r'} \frac{dt}{1 + \theta(t)} = 3.$$

We also choose $u \in X$ with $\|u\| > r'$ and $f(u) < \alpha + \varepsilon$. We note that $g(u) = f(u)$ because of $\|u\| > r$. Then by Theorem 2, there exists $v \in X$ such that

$$(2) \quad g(v) \leq g(u) - \varepsilon \int_{\|v\|}^{\|u\| + \|u - v\|} \frac{dt}{1 + \theta(t)} \varepsilon \int_{\|v\|}^{\|u\| + \|u - v\|} \frac{dt}{1 + \theta(t)}$$

and

$$(3) \quad g(w) > g(v) - \varepsilon \int_{\|v\|}^{\|u\| + \|u - w\|} \frac{dt}{1 + \theta(t)} \varepsilon \int_{\|v\|}^{\|u\| + \|u - w\|} \frac{dt}{1 + \theta(t)}$$

for all $w \in X$ with $w \neq v$. Arguing by contradiction, we assume that $\|v\| < r$. From (2), we have

$$\alpha - 2\varepsilon \leq g(v) \leq g(u) - \varepsilon \int_{\|v\|}^{\|u\| + \|u - v\|} \frac{dt}{1 + \theta(t)}$$

$$\leq g(u) - \varepsilon \int_{\|v\|}^{\|u\|} \frac{dt}{1 + \theta(t)} \leq g(u) - \varepsilon \int_r^{r'} \frac{dt}{1 + \theta(t)}$$

$$= f(u) - 3\varepsilon < \alpha - 2\varepsilon.$$

This is a contradiction. Therefore we obtain $\|v\| \geq r > 1/\varepsilon$. Thus we have $g(v) = f(v)$ and

$$\alpha - \varepsilon < \inf_{\|x\| \geq r} f(x) \leq f(v) \leq f(u) < \alpha + \varepsilon.$$

This implies $|f(v) - \alpha| \leq \varepsilon$. From (3) and nondecreasingness of θ, we have

$$g(w) > g(v) - \left(\frac{\varepsilon}{1 + \theta(\|v\|)} + \frac{\varepsilon}{1 + \theta(\|w\|)}\right) \|v - w\|.$$
for \(w \in X \) with \(w \neq v \). Since \(f \) is lower semicontinuous and \(f(v) > \alpha - 2\varepsilon \), there exists \(\delta \in (0,1) \) such that \(f(w) > \alpha - 2\varepsilon \) for \(w \in X \) with \(\|v - w\| < \delta \). Hence, for \(w \in X \) with \(0 < \|v - w\| < \delta \), since \(g(w) = f(w) \) and
\[
\|w\| \geq \|v\| - \|v - w\| > \|v\| - \delta > \|v\| - 1 > 0,
\]
we have
\[
f(w) > f(v) - \left(\frac{\varepsilon}{1 + \theta(\|v\|)} + \frac{\varepsilon}{1 + \theta(\|v\| - 1)} \right) \|v - w\|
\geq f(v) - \frac{2\varepsilon}{1 + \theta(\|v\| - 1)} \|v - w\|
= f(v) - \frac{\varepsilon}{1 + h(\|v\|)} \|v - w\|.
\]
So by Lemma 1, we have \(\|f'(v)\| (1 + h(\|v\|)) \leq \varepsilon \). This completes the proof. \(\square \)

As a direct consequence of Theorem 3, we obtain the following.

Theorem 4 (Zhong [17]). Let \(X \) be a Banach space. Let \(f \) be a function from \(X \) into \((-\infty, +\infty) \) which is proper lower semicontinuous and bounded from below. Assume that \(f \) is Gâteaux differentiable at every point \(x \in X \) with \(f(x) \in \mathbb{R} \), and \(f \) satisfies the weak Palais-Smale condition. Then \(f \) is coercive.

Remark. We can weaken the condition that \(f \) satisfies the weak Palais-Smale condition as follows: Every sequence \(\{x_n\} \) in \(X \) such that \(\{f(x_n)\} \) is bounded and \(\lim_n \|f'(x_n)\| (1 + h(\|x_n\|)) = 0 \) contains a bounded subsequence.

4. Coercivity of \(|f| \)

In this section, we discuss the coercivity of \(|f| \).

The following is a generalization of the result in Caklovic, Li and Willem [3].

Theorem 5. Let \(X \) be a Banach space, and \(h \) a nondecreasing function from \([0, \infty) \) into itself such that \(\int_0^\infty \frac{1}{1 + h(t)} \, dt = \infty \). Let \(f \) be a continuous function from \(X \) into \(\mathbb{R} \). Assume that \(f \) is Gâteaux differentiable at every point \(x \in X \). If there exists \(\gamma \in \mathbb{R} \) such that \(\{x \in X : f(x) = \gamma\} \) is bounded, and
\[
\alpha := \lim_{r \to \infty} \inf_{\|x\| \geq r} |f(x) - \gamma| \in \mathbb{R},
\]
then there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim_n \|x_n\| = \infty \), \(\lim_n |f(x_n) - \gamma| = \alpha \), and
\[
\lim_{n \to \infty} \|f'(x_n)\| (1 + h(\|x_n\|)) = 0.
\]

Proof. We put \(g(x) = |f(x) - \gamma| \) for all \(x \in X \). We shall only show the following: For every \(\varepsilon > 0 \), there exists \(v \in X \) satisfying \(\|v\| \geq 1/\varepsilon \), \(|g(v) - \alpha| \leq \varepsilon \), and \(\|f'(v)\| (1 + h(\|v\|)) \leq \varepsilon \). Fix \(\varepsilon > 0 \). Define a function \(\theta \) from \([0, \infty) \) into itself by (1). We next choose \(r, r' \in \mathbb{R} \) with \(1/\varepsilon < r < r' \), \(1 < r \), \(g(x) > 0 \) for \(x \in X \) with \(\|x\| \geq r \),
\[
\inf_{\|x\| \geq r} g(x) > \alpha - \varepsilon, \text{ and } \int_r^{r'} \frac{dt}{1 + \theta(t)} = \frac{\alpha + \varepsilon}{\varepsilon}.
\]
We also choose \(u \in X \) with \(\|u\| > r' \) and \(g(u) < \alpha + \varepsilon \). Then by Theorem 2, there exists \(v \in X \) with (2) and (3) for all \(w \in X \) with \(w \neq v \). Arguing by contradiction, we assume that \(\|v\| < r \). From (2), we have

\[
0 \leq g(v) \leq g(u) - \varepsilon \int_r^{r'} \frac{dt}{1 + \theta(t)} = g(u) - (\alpha + \varepsilon) < 0.
\]

This is a contradiction. Therefore we obtain \(\|v\| \geq r > 1/\varepsilon \) and hence \(g(v) > 0 \). We also have

\[
\alpha - \varepsilon < \inf_{\|x\| \geq r} g(x) \leq g(v) < \alpha + \varepsilon.
\]

and hence \(|g(v) - \alpha| \leq \varepsilon \). Since \(f \) is continuous and \(g(v) > 0 \), there exists \(\delta \in (0, 1) \) such that either of the following holds:

- \(g(w) = +f(w) - \gamma \) for \(w \in X \) with \(\|v - w\| < \delta \); or
- \(g(w) = -f(w) + \gamma \) for \(w \in X \) with \(\|v - w\| < \delta \).

As in the proof of Theorem 3, we have

\[
g(w) > g(v) - \frac{\varepsilon}{1 + h(\|v\|)} \|v - w\|
\]

for \(w \in X \) with \(0 < \|v - w\| < \delta \). In the former case, we obtain

\[
f(w) > f(v) - \frac{\varepsilon}{1 + h(\|v\|)} \|v - w\|.
\]

In the latter case, we obtain

\[
f(w) < f(v) + \frac{\varepsilon}{1 + h(\|v\|)} \|v - w\|.
\]

So, by Lemma 1, we have \(\|f'(v)\| \left(1 + h(\|v\|)\right) \leq \varepsilon \) in both cases. This completes the proof. \(\Box \)

As a direct consequence of Theorem 5, we obtain the following.

Theorem 6. Let \(X \) be a Banach space. Let \(f \) be a continuous function from \(X \) into \(\mathbb{R} \). Assume that \(f \) is Gâteaux differentiable at every point \(x \in X \), and \(f \) satisfies the weak Palais-Smale condition. If there exists \(\gamma \in \mathbb{R} \) such that \(\{x \in X : f(x) = \gamma\} \) is bounded, then \(|f| \) is coercive.

Remark. We have the same remark of Theorem 4.

5. **CONTINUITY OF \(h \)**

In this section, we discuss the continuity of \(h \).

Without the assumption of continuity of \(h \), we can prove Theorem 3. However, Theorem 3 is not a generalization of Zhong’s result because the following proposition holds. That is, Theorem 3 in this paper and Theorem 3.7 in [17] are equivalent. Also the two definitions of weak Palais-Smale condition in [17] and in this paper are equivalent.

Proposition 2. Let \(h \) be a nondecreasing function from \([0, \infty)\) into itself such that \(\int_0^\infty (1/(1+h(t)))dt = \infty \). Then there exists a continuous nondecreasing function \(\theta \) from \([0, \infty)\) into itself such that \(\int_0^\infty (1/(1+\theta(t)))dt = \infty \) and \(h(t) \leq \theta(t) \) for all \(t \in [0, \infty) \).
For \(t \in \mathbb{R} \), we denote by \([t]\) the maximum integer not exceeding \(t \). Define a function \(\theta \) from \([0, \infty)\) into itself by

\[
\theta(t) = \left(1 - t + [t]\right)h([t] + 1) + (t - [t])h([t] + 2)
\]

for \(t \in [0, \infty) \). Putting \(k = [t] \) and \(s = t - [t] \in [0, 1) \), we have

\[
\theta(k + s) = (1 - s)h(k + 1) + sh(k + 2).
\]

It is obvious that \(\theta \) is continuous and nondecreasing. For \(t \in [0, \infty) \), we have

\[
\theta(t) \geq h([t] + 1) \geq h(t)
\]

because \(t < [t] + 1 \). We also have

\[
\int_0^\infty \frac{dt}{1 + \theta(t)} \geq \int_0^\infty \frac{dt}{1 + h([t] + 2)} \geq \int_0^\infty \frac{dt}{1 + h(t + 2)} = \int_2^\infty \frac{dt}{1 + h(t)} = \infty.
\]

This completes the proof. \(\square \)

Similarly, we can prove the following.

Proposition 3. Let \(h \) be a nondecreasing function from \([0, \infty)\) into itself such that \(\int_0^\infty (1/(1 + h(t)))dt < \infty \). Then there exists a continuous nondecreasing function \(\theta \) from \([0, \infty)\) into itself such that \(\int_0^\infty (1/(1 + \theta(t)))dt < \infty \) and \(\theta(t) \leq h(t) \) for all \(t \in [0, \infty) \).

Proof. Define a function \(\theta \) from \([0, \infty)\) into itself by

\[
\theta(t) = \begin{cases}
 h(0), & \text{if } t \leq 1, \\
 (1 - t + [t])h([t] - 1) + (t - [t])h([t]), & \text{if } t \geq 1.
\end{cases}
\]

for \(t \in [0, \infty) \). Then \(\theta \) is continuous, nondecreasing, \(\theta(t) \leq h([t]) \leq h(t) \) for \(t \in [0, \infty) \), and \(h(t - 2) \leq h([t] - 1) \leq \theta(t) \) for \(t \in [2, \infty) \). Hence

\[
\int_2^\infty \frac{dt}{1 + \theta(t)} \leq \int_2^\infty \frac{dt}{1 + h(t - 2)} = \int_0^\infty \frac{dt}{1 + h(t)} < \infty.
\]

This completes the proof. \(\square \)

6. **Counterexamples**

In this section, we give examples, which say that we use conditions \(\int_0^\infty (1/(1 + h(t)))dt = \infty \) and the completeness of \(X \) in Theorem 3 and others.

Example 2. Put \(X := \mathbb{R} \) and let \(h \) be a nondecreasing function from \([0, \infty)\) into itself such that \(\int_0^\infty (1/(1 + h(t)))dt < \infty \). Then there exists a differentiable function \(f \) from \(X \) into \(\mathbb{R} \) such that

\[
\lim_{r \to \infty} \inf_{|x| \geq r} f(x) \in \mathbb{R} \quad \text{and} \quad |f'(x)| (1 + h(|x|)) \geq 1
\]

for all \(x \in X \).

Proof. By Proposition 3, there exists a continuous nondecreasing function \(\theta \) from \([0, \infty)\) into itself such that \(\int_0^\infty (1/(1 + \theta(t)))dt < \infty \) and \(\theta(t) \leq h(t) \) for all \(t \in [0, \infty) \). Define a function \(f \) from \(X \) into \(\mathbb{R} \) by

\[
f(x) = \int_0^x \frac{-1}{1 + \theta(\max\{t, 0\})} \, dt\]
It is obvious that \(\lim_{x \to -\infty} f(x) = \infty \) and \(\lim_{x \to +\infty} f(x) \in \mathbb{R} \). We also have
\[
|f'(x)| (1 + h(|x|)) = \frac{1}{1 + \theta(\max\{x, 0\})} (1 + h(|x|)) \geq \frac{1 + h(|x|)}{1 + \theta(|x|)} \geq 1
\]
for all \(x \in X \). This completes the proof. \(\square \)

Example 3. Let \(X \) be the normed linear space consisting of all functions \(x \) from \(\mathbb{N} \) into \(\mathbb{R} \) (i.e., \(x \) is a real sequence) such that \(\{ n \in \mathbb{N} : x(n) \neq 0 \} \) is a finite subset of \(\mathbb{N} \). Define a norm \(\| \cdot \| \) on \(X \) by \(\|x\| = \sum_{n=1}^{\infty} |x(n)| \) for all \(x \in X \). Define a lower semicontinuous (not continuous), convex, and Gâteaux differentiable function \(f \) from \(X \) into \(\mathbb{R} \) by
\[
f(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} \exp \left(2^n x(n) \right)
\]
for \(x \in X \). Then
\[
\lim_{r \to \infty} \inf_{\|x\| \geq r} f(x) = 0 \in \mathbb{R} \quad \text{and} \quad \|f'(x)\| \geq 1
\]
for all \(x \in X \).

Proof. It is obvious that \(f \) is convex and \(\lim_{r \to \infty} \inf \{ f(x) : \|x\| \geq r \} = 0 \). By the definition of \(X \), \(f \) is Gâteaux differentiable and its derivative is given by
\[
f'(x) = \sum_{n=1}^{\infty} \exp \left(2^n x(n) \right) e_n
\]
for all \(x \in X \), where \(\{ e_n \} \) is the canonical basis of \(X \). Thus, we have
\[
\|f'(x)\| = \sup \{ \exp \left(2^n x(n) \right) : n \in \mathbb{N} \} \geq \exp(0) = 1
\]
for all \(x \in X \). Fix \(x \in X \) and define a sequence \(\{ x_n \} \) in \(X \) by
\[
x_n(k) = \begin{cases} x(k), & \text{if } k \neq n, \\ 1/n, & \text{if } k = n \end{cases}
\]
for \(n \in \mathbb{N} \). Since \(\|x - x_n\| = 1/n \) for large \(n \in \mathbb{N} \), \(\{ x_n \} \) converges to \(x \). Since
\[
\frac{2^{n-1}}{n^2} \leq \frac{1}{2^n} \left(1 + \frac{2^n}{n} + \left(\frac{2^n}{n} \right)^2 / 2 \right) \leq \frac{1}{2^n} \exp \left(\frac{2^n}{n} \right) \leq f(x_n)
\]
for \(n \in \mathbb{N} \), we have \(\lim_n f(x_n) = \infty \). This implies \(f \) is not continuous everywhere. We finally show that \(f \) is lower semicontinuous. Let \(\{ x_n \} \) be a sequence in \(X \) converging to some \(x \in X \). We fix \(\varepsilon > 0 \) and choose \(\nu \in \mathbb{N} \) such that \(2^{-\nu} < \varepsilon \) and \(x(n) = 0 \) for every \(n \in \mathbb{N} \) with \(n \geq \nu \). Define functions \(g \) and \(h \) from \(X \) into \((0, \infty) \) by
\[
g(y) = \sum_{n=1}^{\nu} \frac{1}{2^n} \exp \left(2^n y(n) \right) \quad \text{and} \quad h(y) = \sum_{n=\nu+1}^{\infty} \frac{1}{2^n} \exp \left(2^n y(n) \right)
\]
for \(y \in X \). Then it is obvious that \(f = g + h \), \(g \) is continuous and \(h(x) = 2^{-\nu} < \varepsilon \). We have
\[
f(x) = g(x) + h(x) \leq g(x) + \varepsilon = \lim_{n \to \infty} g(x_n) + \varepsilon \leq \liminf_{n \to \infty} f(x_n) + \varepsilon.
\]
Since \(\varepsilon > 0 \) is arbitrary, we have \(f(x) \leq \liminf_{n \to \infty} f(x_n) \). Therefore \(f \) is lower semicontinuous. This completes the proof. \(\square \)
References

Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550, Japan

E-mail address: suzuki-t@mns.kyutech.ac.jp